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Chapter 1

General Introduction

Today, interest rates are key economic instruments. As interest rate markets continue to

innovate and expand, it is becoming increasingly important to remain up to date with the

latest practical developments.

As a matter of fact, interest rate models are well-developed after forty years since the most

basic term structure model is pioneered by Merton (1973). Meanwhile, empirical challenges

emerged as the many types of empirical analysis were conducted. In this dissertation, we

especially focus on the term structure of interest rates and try to solve some problems

provided as the empirical challenges stated below:

• the relation between the nominal interest rates and excess consumption

• the expectation puzzle

• the humped shape of the term structure of volatility

• the nonnegativity of nominal interest rates.

There are already well-developed models which explain the relation between the real

interest rates and excess consumption. For instance, Wachter (2006) and Burashi and Jiltsov

(2007) take consumption-based approaches to the term structure of interest rates and show

the negative relation between the real short term interest rate and excess consumption.

The excess consumption in these literatures is defined by the consumption excess to the

consumption habit. While these models are attractive, they also imply the negative relation
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8 CHAPTER 1. GENERAL INTRODUCTION

between the nominal interest rates and excess consumption whereas the empirical studies

found the positive relation. In this sense, the existing models are not necessarily successful

in explaining the observed phenomenon.

The second challenge, the expectation puzzle, is the puzzle which was found by Campbell

and Shiller (1991). While the standard expectation hypothesis asserts that the change in

spot rates is positively correlated with the slope of the spot rate curve, the persistent negative

correlation is found. An explanation to this puzzle is provided by Dai and Singleton (2002)

and Duffee (2002). They extend the traditional affine term structure models to the models

which allow the market price of risk to move stochastically and show that the puzzle can

be solved by these models. The question addressed in this dissertationis whether there is

another economic story which explains the puzzle other than the time-varying market price

of risk.

The third challenge is concerned with the volatility. The actual term structure of volatility

is time-varying. Furthermore, the volatility curve is reported to be humped shaped. These

phenomena are not explained by one-factor term structure models. Is there any single factor

model which is possible to explain those phenomena?

Finally, the nominal interest rates are considered to be nonnegative. But, many of the

standard models allow that the interest rates are negative. When we use the term structure

models to price fixed income derivatives based on nominal interest rates, this may be a

serious problem.

This dissertation tries to give some solutions to solve these modern challenges to the

theory of term structure of interest rates. To give economic stories behind the challenges, we

adopt consumption-based approaches in which the preference of representative agent and the

process of endowment are specified. The models considered here are the equilibrium models

in pure exchange economies. More specifically, we consider the pure exchange economies in

which the aggregate endowment follows a Gaussian process (that is, the economies where the

unconditional distribution of future endowment is normal). As is shown in the next chapter,

when the preference of representative agent is defined by the time-additive CRRA (constant

relative risk aversion) utility, the equilibrium generates the standard term structure model

provided by Vasicek (1979). We depart from Vasicek model by the following extensions:
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• to assume that economic variables are partially observable

• to extend the preference of representative agent to more general preference than CRRA

utility.

By these extensions, we obtain the following results. First, by assuming the partial

observability of economic variables, we explain the positive relation between the nominal

interest rates and excess consumption. Second, the paper founds that the expectation puz-

zle can be explained even without time-varying market price of risk. The key to solve the

puzzle here is the time-varying elasticity of intertemporal substitution. Third, this disser-

tation shows that under a more general preference than CRRA utility, the interest rates

are nonnegative even under the assumption that the single factor follows a Gaussian pro-

cess. And it is shown that the equilibrium in this one-factor economy can generate humped

shaped volatility curve. Again, the main reason for the humped shape is that the elasticity

of intertemporal substitution is time-varying.

The paper is organized as follows. In the next chapter, the term structure models and the

consumption-based approach are reviewed briefly and the challenges to the term structure

models to focus in this dissertation are provided in detail. In chapter 3, we examine the

equilibrium in an economy where economic variables are partially observable. In chapter 4,

another term structure model explaining the expectation puzzle is explored. In chapter 5,

an economy with single factor is considered and the nonnegativity of interest rates and the

shape of the volatility curve are examined.
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Chapter 2

Review of Term Structure Models

2.1 General Set Up

In the following sections, we review the literature on the term structure models. Before

this, the general set up on the time span and the probability space is given in this section.

Throughout this dissertation, the time span is assumed to be a continuous closed interval

[t0, τ ]. Let (Ω,F , Q) be a complete probability space. A n-dimensional Wiener process is

denoted as {Wt : t ∈ [t0, τ ]} whereW⊤
t = [W1t, · · · ,Wnt]. We assume thatWit andWjt(i ̸= j)

are independent. Filteration {Ft : t ∈ [t0, τ ]} is chosen to be the Q−augmentation of the

natural filteration generated by Wt.

Let us denote the pure discount bond price at time as P (t, s) where s is the date of

maturity. It is assumed that the face value of any bond is unity. The time t spot rate with

matutiry s is defined by,

y(t, s) = − 1

s− t
lnP (t, s). (2.1)

The short rate is the short end of the spot rate curve and defined by

rt = lim
s→t

y(t, s). (2.2)

The time t instantaneous forward rate of interest rate with maturity date is defined by

f(t, s) = −∂ lnP (t, s)

∂s
. (2.3)

It is straightforward that the following equation holds,

rt = lim
s→t

f(t, s). (2.4)

11



12 CHAPTER 2. REVIEW OF TERM STRUCTURE MODELS

It is well known that no risk-free arbitrage opportunity exists if an equivalent martingale

measure Q∗ exists, and the arbitrage free bond price is given by

P (t, s) = EQ∗
[
exp

(
−
∫ s

t

rudu

)∣∣∣∣Ft

]
, (2.5)

where EQ∗
[·|Ft] is the operator for conditional expectation under the equivalent martingale

measure. Since Radon-Nikodym derivative follows a martingale process, from the martingale

representation theorem, (2.5) is expressed as

P (t, s) = E

[
exp

(
−1

2

∫ τ

t

Λ⊤
uΛudu−

∫ τ

t

Λ⊤
u dWu

)
exp

(
−
∫ s

t

rudu

)∣∣∣∣Ft

]
= E

[
exp

(
−1

2

∫ s

t

Λ⊤
uΛudu−

∫ s

t

Λ⊤
u dWu

)
exp

(
−
∫ s

t

rudu

)∣∣∣∣Ft

]
, (2.6)

where E[·|Ft] is the operator for conditional expectation under Q and Λ⊤
t = [Λ1t, · · · ,Λnt]

is the vector of Ft−measurable random variables. It is well known that this vector has an

interpretation as the vector of market price of risk.

In the above equation, the determinants of bond price can be considered as two processes,

{rt : t ∈ [t0, τ ]} and {Λt : t ∈ [t0, τ ]}, that is, the process of short rate and the process of

market price of risk. Thus, specifying these two stochastic processes means that we specify

a term structure model. In the next section, we review the term structure models from this

viewpoint.

2.2 Term Structure Models

2.2.1 Affine term structure models

Affine term structure models are the models in which the instantaneous forward rate of

interest rate is an affine function of state variables. Since the spot rate is the average of

instantaneous forward rate of interest rates, the spot rate is also an affine function of state

variables. Affine term structure models are now widely used for empirical analysis, because

the interest rates are affine functions of state variables and does not require complicated

estimation procedures.

General arguement for the affine term structure models was first given by Duffie and Kan

(1996). Let n-dimensional stochastic process {Xt : t ∈ [t0, τ ]} where Xt = [X1t, · · · , Xnt]
⊤
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as the vector of state variables. And {W ∗
t : t ∈ [t0, τ ]} is defined by dW ∗

t = dWt +Λtdt, t ∈

[t0, τ ]. Obviously this process is the n-dimensional Wiener process under the equivalent

martingale measure. The gradients of affine term structure models are:

1. the process of state variables:

dXt = µ∗
X,tdt+ σ⊤

X,tdW
∗
t ,

µ∗
X,t = g0 + gXXt,

σ⊤
X,tσX,t = h0 +

n∑
i=1

hiXit,

where g0 is an n× 1 vector and gX and hi, i = 0, 1, · · · , n are n× n matrices of constants.

2. short rate: the short rate is given by an affine function of state variables,

rt = δ0 + δ⊤Xt,

where δ0 is a real number and δ is a n× 1 vector of constants.

Note that the vector of market price of risk is specified through the equation µ∗
X,t = µX,t −

σ⊤
X,tΛt, once the drift of state variables under the physical measure, µX,t is specified.

Duffie and Kan (1996) showed that under this specification, the instantaneous forward

rate of interest rate is an affine function of state variables. Converse is also true if we assume

that the term structure models are time homogeneous. Before Duffie and Kan (1996), many

affine term structure models are provided. Let us briefly review some of these models which

are the critical benchmarks for subsequent chapters.

Merton (1973) introduced the most simple term structure model calles as Merton toy

model. It assumes that n = 1 and the process of short rate is given by

drt = µrdt− σrdWt,

where µr and σr are constants. And it is assumed that Λt = λ, ∀t ∈ [t0, τ ] where λ is a

constant. The specification as an affine term structure model is: g0 = µr+λσr, gX = 0, h0 =
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σ2
r , h1 = 0, δ0 = 0, δ = 1. Under this specification, the model implies that the instantaneous

forward rate of interest rate is given by

f(t, s) = rt + (µr + λσr)(s− t)− 1

2
σr(s− t)2.

Cleary, the instantaneous forward rate of interest rate is an affine function of X1t.

The serious drawback of Merton toy model is the process of the short rate is non-

stationary. Vasicek(1977) provided the term structure models where the process of interest

rate is stationary. He assumes that n = 1 and the short rate follows an Ornstein-Uhlenbeck

process,

drt = κ(θ − rt)dt− σrdWt,

where κ and θ are positive constant. To ensure that the short process is stationary, it is

usually assumed that κ > 0. As Merton toy model, he assumes that Λt = λ, ∀t ∈ [t0, τ ].

The specification as an affine term structure model is: g0 = κθ+λσr, gX = −κ, h0 = σ2
r , hi =

0, δ0 = 0, δ = 1. Under this specification, the instantaneous forward rate is given by

f(t, s) = e−κ(s−t)rt +
(
1− e−κ(s−t)

)
θ + λσr

1− e−κ(s−t)

κ
− 1

2
σ2
r

(
1− e−κ(s−t)

κ

)2

.

Note that when κ = 0, then Vasicek model is reduced to Merton toy model. And also in

this model, the instantaneous forward rate of interest rate is an affine function of X1t.

The common property which is shared in the above models is that the compound interest

rates follow normal distribution. Although this property is convenient when we obtain the

rational price of fixed income derivatives, there is a serious shortcoming that interest rates are

negative with positive probability. Cox, Ingersoll and Ross (1985b) overcomes this problem.

In their model, n is set to be unity and the short rate is assumed to follow a square root

process,

drt = κ(θ − rt)dt− σr

√
rtdWt,

where κ and θ are positive constant. The market price of risk is defined by Λt = λ
√
rt. Note

that the short rate is positive with probability one, because there is a reflecting barrier at

zero.
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The specification as an affine term structure model is: g0 = κθ + λσr, gX = −κ, h0 =

0, h1 = σ2
r , δ0 = 0, δ = 1. Under this specification, the instantaneous forward rate of interest

rate is also given as an affine function of X1t,

f(t, s) =

(
∂

∂s
b(t, s)

)
rt −

∂

∂s
A(t, s)

where

A(t, s) =

(
2γe

(κ+λ+γ)(s−t)
2

(γ + κ+ λ)(eγ(s−t) − 1) + 2γ

) 2κθ

σ2
r

b(t, s) =
2(eγ(s−t) − 1)

(γ + κ+ λ)(eγ(s−t) − 1) + 2γ

γ =
√
(κ+ λ)2 + 2σ2

r .

All of the above models has only one state variable which drives spot rate curves. Lit-

terman and Sheinkman (1991) showed that there must at least two factors to explain the

actual movements of spot rate curves. In fact, many affine term structure models with more

than one factor are provided in the last four decades. Langetieg (1980) extends Vasicek

model. He assumed that the short rate is the sum of more than two state varibles which

follow Ornstein-Uhlenbeck processes and the market price of risk is expressed as a vector

of constants. Longstaff and Schwartz (1992) provide two-factor affine term structure model

which is a natural extension of Cox, Ingersoll and Ross model. There are other models which

can be categorized as the member of the affine term structure models such as Brown and

Dybvig (1986), Hull and White (1987), Chen and Scott (1993), Brown and Schaefer (1994),

Pearson and Sun (1994) for instance.

It is natural to extend the above models to the affine term structure models in which some

state variabels follow square root processes and the others follow Gaussian processes. To

construct this kind of model, restrictions must be imposed. Going back to the specification

of affine term structure models, let us express σX,t as σ⊤
X,t = Σ

√
St where Sii,t = ci +

d⊤i Xt, Sij = 0, ı ̸= j, 1 ≤ i, j,≤ n and Σ is an n × n matrix of constants. To ensure

that Sii,t is nonnegative, Dai and Singleton(2000) introduced the “canonical” model AM(n)

with Sii,t =
√
Xi,t, i = 1, · · · ,M and the remaining n − M Sii,t being affine function

of (X1,t, · · · , XM,t). They provide an easily verifiable set of sufficient restrictions on the

paremeters of AM(n) to gurantee “admissibility”. In this specification, Merton toy model,

Vasicek model, Langtieg model are the models of A0(n), n ≥ 1. These models are called
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as purely Gaussian term structure models, since all of the state variables follow Gaussian

processes. Cox, Ingersoll and Ross model and Longstaff and Schwartz model are identified

as the models of An(n), n = 1, 2.

2.2.2 Determinants of instantaneous forward rate of interest rate

in purely Gaussian term structure models

As is shown in the previous section, the instantaneous forward rate in each model has a

complicated form with many parameters. Even the standard model of Vasicek (1977) has

not a simple form. In this section, we give intuitive interpretation to the instantaneous

forward rate in purely Gaussian term structure models. At first, we define forward martingale

measure.

Forward martingale measure with respect to maturity s is defined by Radon-Nikodym

derivative,

dFs

dQ∗ =
exp

(
−
∫ s

t0
rudu

)
EQ∗

[
exp

(
−
∫ s

t0
rudu

)] .
By differentiating (2.5) with respect to s and using the definition of instantaneous forward

rate (2.3), we obtain

f(t, s) = − ∂

∂s
lnP (t, s)

= − 1

P (t, s)

(
EQ∗

[
−rs exp

(
−
∫ s

t

rudu

)∣∣∣∣Ft

])
= EQ∗

[(
exp

(
−
∫ s

t
rudu

)
EQ∗ [exp (− ∫ s

t
rudu

)∣∣Ft

]) rs

∣∣∣∣∣Ft

]
= EFs [rs|Ft]

Thus, the instantaneous forward rate is equal to the expectation of future short rate un-

der the forward martingale measure. We will use the forward martingale measure for the

decomposition of instantaneous forward rate.

For convenience, let us define f ∗(t, s) as

f ∗(t, s) = EQ∗
[rs|Ft].
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Then, it is clear that

f(t, s)− f ∗(t, s)

=

(
− ∂

∂s
lnEQ∗

[
exp

(
−
∫ s

t

rudu

)∣∣∣∣Ft

])
−
(
− ∂

∂s
EQ∗

[
ln

{
exp

(
−
∫ s

t

rudu

)}∣∣∣∣Ft

])
= − ∂

∂s

(
lnEQ∗

[
exp

(
−
∫ s

t

rudu

)∣∣∣∣Ft

]
− EQ∗

[
ln

{
exp

(
−
∫ s

t

rudu

)}∣∣∣∣Ft

])
.

So, the difference f(t, s) − f ∗(t, s) captures the effect of Jensen’s inequality. Note that this

difference diminishes when there is no interest rate risk. And this difference persistently

remains even when Q∗ = Q. Thus the difference is interpreted as the pure effect of interest

rate uncertainty or convexity. Hereafter we will call this Jensen’s inequality effect. The

instantaneous forward rate of interest rate can be decomposed into three components as

f(t, s) = E[rs|Ft] + (EQ∗
[rs|Ft]− E[rs|Ft]) + (EFs [r(s)|Ft]− EQ∗

[rs|Ft])

= E[rs|Ft] + (f ∗(t, s)− E[rs|Ft]) + (f(t, s)− f ∗(t, s)).

The first term in the right hand side is the expectation of future short rate. Since the third

term is the pure effect of interest rate uncertainty, the remaining term which is the second

term(the first parentheses) is the term of risk premium. This term diminishes when the

vector of market price of risk is the zero vector.

In Merton toy model, it is clear that E[rs|Ft] = rt + µr(s − t) and EQ∗
[rs|Ft] = rt +

(µr + λσr)(s − t). Thus, Jensen’s inequality effect is given by the quadratic function with

respect to time to maturity −1
2
σr(s− t)2 and the risk premium is given by a linear function

λσr(s− t).

In Vasicek model, E[rs|Ft] = e−κ(s−t)rt +
(
1− e−κ(s−t)

)
θ and EQ∗

[rs|Ft] = e−κ(s−t)rt +(
1− e−κ(s−t)

)
θ + λσr

1−e−κ(s−t)

κ
. Thus, in Vasicek model, Jensen’s inequality effect is given

by −1
2
σ2
r

(
1−e−κ(s−t)

κ

)2
and the risk premium is given by λσr

1−e−κ(s−t)

κ
.
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2.3 Consumption-based approach to the Term Struc-

ture of Interest Rates

As is explained in the previous section, when we restrict the class of term sturucture models

to purely Gaussian term structure models, we can give an interpretation to each term in

the instantaneous forward rate of interest rate: the expectation of future short rate, the risk

premium, and Jensen’s inequality effect. While this interpretation is convenient in discussing

the determinants of interest rates, it does not work when we analyze the relation between

interest rates and the economic parameters concerning with the risk preference of agents and

the expectation or variance of change in macroeconomic indicators. The consumption-based

approach to the term structure of interest rates allows us to do this. In this section, we

briefly review the literature on this approach.

Consumption-based approach with pure exchange economies is the most widely used in

analysing the property of asset price. In this approach, it is usually assumed that only one

type of perishable consumption goods is consumed and the process of aggregate endowment

is given exogeneously. The risky asset is assumed to be in zero net supply and as a result,

the consumption level of representative agent is equal to the level of aggregate endowment

in equilibrium.

