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Chapter 1

Introduction

In the increasingly fierce competitive environment, innovation has become a core competency
of an industrial organization. Innovative products are featured by higher profit margins,
intrinsically unpredictable demand and short life cycles (Fisher, 1997). Many researchers study
the newsvendor problems and supply chain management problems for innovative products, such
as fashion goods (see the review by Cachon, 2003). However, the intrinsic one-shot characteristic
of the decision related to innovative products has not been taken into account yet. The research in
this dissertation is on characterizing the one-shot feature of innovative products in the supply
chain management models based on the one-shot decision theory (Guo, 2011). Speaking in detail,
it can be divided into four parts, that is, 1: General solutions in the one-shot decision theory; 2:
Newsvendor models for innovative products; 3: Price-setting newsvendor models for innovative
products; 4: Wholesale price contracts in the supply chain for innovative products. The detailed

introduction is as follows.

1: General solutions in the one-shot decision theory

Guo (2011) initially proposed the one-shot decision theory (OSDT) for the one-shot decision
problem which is typical for a situation where a decision is made only once under uncertainty.
The one-shot decision theory provides a scenario-based choice instead of the lottery-based

choices in the existing decision theories. According to the one-shot decision theory, a person



makes a one-shot decision based on some particular scenario (state) which is the most appropriate
one for him/her while considering the satisfaction level incurred by this scenario and its likelihood.
The one-shot decision process is separated into two steps. The first step is to seek an appropriate
scenario from all possible states for each alternative. This scenario is called as the focus point of
the alternative. The second step is to evaluate the alternatives by the satisfaction levels incurred
by the focus points for obtaining the optimal alternative. By the one-shot decision theory, the one-
shot decision problem is formulated as a bi-level optimization problem and there is no existing
general optimization method for such problem. In this dissertation, with an assumption that the
normalized likelihood function and the satisfaction function are quasi-concave, the general
solutions of the focus points and the optimal alternatives are obtained and the existence theorem

is established in the one-shot decision theory.

2: Newsvendor models for innovative products

The newsvendor problem is a well-known inventory management problem. It has the following
common characteristics. Prior to the season, the retailer must decide the quantity of the product
to purchase. The procurement lead-time tends to be quite long relative to the selling season so
that there is often not enough opportunity to replenish inventory once the season has begun.
Excess stock can only be salvaged at a loss once the season is over. As the life cycle of innovative
product is usually shorter than the procurement lead times, determining optimal order quantities
of such products is a typical one-shot decision problem for the retailer. Therefore, newsvendor
models for innovative products are proposed based on the one-shot decision theory. In the models,
for each order quantity, the retailer chooses one appropriate demand (focus point) amongst all

possible demands while considering the satisfaction level caused by the occurrence of the demand



and the likelihood of the demand. The optimal order quantity corresponds to the maximum
satisfaction level of its focus point. The proposed newsvendor model (newsvendor-OSDT) is
fundamentally different from the subjective expected utility (SEU) based newsvendor model
(newsvendor-SEU), because the core hypothesis of SEU is that selecting an alternative equals
selecting a probability distribution whereas the core hypothesis of OSDT is that selecting an
alternative corresponds to selecting one appropriate state (scenario). Therefore, the newsvendor-

SEU is lottery-based whereas the newsvendor-OSDT is scenario-based.

3: Price-setting newsvendor models for innovative products

In the classical newsvendor model, the retail price is considered as an exogenous value. It is
only for a perfect competitive market where the retailers are price-takers. In a monopoly market,
before the selling season, retail price and order quantity are set simultaneously, that is the price-
setting newsvendor problem. This part examines the price-setting newsvendor problem for an
innovative product in a monopoly market. Due to its short lifecycle, there is often only one
opportunity for the retailer to order an innovative products. Hence, this dissertation highlights that
for a retailer who sells an innovative product, how to determine the optimal order quantity is a
one-shot decision problem which is typical for a situation where a decision is made once under
uncertainty. The existing price-setting newsvendor models seek the optimal order quantities and
retail prices to maximize the expected utilities or the probability measures of achieving target
profits. They take into account all demand values when make a decision. However, only one
demand will occur when selling an innovative product due to its short life cycle. Considering the
one-shot feature of the retailer’s decision making for ordering an innovative product, we propose

the price-setting newsvendor model with the one-shot decision theory. In the proposed models,



each order quantity is evaluated only by the payoff of one selected demand (focus point) with
considering the satisfaction level when this demand occurs and its occurrence likelihood. It is
different from the expected utility based model in which the order quantity is evaluated by the
average of the utilities caused by all demands. Hence, the proposed model is scenario-based which
is fundamentally different for the existing models which is probability distribution based (lottery

based).