The asset pricing in a pure exchange economy was first considered in Lucas (1978). He

considered a discrete time model and provided the general formula for the pricing of risky

assets. The continuous time counterpart of Lucas’s model is considered by Duffie and Zame

(1989). They define the entire economy by a collection ((Ω,F , {Ft}, Q), (U, {yt}), {Dt})

where U is the preference of representative agent and {yt} = {yt : t ∈ [t0, τ ]} is the process

of aggregate endowment, and {Dt} = {Dt : t ∈ [t0, τ ]} is the n-dimensional stochastic process

of cumulative dividends which are paid by n securities1. By assuming that the preference of

representative agent is defined over the stream of consumption

U ({cs : s ∈ [t0, τ ]}) = E

[∫ τ

t0

v(cs, s)ds

]
,

where v(·, s) is strictly concave increasing with the first derivative vc(·, s) satisfying limx→0 vc(x, s) =

1Duffie and Zame (1989) considered a multi-agent and complete market environment. In this dissertation,
we start with an economy where the representative agent exists and the market is complete
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+∞ and the aggregate endowment follows an Ito process, they showed that there exists an

equilibrium such that security price at time t, Sk
t , (t ∈ [t0, τ)) satisfies

Sk
t = E

[∫ τ

t

vc(ys, s)

vc(yt, t)
dDk

s

∣∣∣∣Ft

]
, k = 1, · · · , n.

Supoose that the cumulative dividend process of security k is defined by

Dk
u =

 0 u < s

1 u ≥ s
.

Then, this security is the pure discount bond with maturity s and its price is given by

P (t, s) = Sk
t = E

[
vc(ys, s)

vc(yt, t)

∣∣∣∣Ft

]
. (2.7)

As is explained in the previous section, in determining a term structure model, the

two components, the short rate and the market price of risk should be specified. In the

consumption-based approach, we can give some expressions to these components in terms

of marginal utility of representative agent. From (2.4), the short rate in the equilibrium is

given by

rt = lim
s→t

f(t, s)

= − lim
s→t

∂ lnP (t, s)

∂s

= − lim
s→t

∂E[vc(ys, s)|Ft]/∂s

E[vc(ys, s)|Ft]

= −
lim∆→0

E[vc(yt+∆,t+∆)−vc(yt,t)|Ft]

∆

vc(yt, t)
.

That is, the short rate is the negative of instantaneous expected rate of change in the marginal

utility. By Ito’s lemma, we can have the following expression,

d ln vc(yt, t) = −rt −
1

2
σ⊤
v,tσv,tdt+ σ⊤

v,tdWt,

or

vc(ys, s) = vc(yt, t) exp

(
−
∫ s

t

rudu−
∫ s

t

1

2
σ⊤
v,uσv,udu+

∫ s

t

σ⊤
v,udWu

)
.

Substituting above equation into (2.7), we obtain

P (t, s) = E

[
exp

(
−
∫ s

t

1

2
σ⊤
v,uσv,udu+

∫ s

t

σ⊤
v,udWu

)
exp

(
−
∫ s

t

rudu

)∣∣∣∣Ft

]
.
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Finally, comparing this equation with (2.6), we can conclude that Λt = −σv,t. That is, the

market price of risk is given by the negative of volatility of marginal utility.

As the most simple example, let us consider a pure exchange economy where n = 1 and

the aggregate endowment follows a process,

dyt
yt

= µt dt+ σdWt,

where µt follows a deterministic process and σ is a constant. It is clear that the unconditional

distribution of ln yt is normal. Throughout this dissertation, we will call the process of

aggregate endowment is a Gaussian endowment process when the aggregate endowment has

this property.

Next, let us assume that the preference of the representative agent is given by the standard

CRRA utility,

v(ct, t) = e−ρt c
1−γ
t

1− γ
, γ > 0.

It is straightforward to show that the short rate is given by

rt = ρ+ γµt −
1

2
γ2σ2, ∀t ∈ [t0, τ). (2.8)

The market price of risk is given by γσ. When σ = 0, then there is no uncertainty. In

this special case, the short rate is given by rt = ρ+ γµt. The parameter γ is the coefficient

of relative risk aversion. At the same time, it is also the reciprocal of the elasticity of

intertemporal substitution since the preference of representative agent is a time-additive

utility. When there is no uncertainty, this parameter is better interpreted as the second

one and the second term of right hand side of (2.8) is usually interpreted as the effect of

intertemporal substitution. The third term which appears when σ ̸= 0 is usually interpreted

as the effect of precautionary saving effect. In this term, γ should be interpreted as the

coefficient of relative risk aversion.

While the above simple model provides some insight for the determination of interest

rates, there is no interest rate uncertainty in this model. To investigate the movements of

term structure of interest rates, we should extend the model. Natural extension is to modify

the process of µt to some stochastic process. Goldstein and Zapatero (1996) considered this

extension. They assume that the process of µt is given by an Ornstein-Uhlenbeck process

dµt = κ(µ̄− µt)dt+ bdWt,
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where µ̄, κ, and b are constants. Under this extension, the expression of the short rate is still

the same as (2.8). But the short rate process is stochastic and given by

drt = κ(θ − rt)dt− σrdWt,

where θ and σr are given by

θ = ρ+ γµ̄− 1

2
γ2σ2,

σr = −γb.

Since the market price of risk is γσ in this model, this model generates Vasicek model.

Clearly when κ = 0, the model generates Merton toy model. Thus, Goldstein and Zapatero

(1996) provide some insights for the determinants of term structure model. For instance, the

speed of mean-reversion is identical among the short rate and µt. Thus, when the market

considers that the (instantaneous) expected rate of growth of endowment is persistent, then

the speed of mean-reversion of the short rate is slow and vice versa. The volatility of the

short rate is determined by the ratio of the volatility of µt to the elasticity of intertemporal

substitution. The interest rate risk becomes large when the volatility of income growth

becomes large, but also when the elasticity of intertemporal substitution becomes low.

There is another formulation of pure exchange economy to generate Vasicek model other

than the framework of Goldstein and Zapatero (1996). Assume that n = 1 and the endow-

ment process is given by

dyt
yt

= µdt+ σdWt,

where µ and σ are constants. And assume that the representative agent has consumption

habit and denote it as zt. It is defined by the following equation,

zt = exp

(
κc

∫ t

t0

e−κc(t−u) ln cudu

)
,

where κc is a positive constant. Apparently κc is the parameter for weights which are put

on the past consumption streams when we define the weighted average of past consumption.

Applying Ito’s lemma, the process of consumption habit is given by,

d ln zt = κc(ln yt − ln zt)dt.
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Finally, assume that the preference of representative agent is defined by

v(ct, zt, t) = e−ρt (ct/zt)
1−γ

1− γ
, γ > 0.

Under the presence of consumption habit, the short rate which is the negative of instanta-

neous expected change in the marginal utility of consumption is given by

rt = ρ+ γµ− 1

2
γ(γ + 1)σ2 + (1− γ)κc(ln yt − ln zt).

Applying Ito’s lemma, we can obtain the process of the short rate as

drt = κc(θ − rt)dt− σrdWt,

where θ and σr are given by

θ = ρ+ µ− 1

2
γ(1 + γ)σ2,

σr = −(1− γ)κcσ.

Since the market price of risk is given by γσ, this model also generates Vasicek model.

An interesting message from this model is that the mean reversion of the short rate can

occur even in the absence of mean reversion of instantaneous expected rate of growth of

endowment µ. Specifically, the speed of mean reversion of the short rate is determined by

κc. Thus, the interest rate is persistent when the representative agent puts less weight on

the most recent consumption level. Conversely, when the agent puts more weight on the

most recent consumption, the speed of mean reversion of the short rate is fast. This model

shares common property with Wachter (2006) who considered a pure exchange economy in

a discrete time model2. Wachter’s model is reviewed in the next section.

2Since the definitions of consumption habit are slightly different between the above model and Wachter’s
model, the short rates in these two models have different forms.
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2.4 Empirical Challenges to Term Structure Models

and Research Questions

2.4.1 Relation between nominal interest rates and excess con-

sumption

A growing literature analyzes the relation between the nominal spot rate curve and real econ-

omy based on factor models with no-arbitrage restrictions. For instance, Ang and Piazzesi

(2003) construct a real economic factor by extracting the first principal component from real

activity measures, including the index of Help Wanted Advertising in Newspapers (HELP)

and industrial production growth. Along with many other findings, they demonstrate that

nominal interest rates positively react to the real economic factor shocks. In addition, Bik-

bov and Chernov (2010) use HELP as a proxy for the real activity and suggest a positive

relationship between the nominal interest rates and real activity. Further, Ang, Don, and

Piazzesi (2007) estimate the Taylor rule with no-arbitrage restrictions, indicating that the

nominal short rate increases after a positive shock to the output gap.

While these studies provide evidence of positive relation between the nominal interest

rates and real activity, the models which take consumption-based approach cannot suc-

cessfully explain this positive relationship. For instance, following Campbell and Cochrane

(1999), Wachter (2006) explores a discrete time consumption-based model of term structure

of interest rates with habit persistence. In her model, utility function at each time is defined

by v(ct, zt) = e−ρt (ct−zt)1−γ−1
1−γ

where zt is the level of external habit. Assuming that the log-

arithm of aggregate endowment follows a random walk process and denoting consumption

excess to habit (excess consumption, hereafter) as st = ln ct−zt
ct

, she derives the real short

rate as (using her notations),

rf,t+1 = ρ+ γg − γ(1− ϕ)− b

2
+ b(s̄− st),

where g is the instantaneous expected rate of change in endowment and ϕ and b are param-

eters to be estimated. After estimating parameters, she finds that b is significantly positive.

This is consistent with the result of simple regression which shows the negative relation

between the real interest rates and excess consumption.
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The nominal short rate in her model is given by,

r$f,t+1 = rf,t+1 + Et[∆πt+1]−
1

2
σ⊤
π σπ − σ⊤

π σcγ(λ(st)) + 1),

where ∆πt is the rate of inflation at time t and λ(st) is defined by,

λ(st) = (1/S̄)
√
1− 2(st − s̄)− 1.

σπ is the vector of volatility of inflation and σc is the vector of volatility of consumption.

Under her estimation, the covariance σ⊤
π σc is negative. This means that the nominal short

rate is also negatively related with excess consumption, since λ(st) is decreasing in excess

consumption. Thus, in Wachter’s model, the positive relation between the nominal short

rate and real activity cannot be explained with the parameters estimated.

Buraschi and Jiltsov (2007) propose a new class of non-affine models that link the macro

economic variables and the spot rate curve when preferences are subject to habit persis-

tence. Similar to Wachter’s model, their model can reproduce many characteristics of the

term structures of interest rates, but suggests a negative correlation between the excess

consumption and nominal interest rates.

One may think that there is no exact linkage between the excess consumption and other

macroeconomic indicators such as HELP index and it is possible that the nominal interest

rate is positively related with HELP index whereas it is negatively related with the excess

consumption. Let us affirm that there is positive correlation between the actual nominal

interest rates and excess consumption by U.S. data. We conduct a simple regression analysis

motivated by Wachter (2006)3. Wachter regresses the ex post real interest rate on surplus

consumption proxy to see the negative relation between interest rates and surplus consump-

tion. Following this idea, we regress the nominal interest rates for several maturities on

excess consumption and price level proxies. Thus, the regressions we estimated are

rt+1(n) = α0 + α1

40∑
j=1

ϕj∆ ln yt−j + α2

40∑
j=1

ϕj∆ ln pt−j + εt+1, (2.9)

3Our regression is based on the quarterly data on consumption and price level from the first quarter of
1952 to the second quarter of 2007. The nominal yield data are quarterly treasury constant maturity rates
with maturities of one, two, three years. These data are from the second quarter of 1962 for all maturities.
Interest rates are obtained from the Global Financial Data and other data are taken from the Federal Reserve
Economic Data (FRED).
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where rt+1(n) is the nominal yield with maturity n. yt and pt are real consumption and price

level respectively. Following Wachter (2006), ϕ is set to equal 0.97.

Maturity Estimate of α1 Std. error of α1 Estimate of α2 Std. error of α2

1 year 0.192∗∗ 0.082 0.205∗∗ 0.024
2 years 0.146∗∗ 0.041 0.208∗∗ 0.012
3 years 0.122∗ 0.071 0.205∗∗ 0.020

Table 2.1: Estimates for the coefficient of the excess consumption in the regression (2.9). ∗ and ∗∗ indicate

results are significant at the 5% and 1% significance levels, respectively.

Table 2.1 reports the estimates and Newey-West standard errors for several maturities.

In contrast with Wachter’s result of negative estimates for α1, the parameter α1 is estimated

to be positive and statistically significant for all short maturities, one, two, and three years.

This result suggests that if we consider the nominal interest rate as a dependent variable

and treat inflation as an explanatory variable, we can find a positive relation between the

nominal short term interest rate and the excess consumption.

Overall, although the models with habit persistence show attractive features, they are

not successful in explaining the comovements between nominal interest rates and excess

consumption. Thus, we set two research questions:

• Is there an equilibrium model which can generate positive relation between the nominal

interest rates and excess consumption?

• If there is, what is the role for excess consumption in that model?

In chapter 3, we consider a new model which takes consumption-based approach. We

consider a pure exchange economy with Gaussian endowment process, but the economic

variables are assumed to be partially observable. We investigate the equilibrium in this

model and examine whether the nominal interest rates are positively related to the excess

consumption.
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2.4.2 Expectation puzzle

Let us denote Rn
i as time i spot rate with time to maturity n in months. Consider a simple

regression,

Rn−1
i+1 −Rn

i = constant + ϕn
Rn

i −R1
i

n− 1
+ error term.

The dependent variable is the change in yield in the next month and the dependent variable

is the slope of current spot rate curve. The traditional expectation hypothesis which states

that the slope of curve contains the information regarding the market expectation of future

interest rates implies the regression coefficients are unity for all n.

On the contrary, Campbell and Shiller(1991) documented that this implication has been

consistently rejected. The regression coefficient is significantly far from unity and even

negative4. This situation becomes severe for longer maturities. This is called as “expectation

puzzle”. Table 2.2 shows the results reported in Dai and Singleton(2002).

time to maturity(in months) 12 24 48 84 120
regression coefficient ϕn -1.425 -1.705 -2.147 -3.096 -4.173

Table 2.2: Regression coefficients reported in Dai and Singleton(2002). The regression coefficients are all

negative and the absolute value is larger for longer maturities.

Since the puzzle implies that the slope of current curve and the change in yields in the

next month are negatively correlated, it can be considered that the spot rate curve rotates

under the mean reversion of short term interest rates. In other words, the expectation puzzle

implies that short term interest rates and long term interest rates move in the opposite

direction. For instance, when the short term interest rates are relatively high, it is likely

that the spot rate curve has negative slope. After we observe the negative slope of the curve,

the short term interest rates tend to fall by mean reversion. On the other hand, from the

negative correlation with the slope, the long term interest rates rise in average. Thus, when

the expectation puzzle occurs, it seems that the rotation of the curve is likely to occur.

There are many researches which successfully explain the expectation puzzle. For in-

stance, Dai and Singleton(2002) and Duffee(2002) explain the puzzle by essentially affine

4Hereafter we will call this regression as Campbell-Shiller test
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term structure models in which the market price of risk is time-varying. Li and Song(2012)

introduce jumps into the affine term structure models and explain the puzzle and the humped

shape of volatility curve simultaneously. There are also utility based models of term struc-

ture which explain the expectation puzzle. Wachter(2006) shows that the puzzle can occur

in a pure exchange economy with external habit. Buraschi and Jiltsov(2007) show the puzzle

can occur by introducing the money in the utility function.

The important point here is that all of the above models explain the puzzle by the time

variation of market price of risk. The intuition behind these models is as follows. Suppose

that the market price of risk is given as a decreasing function of the short term interest

rate. When the short term interest rate is relatively high, it will fall in the next period by

mean reversion. On the other hand, the risk premium of long term bonds is small or even

negative because the market price of risk is negatively related to the short term interest rate.

Thus, the price of long term bonds tends to decline in the next period. Since the short term

interest rates fall and long term interest rates rise in the next period, the spot rate curve

shifts as if it rotates and the expectation puzzle occurs.

In chapter 4, we consider a pure exchange economy with Gaussian endowment process.

And we assume that the coefficient of relative risk aversion of representative agent is not

constant. The research questions are as follows.

• Is there an economic story which explains the expectation puzzle other than the story with

time-varying market price of risk?

• What kind of affine term structure model is corresponding to this story?

• Is it possible that an affine term structure model with constant market price of risk explains

the expectation puzzle?

• What is the difference between our affine term structure model which solves the puzzle and

the existing affine term structure models?
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2.4.3 Humped shape of volatiity curve

There is substantial evidence that spot rates exhibit time-varying conditional volatility. On

the other hand, in most of one-factor term structure models, the conditional volatility is

constant through time. For instance, in Vasicek model, the volatility of the forward rate is

given by

∂f(t, s)

∂rt
= σre

−κ(s−t). (2.10)

Another important evidence is that the term structure of unconditional volatilities of

spot rates tends to be hump-shaped. It is reported that the curve shows a hump that peaks

around two to three years in time to maturity. Vasicek model does not have this property.

(2.10) shows that volatility of forward rates is monotone decreasing in time to maturity. This

feature is widely shared among the one-factor affine term structure models5. The questions

addressed in this dissertation are:

• Is there any one-factor term structure model in which the volatility curve is humped shape?

• What is the story behind the volatility hump from the perspective of consumption based

approach?

5Even the one-factor term structure models which are more general than affine term structure models do
not exhibit humped-shaped volatility curve. For instance, the volatility curve is monotone in the one-factor
quadratic term structure models. For more details, see Dai and Singleton (2004).



Chapter 3

Term Structure when Economic

Varibles are Partially Observable

3.1 Introduction

As is explained in chapter 2, the relation between the excess consumption and the nominal

interest rates is not successfully explained by equilibrium models. The main objective of this

chapter is to provide a new equilibrium model that naturally generates a positive correlation

between the nominal interest rates and excess consumption. Throughout this chapter, we

focus on the partial observability of economic variables in a pure exchange economy where

the aggregate endowment and its price follow a system of Gaussian processes. In a complete

information model of pure exchange economy where the aggregate endowment follows a

Gaussian process, the instantaneous expected rate of change in endowments is the state

variable of the term structure of interest rates. On the other hand, in the real world,

agents in the economy cannot observe the expected change in income. Rather, they infer

the expected change in income based upon available information including the past income

stream. This is also true for price level. From this point of view, we set up a model where the

level of aggregate endowment and its price are observable but their instantaneous expected

growth rates are not.

There are several studies that explore the role of partially observed income on consump-

tion. For instance, Wang (2004) considers the optimal consumption rule when the agent can

29
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only observe her total income, not individual components. Guvenen (2007) proposes two

stochastic income processes for life-cycle consumption behavior, and provides a systematic

comparison of these implications to the US data. In addition, Wang (2009) investigates

an individual’s optimal consumption-saving and portfolio choice problem with unobservable

income growth. Unlike these works, this chapter examines the market equilibrium interest

rates when some economic variables are partially observable.