4: Wholesale price contracts in the supply chain for innovative products

As a fundamental research of the supply chain management, a single manufacturer selling
(innovative) products to a retailer who faces a newsvendor problem has been extensively
researched (Lariviere and Porteus, 2001; Pasternack, 2008). This dissertation extended the
existing literature mainly in the following three dimensions. Firstly, this dissertation considers the
one-time feature of innovative products as follows: after observing the wholesale price, the
retailer evaluating his/her order quantity only based on the selected demand (focus points). The
optimal order quantity corresponds to the maximum satisfaction level of its focus point. Secondly,
in the past decades, the value of information sharing in the supply chain has attracted much
attention from both practitioners and researchers. But most of the works are focusing on the value
of demand information sharing. Until now, the information sharing of participants’ personalities
in the supply chain is still on ‘virgin territory’. In this dissertation, the retailer’s personality
information are considered. The optimal wholesale price contracts for the manufacturer when
he/she is facing different personalities of retailers are obtained. Thirdly, this dissertation examine

the wholesale price contract both in the make-to-order and make-to-stock supply chain.



The reminder of this dissertation is organized as follows.

In Chapter 2, the general solutions of active, passive, apprehensive and daring focus points and
optimal alternatives are proposed and the existence theorem is established in the one-shot decision
theory.

In Chapter 3, with considering the one-time feature of innovative products, we built the
newsvendor models for innovative products for four types of retailers, i.e. active, passive,
apprehensive and daring retailers; managerial insights into the behaviors of different types of
retailers are gained by the theoretical analysis.

In Chapter 4, the price-setting newsvendor models with the one-shot decision theory which fit
the one-time feature of the retailer’s joint price/quantity decision are built. The theoretical analysis
provides the managerial insights into the behaviors of different types of retailers in the monopoly
market. The proposed methods provide a fundamentally different vehicle for analyzing the
newsvendor problems in a monopoly market of an innovative product.

In Chapter 5, the Stackelberg equilibriums are obtained for the optimal wholesale price of
manufacturer and the optimal order quantity of retailer both in the make-to-order and make-to-
stock supply chain for innovative products. Different types of retailers lead to different
Stackelberg equilibriums. The managerial insights into the changes of behaviours of manufacturer
and retailer when market grows are discussed. This chapter presents the first formal analysis of
wholesale pricing of innovative products when the instinct one-time feature of the innovative
product and the retailer’s personality information are considered. Our analysis shows the
differences of the wholesale price contracts for the retailers with different personalities and the

importance of personality information sharing.

Finally, we summarize the obtained results of this dissertation in Chapter 6.



Chapter 2

General Solutions in the One-Shot Decision Theory

2.1 Introduction

Guo (2011) initially proposed the one-shot decision theory (OSDT) for the one-shot decision
problem which is typical for a situation where a decision is made only once under uncertainty.
The one-shot decision theory provides a scenario-based choice instead of the lottery-based
choices in the existing decision theories. As the applications, a duopoly market of a new product
with a short life cycle and the private real estate investment were analyzed (Guo, 2010a; Guo,
2010b; Guo et al., 2010). Recently, the research (Guo, 2014) clarified the fundamental differences
between the one-shot decision theory and other decision theories under uncertainty and pointed
out the instinct problems in other decision theories to show that the one-shot decision theory is
necessary to solve one-shot decision problems and manifested the relationship between the one-
shot decision theory and the probabilistic decision methods. Guo and Li (2014) proposed
multistage one-shot decision making approaches and analyzed the optimal stopping problem.

Different from the probabilistic decision methods in which selecting an alternative equals
selecting a probability distribution, in the one-shot decision theory, a person makes a one-shot
decision based on some particular scenario (state) which is the most appropriate one for him/her
while considering the satisfaction level incurred by this scenario and its likelihood. The one-shot
decision process is separated into two steps. The first step is to seek an appropriate scenario from

all possible states for each alternative. This scenario is called as the focus point of the alternative.



The second step is to evaluate the alternatives by the satisfaction levels incurred by the focus
points for obtaining the optimal alternative. Different from the expected utility based models in
which the different behaviors of the decision makers are assumed to be caused by the different
utility functions of the decision makers, i.e., convex, concave and linear ones, we argue that the
different behaviors of the decision makers result from the different personalities of them. We
divide the decision makers into four types, i.e., active, passive, apprehensive and daring according
to which type of focus point (scenario) they choose. Such idea is intuitively well-accepted. By the
one-shot decision theory, the one-shot decision problem is formulated as a bi-level optimization
problem and there is no existing general optimization method for such problem. Guo and Ma
(2014) gave the general solutions and the existence theorem in the one-shot decision theory;

In this chapter, with an assumption that the normalized likelihood function and the satisfaction
function are quasi-concave, the general solutions of the focus points and the optimal alternatives

are obtained and the existence theorem is established in the one-shot decision theory.

2.2 Four Types of Focus Points

Thesetofastate X is S.Thestate X isarandomvariable X with the probability density
function f(x). The normalized likelihood function of X is given as below.

Definition 2.1. Given the probability density function f (x), the normalized likelihood function
z(X) is

F()

7= X F00)

2.1)

7(X) can be regarded as the normalized probability density function and is used to represent the

relative position of the likelihood of X. If X is a discrete random variable, the normalized

likelihood function can be obtained as the normalized probability mass function. Clearly, the



smaller the normalized likelihood of a demand X is, the more surprising the occurrence of X
is.

The set of an alternative a is A. The consequence resulting from the combination of an
alternative a and a state X is referred to as a payoff, denoted as V(X,a). The set of a payoff

is V . The satisfaction level of a decision maker for a payoff is expressed by a satisfaction

function, as defined below.

Definition 2.2. The satisfaction function of the decision maker is the following continuous strictly
increasing function of the payoff v,

u:v —[01]. (2.2)

Because the payoff is a function of x and a, we write the satisfaction functionas u(x,a).
Since one and only one state will come up for a one-shot decision problem, a decision maker
should decide which state ought to be considered for making a one-shot decision. How to
determine focus points (focused states) depends on his/her attitudes about likelihood and
satisfaction. We take into account four types of states for each alternative with considering the
likelihood degree and the satisfaction level, that is, the state with a higher satisfaction and a higher
likelihood (Type A), a lower satisfaction and a higher likelihood (Type B), a higher satisfaction
and a lower likelihood (Type C), a lower satisfaction and a lower likelihood (Type D). It is
intuitively acceptable that active, passive, daring and apprehensive decision makers are inclined
to take into account Type A, Type B, Type C and Type D states, respectively. Therefore, Type A,
Type B, Type C and Type D states are called as active, passive, daring and apprehensive focus

points, respectively (shown in Table I).



satisfaction
higher lower
- higher active focus point passive focus point
likelihood - - - -
lower daring focus point apprehensive focus point

Table 2.1. Four types of focus points

For characterizing the focus points, we introduce the following operators.
Definition 2.3. Givenavector [b;,b,,---,b,], lower[b,,b,,---,b,] and upper[b,,b,,---,b,]

are defined as follows:

lower[b,,b,, b, ]=[Ab, Ab -, ADT, (2.3)
i=l,--n i=l,-n i=1,-n

upper[b,b,,---,b.1=[vb,vhb, -, vb]. (2.4)
i=l--n i=l-n i=l-n

lower[b,,b,,---,b,] and upper[b,b,,---,b,] are the lower and upper bounds of

[b,,b,,---,b.], respectively. For example, the normalized likelihood degree and the satisfaction

level of a state x are 0.3 and 0.8, respectively, which is represented as [0.3,0.8] .
lower[0.3,0.8] =[0.3,0.3] and upper[0.3,0.8] =[0.8,0.8] representthat X has at least 0.3
normalized likelihood degree and 0.3 satisfaction level and X has at most 0.8 normalized
likelihood degree and 0.8 satisfaction level.

In the following, we consider four types of focus points.