The effects of an unobservable factor on the market equilibrium have been studied also by

a number of researchers. For instance, Detemple (1986), Dothan and Feldman (1986), and

Björk, Davis, and Landen (2010) study the economy where an unobservable state variables

exists, but these works concentrate on methodological issues. Other studies focus on the term

structure of interest rates and investigate the functional relation between the interest rates

and economic agents’ estimates of an unobservable factor. Those examples include Feldman

(1989), Feldman (2003), and Riedel (2000a, 2000b). This chapter differs from these previous

studies in two important ways: First, our model includes two unobservable factors, but we

still derive a closed-form solution for the equilibrium interest rates. As a consequence, our

model can include two most important economic variables, income (consumption) growth and

inflation rates. This is an important extension, since it makes the term structure behaviors

more realistic without losing tractability. Second, this study investigates the functional

relation between the estimates of unobservable factors and observable variables in detail to

obtain the equilibrium interest rates as a function of observable variables. This is relevant

as we can directly see the relation between the interest rates and macro economic variables.

The contributions of the chapter are summarized as follows. First, we derive closed-

form solutions for nominal equilibrium interest rates. In our model of partial observability,

the resulting nominal term structure model turns out to be a two-factor purely Gaussian

affine model in which state variables are the economic agents’ estimates of instantaneous

expected growth rates of endowment and its price. In addition, with the stationary error

process assumption, we show these state variables can be expressed as weighted sums of

excess consumptions and price levels. This characterization of the agents’ estimates is not

found in the relevant literature to the best of our knowledge.

Second, with the characterization mentioned above, our model with partial observability

provides a quite different interpretation to the role of excess consumption in determining
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interest rates from the consumption habit models. For economic agents engaging in the

Bayesian inference, the excess consumption is not the surplus consumption giving them

felicity. Rather, it is an economic indicator helping guess the current trend in income growth.

Naturally, the economic agents’ estimate of income growth, hence the equilibrium interest

rates, can be increasing in excess consumption under some mild conditions on parameters.

This forms a striking contrast to the consumption habit models in which the intertemporal

substitution effect induces negative correlation between the excess consumption and interest

rates.

Third, we conduct the empirical analysis based on our model. This is an important

contribution, since the previous papers about incomplete information equilibrium mostly

focus on theoretical issues, but not empirical implementations. The parameters for the

system of stochastic differential equations are estimated from real consumption and inflation

data, while the preference parameters are estimated using time series of interest rates. These

results indicate reasonable values for all parameters and, more importantly, the positive

correlation between the implied interest rates and excess consumption. In addition, the

time series of the nominal yield implied by the model captures many of the short- and long-

run fluctuations in the actual data for all maturities, in particular the short-term. Indeed,

correlations between the time series of model-implied yields and the actual data are higher

than those obtained by Wachter (2006).

This chapter is organized as follows. Section 2 describes a pure exchange economy where

the representative agent exists. Section 3 shows how the representative agent infers the

unobservable variables. Section 4 investigates the property of the equilibrium forward rate

of interest rates and show that the nominal interest rates can be positively correlated with

excess consumption. Section 5 explains data and discusses the empirical results, and then

Section 6 concludes.

3.2 The Model

Consider a pure exchange economy of a single perishable consumption good. The time span

of this economy is [t0, τ ]. Let (Ω,F , Q) be a complete probability space. Filtration {Ft :

t ∈ [t0, τ ]} denotes the Q−augmentation of natural filtration generated by four Brownian
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motions, Wy,t, Wp,t, Ŵy,t, and Ŵp,t. These Brownian motions are mutually independent

except that Ŵy,t, Ŵp,t are correlated. The correlation between Ŵy,t and Ŵp,t is described by

E
(
dŴy,tdŴp,t

∣∣∣Ft

)
= ρ̂dt where ρ̂ is constant.

The economy is endowed with a flow of the consumption good. The rate of aggregate

endowment flow in real term and its price are denoted as yt and pt, t ∈ [t0, τ ]. In this chapter,

it is assumed that yt, pt, and their instantaneous expected change µi,t (i = y, p) follow the

system of stochastic differential equations,

dyt
yt

= µy,tdt+ σydWy,t, (3.1)

dµy,t = κy(µ̄y − µy,t)dt+ υydWy,t + υ̂ydŴy,t, (3.2)

dpt
pt

= µp,tdt+ σpdWp,t, (3.3)

dµp,t = κp(µ̄p − µp,t)dt+ υpdWp,t + υ̂pdŴp,t, (3.4)

where κi, µ̄i, σi, υ̂i (i = y, p) are positive constants. We do not restrict the sign of constants,

υi (i = y, p), allowing for negative correlation between changes in level and instantaneous

expected change. Although infinitesimal changes in endowment and price are independent,

this does not mean that discrete time changes in both variables are independent since µy,t

and µp,t are correlated.1

Throughout this chapter, we consider a model where yt and pt are observable but µy,t

and µp,t are not. It is assumed that the true value for each parameter is known to all of the

agents. Thus, the agents infer µy,t and µp,t, given the history of endowment and price levels

up to time t.

Let us denote the Q−augmentation of natural filtration generated by yt and pt as {Fy,p
t :

t ∈ [t0, τ ]}. It is assumed that the distribution of µy,t0 and µp,t0 conditional on Fy,p
t0 is

normal. This is an important assumption for optimal filtering used in this chapter. The

estimates of µy,t and µp,t inferred by economic agents are denoted as my,t and mp,t. That

is, mi,t = E (µi,t| Fy,p
t ) (i = y, p). Covariances of filtering errors are denoted as ϕij,t =

E [ (µi,t −mi,t)(µj,t −mj,t)| Fy,p
t ] (i, j = y, p).

It is assumed that the representative agent exists and she is assumed to have preference

1Under the general local covariance structure, we can only numerically solve the matrix Riccati equation
satisfied by the filtering error defined below. Our local covariance structure allows us to solve the matrix
Riccati equation analytically and give an economic interpretation to bond prices.



3.3. ESTIMATION PROCESS FOR THE REPRESENTATIVE AGENT 33

over the consumption flows,

E

[∫ τ

t0

v(cs, s)ds

∣∣∣∣Fy,p
t0

]
,

where the utility at each time is defined by v(cs, s) = e−δs c
1−γ
s

1−γ
, γ > 0. It is also assumed that

the market is frictionless and securities are traded continuously in time. P (t, s) denotes time

t price of pure discount bond which promises to pay one unit of currency at time s ∈ (t0, τ ].

3.3 Estimation Process for the Representative Agent

The representative agent draws inferences about µi,t (i = y, p) by observing yt and pt. She

forms a posterior distribution and continuously update it. Her updating process is described

by 2

dmy,t = κy(µ̄y −my,t)dt+

(
υy +

ϕyy,t

σy

)
dW y,t +

ϕyp,t

σp

dW p,t, (3.5)

dmp,t = κp(µ̄p −mp,t)dt+
ϕpy,t

σy

dW y,t +

(
υp +

ϕpp,t

σp

)
dW p,t, (3.6)

where mutually independent Wiener processes {W y,t} and {W p,t} are defined as

dW y,t =

(
1

σy

)(
d ln yt −

(
my,t − (1/2)σ2

y

)
dt
)
,

dW p,t =

(
1

σp

)(
d ln pt −

(
mp,t − (1/2)σ2

p

)
dt
)
,

and Φt = [ϕij,t] (i, j = y, p) is the filtering error process . The filtering error process satisfies

the following matrix Riccati equation,

d

dt
Φt = KΦt + ΦtK

⊤ − ΦtGΦ⊤
t +H, (3.7)

where 2× 2 matrices K = [kij], H = [hij], G = [gij] (i, j = 1, 2) are defined by

k11 = −κy − υy/σy, k12 = k21 = 0, k22 = −κp − υp/σp,

h11 = υ̂2
y , h12 = h21 = υ̂yυ̂pρ̂, h22 = υ̂2

p,

g11 = 1/σ2
y , g12 = g21 = 0, g22 = 1/σ2

p.

2See Proposition 12.6 in Liptser and Shiryaev (1977).
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By solving matrix Riccati equation, we obtain the stationary level of filtering error limt→∞ Φt =

Φ = [ϕ̄ij] (i, j = y, p) as3

ϕ̄yy = (κ∗
y − κy)σ

2
y − υyσy, (3.8)

ϕ̄pp = (κ∗
p − κp)σ

2
p − υpσp, (3.9)

ϕ̄yp = ϕ̄py =
υ̂yυ̂pρ̂

λ1 + λ2

, (3.10)

where4

κ∗
y =

k2
11 + h11/σ

2
y + λ1λ2

λ1 + λ2

, κ∗
p =

k2
22 + h22/σ

2
p + λ1λ2

λ1 + λ2

,

λ1 =

(
(k2

11 + h11/σ
2
y) + (k2

22 + h22/σ
2
p) +D

1
2

2

) 1
2

,

λ2 =

(
(k2

11 + h11/σ
2
y) + (k2

22 + h22/σ
2
p)−D

1
2

2

) 1
2

,

D =
((
k2
11 + h11/σ

2
y

)
−
(
k2
22 + h22/σ

2
p

))2
+

4h2
12

σ2
yσ

2
p

.

It is clear that κ∗
y and κ∗

p are strictly positive.

3.4 Stationary Model

In the sequel, we impose stationarity to our model. This is in part for simplicity and in part

because we want to give an economic interpretation to my,t and mp,t. We set the following

assumption.

Assumption 1 The initial value of filtering error process is given by its stationary level.

That is, ϕij,t0 = ϕ̄ij for i, j = y, p.

Obviously, the assumption implies that ϕij,t = ϕ̄ij, (i, j = y, p) for any t ≥ t0. Under this

assumption, we can express the equilibrium bond price as follows.

Proposition 1 The equilibrium bond prices are

P (t, T ) = exp

(
−
∫ T

t

f(t, s)ds

)
,

3The derivation of the solution and its limit is given in the appendix.
4A sufficient condition for λ2 to be a real number is h11h22 − h2

12 ≥ 0. But this inequality always holds.
Thus, λ2 is a real number.
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where the nominal instantaneous forward rate of interest rate is

f(t, s) = δ + γ
(
my,te

−κy(s−t) + µ̄y

(
1− e−κy(s−t)

)
− σ2

y/2
)
− γ2σ2

y/2

+mp,te
−κp(s−t) + µ̄p

(
1− e−κp(s−t)

)
− σ2

p

−
(
1− e−κy(s−t)

κy

)
(γ2σ2

y(κ
∗
y − κy) + γϕ̄py)

−
(
1− e−κp(s−t)

κp

)
(σ2

p(κ
∗
p − κp) + γϕ̄yp)

−1

2
γ2

(
1− e−κy(s−t)

κy

)2
(
σ2
y(κ

∗
y − κy)

2 +

(
ϕ̄yp

σp

)2
)

−1

2

(
1− e−κp(s−t)

κp

)2
(
σ2
p(κ

∗
p − κp)

2 +

(
ϕ̄py

σy

)2
)

−γ

(
1− e−κy(s−t)

κy

)(
1− e−κp(s−t)

κp

)
×
(
(κ∗

y − κy)ϕ̄py + (κ∗
p − κp)ϕ̄yp

)
. (3.11)

Proof. See appendix.

Thus, our equilibrium model can be identified as a two-factor completely affine term structure

model where state variables my,t and mp,t follow (3.5) and (3.6) with each filtering error

replaced by its stationary level and the market prices of risk for W y,t and W p,t are γσy and

σp.
5 As in Feldman (1989), we can decompose the instantaneous forward rate into three

parts. The sum of the first two lines in (3.11) is the expectation of future short rate, and

the sum of the next two lines is the risk premium. The remaining terms correspond to the

Jensen’s inequality bias.

The processes of state variables my,t and mp,t are not time-homogeneous in the sense that

they are affected by the initial values my,t0 , mp,t0 , yt0 , and pt0 . To remove these effects, we

take the limit of the state variables by letting t0 go to −∞. The following proposition shows

the result.

Proposition 2 The stationary processes of my,t and mp,t are given by

lim
t0→−∞

my,t =
κ∗
pcy − (ϕ̄yp/σ

2
p)cp

a1a2

5The term structure in our model does not explode as in Riedel (2000a). This confirms the results
of Feldman (2003). Also, since the market prices of risk are constant, the equilibrium avoids the pitfalls
identified in Kraft (2009).
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+
(a1 − κy)(κ

∗
y − a2)

a1 − a2

(
ln yt −

∫ t

−∞
a1e

−a1(t−s) ln ys ds

)
−
(a2 − κy)(κ

∗
y − a1)

a1 − a2

(
ln yt −

∫ t

−∞
a2e

−a2(t−s) ln ys ds

)
+
(a1 − κp)(ϕ̄yp/σ

2
p)

a1 − a2

(
ln pt −

∫ t

−∞
a1e

−a1(t−s) ln ps ds

)
−
(a2 − κp)(ϕ̄yp/σ

2
p)

a1 − a2

(
ln pt −

∫ t

−∞
a2e

−a2(t−s) ln ps ds

)
, (3.12)

lim
t0→−∞

mp,t =
κ∗
ycp − (ϕ̄py/σ

2
y)cy

a1a2

+
(a1 − κp)(κ

∗
p − a2)

a1 − a2

(
ln pt −

∫ t

−∞
a1e

−a1(t−s) ln ps ds

)
−
(a2 − κp)(κ

∗
p − a1)

a1 − a2

(
ln pt −

∫ t

−∞
a2e

−a2(t−s) ln ps ds

)
+
(a1 − κy)(ϕ̄py/σ

2
y)

a1 − a2

(
ln yt −

∫ t

−∞
a1e

−a1(t−s) ln ys ds

)
−
(a2 − κy)(ϕ̄py/σ

2
y)

a1 − a2

(
ln yt −

∫ t

−∞
a2e

−a2(t−s) ln ys ds

)
, (3.13)

where a1 and a2 are defined as

a1 =
κ∗
y + κ∗

p +
√
(κ∗

y − κ∗
p)

2 + 4(ϕ̄yp/σ2
p)(ϕ̄py/σ2

y)

2
,

a2 =
κ∗
y + κ∗

p −
√

(κ∗
y − κ∗

p)
2 + 4(ϕ̄yp/σ2

p)(ϕ̄py/σ2
y)

2
.

Proof. See appendix.

Since a1 and a2 are strictly positive, the first and second integral in the right hand side of

(3.12) (or the third and fourth integral in (3.13)) can be interpreted as weighted averages of

the past (natural log of) aggregate consumptions where heavy weights are put on the recent

consumptions. Thus, if time t is sufficiently distant from the initial date of the economy

t0, then the estimation value of µy,t can be approximated by an affine function of excess

aggregate consumption.

Are the interest rates positively related to the excess consumption? Since instantaneous

forward rates are increasing in my,t and mp,t, this question is equivalent to asking whether

my,t and my,t are increasing in the excess consumption. To answer this question, let us

consider the special case of ρ̂ = 0 at first. This argument helps us understand the general
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case of non-zero correlation. If ρ̂ = 0, then (3.12) and (3.13) are reduced to

lim
t0→−∞

my,t =
cy
κ∗
y

+ (κ∗
y − κy)

(
ln yt −

∫ t

−∞
κ∗
ye

−κ∗
y(t−s) ln ysds

)
, (3.14)

lim
t0→−∞

mp,t =
cp
κ∗
p

+ (κ∗
p − κp)

(
ln pt −

∫ t

−∞
κ∗
pe

−κ∗
p(t−s) ln psds

)
. (3.15)

Thus, the interest rates depend on the excess consumption only through limt0→−∞ my,t in

the case of ρ̂ = 0. Let us define the correlation coefficient between changes in yt and µy,t as

ρy,µy , that is, E [d ln yt dµy,t| Ft] = ρy,µydt. Then we can establish the following proposition.

Proposition 3 If ρ̂ = 0, limt0→−∞ my,t is increasing in the excess consumption if and only

if the following inequality holds

ρy,µy ≥ −
(
υ2
y + υ̂2

y

) 1
2

2κyσy

. (3.16)

Proof. See appendix.

Note that the numerator of the right hand side of (3.16) is the volatility of µy,t. The inter-

esting property of the condition (3.16) is that the lower bound for the correlation coefficient

is strictly negative. This is the important effect of unobservability of µy,t on the equilibrium

interest rates. To understand this, let us consider the case in which the inequalities

−
υ2
y + υ̂2

y

2κy

< υyσy < 0

hold. The second inequality means that changes in µt and yt are locally negatively correlated.

But changes inmy,t is increasing in the excess consumption since the condition in Proposition

3 is met by the first inequality. This interesting result holds, because µy,t is unobservable

and an increase in the excess consumption, for instance, makes agents infer that µy,t has

become high even under the negative correlation between changes in µy,t and yt.

As a corollary, we can state a sufficient condition for my,t to be increasing in the excess

consumption for any correlation coefficient ρy,µy .

Corollary 1 Suppose that ρ̂ = 0 and the following condition is met;

κy ≤
1

2

(
υ2
y + υ̂2

y

) 1
2 /σy. (3.17)

Then, limt0→−∞ my,t is increasing in the excess consumption for any correlation coefficient

ρy,µy ∈ [−1, 1].
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Proof. See appendix.

The fraction in the right hand side of (3.17) is the volatility ratio which measures the relative

size of the volatility of µy,t to the volatility of yt. When this ratio is large, it is likely that

the variation in the level of consumption is mainly caused by the changes in µy,t. Hence, the

estimates are likely to be increasing in the level of consumption. Of course, when the speed

of mean reversion is very fast, the past observed consumption levels are not informative,

because the drift converges to its long run mean immediately. Hence, κy emerges in the left

hand side of (3.17) as the bound for the volatility ratio.

One of the major approaches to asset pricing today is pricing risky assets via consump-

tion habit. In this approach, consumption habit is incorporated into the preference on

consumption flows, and prices of risky assets in equilibrium are derived. One of the impor-

tant properties common to these models is that equilibrium asset returns or interest rates are

determined by excess consumption. As for interest rates, the consumption habit normally

induces a negative correlation between interest rates and the excess consumption.6 Thus, if

interest rates exhibit a positive correlation with the excess consumption, then it is difficult

to explain the interest rates by consumption habit. In this case, partial observability of

economic variables may become a candidate which explains interest rates through excess

consumption.

In the general case of ρ̂ ̸= 0, both state variables limt0→−∞ my,t and limt0→−∞ mp,t are

expressed as the weighted sum of excess consumption and excess price. Each excess level

has two types, which are in excess of the weighted average with weights a1 and a2. Thus to

see how the level of interest rates depends on excess consumptions, we should check the sign

of four coefficients of excess consumptions in (3.12) and (3.13).

Table 3.1 and Table 3.2 show the sign of each coefficient of excess consumption in my and

mp. As is easily seen, it never happens that all of four coefficients are positive or negative.