Active focus point: The state (scenario) with the higher likelihood and the higher satisfaction
level is obtained as

X, (a) € arg max lower[z(X),u(x,a)]. (2.5)

XeS

x,(a) is called an active focus point of an alternative a . argmax lower[7z(x),u(x,a)]

XeS



represents an element of S which maximizes lower[z(x),u(x,a)] with xeS . Because

lower[z(x),u(x,a)] represents the lower bound of the vector [z(x),u(x,a)], maximizing

lower [7z(x),u(x,a)] ( max lower[z(x),u(x,a)] ) Will increase the likelihood and the
xeS

satisfaction level simultaneously. Therefore, arg max lower [z(x), u(x, a)] is for seeking the

xeS

state that has the higher likelihood and the higher satisfaction level.

In order to facilitate understanding (2.5), let us give an example. For four states
S ={X;, X,, X5, X,}, We have z(x)=0.1, 7z(x,)=0.3, z(x;)=10, =(x,)=0.6,
u(x,a)=0.6, u(x,,a)=0.2, u(x;,a)=03 and u(x,,a)=0.8. [z(x),u(x,a)],
x € S are four vectors: [0.1,0.6], [0.3,0.2], [1.0,0.3] and [0.6,0.8] represented by A, B,
C and D, respectively (shown in Fig. 2.1.). lower[z(x),u(x,a)] transfers A, B, C and D into

A, B’, C'" and D’, which are [0.1,0.1], [0.2,0.2], [0.3,0.3] and [0.6,0.6] .
respectively. max lower [ (x), u(x, )] is

max([ 0.1,0.1],[0.2,0.2],[0.3,0.3],[0.6,0.6]) = [0.6,0.6] Wwhich corresponds to D’. Thus,

arg max lower[z(x),u(x,a)] is Xy - It is obvious that X, have a hlgher likelihood (06) and

xeS

a higher satisfaction level (0.8).

u(x,a)=m(x)

D

o.sj( ------------- -

le

0.6--% 0
Lo ! C
0.3%--+B§n ----- s )
2 ' 1
0.214'? B |

00103 06 1.0 7(x)

Fig.2.1 The explanation of the formula (2.5)
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Passive focus point: The state (scenario) with the higher likelihood and the lower satisfaction
level is obtained as

X, (a) € arg min upper[l— 7z (x),u(x, a)]- (2.6)

xeS

X, (@) is called a passive focus point of an alternative a.
Apprehensive focus point: The state (scenario) with the lower likelihood and the lower
satisfaction level is obtained as

X, (a) € arg min upper[z(x),u(x, a)] (2.7)

x,(a) is called an apprehensive focus point of an alternative a.

Daring focus point: The state (scenario) with the lower likelihood and the higher satisfaction
level is obtained as

X, (&) € arg min upper[z(x),1—u(x,a)]- (2.8)

xeS

X, (a) is called a daring focus point of an alternative a.

Comments:

1. (2.5) to (2.8) are from four bi-objective optimization problems ( max z(x), max u(x,a);
max 7z (x), minu(x,a) ; min z(x),minu(x,a) ; min z(x), maxu(x,a) ). They are for
seeking the state of natures that have the higher likelihood and higher satisfaction, the higher
likelihood and the lower satisfaction, the lower likelihood and the lower satisfaction and the lower
likelihood and the higher satisfaction, respectively. From (2.5) to (2.8), we know that no other
[7(x),u(x,a)] satisfies z(x)>z(x,(a)) and u(x,a)>u(x,(a),a);or z(x)> z(x,(a))

and u(x,a) <u(xy(a),a) ; or z(x)<z(xy(a)) and u(x,a)<u(x;(a)a) ; or

11



7(X) < z(x,(a)) and u(x,a)>u(x,(a),a). In other words, there is no state which has a
higher likelihood and a higher satisfaction degree than the active focus point; a higher likelihood
and a lower satisfaction level than the passive focus point; a lower likelihood and a lower
satisfaction level than the apprehensive focus point; a lower likelihood and a higher satisfaction
level than the daring focus point.

2. The normalized likelihood degrees and the satisfaction levels are treated equally. We take the

active focus points as an example. Equation (2.5) is equivalent to the following equation.

X, (&) = argmax 7(X) +u(x,a)—|z(x) —u(x,a)| .