When κy < a2, three coefficients are positive. Conversely, when a1 < κy, only one coefficient

is positive. When κy is between a1 and a2, the number of positive coefficients varies depending

on the sign of covariance component of filtering error ϕ̄py. Therefore, the overall effect of

excess consumptions should be examined empirically. Nonetheless three things deserve to

6For example, see Wachter (2006) and Buraschi and Jiltsov (2007).
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estimate type of ex. con. κy < a2 a2 < κy < a1 a1 < κy

limt0→−∞ my,t ex. con. with weight a1 + + −
ex. con. with weight a2 + − −

limt0→−∞ mp,t ex. con. with weight a1 + + −
ex. con. with weight a2 − + +

Table 3.1: Sign of each coefficient of excess consumption when ρ̂ > 0.

estimate type of ex. con. κy < a2 a2 < κy < a1 a1 < κy

limt0→−∞ my,t ex. con. with weight a1 + + −
ex. con. with weight a2 + − −

limt0→−∞ mp,t ex. con. with weight a1 − − +
ex. con. with weight a2 + − −

Table 3.2: Sign of each coefficient of excess consumption when ρ̂ < 0.

be mentioned. First, when covariance component ϕ̄yp is relatively small, a2 ≈ min{κ∗
y, κ

∗
p},

a1 ≈ max{κ∗
y, κ

∗
p}, and κ∗

y ≈ (k2
11+h11/σ

2
y)

1
2 . In this case, the condition (3.17) in corollary 1

is helpful in understanding each case intuitively. When κy is sufficiently small compared to

the volatility ratio (υ2
y + υ̂2

y)
1
2/σy, κy < κ∗

y is likely to hold and the estimate of µy,t is likely

to be increasing in both types of excess consumption. Conversely, when the local correlation

between µy,t and yt is negative and κy is relatively large, κy > κ∗
y is likely to hold and excess

consumptions have negative impacts on the estimate of µy,t, thus the level of interest rates.

Again, note that negative local correlation between µy,t and yt does not necessarily imply

that κy > (k2
11 + h11/σy)

1
2 ≈ κ∗

y.

Second, the similar result can be obtained by examining the sign of ∂ limt0→−∞ my,t/∂ ln yt.

Simple calculation shows that the necessary and sufficient condition for strict positivity of

the derivative is κy < κ∗
y. It is clear that κy < a2 is sufficient for this inequality.7

7This argument can apply to the comparative statistics with respect to excess consumptions as far as the
excess consumptions are nearly zero at time t, since the dynamics of excess consumptions is given by

d ln yt − ai

(
ln yt −

∫ t

−∞
aie

−ai(t−s) ln ysds

)
(i = 1, 2).
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Third, the necessary and sufficient condition for ∂ limt0→−∞ mp,t/∂ ln yt > 0 is ρ̂ > 0.

When the drift of aggregate consumption process is negatively correlated with the drift of

price level, an increase in the aggregate consumption makes the estimate of expected inflation

rate updated to the lower level. The magnitude of this effect is determined by the relative

size of covariance component in the filtering error ϕ̄yp/σy. When this filtering error is small,

changes in ln yt mainly affect the level of interest rates via the estimate of consumption

growth.

3.5 Empirical Analysis

In the last section, we showed that under the stationary error process assumption the nomi-

nal bond yields can be expressed as a function of weighted sums of past excess consumptions

and price levels. The analysis also indicated that the bond yields heavily depends on model

parameters which we have to estimate from the data. In this section, we estimate the parame-

ters for the economy represented by the system of stochastic differential equations (3.1)-(3.4)

from the real consumption and CPI data. Then we estimate the preference parameters by

minimizing the distance between theoretical and observed time series of interest rates.

Our empirical analysis is based on the quarterly data on consumption and price level from

the first quarter of 1952 to the second quarter of 2007. Data on the real per-capita consump-

tion are constructed by adding the seasonally adjusted real consumption of nondurables and

services, then dividing by the population. For the price level, we use the seasonally adjusted

consumer price index (CPI). The nominal yield data are quarterly treasury constant matu-

rity rates with maturities of one, two, three, five, seven, and ten years. These data are from

the second quarter of 1962 for all maturities. Interest rates are obtained from the Global

Financial Data and other data are taken from the Federal Reserve Economic Data (FRED).

3.5.1 The state-space representation and Kalman filter

To estimate the parameters for the economy represented by the system of stochastic differen-

tial equations (3.1)-(3.4), we employ the Kalman filter to treat unobservable state variables.

To this end, we first derive the state-space representation for the discretized versions of the
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system of stochastic differential equations, (3.1)-(3.4). By the Euler approximation,8 the

system can be discretized as

log(yt+1/yt) = −
σ2
y

2
+ µy,t + σyuy,t, (3.18)

µy,t+1 = κyµ̄y + (1− κy)µy,t + υyuy,t + υ̂yûy,t, (3.19)

log(pt+1/pt) = −
σ2
p

2
+ µp,t + σpup,t, (3.20)

µp,t+1 = κpµ̄p + (1− κp)µp,t + υpup,t + υ̂pûp,t, (3.21)

where uy,t, up,t, ûy,t, and ûp,t are mutually independently distributed as standard normal

distribution except that ûy,t and ûp,t have correlation ρ̂. Also we set ∆t = 1 for notational

simplicity. Since local trends of endowment and price level, µy,t and µp,t, are not observable,

we employ the Kalman filter to estimate this system, rewriting this system as a state-space

model as follows. The transition equation consists of equations (3.19) and (3.21), and can

be written in vector notation as

xt = cx + Fxt−1 +Gwt−1 + vt, (3.22)

where xt =

 µy,t

µp,t

, cx =

 µ̄yκy

µ̄pκp

, F =

 1− κy 0

0 1− κp

, G =

 υy/σy 0

0 υp/σp

,
wt =

 σyuy,t

σpup,t

, and vt =

 υ̂yûy,t−1

υ̂pûp,t−1

. The other two equations, (3.18) and (3.20), form

the observation (measurement) equation, which can be expressed in vector notation as

zt = cz + xt + wt, (3.23)

where zt =

 log(yt+1/yt)

log(pt+1/pt)

, cz =

 −σ2
y/2

−σ2
p/2

. Note that the disturbances [v′t, w′
t]
′ are

jointly Gaussian with mean 0 and covariance matrix

 Q 0

0 R

, whereQ =

 υ̂2
y ρ̂υ̂yυ̂p

ρ̂υ̂yυ̂p υ̂2
p

,
R =

 σ2
y 0

0 σ2
p

.
Given the state-space representation, (3.22) and (3.23), the Kalman filter can be used

to construct a likelihood function for the observed data. From some initial conditions, the

8See Kloeden and Platen (1995) for the Euler approximation of the stochastic differential equations.
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filter iterates between the prediction equations,

xt|t−1 = cx + F x̂t−1 +G(zt−1 − cz −Hx̂t−1),

Pt|t−1 = (F −GH)P̂t−1(F −GH) +Q

and the updating equations,

x̂t = xt|t−1 + Pt|t−1H(HPt|t−1H +R)−1(zt − cz −Hxt|t−1),

P̂t = Pt|t−1 − Pt|t−1H(HPt|t−1H +R)−1HPt|t−1,

where

xt|t−1 = E(xt|Ft−1),

x̂t = E(xt|Ft),

Pt|t−1 = E[(xt − xt|t−1)(xt − xt|t−1)
′|Ft−1],

P̂t = E[(xt − x̂t)(xt − x̂t)
′|Ft].

The derivation of the Kalman filter can be found in the appendix. To start the Kalman

filter, we use the unconditional mean E(xt) = [µ̄y, µ̄p]
′ for the initial values of state vector

x̂0. Since we have analyzed the equilibrium interest rates in detail under Assumption 1, we

also impose this assumption to estimate the model. Thus, we use the stationary value of

error process Φ for P̂t for all t including the initial value P̂0.

3.5.2 Estimation results

Estimation results for the state-space model, (3.22) and (3.23), are reported in Table 3.3.

All parameters are in quarterly percent units, and means and standard deviations are in

fractions. Thus, mean quarterly consumption growth over the period is 0.58% with the

standard deviation of the error term about 0.32%, while mean inflation is 0.76% with the

disturbance standard deviation about 0.37%. The results indicate that the mean reversion

rate of expected consumption is moderate at 0.19. On the other hand, the expected inflation

is highly persistent with the mean reversion rate of 0.071. The results also show that the

correlations between observable and unobservable factors are essentially zero with statisti-

cally insignificant estimates of υy and υp. Lastly, the correlation between innovations to

consumption and innovations to inflation is estimated as −0.60.
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Parameter Estimate Std. error
µ̄y 0.578 0.064
κy 0.186 0.000
σy 0.316 0.044
υy −0.006 0.049
υ̂y 0.201 0.031
µ̄p 0.758 0.139
κp 0.071 0.000
σp 0.374 0.013
υp −0.010 0.045
υ̂p 0.234 0.034
ρ̂ −0.600 0.000

Table 3.3: Parameter estimates for the system of yt and pt. The system is discretized by the Euler

approximation and estimated by MLE via the Kalman filter. Data are quarterly, begin in the first quarter

of 1952, and end in the second quarter of 2007.

By taking the temporal dependence in the realized consumption growth and inflation

rates into account, Wachter (2006) estimates a vector ARMA(1, 1) model for consumption

growth and inflation and obtains similar results with some differences. Our result of con-

sumption growth 0.58% is similar to 0.55% obtained by Wachter. In contrast, our mean

inflation estimate 0.76% is somehow smaller than hers (0.92%). In terms of persistence,

our inflation result is comparable with Wachter’s results, while she obtains less persistent

consumption growth.

There remain only two preference parameters that need to be identified to determine the

term structures of interest rates. We estimate these parameters so that the implied time

series of interest rates based on (3.11) have the minimum squared errors. The maturities

used for this estimation are one, five, and ten years, which roughly correspond to short-,

middle-, and long-term of interest rates. The estimation result for the discount rate δ is

0.0010 in quarterly units with a standard error of 0.0004, while the relative risk aversion γ is

estimated at 1.205 with a standard error of 0.066. These results are reasonable, suggesting

the plausibility of our model.
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3.5.3 Model implied interest rates based on estimation

In this subsection, we provide the implied time series of the equilibrium interest rates based

on (3.11), given parameter estimates and estimated state variables in the previous subsection.

In addition, we examine whether our empirical results imply positive relation between the

real activity and equilibrium interest rates.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Time series of model-implied and actual yield. The bold curve represents model-implied yield
and dashed curve corresponds to actual yield data.

Fig. 3.1 illustrates the model-implied time series of one and five-year nominal yields

along with actual data. As can be seen, the model-implied yields closely follow the actual

data, capturing many of the short- and long-run fluctuations in the actual data. Although

the magnitude of fluctuations is somewhat smaller, the entire shape of the graph is similar to

that of the actual data. Indeed, the correlations between the theoretical and observed yields

is 0.72 for one-year yield and 0.65 for 5-year yield respectively. This is considerably higher

than 0.50 for three-month yield or 0.34 for spread on the five-year yield over the three-month

yield obtained by Wachter (2006).

Are the interest rates increasing in excess consumption? Our estimation results for

parameters implies that ρ̂ < 0 and κy < a2 holds in U.S. markets. This corresponds to

the first column in Table 3.2. Thus, three of four coefficients in Table 3.2 are positive.

Actually, the value of four coefficients are (from the top of Table 3.2): 0.35, 0.1,-0.37,0.14.

From this calculation, it is concluded that my,t is increasing in both of two types of excess
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consumptions. Unfortunately, the property for mp,t is ambiguous since the sign of coefficients

for one of two types of excess consumptions is negative.
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Figure 3.2: The term structure of the partial derivative of spot rate with respect to each excess consumption
is given. The horizontal axis is the time to maturity in quarters. The sum of two derivatives is given by the
black curve.

To check whether the interest rates are increasing in excess consumption, we calculate

the partial derivative of the spot rates with respect to each excess consumption. Figure 3.2

shows this results. By the fact that the coefficient of mp,t with respect to excess consumption

with a1 is negative, the partial derivatives with respect to excess consumption with a1 are

negative for almost all maturities. On the other hand, the partial derivatives with respect to

excess consumption with a2 are positive for all maturities. Let us examine the sum of these

derivatives, although it does not express the exact value of exposure of the spot rates to the

excess consumption. It is given by the black curve in Figure 3.2. It is found that the sum of

derivatives is positive for maturities less than 5 years . That is, our model implies that the

spot rates with maturities less than 5 years are increasing in excess consumption.

The remarkable point is that the size of derivatives is close to the regression coefficients

in Table 2.1 for those maturities. Thus our model well captures the size of exposure of the

spot rates with respect to excess consumption as well as the sign of exposure.
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3.6 Conclusion

In this chapter, we propose a new equilibrium model that naturally generates the positive

correlation between the nominal interest rates and excess consumption. We focus on the

partial observability of economic variables in a pure exchange economy. Departing from the

previous studies, we considered the equilibrium model with two unobservable factors. Even

with this complexity, we have derived closed form solutions for the nominal equilibrium

interest rates. The resulting nominal term structure model turns out to be a two-factor

purely Gaussian affine model in which state variables can be expressed as a weighted sum

of excess consumptions and price levels under stationary error process assumption.

The model considered here allows us to give a quite different interpretation to the role of

excess consumption in determining the interest rates from the consumption habit models. For

economic agents engaging in the Bayesian inference, the excess consumption plays a role as an

economic indicator helping them to guess the current trend in income growth. Naturally, the

economic agents’ estimate, hence the equilibrium interest rates, can be increasing in excess

consumption under some mild conditions on parameters. This forms a striking contrast to

the consumption habit models in which the intertemporal substitution effect induces negative

correlation between the excess consumption and interest rates.

Our empirical analysis also supports this view. The estimation results indicate reasonable

values for all parameters and, more importantly, the positive correlation between the implied

interest rates and excess consumption. As a consequence, the time series of the nominal yield

implied by the model captures many of the short- and long-run fluctuations in the actual

data with higher correlations than those obtained by Wachter (2006).

3.7 Appendix

3.7.1 Proof of proposition 1

First, it is easy to show

ln yT − ln yt =

(
1− e−κy(T−t)

κy

)
(µy,t − µ̄y) +

(
µ̄y −

1

2
σ2
y

)
(T − t)

+

∫ T

t

(
1− e−κy(T−s)

κy

)
υy + σydWy,s
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+

∫ T

t

(
1− e−κy(T−s)

κy

)
υ̂ydŴy,s, (3.24)

ln pT − ln pt =

(
1− e−κp(T−t)

κp

)
(µp,t − µ̄p) +

(
µ̄p −

1

2
σ2
p

)
(T − t)

+

∫ T

t

(
1− e−κp(T−s)

κp

)
υp + σpdWp,s

+

∫ T

t

(
1− e−κp(T−s)

κp

)
υ̂pdŴp,s. (3.25)

Then the conditional variance Var(ln pT + γ ln yT |Ft) is

Var(ln pT + γ ln yT |Ft) = γ2

∫ T

t

(
σy +

(
1− e−κy(s−t)

κy

)
υy

)2

+

(
1− e−κy(s−t)

κy

)2

υ̂2
yds

+2γ

∫ T

t

(
1− e−κy(s−t)

κy

)(
1− e−κp(s−t)

κp

)
υ̂pυ̂yρ̂ds

+

∫ T

t

(
σp +

(
1− e−κp(s−t)

κp

)
υp

)2

+

(
1− e−κp(s−t)

κp

)2

υ̂2
pds.

(3.26)

By the standard argument of asset pricing theory, the price of nominal bond is given by

P (t, T ) = pt e
−δ(T−t)

E
[
uc(yT )

1
pT

∣∣∣Fy,p
t

]
uc(yt)

= e−δ(T−t)E

[(
pT
pt

)−1(
yT
yt

)−γ
∣∣∣∣∣Fy,p

t

]
.

By the iteration rule, the bond price is

P (t, T ) = e−δ(T−t)E

[
E

[(
pT
pt

)−1(
yT
yt

)−γ
∣∣∣∣∣Ft

]∣∣∣∣∣Fy,p
t

]
. (3.27)

Since the conditional distribution of ln yT and ln pT with respect to {Ft} is Gaussian, the

inner conditional expectation in (3.27) is

E

[(
pT
pt

)−1(
yT
yt

)−γ
∣∣∣∣∣Ft

]

= exp

(
−
(
1− e−κp(T−t)

κp

)
(µp,t − µ̄p)−

(
µ̄p −

1

2
σ2
p

)
(T − t)

)
× exp

(
−γ

(
1− e−κy(T−t)

κy

)
(µy,t − µ̄y)− γ

(
µ̄y −

1

2
σ2
y

)
(T − t)

)
× exp

(
1

2
Var(ln pT + γ ln yT |Ft)

)
.
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Substituting this equation into (3.27), we obtain

P (t, T ) = E

[
exp

(
−
(
1− e−κp(T−t)

κp

)
(µp,t − µ̄p)− γ

(
1− e−κy(T−t)

κy

)
(µy,t − µ̄y)

)∣∣∣∣Fy,p
t

]
× exp

({
−δ −

(
µ̄p −

1

2
σ2
p

)
− γ

(
µ̄y −

1

2
σ2
y

)}
(T − t)

)
× exp

(
1

2
Var(ln pT + γ ln yT |Ft)

)
.

Note that the conditional variance is deterministic and can be put outside the conditional

expectation with respect to {Fy,p
t }.

By Proposition 12.6 in Liptser and Shiryaev (1977), µy,t is Gaussian under {Fy,p
t }. Thus,

the bond price is

P (t, T ) = exp

(
−
(
1− e−κp(T−t)

κp

)
(mp,t − µ̄p)− γ

(
1− e−κy(T−t)

κy

)
(my,t − µ̄y)

)
× exp

(
1

2

(
1− e−κp(T−t)

κp

)2

ϕpp,t + γ

(
1− e−κp(T−t)

κp

)(
1− e−κy(T−t)

κy

)
ϕpy,t

+
1

2
γ2

(
1− e−κy(T−t)

κy

)2

ϕyy,t

)

× exp

({
−δ −

(
µ̄p −

1

2
σ2
p

)
− γ

(
µ̄y −

1

2
σ2
y

)}
(T − t)

)
× exp

(
1

2
Var(ln pT + γ ln yT |Ft)

)
. (3.28)

In the above equality, we use the definition of mi,t and ϕij,t (i, j = y, p). Substituting (3.26)

into the above equation and differentiating the negative of log price with respect to T , we

obtain the instantaneous forward rates as follows,

f(t, s) = δ + γ
(
e−κy(s−t)my,t +

(
1− e−κy(s−t)

)
µ̄y − σ2

y/2
)

+e−κp(s−t)mp,t +
(
1− e−κp(s−t)

)
µ̄p − σ2

p/2

−γ2

(
1− e−κy(s−t)

κy

)
e−κy(s−t)ϕyy,t

−γ

((
1− e−κy(s−t)

κy

)
e−κp(s−t) +

(
1− e−κp(s−t)

κp

)
e−κy(s−t)

)
ϕyp,t

−
(
1− e−κp(s−t)

κp

)
e−κp(s−t)ϕpp,t

−1

2
γ2

((
σy +

(
1− e−κy(s−t)

κy

)
υy

)2

+

(
1− e−κy(s−t)

κy

)2

υ̂2
y

)
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−γ

(
1− e−κy(s−t)

κy

)(
1− e−κp(s−t)

κp

)
υ̂pυ̂yρ̂

−1

2

((
σp +

(
1− e−κp(s−t)

κp

)
υp

)2

+

(
1− e−κp(s−t)

κp

)2

υ̂2
p

)
. (3.29)

Under Assumption 1, ϕyy,t = ϕ̄yy, ϕpp,t = ϕ̄pp, ϕyp,t = ϕpy,t = ϕ̄yp = ϕ̄py where parameters

are defined as (3.8), (3.9), and (3.10). Substitution of these equations into (3.29) and tedious

calculation yields (3.11). Q.E.D.