2.9
xeS 2 ( )

From (2.9), we know that to seek the active focus point is to increase the sum of the normalized
likelihood degree and the satisfaction level and to decrease the differences between them.

3. For one alternative, more than one state might exist as one type of focus point. We denote the

sets of four types of focus points of an alternative a as X,(a), X,(a), X;(a) and

X, (@), respectively.

In a one-shot decision problem, a decision maker contemplates that the focus points are the
most appropriate scenarios for him/her. After determining the focus points of each alternative, the
decision maker will make a decision only based on the focus points and chooses the optimal
alternative which can bring about the highest satisfaction level once its focus point comes true.

The four kinds of optimal alternatives are obtained as follows:

a eargmax max u(x(a),a), (2.10)

acA X (a)eX,(a)

a, eargmax min u(x,(a),a), (2.12)
acA X (a)eX,(a)

cargmax min u(x,(a),a 212
ay gmex min (x5(a),a), (212)

12



a, eargmax max )u(x4(a),a). (2.13)

acA X4 (@)eX,(a

In the case where multiple active focus points of an alternative a exist, max u(x,(a),a)
X (a)eX(a)

is used to represent the highest satisfaction level amongst all active focus points of a. It reflects

an optimistic attitude of a decision maker whereas min )u(xz(a),a) describes a
a

X;(a)eX;(

conservative attitude of a decision maker. a;, a,, a, and a, are called optimal active,

passive, apprehensive and daring alternatives, respectively. Setting X, = X,(8,), X; =X,(a;),

£

X; =%(8) and X, =%,(8,), X

*

, Xy, X; and X, are called optimal active, passive,

apprehensive and daring focus points, respectively.

2.3 General Solutions of Focus Points and Optimal Alternatives

If S and A are nonempty finite sets, there are always solutions of (2.5)-(2.13). For the
continuous cases, let us consider the solutions of (2.5)-(2.13) with the following conditions.

Basic Assumptions: In the following parts, we suppose
(1) The sets of states and alternatives are S =[l,h] and A=[a,,a,], respectively.

(2) 7z(x) isastrictly quasi-concave continuous function (see the definition in the book (Madden,
1986)), dce(l,h),z(c)=1, z(1)=0 and z(h)=0.
(3) v(x,a) is continuous and strictly quasi-concave in X.
Clearly, z(x) is strictly increasing within [l,C] and strictly decreasing within [c,h].
u(x,a) iscontinuous and strictly quasi-concave in X. Va u(x,a) attains its maximum ata

unique state X(a) =argmaxu(x,a) and is strictly increasing within [l,X(a)] for X(a) =1
xe[l,h]

13



and strictly decreasing within [X(a),h] for X(a)=h.
We have the following theorems.
Theorem 2.1. The active focus point of an alternative a, x;(a), is as follows:

(1) if u(x(a),a) <z(x(@)),then x,(a)=2%(a);
(2) if u(x(a),a)>xz(x(a)) and x(a)<c,then x,(a)=x,(a);
(3) if u(x(a),a)>z(x(a)) and X(a)=c,then x,(a)=x,(a).

X, (@) and X, (a) are the solutions of u(x,a)=z(x) within [X(a),c] and [c,X(a)],

respectively.

Proof.
(1) We have
gn[% lower[z(x),u(x,a)] < gne[%[u(x, a),u(x,a)]=[u(x(a),a),u(x(a),a)]. (2.14)

lower[z(x),u(x,a)] attains its maximum [u(X(a),a),u(X(a),a)] if and only if x=X(a).
It means x,(a) =X(a).

(2) First, let us consider the cases satisfying X(a) # c. We have that F(x) =u(x,a) — z(x)
is strictly decreasing continuous within [X(a),c], F(X(a)) =u(X(a),a)—~z(X(a)) =0 and
F(c) =u(c,a) —z(c) =u(c,a) —1<0. Therefore F(x) =u(x,a)—z(x)=0 has a unique

solution within [X(a),c], thatis x,(a). Vxe[l, X, (a)), #(x) isstrictly increasing so that

lower [2(x), u(x, &)] < [(X), 7(¥)] < [7(x, (), 7 (%, @)]. (2.15)
Vx € (X, (a),h], u(x,a) isa strictly decreasing function of x so that
lower [7z(X),u(x, a)] <[u(x,a),u(x,a)] <[u(x, (a),a),u(x, (a),a)]. (2.16)