3.7.2 Proof of proposition 2

Under Assumption 1, the stochastic differential equations for my,t and mp,t can be expressed

as

dmy,t =
(
cy − κ∗

ymy,t − (ϕ̄yp/σ
2
p)mp,t

)
dt

+(κ∗
y − κy)d ln yt + (ϕ̄yp/σ

2
p)d ln pt,

dmp,t =
(
cp − (ϕ̄py/σ

2
y)my,t − κ∗

pmp,t

)
dt

+(ϕ̄py/σ
2
y)d ln yt + (κ∗

p − κp)d ln pt,

where parameters cy and cp are defined as

cy = κyµ̄y +
1

2

(
υyσy + ϕ̄yy + ϕ̄yp

)
cp = κpµ̄p +

1

2

(
υpσp + ϕ̄pp + ϕ̄py

)
.

The closed form solution of the system of equations above is given by

my,t =
a1e

−a2(t−t0) − a2e
−a1(t−t0)

a1 − a2
my,t0

+
1−e−a2(t−t0)

a2
− 1−e−a1(t−t0)

a1

a1 − a2

(
κ∗
pcy − cp(ϕ̄yp/σ

2
p)
)

+
e−a2(t−t0) − e−a1(t−t0)

a1 − a2

(
cy − κ∗

ymy,t0 − (ϕ̄yp/σ
2
p)mp,t0

)
+
(a1 − κy)(κ

∗
y − a2)

a1 − a2

∫ t

t0

e−a1(t−s)d ln ys

−
(a2 − κy)(κ

∗
y − a1)

a1 − a2

∫ t

t0

e−a2(t−s)d ln ys

+
(a1 − κp)(ϕ̄yp/σ

2
p)

a1 − a2

∫ t

t0

e−a1(t−s)d ln ps
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−
(a2 − κp)(ϕ̄yp/σ

2
p)

a1 − a2

∫ t

t0

e−a2(t−s)d ln ps, (3.30)

mp,t =
a1e

−a2(t−t0) − a2e
−a1(t−t0)

a1 − a2
mp,t0

+
1−e−a2(t−t0)

a2
− 1−e−a1(t−t0)

a1

a1 − a2

(
κ∗
ycp − cy(ϕ̄py/σ

2
y)
)

+
e−a2(t−t0) − e−a1(t−t0)

a1 − a2

(
cp − κ∗

pmp,t0 − (ϕ̄py/σ
2
y)my,t0

)
+
(a1 − κp)(κ

∗
p − a2)

a1 − a2

∫ t

t0

e−a1(t−s)d ln ps

−
(a2 − κp)(κ

∗
p − a1)

a1 − a2

∫ t

t0

e−a2(t−s)d ln ps

+
(a1 − κy)(ϕ̄py/σ

2
y)

a1 − a2

∫ t

t0

e−a1(t−s)d ln ys

−
(a2 − κy)(ϕ̄py/σ

2
y)

a1 − a2

∫ t

t0

e−a2(t−s)d ln ys, (3.31)

where

a1 =
κ∗
y + κ∗

p +
√
(κ∗

y − κ∗
p)

2 + 4(ϕ̄yp/σ2
p)(ϕ̄py/σ2

y)

2
,

a2 =
κ∗
y + κ∗

p −
√

(κ∗
y − κ∗

p)
2 + 4(ϕ̄yp/σ2

p)(ϕ̄py/σ2
y)

2
.

We can change the expression of each integral in (3.30) and (3.31) by integral by parts. For

instance, ∫ t

t0

e−a1(t−s)d ln ys = ln yt − e−a1(t−t0) ln yt0 −
∫ t

t0

a1e
−a1(t−s) ln ysds,

It is not difficult to show that a1 and a2 are positive. Thus, we can take the limit of my,t

and mp,t by letting t0 go to −∞ and obtain (3.12) and (3.13). Q.E.D.

3.7.3 Proof of proposition 3

If ρ̂ = 0, κ∗
y is given by

κ∗
y =

(
(κy + υy/σy)

2 + (υ̂y/σy)
2
) 1

2 .

Thus, κ∗
y − κy is positive if and only if

2κyυyσy + υ2
y + υ̂2

y ≥ 0. (3.32)
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Since the correlation coefficient is given by

ρy,µy =
υy(

υ2
y + υ̂2

y

) 1
2

,

substituting this into (3.32) yields (3.16). Q.E.D.

3.7.4 Proof of corollary 1

The inequality (3.17) is equivalent to the inequality −1 ≥ −(υ2
y+υ̂2

y)
1
2

2κyσy
. Combining this

inequality with ρy,µy ≥ −1 yields (3.16). This concludes the proof. Q.E.D.

3.7.5 Derivation of filtering error process

Let us consider a system of matrix linear differential equations

d

dt
Ut = KUt +HVt, Ut0 = Φt0 ,

d

dt
Vt = GUt −K⊤Vt, Vt0 = I, (3.33)

where I is 2 × 2 identity matrix. It is well-known that the solution of (3.7) is given by

Φt = UtV
−1
t . Define St as

St =

 Ut

Vt

 .

Then, the system of equations (3.33) is reduced to

d

dt
St = ASt, (3.34)

where the 4× 4 matrix A is defined by

A =

 K H

G −K⊤

 .

Let us denote the eigen values for A by λi (i = 1, 2, 3, 4). Then these values are given by

λ1 =

(
(k2

11 + h11/σ
2
y) + (k2

22 + h22/σ
2
p) +D

1
2

2

) 1
2

,

λ2 =

(
(k2

11 + h11/σ
2
y) + (k2

22 + h22/σ
2
p)−D

1
2

2

) 1
2

,
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λ3 = −λ1,

λ4 = −λ2,

where D =
((
k2
11 + h11/σ

2
y

)
−
(
k2
22 + h22/σ

2
p

))2
+

4h2
12

σ2
yσ

2
p

.

The corresponding eigen vectors xi (i = 1, 2, 3, 4) are

xi =



λi+k11
g11(

λi+k11
h12g22

)(
λ2
i−k211
g11

− h11

)
1

1
h12

(
λ2
i−k222
g11

− h11

)

 , i = 1, 2, 3, 4.

Next, we construct the matrix [ξ1x1, ξ2x2, ξ3x3, ξ4x4] where constants ξi (i = 1, 2, 3, 4)

satisfy

ξ1ξ3 =
(λ2

2 − κ2
y − h11g11)g11

2(λ2
2 − λ2

1)λ1

,

ξ2ξ4 = −
(λ2

1 − κ2
y − h11g11)g11

2(λ2
2 − λ2

1)λ2

.

Denote this matrix as

R =

 Y Z

X W

 ,

where W,X, Y, Z are 2 × 2 submatrices. Constant scalars ξi (i = 1, 2, 3, 4) are for the

normalization of matrix in the sense that the inverse of R is given by

R−1 =

 W⊤ −Z⊤

−X⊤ Y ⊤

 .

Denote a diagonal matrix defined by eigen values as

Λ =


λ1 0 0 0

0 λ2 0 0

0 0 −λ1 0

0 0 0 −λ2

 .

Apparently, A = RΛR−1 holds and (3.34) can be arranged to

d

dt
R−1St = ΛR−1St.



3.7. APPENDIX 53

Since Λ is diagonal, R−1St = eΛ(t−t0)R−1St0 and we obtain

St = ReΛ(t−t0)R−1St0 .

This yields the next two equations,

Ut =
(
Y eΛ1(t−t0)W⊤ − ZeΛ2(t−t0)X⊤)Φt0

+ZeΛ2(t−t0)Y ⊤ − Y eΛ1(t−t0)Z⊤,

Vt =
(
XeΛ1(t−t0)W⊤ −WeΛ2(t−t0)X⊤)Φt0

+WeΛ2(t−t0)Y ⊤ −XeΛ1(t−t0)Z⊤,

where Λi (i = 1, 2) are submatrices of Λ defined by

Λ1 =

 λ1 0

0 λ2

 , Λ2 =

 −λ1 0

0 −λ2

 .

Finally, the solution for the matrix Riccati equation is obtained by Φt = UtV
−1
t . Especially,

the limit, Φ = limt→∞, is given by Y X−1, since eΛ2(t−t0) → 0 as t → ∞. Each element of

this limit matrix is obtained as

ϕ̄yy =
(
κ∗
y + k11

)
σ2
y = (κ∗

y − κy)σ
2
y − υyσy,

ϕ̄pp =
(
κ∗
p + k22

)
σ2
p = (κ∗

p − κp)σ
2
p − υpσp,

ϕ̄yp = ϕ̄py =
υ̂yυ̂pρ̂

λ1 + λ2

,

where κ∗
y =

k2
11 + h11/σ

2
y + λ1λ2

λ1 + λ2

, κ∗
p =

k2
22 + h22/σ

2
p + λ1λ2

λ1 + λ2

.

3.7.6 Derivation of the Kalman filter

First note that

E(wt−1|Ft−1) = E(zt−1 − cz − xt−1|Ft−1) = zt−1 − cz − x̂t−1.

From this result and transition equation (3.22), we have

xt|t−1 = cx + Fx̂t−1 +G(zt−1 − cz − x̂t−1).
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Hence,

xt − xt|t−1 = (cx + Fxt−1 +Gwt−1 + vt)− (cx + Fx̂t−1 +G(zt−1 − cz − x̂t−1))

= F (xt−1 − x̂t−1)−G(zt−1 − cz − wt−1 − x̂t−1) + vt

= F (xt−1 − x̂t−1)−G(xt−1 − x̂t−1) + vt

= (F −G)(xt−1 − x̂t−1) + vt

The third equality follows from the observation equation (3.23). Therefore,

Pt|t−1 = E
[
(xt − xt|t−1)(xt − xt|t−1)

′]
= E

[
{(F −G)(xt−1 − x̂t−1) + vt} {(F −G)(xt−1 − x̂t−1) + vt}′

]
= (F −G)E[(xt−1 − x̂t−1)(xt−1 − x̂t−1)

′](F −G)′ + E[vtv
′
t]

= (F −G)P̂t−1(F −G) +Q.

To get the fourth equality, we use the fact that vt is independent of xt−1. Furthermore, since

x̂t−1 is a linear function of z1, . . . , zt−1, it must be independent of vt. Also, the last equality

follows from that F and G are diagonal.

The updating equations can be obtained as follows. By the formula for updating a linear

projection we can get9

x̂t = xt|t−1 + E[(xt − xt|t−1)(zt − zt|t−1)
′]
{
E[(zt − zt|t−1)(zt − zt|t−1)

′]
}−1

(zt − zt|t−1).(3.35)

Notice that

zt|t−1 = cz + xt|t−1, (3.36)

and so

zt − zt|t−1 = xt − xt|t−1 + wt.

Using this result we can calculate

E[(zt − zt|t−1)(zt − zt|t−1)
′] = E[{(xt − xt|t−1) + wt}{(xt − xt|t−1) + wt}′]

= E[(xt − xt|t−1)(xt − xt|t−1)
′] + E[wtw

′
t]

= Pt|t−1 +R. (3.37)

9See, for example, Hamilton (1994, p. 99, equation [4.5.30]).
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Here the second equality follows from the fact E[(xt − xt|t−1)w
′
t] = 0. Similarly,

E[(xt − xt|t−1)(zt − zt|t−1)
′] = E[(xt − xt|t−1){(xt − xt|t−1) + wt}′]

= E[(xt − xt|t−1)(xt − xt|t−1)
′]

= Pt|t−1. (3.38)

Substituting (3.36), (3.37) and (3.38) into (3.35) gives

x̂t = xt|t−1 + Pt|t−1(Pt|t−1 +R)−1(zt − cz − xt|t−1)

The MSE associated with this updated projection, P̂t, can be found from the formula for

the MSE of updated linear projection:10

P̂t = E[(xt − x̂t)(xt − x̂t)
′]

= E[(xt − xt|t−1)(xt − xt|t−1)
′]

− E[(xt − xt|t−1)(zt − zt|t−1)
′]E[(zt − zt|t−1)(zt − zt|t−1)

′]E[(zt − zt|t−1)(xt − xt|t−1)
′]

= Pt|t−1 − Pt|t−1(Pt|t−1 +R)−1Pt|t−1

10See, for example, Hamilton (1994, p. 99, equation [4.5.31]).
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Chapter 4

Expectation Puzzle without

Time-varying Market Price of Risk

4.1 Introduction

In this chapter, we consider a utility function which exhibits decreasing relative risk aversion

and explore the implication of this preference to the expectation puzzle. Let us review the

expectation puzzle once again. It is illustrated as follows. Let us denote Rn
i as time i spot

rate with time to maturity n in months. Consider a simple regression,

Rn−1
i+1 −Rn

i = constant + ϕn
Rn

i −R1
i

n− 1
+ error term.

The dependent variable is the change in yield in the next month and the dependent variable

is the slope of current spot rate curve. The traditional expectation hypothesis which states

that the slope of curve contains the information regarding the market expectation of future

interest rates implies the regression coefficients are unity for all n.

On the contrary, Campbell and Shiller(1991) documented that this implication has been

consistently rejected. The regression coefficient is significantly far from unity and even

negative. This situation becomes severe for longer maturities and it is called as “expectation

puzzle”. Table 2.2 in chapter 2 shows the results reported in Dai and Singleton(2002).

Since the puzzle implies that the slope of current curve and the change in yields in the

next month are negatively correlated, it can be considered that the spot rate curve rotates

under the mean reversion of short term interest rates. In other words, the expectation puzzle

57
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implies that short term interest rates and long term interest rates move in the opposite

direction. For instance, when the short term interest rates are relatively high, it is likely

that the spot rate curve has negative slope. After we observe the negative slope of the curve,

the short term interest rates tend to fall by mean reversion. On the other hand, from the

negative correlation with the slope, the long term interest rates rise in average. Thus, when

the expectation puzzle occurs, it seems that the rotation of the curve is likely to occur.

There are many researches which successfully explain the expectation puzzle. For in-

stance, Dai and Singleton(2002) and Duffee(2002) explain the puzzle by essentially affine

term structure models in which the market price is time-varying. Li and Song(2012) intro-

duce jumps into the affine term structure models and explain the puzzle and the humped

shape of volatility curve simultaneously. There are utility based models of term structure

which explain the expectation puzzle. Wachter(2006) considers the pure exchange econ-

omy with external habit and shows that the puzzle can occur in her model. Buraschi and

Jiltsov(2007) show the puzzle can occur by introducing the money in the utility function.

The important point here is that all of the above models explain the puzzle by the time

variation of market price of risk. The intuition behind these models is as follows. Suppose

that the market price of risk is given as a decreasing function of the short term interest

rate. When the short term interest rate is relatively high, it will fall in the next period by

mean reversion. On the other hand, the risk premium of long term bonds is small or even

negative because the market price of risk is negatively related to the short term interest rate.

Thus, the price of long term bonds tends to decline in the next period. Since the short term

interest rates fall and long term interest rates rise in the next period, the spot rate curve

changes as if it rotates and expectation puzzle occurs.

In this chapter, the following questions are addressed. First, is there an economic story

which explains the expectation puzzle other than the story with time-varying market price of

risk? Second, what kind of affine term structure model is corresponding to this story? Third,

is it possible that an affine term structure model with constant market price of risk explains

the expectation puzzle? Finally, what is the difference between the affine term structure

model here and the existing affine term structure models? To answer these questions, we in-

troduce a time-additive utility which exhibits decreasing relative risk aversion and investigate

the properties of term structure of interest rates in equilibrium. Since the utility function
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is time-additive, decreasing relative risk aversion implies that the elasticity of intertemporal

substitution is increasing. The main results and contributions of the chapter are: we show

that time-varying elasticity of intertemporal substitution can explain the rotation of curve

even in the absence of time-varying market price of risk. Thus, time-varying elasticity of

intertemporal substitution is a possible candidate which explains the expectation puzzle. In

fact, if we approximate our pure exchange economy model by an affine term structure model,

then it can be shown that this affine term structure model exhibits the negative coefficients

in Campbell-Shiller test even in the absence of time-varying market price of risk. Finally, we

find a difference between our affine term structure model and existing affine term structure

models. In our affine model, there is a new type of state variable which is not found in the

past literature.

The chapter is organized as follows. In the next section, a model of pure exchange

economy is explained. In section 3, the properties of term structure in equilibrium are

investigated. In section 4, the equilibrium term structure is approximated by an affine term

structure model and the difference between our affine model and existing affine models is

presented. In the final section, the conclusions are given.

4.2 The Model

Consider a pure exchange economy of a single perishable consumption good. The time span

of this economy is [t0, τ ]. Let (Ω,F , Q) be a complete probability space. The economy is

driven by two-dimensional Wiener process {Wt : t ∈ [t0, τ ]} where W⊤
t = [W1t,W2t]. We

assume that W1t and W2t are independent. Filtration {Ft : t ∈ [t0, τ ]} is chosen to be the

Q−augmentation of the natural filtration generated by Wt.

The economy is endowed with a flow of the consumption good. The rate of aggregate

endowment flow is yt, t ∈ [t0, τ ]. It is assumed that yt follows a stochastic differential

equation,

dyt
yt

= µt dt+ σ⊤dWt, (4.1)

where σ⊤ = [σ1, σ2] is a vector of constants. Without loss of generality, it is assumed that

σ ≥ 0. The conditional expectation of instantaneous growth rate of endowment is assumed
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to follow an Ornstein-Uhlenbeck process,

dµt = κ(µ̄− µt)dt+ b⊤dWt, (4.2)

where µ̄, κ are positive constants and b⊤ = [b1, b2] is a vector of constants. We do not restrict

the sign of b to allow the correlation between yt and µt.

It is assumed that the representative agent of our economy exists and her/his objective

function is expressed as

U ({cs : s ∈ [t0, τ ]}) = E

[∫ τ

t0

v(cs, s)ds

]
,

where v(cs, s) = e−ρs

(
αcs +

c1−γ
s

1− γ

)
, α ≥ 0, γ > 0, (4.3)

and E[·] is the expectation operator1. The time preference ρ is assumed to be a nonnegative

constant2. The consumption flow space at each time is assumed to be the set of nonnegative

real numbers. Let us denote the first order and the second order derivative of u(·) as uc(·)

and ucc(·) respectively. The coefficient of relative risk aversion is written as

RRA(c) = −vcc(c, s)

vc(c, s)
c = θ(c)γ, (4.4)

where θ(c) is defined by

θ(c) =
c−γ

α + c−γ
. (4.5)

If α is equal to zero, the coefficient of relative risk aversion is constant. Otherwise, θ(c)γ

stochastically moves in the open interval (0, γ). Since θ(c) is decreasing in c, the utility

function defined by (4.3) exhibits decreasing relative risk aversion in consumption. The

parameter γ is the supremum of relative risk aversion, that is, supc∈R+ RRA(c). Note that the

1This type of utility function was investigated by Ross(1981) which introduces the strong measure of risk
aversion.

2The parameters are restricted by following two inequalities,

ρ > µ̄− 1

2
σ⊤σ +

1

2

(
σ +

b

κ

)⊤(
σ +

b

κ

)
,

µ̄− 1

2
σ⊤σ +

1

2
(1− γ)

(
σ +

b

κ

)⊤(
σ +

b

κ

)
> 0.

The first inequality ensures that the limit of the expected utility, limτ→∞ U({ys : s ∈ [t0, τ ]}), is finite.
The second inequality is so-called the transversality condition and ensures that the price of discount bond
converges to zero as the time to maturity goes to infinity.



4.3. THE EQUILIBRIUM TERM STRUCTURE OF INTEREST RATES 61

reciprocal of RRA(c) is the elasticity of intertemporal substitution, since the utility function

is time-additive. Thus, the preference considered here exhibits increasing intertemporal

substitution.

It is assumed that all assets traded in the market are in zero net-supply. The price of

default-free pure discount bond which matures at s(∈ (t0, τ ]) is denoted by P (t, s) (t ≤ s).

We set P (s, s) = 1. It is assumed that at least three pure discount bonds of different

maturities are traded at any t ∈ [t0, τ). Since the source of the risk in this economy is

two-dimensional Wiener process, the market is complete.

Finally, the s-maturity instantaneous forward rate of interest rate and the short rate are

denoted as f(t, s) and rt respectively.

4.3 The Equilibrium Term Structure of Interest Rates

4.3.1 The forward rate of endowment expectation and variance,

and the certainty pricing equivalent

Before we derive the instantaneous forward rate of interest rate in equilibrium, we define

three variables.

Definition 1 The forward rate of endowment expectation is defined by

M(t, s) =
∂

∂s
E

[
ln

(
ys
yt

)∣∣∣∣Ft

]
, s ≥ t. (4.6)

And the forward rate of endowment variance is defined by

V (t, s) =
∂

∂s
V ar

[
ln

(
ys
yt

)∣∣∣∣Ft

]
, s ≥ t, (4.7)

where V ar [·] is the variance operator.

Under the assumption on the aggregate endowment process, the forward rate of endowment

expectation is given by

M(t, s) = e−κ(s−t)µt + (1− e−κ(s−t))µ̄− 1

2
σ⊤σ. (4.8)
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And the forward rate of endowment variance is

V (t, s) = Σ(t, s)⊤Σ(t, s),

where Σ(t, s) = σ +
1− e−κ(s−t)

κ
b. (4.9)

When s = t, the forward rate of endowment expectation is reduced to the conditional

expectation of instantaneous growth rate of endowment. The forward rate of endowment

variance is reduced to the conditional variance of instantaneous growth rate of endowment

respectively.

In equilibrium models, the short rate is equal to the negative of expected rate of change

in marginal utility. In our model, it is expressed as3

rt = ρ+RRA(yt)M(t, t)− 1

2

(
RRA2(yt)− ytRRA′(yt)

)
V (t, t). (4.10)

The second term of the right hand side is the term of intertemporal substitution effect and

the third term is the term of precautionary saving effect4. The important point here is that

this expression is not specific to our model and can be derived in more general setting5. On

the other hand, it is difficult to obtain the same expression for the instantaneous forward

rate of interest rate in general. As will be clear, our specification of the preference and the

stochastic process of endowment allows us to do this. The following variable is important in

this procedure.

Definition 2 The certainty pricing equivalent is defined by,

ŷt,s = v−1
c (E [vc(ys, s)| Ft] , s) , (4.11)

where v−1
c (·, s) is the inverse of vc(·, s) given s.

The certainty pricing equivalent is the certain amount of consumption which gives the same

expected marginal utility as the future endowment. Obviously ŷt,s ≤ E [ys| Ft] and ŷt,t = yt.

3For instance, Wang(1996) derives (4.10) in a model of heterogeneous exchange economy.
4This interpretation is usual in the equilibrium models. See Bakshi and Chen(1997) and Wang (1996).
5For the formal derivation of (4.10) in the general setting, see Duffie and Zame(1989) and Cox, Ingersoll,

Ross(1985a).
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It is easy to show

ŷt,s = exp

(
E [ ln ys| Ft]−

1

2
γV ar ( ln ys| Ft)

)
= yt exp

(∫ s

t

M(t, u)− 1

2
γV (t, u) du

)
, s ≥ t. (4.12)

Clearly the instantaneous rate of change in certainty pricing equivalent with respect to s is

given by M(t, s)− 1
2
γV (t, s) > 0.

4.3.2 The instantaneous forward rate of interest rate in equilib-

rium

In our economy, the equilibrium price of pure discount bond is given by

P (t, s) =
E [vc(ys, s)| Ft]

vc(yt, t)

=
vc(ŷt,s, s)

vc(yt, t)
. (4.13)

The last equation holds by the definition of the certainty pricing equivalent. The instanta-

neous forward rate of interest rate in equilibrium is obtained as follows.

Proposition 4 In the equilibrium, the instantaneous forward rate of interest rate is deter-

mined as

f(t, s) = ρ+RRA(ŷt,s)M(t, s)

−1

2

(
RRA2(ŷt,s)− ŷt,sRRA′(ŷt,s)

)
V (t, s) (4.14)

= ρ+RRA(ŷt,s)

(
M(t, s)− 1

2
γV (t, s)

)
, s ≥ t. (4.15)

Proof. See appendix.

Note that (4.14) has the same form as (4.10). The only difference is that yt, M(t, t), and

V (t, t) in (4.10) are replaced by ŷt,s, M(t, s), and V (t, s) respectively. Thus under the

specification of our model, the formula for the interest rate when s = t is naturally extended

to the one when s ≥ t. Then, it is natural to say that the second term of the right hand

side of (4.14) is the term of intertemporal substitution effect and the third term is the term

of precautionary saving effect.



64 CHAPTER 4. PUZZLE WITHOUT TIME-VARYING MARKET PRICE OF RISK

In (4.15), we can give an interesting interpretation to the instantaneous forward rate of

interest rate. In a “certainty economy”, the equilibrium interest rate is given by the sum of

the time preference and the term of intertemporal substitution effect. The latter term is the

product of the reciprocal of elasticity of intertemporal substitution and the instantaneous

growth rate of endowment during the time interval [s, s+dt]. Equation (4.15) has this form.

Note that the instantaneous rate of change in certainty pricing equivalent with respect to

s is given by M(t, s) − 1
2
γV (t, s). Thus, we can transform our pure exchange economy

with uncertainty into the pure exchange economy with certainty where the future aggregate

endowment at s is known to be ŷt,s. In this interpretation, it is natural that RRA(ŷt,s)

in (4.15) is interpreted as the reciprocal of elasticity of intertemporal substitution rather

than the coefficient of relative risk aversion. The risk preference for precautionary savings is

imbedded to ŷt,s and M(t, s)− 1
2
γV (t, s).

In the case of constant relative risk aversion, the forward rate of interest rate has the

form,

f(t, s) = ρ+ γ

(
M(t, s)− 1

2
γV (t, s)

)
(4.16)

= ρ+ γM(t, s)− 1

2
γ2V (t, s).

Since the forward rate is completely determined by µt, the model is a one-factor model in

this case. By taking the limit, the short rate is obtained as

rt = ρ+ γ

(
µt −

1

2
σ⊤σ

)
− 1

2
γ2σ⊤σ.

It is easily verified that the short rate follows an Ornstein-Uhlenbeck process,

drt = κ(θ − rt)dt+ γb⊤dWt, (4.17)

where θ = ρ + γ
(
µ̄− 1

2
σ⊤σ

)
+ 1

2
γ2σ⊤σ. The vector of market price of risk is given by γσ.

Hence, the equilibrium generates Vasicek model. This is the result which re-states the lemma

2.1 in Goldstein and Zapatero (1996).

Corollary 2 When the coefficient of relative risk aversion is constant, Vasicek model holds.

The process of the short rate is given by (4.17) and the market price of risk is given by

constant vector γσ.
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By the argument above, the first γ in (4.16) which is outside the parentheses is better

interpreted as the reciprocal of elasticity of intertemporal substitution, whereas the second

γ which is in the parentheses should be interpreted as the coefficient of relative risk aversion.

4.3.3 The movements of the forward rate curve

In the economy of decreasing relative risk aversion or increasing intertemporal substitu-

tion, the instantaneous forward rate of interest rate depends on both µt and yt. Thus, the

equilibrium term structure is exposed to two types of risk: “consumption growth risk” and

“consumption level risk”. The consumption growth corresponds to µt and the consumption

level corresponds to yt. Let us examine the effect of consumption level risk at first.

yt has an effect on the term structure through the certainty pricing equivalent. By

differentiating (4.15) with respect to yt, we obtain

∂f(t, s)

∂yt
= RRA′(ŷt,s)

(
M(t, s)− 1

2
γV (t, s)

)
ŷt,s
yt

. (4.18)

Thus we establish the following proposition.

Proposition 5 When the certainty pricing equivalent is monotonically increasing in s, that

is,

inf
s≥t

M(t, s)− 1

2
γV (t, s) > 0, (4.19)

the instantaneous forward rate of interest rate with any maturity s ≥ t is decreasing in yt.

When µt satisfies (4.19), the forward rate curve shifts by the change in yt and so does

the spot rate curve. In this sense, yt corresponds to the “level” factor of the term structure6.

Remark 1 Even when µt is too low to satisfy (4.19), we can maintain the similar statement

under a weaker condition. If the parameters satisfy the inequality,

µ̄− 1

2
σ⊤σ − 1

2
γ

(
σ +

b

κ

)⊤(
σ +

b

κ

)
> 0, (4.20)

6This property is analogous to the principal components of the term structure in Litterman and
Scheinkman(1991).
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then lims→∞ M(t, s) − 1
2
γV (t, s) > 0 holds at any t with probability one and there exists a

Ft−random variable st such that M(t, s) − 1
2
γV (t, s) > 0 for all s satisfying s > st. Thus,

any forward rate of interest rate with the maturity which is longer than st is decreasing in

yt.

The effect of µt to the term structure is quite different from yt. The partial derivative of

(4.15) respect to µt is given by

∂f(t, s)

∂µt

= RRA(ŷt,s)
∂M(t, s)

∂µt

+
∂f(t, s)

∂ŷt,s

∂ŷt,s
∂µt

= RRA(ŷt,s)e
−κ(s−t)

+RRA′(ŷt,s)ŷt,s

[
M(t, s)− 1

2
γV (t, s)

] [
1− e−κ(s−t)

κ

]
. (4.21)

The first term in the right hand side is the effect of change in the forward rate of en-

dowment expectation (that is M(t, s)) and always positive. This is the common property

shared with Vasicek model. When µt is high, the economy enjoys the economic growth and

the interest rates rise.

The second term is the effect of increasing intertemporal substitution. Note that we

obtain this second term by differentiating (4.15) where RRA(ŷt,s) is better interpreted as

the reciprocal of elasticity of intertemporal substitution. It is negative as far as the first

bracket is positive. When µt rises, the future intertemporal substitution is expected to be

in a higher level than current level and the forward rate of interest rate is induced to fall.

Note that there are exponential functions both in the first and second terms. The expo-

nential function in the first term is decreasing in s, whereas 1−e−κ(s−t)

κ
in the second term is

increasing in s. Thus, the short term forward rates depend heavily on the first term. Indeed,

at the short end, the short rate depends only on the first term. On the other hand, the

long term forward rates seem to depend heavily on the second term. To obtain the accurate

result, however, more rigorous investigation is needed, since ŷt,s and M(t, s)− 1
2
γV (t, s) vary

with s. In fact, we can obtain the following proposition.

Proposition 6 When (4.19) holds, there exists some s∗t such that ∂f(t,s)
∂µt

< 0, ∀s ≥ s∗t .

Proof. See appendix.
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Remark 2 By the same argument as remark 1, it is easy to show that s∗t still exists under

a weaker condition (4.20) than (4.19).

Thus, when µt increases, the long term forward rates fall while the short rate rises. To

put differently, the forward rate curve rotates in response to the change in µt.
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Figure 4.1: Three forward rate curves for µt = 0, 0.01, 0.02 are depicted. The parameters are set at the
following: ρ = 0.01, κ = 0.3, µ̄ = 0.02, σ⊤ = [0, 0], b⊤ = [0.005, 0.003], γ = 6, α = 1. yt is set at 0.3. The
dashed line corresponds to the case µt = 0. The bold line corresponds to the case µt = 0.02.

Figure 4.1 shows a numerical example. In this figure, three forward rate curves for

µt = 0, 0.01, 0.02 are depicted. The parameters are set at the following values: ρ = 0.01,

κ = 0.3, µ̄ = 0.02, σ⊤ = [0, 0], b⊤ = [0.005, 0.003], γ = 6, α = 1. yt is set at 0.3. In this

example, M(t, s) − 1
2
γV (t, s) is positive for all s ≥ t and ŷt,s is monotonically increasing in

s in each curve. The dashed line corresponds to the case µt = 0. The bold line corresponds

to the case µt = 0.02. The curves cross in the middle range of time to maturity. This means

that the forward rate curve rotates by the change in µt. Note that the vector of market price

of risk is zero vector and constant through time since the vector σ is equal to zero. Thus,

in this numerical example, the market price of risk is not time-varying and the rotation of

curves is caused by another factor other than time-varying market price of risk.

What is the story behind the rotation of curves in this model? Suppose that µt falls.

Then the short term interest rate falls, because the effect of intertemporal substitution

becomes strong. On the other hand, the fall in µt has another effect. Since µt follows a
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mean reverting process and it is persistent unless κ is infinite, the conditional expectation

of aggregate consumption in the future is updated to a lower level. This means that the

expectation of reciprocal of elasticity of intertemporal substitution in the future, RRA(ŷt,s),

is updated to be a higher level. The long term interest rates rise by this effect. Even in the

case that the market price of risk is constant, this story does work. Therefore, we can say

that time-varying elasticity of intertemporal substitution is the main driver in the rotation

of curves.

4.4 Approximation by an Affine Term Structure Model

In the previous section, we concluded that the rotation of curves possibly occurs by the

change in µt even in the absence of time-varying market price of risk. And the main driver

of the rotation of curves there is the time-varying elasticity of intertemporal substitution.

Thus, it is likely that the time-varying elasticity of intertemporal substitution explains the

expectation puzzle. The next questions are: What affine term structure model is correspond-

ing to our pure exchange model? Second, is our affine model with constant market price of

risk able to explain the expectation puzzle? Third, if it is so, what is the difference between

our affine model and existing affine term structure models? To answer these questions, we

formulate an affine term structure model by taking Taylor expansion of the short rate and

the vector of market price of risk.

Before doing that, we have to modify the preference of representative agent. So far, we

investigated the property of equilibrium interest rates under the assumption that the utility

is defined over the consumption level. Under the specification of the endowment process

(4.1) and (4.2), the endowment follows a non-stationary process. Thus when we define the

utility over the consumption level, the process of equilibrium interest rates is not stationary

under decreasing relative risk aversion or increasing elasticity of intertemporal substitution.

This property is challenging when we investigate the regression coefficients in the Campbell-

Shiller test. For this reason, we introduce consumption habit and modify the preference of

representative agent to ensure that the interest rates follow some stationary processes.
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Let us denote the consumption habit as zt and define it by the following equation,

zt = exp

(
κc

∫ t

t0

e−κc(t−u) ln cudu

)
,

where κc is a positive constant. Apparently κc is the parameter for weights which are put

on the past consumption streams when we define the weighted average of past consumption.

Applying Ito’s lemma, the process of excess consumption in equilibrium, defined by the

ratio of yt to zt is given by,

d ln(yt/zt) =

(
µt −

1

2
σ⊤σ − κc ln(yt/zt)

)
dt+ σ⊤dWt.

It is clear that the logarism of excess consumption follows a stationary process, because there

is a mean reversion term in the drift of its process.

We assume that the utility function at each time is defined by

v(ct, zt, t) = e−ρt

(
αct +

c1−γ
t zγt
1− γ

)
.

Under this assumption, the coefficient of relative risk aversion is given by,

RRA(ct, zt) =
(ct/zt)

−γ

α + (ct/zt)−γ
× γ.

Under the assumptions stated above, it is easy to show that the short rate in equilibrium

is given by

ρ+RRA(eln(yt/zt))

(
µ− 1 + γ

2
σ⊤σ − κc ln(yt/zt)

)
,

and the vector of market price of risk is given by Λ = RRA(eln(yt/zt))σ. Note that the short

rate follows a stationary process, since the short rate depends on yt through the logarism of

excess consumption.

To obtain the affine term structure model corresponding to our pure exchange economy

model, we take Taylor expansion of the short rate and the vector of market price of risk.

Taking expansion around the points where the ratio of consumption to habit is one and µ is

µ̄, we can specify the short rate r(Xt) as

r(Xt) = δ0 + δ1X1t + δ2X2t + δ3X3t, (4.22)

where δ0 = ρ+RRA

(
µ̄− 1 + γ

2
σ⊤σ

)
,
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δ1 = RRA,

δ2 = δ3 = −RRA

(
(γ −RRA)

(
µ̄− 1 + γ

2
σ⊤σ

)
+ κc

)
,

RRA = RRA(y, z)|y=z,

and the vector of state variables X⊤
t = [X1t, X2t, X3t] is defined by

X1t =

∫ t

t0

e−κ(t−u)b⊤dWu,

X2t =

∫ t

t0

e−κc(t−u)σ⊤dWu, (4.23)

X3t =

∫ t

t0

e−κc(t−u)X1udu.

The market price of risk is also expanded and obtained as

Λ(Xt) = [λ0 + λ1X1t + λ2X2t + λ3X3t]σ, (4.24)

where λ0 = RRA,

λ1 = 0,

λ2 = λ3 = −RRA(γ −RRA).

The equivalent martingale measure Q∗ is defined by the Radon-Nikodym derivative,

dQ∗

dQ
= exp

(
−1

2

∫ τ

t0

Λ(Xu)
⊤Λ(Xu)du−

∫ τ

t0

Λ(Xu)
⊤dWu

)
. (4.25)

The system of equations (4.22) − (4.25) forms a time-homogeneous affine term structure

model. Obviously the short rate follows a Gaussian process since it is linear in Xt. And the

vector of market prices of risk is also linear in Xt and time-varying as far as σ is not equal

to zero vector. Thus, the model is categorized in the family of purely Gaussian essentially

affine models. Obviously, X1t corresponds to µt in the model of pure exchange economy.