Recalling 7(X, (a)) =u(x,(a),a), we have

14



X, (a) = arg max lower[(z(x),u(x, a)] = x,,(a) . (2.17)
xe[l,h]

We can directly check that (2.16) also holds for X(a) =c.
(3) Similarly, we have X,(a)=X,/(a). x,(a) is the solution of u(x,a)=z(x) within

[c, x(a)]. O

Theorem 2.2. The passive focus point of an alternative a, x,(a), is as follows:

(1) if u(X(a),a) 21-7z(X(a)),then x,(a)= argmin u(x,a);
xe{xp1 (@), Xpy ()}

(2) if u(x(a),a) <1-=(X(@)) and X(a)>c,then x,(a)=x,(a);
(3 if u(x(a),a) <1-=(%(a)) and X(a)<c,then x,(a)=x,,(a).

X, (@) and Xx,(a) are the solutions of u(x,a)=1-7(x) within [l,min(X(a),c)] and

[max( %(a), c), h], respectively.

Proof.

(1) First, let us consider the cases satisfying R(@)=l , R(@)=h and
u(R(a),a) #1—z(X(a)) . We have that F(x)=u(x,a)—(1—7z(x)) is strictly increasing
continuous  within  [I,min(%(a),c)] .  F()=u(,a)—@1-z(1))=u(l,a)-1<0
F(X(@)=u(x(@),a)-(1-7(X(a)))>0 and F(c)=u(c,a)—-(1-7x(c))=u(c,a)>0
Therefore, F(x)=u(x,a)—(1—7(x))=0 has a unique solution within [I, min(%(a),c)].

Similarly, it is easy to know that F(x) =u(x,a)—(1—z(x)) =0 have a unique solution within

[max(X(a),c),h] . These two solutions are x,(a) and Xx,(a) , respectively.
vxell,x, (@), 1-7z(x) isstrictly decreasing so that

upper[L— z(x),u(x, )] = [1- 7(x) 1 - 7(x)] > [L— 7(X,, (@)).1- 7(x,, ()] (2.18)

15



VX e (X, (a), min(X(a),c)], u(x,a) isastrictly increasing function of X so that
upper[1—z(x),u(x,a)] = [u(x,a),u(x, a)] > [u(x, (a), a), u(x, (a), a)]. (2.19)

Recalling 1-7(x,(a)) =u(x,(a),a), we have

argmin upper[l—z(x),u(x,a)]=x,(a). (2.20)

xe[l,min(x(a),c)]
Similarly, we have

argmin  upper[l—z(x),u(x,a)] = x,,(a) . (2.21)

xe[max(x(a),c),h]

If X(a)>c, the interval [min(X(a),c), max(X(a),c)] becomes [c,X(a)]. Since u(x,a) is
strictly increasing within [x,,(a), X(a)], we have

min _upper[l—z(x),u(x,a)]> min [u(x,a),u(x,a)]

xe[c,%(a)] xe[c,x(a)]
=[u(c,a),u(c,a)] > [u(x, (a),a),u(x,(a),a)]. (2.22)
Similarly, if X(a) <c, the interval [min(X(a),c), max(X(a),c)] becomes [X(a),c]. Since

u(x,a) is strictly decreasing within [X(a), X,,(@)], we have

min _upper[1—z(x),u(x, a)] > [u(x,,(a),a),u(x,,(a),a)]. (2.23)

xe[X(a),c]
From (2.20) to (2.23), we know

X, (a) =arg minupper[1—z(x),u(x,a)]= argmin u(x,a). (2.24)
xe[l,h] xef{x (), Xpy ()}

It is easy to check that (2.24) also holds for the case u(X(a),a) =1—=z(X(a)) or X(a)=1 or
X(@)=h.
Likewise, we can prove Theorem 2.2(2) and 2.2(3). m

Corollary 2.3. Suppose u(X(a),a) =1—z(X(a)) . The passive focus point x,(a) isas follows:

(1) if X(a)>c and 3x, €(c,X(a)] u(xX,,a)=1-m(X,) holds, then
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x,(@)= argmin u(x,a)=x,(a);
Xe{xpl(a)rxpu(a)}

(2) if x(a)<c and 3x, €[X(a),c) u(X,,a)=1—-7m(X,) holds, then

X,(@)= argmin u(x,a)=x,,(a).
xefxp (8), Xpu ()}

Proof.

(1) Since  1-7z(x) is strictly increasing within [c,h] and c<x,<x, (a)<h ,
1-7(x,,(a)) 21— 7(x,) holds. Since u(x,a) is strictly increasing within X €[l,%(a)] and

I <x,(a) <c<Xx,<X(@), u(x,a)>u(x,(a),a) holds. Therefore, we have

u(x,,(@),a) =1-7z(x,,(a)) =1-z(%,) =u(x,,a) > u(x,(a)a) . (2.25)
From Theorem 2.2(1), we know x,(a) = x,,(a) -

(2) Likewise, we can prove Corollary 2.3(2). O

Lemma 2.4.

(1) Va,a, € A u(x,(a)a)<u(x,(a,),a,) holdsifandonlyif x,(a)>x,(a,) holds;
and u(x,(a),a)=u(x,(a,),a,) holdsifandonlyif x,(a)=x,(a,) holds.

(2) Va,a,eA u(x,@)a)<u(x,(a,)a,) holds if and only if Xx,(a)<x,,(a,)

holds; and u(x,,(a),a)=u(x,,(a,),a,) holdsifanonlyif x,(a)=x,,(a,) holds.

Corollary 2.5.

(1) Assume that U(R(a,),a)>1-7z(X(@)) or u(x(a) a)<1l-z(X@)) with X(a)>c,

i=12 . If u(x,a)<u(x,a,) holds for any xel[l,min(X(a,),X(@,))] ., then
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u(x, (a),a) <u(x,(a,)a,) holds; and if u(x,a)<u(xa,) holds for any
x [l,min(X(a,), X(a,))]. then u(x,,(a,),a,) <u(x,(a,),a,) holds.

(2) Assume that u(X(g;),a) =1-7z(X(a)) or u(R(a) a)<1-z(X(a)) with X(a)<c,
i=12 . If u(x,a)<u(x,a,) holds for any Xxe[max(X(a),X(a,)),h] , then

u(x,,(a,),a) <u(x,(a,),a,) holds; and if u(x,a)<u(x,a,) holds for any

x « [max(%(a,), X(a,)). ], then u(x,, (3),a,) <U(X,,(a,),3,) holds.

Lemma 2.6. The apprehensive focus point of an alternative a, Xx,(a), is as follows:

X;(a) =argminu(x,a). (2.26)
x{l,h}

Proof.  u(x,a) is a strictly quasi-concave function in X so that

min upper[z(x),u(x,a)] > Xrl?lirhl][u(x, a),u(x,a)]=[u(l,a),u(l,a)] Afu(h,a),u(h,a)], (2.27)

xe[l,h]

where the equality holds if and only if x=argminu(x,a) because 7z(l)=z(h)=0.
x<{l,h}

Therefore, (2.26) holds. m

Lemma 2.7. The daring focus point of an  alternative a, X,(a), is as follows:
(1) if 1—u(x(a),a) > z(X(a)), then x,(a)=2X(a);

(2)if 1—u(x(a),a) < z(R(a)),then x,(a)= argmax u(x,a).
xe{xy (a),xq, (@)}

Xq (@) and x4 (a) are the solutions of 1—-u(X,a)=(x) within [I,min(X(a),c)] and

[max(X(a),c), ], respectively.
Proof. (1) We have
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ngllrhl] upper[z(x),1—-u(x,a)] > m[lirh]][l— u(x,a)l—u(x,a)]
=[1-u(X(a),a),l—u(x(a),a)], (2.28)
where the equation holds if and only if x = X(a) . Thatis, x,(a)=X(a).

(2) Referring to the proof of Theorem 2.2(1), we have

X, (a) =arg max upper[z(x),1-u(x,a)]= argnin u(x,a). (2.29)
xeS xe{xq) (a) Xq (a)}

Theorem 2.8. If there is an closed interval G c[a,,a,] and YaeG X,(a) exists, then
X, (@), 7(x, (@), u(x,(a),a) are uniformly continuous within G. X, (a), 7(x.(a)),
u(Xou(a)’a) ) Xpl(a) ! 7Z'(Xp|(a)) ! U(Xpl(a),a) ! Xpu(a) ! ”(Xpu(a)) ! U(Xpu(a)va) !