The sum of X2t and X3t corresponds to yt. Thus the slope of the term structure is mainly

determined by X1t while the level is determined by the sum of X2t and X3t.

One point deserves to be mentioned. The process of the first two state variable X1t and

X2t is an Ornstein Uhlenbeck process with zero mean. These state variables are typically

used when Gaussian affine term structure models are formulated. On the other hand, the

third state variable X3t is a weighted sum of past X1u, u ≤ t. In other words, this state

variable accumulates past X1us. This third state variable is not common to the existing



4.4. APPROXIMATION BY AN AFFINE TERM STRUCTURE MODEL 71

Gaussian affine term structure models and completely new. Thus, our Gaussian affine term

structure model is quite different from the existing models in the sense that this third state

variable is introduced. This is the answer to the third question which is addressed at the

beginning of this section. To this end, we will call this state variable as “accumulation

factor”.

What is the effect of the presence of the accumulation factor in the affine term structure

model? To consider this effect, let us express the instantaneous forward rate of interest rate

as the expectation value of future short rate under the forward martingale measure as,

f(t, s) = EFs [r(Xs)| Ft]

= δ0 + δ1E
Fs [X1s| Ft] + δ2E

Fs [X2s| Ft]

+δ3E
Fs [X3s| Ft]

= δ0 + δ1E
Fs [X1s| Ft] + δ2E

Fs [X2s| Ft]

+δ3

(
e−κc(s−t)X3t +

∫ s

t

e−κc(s−u)EFs [X1u| Ft] du

)
,

where EFs denotes expectation operator under the forward martingale measure with respect

to the maturity date s. For illustration, let us assume that the market prices of risk are

constant. In this case, the volatility vector of Radon-Nikodym derivative dQF,s

dQ
is not random

and X1u follows a Markov process also under the forward martingale measure. Then it is

obvious that the expectation value EFs [X1s|Ft] is increasing in the current value X1t. The

coefficient of the expectation in the second term in the right hand side of the last equation

is δ1 = RRA which is positive. Thus, the forward rate of interest rate rises by increase in

X1t through this term. This is the effect which is shared with existing affine term structure

models.

The fourth term is related to the accumulation factor. The coefficient in this term is

δ3 which is negative under a mild condition µ̄ > 1+γ
2
σ⊤σ. This negativity corresponds to

increasing elasticity of intertemporal substitution. Since the expectation of future X1u is

integrated in this term, the effect of this term might be larger for longer maturities. Thus,

when the maturity is short, the main determinant of the term structure is the second term

and X1t has positive relation with the interest rates, while for longer maturities, the main

determinant is the fourth term and X1t has negative relation with the interest rates. This

mechanism makes the forward rate curve rotate.
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By solving the partial differential equation which the bond price satisfies, we obtain the

bond price as follows.

Proposition 7 The bond price in the purely Gaussian essentially affine term structure

model formed by the system of equations (4.22)− (4.25) is given by

P (Xt, s− t) = exp (A(s− t)−B1(s− t)X1t

−B2(s− t)X2t −B3(s− t)X3t) , (4.26)

B1(s− t) =
δ1

β − α

(
e−α(s−t) − e−β(s−t)

)
+

ξ

β − α

(
1− e−α(s−t)

α
− 1− e−β(s−t)

β

)
, (4.27)

B2(s− t) = B3(s− t)

=
κξ

αβ
− δ1 +

1

β − α
(αδ1 − ξ)

(κ
α
− 1
)
e−α(s−t)

− 1

β − α
(βδ1 − ξ)

(
κ

β
− 1

)
e−β(s−t), (4.28)

A(s− t) = −(s− t)δ0 +

∫ s

t

B1(u− t)λ0σ
⊤b+

1

2
B1(u− t)2b⊤b

+B2(u− t)λ0σ
⊤σ +

1

2
B2(u− t)2σ⊤σ du, (4.29)

where the parameters α, β, and ξ are defined as

α =
κ+ κc + λ2σ

⊤σ −
√

(κ− κc − λ2σ⊤σ)2 − 4λ2σ⊤b

2
, (4.30)

β =
κ+ κc + λ2σ

⊤σ +
√
(κ− κc − λ2σ⊤σ)2 − 4λ2σ⊤b

2
, (4.31)

ξ = δ1(κc + λ2σ
⊤σ) + δ2. (4.32)

Proof. See appendix.

Note that there are two types of exponential functions in B1(s − t). One exponential

function is with parameter α and the other is with parameter β. From the definition, α

is smaller than β. And these two parameters are positive under some mild conditions on

other parameters: κc + λ2σ
⊤σ > 0, (κc + λ2σ

⊤σ)κ+ λ2σ
⊤b > 0. These conditions are easily

satisfied when σ is close to zero. When α and β are positive, the instantaneous forward rate

of interest rate does not explode as the time to maturity goes to infinity.
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The third parameter defined in the above proposition ξ is negative when δ2 is sufficiently

small. Note that δ2 is small means that the effect of increasing intertemporal substitution is

strong.

The effect of change in µt becomes clear by transforming the pure exchange equilibrium

model to the Gaussian affine term structure model. When δ2 and λ2 are set to be zero,

the model is reduced to Vasicek model. In this case, the exposure B1(s − t) is equal to

δ1
1−e−κ(s−t)

κ
and the bond price of any maturity is decreasing in X1t. In general case when δ2

and λ2 are not equal to zero, the exposure B1(s− t) is not always positive. More concretely,

B1(s − t) is positive for small s but negative for large s since B1(0) = 0, B′
1(0) = δ1 > 0,

lims→∞ B1(s− t) = ξ
αβ

< 0 and B1(·) is continuous. When X1t rises, the short rate rises and

the prices of short term bonds become low, whereas the prices of long term bonds become

high. The movement of the term structure drastically changes by departure from the model

of constant elasticity of intertemporal substitution.

time to maturity(in months) 12 24 48 84 120
our model -1.679 -1.839 -2.215 -2.978 -4.165

empirical results -1.425 -1.705 -2.147 -3.096 -4.173

Table 4.1: Regression coefficients in our affine term structure model are given. Paratemeters are set at the

following: σ⊤ = [0, 0], b⊤ = [ 0.01√
2
, 0.01√

2
], κ = 0.2, κc = 0.04, γ = 15, RRA = 5. The empirical result reported

in Dai and Singleton(2002) is given in the second row for comparison.

The stationary distribution of Xt enables us to calculate the regression coefficients in

Campbell-Shiller test (again, i and n are given in months),

ϕn =
Cov

(
Rn−1

i+1 −Rn
i ,

Rn
i −R1

i

n−1

)
V ar

(
Rn

i −R1
i

n−1

) .

Table 4.1 shows the regression coefficients calculated at the following parameters: σ⊤ =

[0, 0], b⊤ = [0.01√
2
, 0.01√

2
], κ = 0.2, κc = 0.04, γ = 15, RRA = 5. For comparison, the empirical

result documented in Dai and Singleton (2002) is given in the second row. This table shows
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that the regression coefficients in our model are close to ones in the empirical results. Note

that in this numerical example, the vector of market price of risk is set to be equal zero

vector and constant through time. Thus, even in the absence of time-varying market price

of risk, an affine term structure model can explain the expectation puzzle.

4.5 Conclusion

In this chapter, we investigated equilibrium interest rates in a pure exchange economy where

the utility function of representative agent exhibits decreasing relative risk aversion and

increasing intertemporal substitution. It is shown that the forward rate curves rotate by

time-varying intertemporal substitution even in the absence of time-varying market price

of risk. That is, in our model, the constant market price of risk can be consistent with

expectation puzzle. After taking expansion, we show that the affine term structure model

approximating our exchange economy exhibits negative coefficients in Campbell-Shiller test.

In this affine model, completely new state variable is introduced. It is the “accumulation

factor” which integrates the other state variable. Thus, adding accumulation factor makes

affine models possible to explain the expectation puzzle under the constant market price of

risk.
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4.6 Appendix

4.6.1 Proof of proposition 4

By the definition of the instantaneous forward rate of interest rate, we obtain

f(t, s) = −
∂
∂s
E[vc(ys, s)|Ft]

E[vc(ys), s|Ft]

= ρ−
∂
∂s

(
α + ŷ −γ

t,s

)
α + ŷ −γ

t,s

. (4.33)

The partial derivative in the right hand side is calculated as

∂

∂s

(
α + ŷ −γ

t,s

)
=

∂ŷ −γ
t,s

∂s

= −γ

(
M(t, s)− 1

2
γV (t, s)

)
ŷ −γ
t,s . (4.34)

Substituting this equation into (4.33), we have

f(t, s) = ρ+

(
γŷ −γ

t,s

α + ŷ −γ
t,s

)
M(t, s)− 1

2
γ

(
γŷ −γ

t,s

α + ŷ −γ
t,s

)
V (t, s)

= ρ+RRA(ŷt,s)M(t, s)− 1

2
γRRA(ŷt,s)V (t, s). (4.35)

The equation (4.15) follows from the last equality. By simple but tedious calculation, we

can verify that the following equality holds,

γRRA(ŷt,s) = RRA(ŷt,s)
2 − ŷt,sRRA′(ŷt,s). (4.36)

Substituting this into (4.35), we obtain (4.14). Q.E.D.

4.6.2 Proof of proposition 6

Since the first order derivative of relative risk aversion is given by

RRA′(ŷt.s) = −RRA(ŷt.s)(γ −RRA(ŷt.s))
1

ŷt.s
, (4.37)

the right hand side of (4.21) is non-positive for s > t if and only if the following inequality

holds:

RRA(ŷt.s)
e−κ(s−t)

1− e−κ(s−t)
κ

−
(
M(t, s)− 1

2
γV (t, s)

)
RRA(ŷt.s)(γ −RRA(ŷt.s)) ≤ 0. (4.38)
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The left hand side of (4.38) is a quadratic function of RRA(ŷt.s). When (4.38) holds with

equality, then the roots are 0 and

χ(s) = γ −
(

e−κ(s−t)

1− e−κ(s−t)

)(
κ

M(t, s)− 1
2
γV (t, s)

)
. (4.39)

Therefore, if RRA(ŷt.s) ∈ [0, χ(s)], then ∂f(t,s)
∂µt

≤ 0. Since the infimum of M(t, s)− 1
2
γV (t, s)

with respect to s is strictly positive, the inequality ∂f(t,s)
∂µt

≤ 0 also holds if RRA(ŷt.s) ∈

[0, χ(s)∗], where χ(s)∗ is defined by,

χ(s)∗ = γ −
(

e−κ(s−t)

1− e−κ(s−t)

)(
κ

infu≥t M(t, u)− 1
2
γV (t, u)

)
. (4.40)

But RRA(ŷt,s) monotonically converges to 0 as s → ∞ since infu≥t M(t, u)− 1
2
γV (t, u) > 0,

whereas χ(s)∗ monotonically converges to γ which is an upper bound of {RRA(ŷt,s) : s ≥ t}.

Thus there exists s∗t such that for all s ≥ s∗t , RRA(ŷt,s) ∈ [0, χ(s)∗] and (4.38) holds. Q.E.D.

4.6.3 Proof of proposition 7

Let us define a stochastic process {W ∗
t : t ≥ t0} as,

W ∗
t = Wt +

∫ t

t0

Λudu, t ≥ t0.

Then, this process is a Wiener process under the measure Q∗ defined by (4.25). The risk-

neutralized processes of state variables are given by

dX∗
1t =

[
−κX∗

1t − λ0σ
⊤b− λ2σ

⊤b(X∗
2t +X∗

3t)
]
dt+ b⊤dW ∗

t ,

dX∗
2t =

[
−κcX

∗
2t − λ0σ

⊤σ − λ2σ
⊤σ(X∗

2t +X∗
3t)
]
dt+ σ⊤dW ∗

t ,

dX∗
3t = [−κcX

∗
3t +X∗

1t] dt,

with the initial values are the same as the original process Xt. The corresponding risk-

neutralized short rate is,

r∗t = δ0 + δ1X
∗
1t + δ2X

∗
2t + δ3X

∗
3t.

Since the bond price function has the exponentially affine form,

P (t, s) = exp (A(s− t)−B1(s− t)X∗
1t −B2(s− t)X∗

2t −B3(s− t)X∗
3t) ,
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it is easy to show that A(s− t), B1(s− t), B2(s− t), B3(s− t) must satisfy the ordinary linear

equations,

0 = κB1(s− t)−B3(s− t) + B′
1(s− t)− δ1, (4.41)

0 = λ2σ
⊤bB1(s− t) + (λ2σ

⊤σ + κc)B2(s− t) + B′
2(s− t)

−δ2 (4.42)

0 = λ2σ
⊤bB1(s− t) + λ2σ

⊤σB2(s− t) + κcB3(s− t)

+B′
3(s− t)− δ3 (4.43)

A′(s− t) = B1(s− t)λ0σ
⊤b+

1

2
B1(s− t)2b⊤b+B2(s− t)λ0σ

⊤σ

+
1

2
B2(s− t)2σ⊤σ − δ0, (4.44)

with the boundary conditions A(0) = Bi(0) = 0, i = 1, 2, 3. In these equations, B′
i(s− t) is

the first order derivatives of Bi(s− t), (i = 1, 2, 3).

At first, we derive B2(s − t) = B3(s − t) for all s ≥ t. From (4.42) and (4.43), the

following equation holds,

κc (B2(s− t)− B3(s− t)) = B′
2(s− t)−B′

3(s− t). (4.45)

Clearly, the following equation holds,

B2(s− t)− B3(s− t) = e−κc(s−t) (B2(0)−B3(0)) . (4.46)

By the boundary condition, B2(s− t)− B3(s− t) = 0 holds for any s ≥ t.

Next, differentiating (4.41), we obtain the following equation,

B′
3(s− t) = κB′

1(s− t) + B′′
1 (s− t), (4.47)

where B′′
1 (s− t) is the second order derivative of B1(s− t). Substituting this and (4.41) into

(4.43), we obtain the following equation,

δ1
(
λ2σ

⊤σ + κc

)
+ δ3 = B′′

1 (s− t)
(
λ2σ

⊤σ + κc + κ
)
+B′

1(s− t)

+B1(s− t)
(
λ2σ

⊤b+ κ(λ2σ
⊤σ + κc)

)
. (4.48)

But this equation, coupled with B1(0) = 0, forms a second order linear ordinary differential

equation problem and the solution is given by (4.27).
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From (4.47), B3(s− t) is expressed as

B3(s− t) = κB1(s− t) + B′
1(s− t) + C,C ∈ R. (4.49)

Substituting (4.27) into this equation and using the boundary condition B3(0) = 0, we obtain

(4.28). Q.E.D.



Chapter 5

Term Structure under One-factor

Gaussian Endowment Process

5.1 Introduction

It is well known that the continuous compound interest rates follow normal distribution in

Vasicek model. Because of this property, this model has many attractable features. For

instance, the derivation of rational price of fixed income derivatives is easy when we assume

Vasicek model.

On the other hand, Vasicek model has at least two problems. First, the interest rates in

this model can be negative with positive probability. When the model is used for pricing

fixed income derivative of nominal interest rates, the possibility of negative interest rates

seems serious, because it never happens that the nominal interest rate is negative in the real

world. When the equilibrium term structure is considered in the framework of pure exchange

economy, the nonnegative interest rates can be obtained by assuming the endowment follows

a stochastic process other than Gaussian process. For instance, if we assume that the

instantaneous expected rate of growth of endowment follows a square root process, then

it is easy to show that the equilibrium short rate is always positive under mild condition

on parameters. But this assumption means that the instantaneous expected rate of growth

of endowment is nonnegative. Apparently it is difficult to justify the assumption that the

expected rate of growth of endowment is always positive.

79
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The second problem in Vasicek model is the term structure of volatility is constant

through time and it is monotonically decreasing in time to maturity. As is argued in Dai

and Singleton (2004), the volatility curve of interest rates is time-varying and humped shaped

in the actual fixed income markets1. They also argue that one-factor term structure models

cannot generate the volatility curve, the shape of which is humped.

In this chapter, we consider a simple pure exchange economy where the endowment

follows one-factor mean-reverting process. In this framework, the equilibrium generates

Vasicek model when we set the coefficient of relative risk aversion of representative agent

constant. The main objective of this chapter is to explore the possibility to overcome the

problems of Vasicek model stated above by generalizing the preference of representative

agent. As the preference of representative agent, we consider the same utility function as

the one in chapter 4.

The main contribution of this chapter is as follows. First, it is shown that under a mild

condition on parameters the interest rates are always positive. Thus, the interesting property

of the model is that the interest rates never fall to negative values even if the expected rate

of growth of endowment is far below zero. The second contribution of this chapter is that it

is shown that the term structure of volatility can be humped shaped by allowing the relative

risk aversion of representative agent to decrease.

This chapter is organized as follows. In the next section, we describe the model. In

section 3, the equilibrium forward rates are derived and the properties of the forward rates

are examined. The final section concludes.

5.2 The Model

Consider a pure exchange economy of a single perishable consumption good. The time span

of this economy is [t0, τ ]. The economy is endowed with a flow of the consumption good.

The rate of endowment flow is yt at t for t ∈ [t0, τ ]. The probability space is denoted as

(Ω,F , Q). The information structure {Ft : t ∈ [t0, τ ]} is constructed in the usual manner.

We set σ-field Ft is generated by the path of Wiener process {Ws : s ∈ [t0, t]}. We set

1This problem is not unique in Vasicek model and many other term structure models have the same
problem. There are few models in which the shape of volatility curve is humped.
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F = Ft0 .

In this chapter, it is assumed that the endowment follows a stochastic differential equa-

tion,

d ln yt = (g + κ(gt− ln yt)) dt+ σdWt, (5.1)

where g, κ, and σ are strictly positive constants and {Wt : t ∈ [t0, τ ]} is one-dimensional

Wiener process. The drift term is time-dependent and linear in ln yt, but the volatility is

constant. Thus {ln yt : t ∈ [t0, τ ]} follows an elastic random walk process.

Given ln yt, ln ys (s ≥ t) is normally distributed with mean2,

E[ln ys|Ft] = e−κ(s−t) ln yt +
(
1− e−κ(s−t)

)
gt+ g(s− t), (5.2)

and variance,

V ar (ln ys|Ft) =
1− e−2κ(s−t)

2κ
σ2. (5.3)

We assume the same preference for the representative agent of the economy as chapter

3. That is, the objective function of representative agent is the expectation of time-additive

utility as follows,

U ({cs : s ∈ [t0, τ ]}) = E

[∫ τ

t0

v(cs, s)ds

]
,

where v(cs, s) = e−ρs
(
αcs +

c1−γ
s

1−γ

)
and ρ is the time preference and a positive constant. As

in the chapter 3, the coefficient of relative risk aversion under this preference is expressed as,

RRA(c) = γ

(
c−γ

α + c−γ

)
. (5.4)

Again, the coefficient of relative risk aversion takes a value in (0, γ) and is strictly monotone

decreasing in consumption.

The time t price of the default-free pure discount bond in zero-net supply which matures

at s is denoted by P (t, s) (t ≤ s). Without loss of generality, we set P (s, s) = 1. We assume

that at least two pure discount bonds with different maturities are traded at any t ∈ [t0, τ ].

Since the source of the risk in this economy is one-dimensional Wiener process, the market

is complete in this setting. The instantaneous forward rate and the short rate are denoted

as f(t, s) and rt respectively.

2We show this in the appendix.
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5.3 Instantaneous Forward Rate of Interest Rate in

Equilibrium

Duffie and Zame(1989) analyzed the asset pricing in a pure exchange economy in continuous

time and derived the general formula for prices of financial assets. The pure exchange

economy in this chapter is a special case of their economy and satisfies the conditions on

the utility function and the stochastic process of endowment. Thus we can apply theorem

in Duffie and Zame(1989) and the price of the bond maturing at date s is given by,

P (t, s) =
E[vc(ys, s)|Ft]

vc(yt, t)
(5.5)

where vc(·, s) is the first-order derivative of v(·, s) with respect to c.

By the definition of instantaneous forward rate of interest rate, we obtain

f(t, s) = ρ+

(
γ(g + κe−κ(s−t)(gt− ln yt))−

1

2
γ2σ2e−2κ(s−t)

)
η(t, s), (5.6)

where η(t, s) =
E[y−γ

s |Ft]

α + E[y−γ
s |Ft]

,

and the short rate is,

rt = ρ+

(
γ(g + κ(gt− ln yt))−

1

2
γ2σ2

)
η(t, t). (5.7)

The long rate, that is the limit of the forward rate is,

lim
s→∞

f(t, s) = ρ. (5.8)

Obviously η(t, s) fluctuates in the interval (0, 1), and when α → 0, η(t, s) converges to

unity and Vasicek model holds.

5.3.1 Nonnegativity of instantaneous forward rate of interest rates

One remarkable property of this model is that the forward rate has a lower bound and

therefore the condition that the forward rate never be negative can be imposed. The following

proposition shows this.

Proposition 8 In equilibrium, the following inequality holds,

f(t, s) ≥ ρ− 1

2
γ2σ2 − κ

α
e

1
2
γ2 σ2

2κ , ∀yt ∈ R+, ∀s ∈ [t,∞). (5.9)
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Proof. See appendix.

For sufficiently large ρ, the forward rates of all the maturities are always positive. The

spot rate with any maturity is the average of the instantaneous forward rates. Thus, for

sufficiently large ρ, the spot rates are all nonnegative with probability one. When α tends to

0, the lower bound explodes. In this case, that is, in the case of Vasicek model, the forward

rate of any maturity has no lower bound and takes negative value with positive probability.
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Figure 5.1: The five spot rate curves in Vasicek model are drawn. The level of ln y0 is chosen to be
ln y0 = 0.6, 0.4, 0.2, 0,−0.2. The parameters are set at the following values: t = 0, time preference ρ = 0.03,
the speed of adjustment κ = 0.4, the long run average growth rate g = 0.02, the volatility of the aggregate
consumption growth σ = 0.02, The coefficient of the relative risk aversion is set at the coefficient relative

risk aversion of utility αc+ c1−γ

1−γ when γ = 6, α = 18 and ln c = ln y0 = 0.1.

As a benchmark, Figure 5.1 shows the spot rate curves of Vasicek model. The parameters

are set at the following: t = 0, time preference ρ = 0.03, the speed of adjustment κ = 0.4,

the long run average growth rate g = 0.02, the volatility of the aggregate consumption

growth σ = 0.02. Five values of ln y0 are chosen, 0.6, 0.4, 0.2, 0,−0.2. The coefficient of the

relative risk aversion is set at the coefficient relative risk aversion of utility αc + c1−γ

1−γ
when

γ = 6, α = 18 and ln c = ln y0 = 0.1. Note that when ln y0 = 0.6 and 0.4, the short rate is

negative.

Figure 5.2 shows the spot rate curves when the utility is αc + c(1−γ)
1−γ

. The level of ln y0

and the parameters are the same as ones in Figure 5.1. Note that under the specification of

parameters given above, the right hand side of (5.9) is positive. Thus the spot rate of any
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Figure 5.2: The spot rate curve of various ln y0 when the utility is αc+ c1−γ

1−γ are drawn. The level of ln y0
and the parameters are the same as ones in Figure fig:vasicek.

maturity is positive. When the logarithm of aggregate consumption is 0.6, the shape of the

curve becomes inverted humped. Thus, in contrast to Vasicek model, the short end of spot

rate curve does not take a negative value. Note that the inverted humped yield curve never

occurs in Vasicek model3.

The basic reason why the interest rate does not take a negative value is as follows. The

intertemporal substitution effect is the product of the expected growth rate of endowment

and the reciprocal of elasticity of intertemporal substitution. In the state when the level of

aggregate endowment is high, the interest rate is induced to fall, because the instantaneous

growth rate of endowment is expected to be low by mean reversion. At the same time, the

elasticity of intertemporal substitution becomes high in this state. Note that this change in

the elasticity of intertemporal substitution does not occur in Vasicek model. In our model,

the total effect is mitigated by time-varying elasticity of intertemporal substitution and the

interest rate does not change considerably.

3There are models which can generate spot rate curve which is inverted humped. For instance, Constan-
tinides(1991) constructed a model with a specific equivalent martingale measure, which is called “SAINTS
(Squared Autoregressive Independent variable Nominal Term Structure) model” and showed that the yield
curve can be inverted humped.
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5.3.2 Volatility of forward rate of interest rates

In our model, the volatility of the forward rate has an interesting form.

Proposition 9 The volatility of the forward rate is given by,

σ
∂f(t, s)

∂ ln yt
= −e−κ(s−t)σγ (η(t, s)κ+ (1− η(t, s)) (f(t, s)− ρ)) . (5.10)

Proof. See appendix.

When α = 0 which is the case of the Vasicek model, the volatility is reduced to −γκσe−κ(s−t).

On the other hand, when α → ∞, the volatility is proportional to f(s, t)− ρ, the difference

between the level and the time preference. Thus the volatility is the convex combination of

the volatility in Vasicek model and “shifted lognormal volatility ”. The weight ηt converges

to 0 when yt → ∞ and converges to unity when yt → 0. So, when the endowment is large,

the volatility is determined mainly by the difference f(t, s) − ρ. When the endowment is

small, the forward rates fluctuate like Vasicek model.

In modeling the term structure, whether a “lognormal volatility” model can be con-

structed or not was one of issues. It is known that HJM lognormal model allows riskless

arbitrage opportunities4. In our framework, the lognormal volatility of forward rates is not

supported. Suppose that ρ = 0. If we set as α → ∞, the volatility of the forward rate con-

verges to −σγf(t, s). This means that the volatility is proportional to the level of forward

rate(lognormal HJM model). But when α → ∞, by (5.6), the forward rate is always zero.

Furthermore, when α → ∞, the utility of the representative agent is not well-defined. Thus

the lognormal HJM model is not supported also in our model.

Figure 5.3 shows the term structure of volatility that is calculated at the same parameter

values as the example in Figure 5.2. It is interesting that “volatility hump” occurs when

ln y0 = 0.2, 0.4, 0.6. The peaks of the curves are at the zone of time to maturity from one-

year to three-year. This is consistent with empirical results which report the humped-shaped

pattern that peaks around two to three years. As is explained in the previous subsection,

the change in interest rate is small when the level of endowment is relatively high, because

the intertemporal substitution effect is mitigated by the change in the reciprocal of elasticity

4For instance, see Heath, Jarrow, and Morton(1992). See, also Brace, Gatarek, and Musiela(1997).
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Figure 5.3: The volatility curve of various ln y0 when the utility is αc + c1−γ

1−γ . The level of ln y0 and the
parameters are the sama as the previous numerical examples.

of intertemporal substitution. This effect is particularly strong for the short end of the term

structure and the volatility of the short rate is smaller than the volatility of forward rate

with maturity around two to three years.

5.4 Conclusion

In this chapter, a simple pure exchange economy where the endowment follows a one-factor

Gaussian process is considered. In this framework, the model generates Vasicek model as

a special case when we set the coefficient of relative risk aversion of representative agent

constant. We depart from this case and investigate the equilibrium interest rates when the

preference of representative agent exhibits decreasing relative risk aversion.

The main conclusions are in two folds. First, it is shown that the interest rates are always

nonnegative in equilibrium under the mild condition for parameters. This means that the

interest rates never fall to negative values even if the expected rate of growth of endowment

is far below zero. This contrasts to the property of the interest rates in Vasicek model.

The second, it is shown that the term structure of volatility is time-varying and the

volatility curve has a humped shape. The reason for the humped shape in our model is

that the elasticity of intertemporal substitution is time-varying. The change in the elasticity

of intertemporal substitution is large for the short end of the curve. Since the effect of in-

tertemporal substitution is the expected instantaneous growth rate of endowment divided by
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the elasticity of intertemporal substitution, the size of change in intertemporal substitution

effect is mitigated and the volatility of the short end is small than the forward rate with two

or three years.

5.5 Appendix

5.5.1 Proof of (5.2),(5.3)

Define Ŵs as (gs− ln ys)e
κ(s−t). Ito’s lemma gives

dŴs = −σeκ(s−t)dWs

Thus, Ŵs (s ≥ t) follows the normal distribution with conditional mean Ŵt and conditional

variance σ2 1
2κ

(
e2κ(s−t) − 1

)
. Since ln ys = gs−e−κ(s−t)Ŵs and ln ys is an affine transformation

of Ŵs, ln ys also follows the normal distribution and the conditional mean and variance are

given by (5.2),(5.3).

5.5.2 Proof of proposition 8

Since E[y−γ
s |Ft]

α+E[y−γ
s |Ft]

∈ (0, 1), the following inequality holds,

f(t, s) = ρ+
(
g + γκe−κ(s−t)gt

) E[y−γ
s |Ft]

α + E[y−γ
s |Ft]

−
(
1

2
γ2σ2e−2κ(s−t)

)
E[y−γ

s |Ft]

α + E[y−γ
s |Ft]

−γκe−κ(s−t)(ln yt)
E[y−γ

s |Ft]

α + E[y−γ
s |Ft]

≥ ρ+ (g + γκgt) inf
yt∈R+

(
E[y−γ

s |Ft]

α + E[y−γ
s |Ft]

)
inf

s∈[t,∞)
e−κ(s−t)

−1

2
γ2σ2 sup

yt∈R+

(
E[y−γ

s |Ft]

α + E[y−γ
s |Ft]

)
sup

s∈[t,∞)

e−2κ(s−t)

−γκe−κ(s−t)(ln yt)
E[y−γ

s |Ft]

α + E[y−γ
s |Ft]

≥ ρ− 1

2
γ2σ2

−γκe−κ(s−t)(ln yt)
E[y−γ

s |Ft]

α + E[y−γ
s |Ft]

. (5.11)
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Thus when ln yt ≤ 0, the forward rate is larger than ρ − 1
2
γ2σ2. So we consider the case

ln yt > 0, that is yt > 1. In this case, the right hand side of (5.11) satisfies,

ρ− 1

2
γ2σ2 − γκe−κ(s−t)(ln yt)

E[y−γ
s |yt]

α + E[y−γ
s |Ft]

≥ ρ− 1

2
γ2σ2 − γκe−κ(s−t)(ln yt)

E[y−γ
s |Ft]

α

= ρ− 1

2
γ2σ2 − κ

α

ln yt(
yγe

−κ(s−t)

t

γe−κ(s−t)

)J(s, t), (5.12)

where the function J(s, t) is defined by,

J(s, t) = exp

(
−γ(1− e−κ(s−t))gt− γg(s− t) +

1

2
γ21− e−2κ(s−t)

2κ
σ2

)
. (5.13)

By the way,
yγe

−κ(s−t)

t

γe−κ(s−t) > ln yt,∀yt ≥ 1 and,

sup
s∈[t,∞)

J(s, t) = exp

(
1

2
γ2 σ

2

2κ

)
.

Thus we obtain the following inequality,

f(s, t) ≥ ρ− 1

2
γ2σ2 − κ

α
exp

(
1

2
γ2 σ

2

2κ

)
. (5.14)

Q.E.D.

5.5.3 Proof of proposition 9

By Ito’s lemma, the volatility of the forward rate is given by σ ∂f(t,s)
∂ ln yt

. Simple calculation

shows that the derivative ∂f(t,s)
∂ ln yt

is given by,

∂f(t, s)

∂ ln yt
= −γκe−κ(s−t) E[y−γ

s |Ft]

α + E[y−γ
s |Ft]

+γ

(
g + κe−κ(s−t)(gt− ln yt)−

1

2
γσ2e−κ(s−t)

)
× ∂

∂ ln yt

(
E [y−γ

s |Ft]

α + E
[
y−γ
s |Ft

]) . (5.15)

The derivative of the second term in the right hand side is,

∂

∂ ln yt

(
E [y−γ

s |Ft]

α + E
[
y−γ
s |Ft

]) =
∂

∂ ln yt

(
1− α

α + E
[
y−γ
s |Ft

])

=
α(

α + E
[
y−γ
s |Ft

])2 ∂E [y−γ
s |Ft]

∂ ln yt
.

(5.16)
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By the normality of ln ys,

∂E [y−γ
s |Ft]

∂ ln yt
=

∂

∂ ln yt
exp

(
−γE [ln ys|Ft] +

1

2
γ2V art (ln ys)

)
= −γe−κ(s−t) exp

(
−γE [ln ys|Ft] +

1

2
γ2V art (ln ys)

)
= −γe−κ(s−t)E

[
y−γ−1
s |Ft

]
. (5.17)

Substituting (5.17) into (5.16), then into (5.15), and arranging the equation using (5.6), we

obtain (5.10). Q.E.D.
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[For Memorandum]



Chapter 6

General Conclusion

In this dissertation, we tried to solve the problems as the empirical challenges stated below:

• the relation between the interest rates and economic activity

• the expectation puzzle

• the humped shape of the term structure of volatility

• the nonnegativity of interest rates.

In chapter 3, we proposed a new equilibrium model that naturally generates the positive

correlation between the nominal interest rates and excess consumption. We focused on the

partial observability of economic variables in a pure exchange economy and derived closed

form solutions for the nominal equilibrium interest rates.

The model considered in this chapter allows us to give a quite different interpretation to

the role of excess consumption in determining the interest rates from the consumption habit

models. For economic agents engaging in the Bayesian inference, the excess consumption

plays a role as an economic indicator helping them to guess the current trend in income

growth. Naturally, the economic agents’ estimate, hence the equilibrium interest rates, can

be increasing in excess consumption under some mild conditions on parameters. This forms

a striking contrast to the consumption habit models in which the intertemporal substitution

effect induces negative correlation between the excess consumption and interest rates.

Our empirical analysis also supported this view. The estimation results indicate the

91
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positive correlation between the implied interest rates and excess consumption. As a conse-

quence, the time series of the nominal yield implied by the model captures many of the short-

and long-run fluctuations in the actual data with higher correlations than those obtained by

Wachter (2006).

Although the chapter shows some possibilities of partial observability to explain the

dynamics of nominal interest rates, there remain some issues to be considered. For instance,

the fit gets worse in the longer maturities. More importantly, the model cannot explain the

negative relation between the real short rate and the excess consumption. The pair of the

facts that the real interest rates have negative and the nominal interest rates have positive

relation with the excess consumption should be explained simultaneously. To attain this

goal, the model should be revised or another equilibrium model should be considered.

In chapter 4, we investigated equilibrium interest rates in a pure exchange economy

where the utility function of representative agent exhibits decreasing relative risk aversion

and increasing intertemporal substitution. It is shown that the forward rate curves rotate

by time-varying intertemporal substitution even in the absence of time-varying market price

of risk. That is, in our model, the constant market price of risk can be consistent with

expectation puzzle. After taking expansion, we show that the affine term structure model

approximating our exchange economy exhibits negative coefficients in Campbell-Shiller test.

In this affine model, completely new state variable which is not found in the literature is

introduced. It is the accumulation factor which integrates the other state variable. Thus,

adding accumulation factor makes affine models possible to explain the expectation puzzle

under the constant market price of risk.

The several important tasks are left. First, the empirical analysis is not conducted.

Second, another challenge called LPY(ii) which was documented in Dai and Singleton(2002)

is not dealt with in this chapter. The challenge which we deal with in this chapter is only

LPY(i). Both challenges should be simultaneously dealt with. Third, risk aversion and

intertemporal substitution is not isolated in time-additive utility. Thus, next natural step is

to assume a utility function in the class of stochastic differential utilities for the preference

of representative agent.

In chpter 5, a simple pure exchange economy where the endowment follows a one-factor

Gaussian process is considered. We departed from Vasicek model by generalizing the utility
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of representative agent and investigated the equilibrium interest rates.

The main conclusions are in two folds. First, it is shown that the interest rates are always

nonnegative in equilibrium under the mild condition for parameters. This means that the

interest rates never fall to negative values even if the expected rate of growth of endowment

is far below zero. This contrasts to the property of the interest rates in Vasicek model.

The second, it is shown that the term structure of volatility is time-varying and the

volatility curve has a humped shape. The reason for the humped shape in our model is

that the elasticity of intertemporal substitution is time-varying. The change in the elasticity

of intertemporal substitution is large for the short end of the curve. Since the effect of in-

tertemporal substitution is the expected instantaneous growth rate of endowment divided by

the elasticity of intertemporal substitution, the size of change in intertemporal substitution

effect is mitigated and the volatility of the short end is small than the forward rate with two

or three years.

There are tasks which remain as future researches. When we argue the non-negativity

of interest rates, the interest rates should be nominal. In the framework of this chapter,

the inflation risk is not considered at all. In other words, we implicitly assume that the

price process is deterministic and we do not make a distinction between nominal and real

interest rates. And it is often argued that non-negativity of nominal interest rates holds

as a monetary phenomenon. The model in this chapter does not have monetary aspect.

Thus, we do not explain the non-negativity of nominal interest rates as a result of monetary

phenomenon.

In the past literature, the humped shape of volatility curve is documented in terms of

unconditional volatility. In this chapter, the humped shape of volatility curve realizes in

some states of economy. This means that we discuss the humped shape of volatility in terms

of conditional volatility. Thus the contribution here is that this chapter only provides an

economic reasoning by which the humped shape of volatility curve occurs. To explain the

humped shape in terms of unconditional volatility, we should further explore the possible

extension of equilibrium models.

Overall, although we provided equilibrium models which explain the phenomena we ob-

serve in actual fixed income markets, we have to say that the answers obtained are not

complete. There still remains tasks as future researches. Nevertheless it is true that the
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future of equilibrium analysis of interest rates looks bright. Thus we have to keep trying to

construct new equilibrium models which explain the phenomena we observe.
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