Xa(@) , 7(X4(@) , u(xg(a)a), X4(@), 7(X,(@) and u(xy(a),a) are also

uniformly continuous within their corresponding closed intervals, respectively.

Proof. Va;,a, € G, for simplicity we assume x,(a,) <X, (a,). Since u(x,(a,),a) isa
continuous function of a within [a,,a,], u(x,(a,),a) isauniformly continuous function.

Thatis, Ve >0, 36 >0 suchthat |a, —a, |<d implies

U (@2), ) ~U(Xy (8,).8,) < & (2.30)
R(a,) < %, (8,) < %, (a,) leadsto u(x,(a,),a,) > u(x,(a,),a,) so that we have

u(X, (ay),a,) —u(x, (a,),a,) = u(x, (a,), &) —u(x, (a,),a,) . (2.31)
Recalling X, (a,) < X,,(a,) < ¢, we have

u(x,(a,),a;) —u(x,(a,). a,) = (X (a,)) — (%, (8,)) < 0. (2.32)

Therefore,
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| 72(Xa1 (&) = 72(%01(8,)) H u(X (&), @) —u(X, (82), &,) |
u(Xy(a,),a) —u(x,(a,),a,) < €. (2.33)
We know that 7(x,(a)), u(x,(a),a) are uniformly continuous functions within G so

that X,,(a) is uniformly continuous within G . Likewise, we have the same conclusions for
Xou(a) ' E(Xou(a)) ' u(xou(a)’a) ! Xpl(a) ! H(Xpl(a)) ! U(Xp|(a),a) ! Xpu(a) !

ﬂ-(xpu(a))’ U(Xpu(a‘)1a)' Xdl(a)v ﬁ(xdl(a))' U(Xdl(a)!a)’ Xdu(a)l ﬂ(xdu(a)) and

u(xy,(a),a). O

Lemma 2.9.

(1) u(x(a).a) =maxmin(z(x),u(x,a)),
(2) u(x,(a),a)=min max(1-7(x),u(x.a)),
(3) u(x;(a).a)=min max(z(x),u(xa)).

(4) u(x,(a),a)= Q[ﬁ(] min(1—z(x),u(x,a)).

Theorem 2.10 (Existence Theorem). If the basic assumptions (1), (2) and (3) hold, then a;,
a,, a;, a,, x(a), X(a)), x(a;) and x,(a,) always exist and they satisfy the
following relations:

(1) u(x (a;),a;) = max max min(z(x),u(x,a)),

ae[a, ,a,] x€[l,h]

(2) u(x,(a;),a,) = max min max(1—z(x),u(x,a)),

aela a1 xe[l,h]

(3) u(x;(a;3),a;) = max min max(z(x),u(x,a)),

aela ,a,] xe[l,h]
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4 u(x,(a;),a;) = max max min(1— z(x),u(x,a)).

aela,a,] x€[l,h]
Proof. Set g(x,a) = min(zz(x),u(x,a)). Since u(x,a) is continuous on [l,h]x[a,,a,]and
z(X) is continuous on [I,h], g(x,a) is continuous on [l,h]x[a,,a,]. Using Berge

maximum theorem and Lemma 2.9(1), we know u(x,(a),a)= nm(] min(z(x), u(x,a))

continuous so that a, and x,(a;) exist and satisfy Theorem 10(1). Likewise, we can prove

Theorem 2.10(2), 2.10(3) and 2.10(4). m

Lemma 2.11.

(1) u(x(a),a;) = max min(zz(x), max u(x,a)),
(2) u(x,(a;).a;) = max min(1-7z(x), max u(x,a)).

Proof. From Theorem 2.10(1), we have

u(x,(a;),a;) = max max min(z(x), u(x, a))

a<[a ,a,] x€[l,h

=max max min(z(x),u(x,a)) = m[ax] min(7z(x), rpax]u(x a)). (2.34)

xe[l,h] aelay ,a,]
From Theorem 2.10(4), we have

u(x,(a;),a;) = max max min(1— z(x),u(x,a))

ae[ay,a,] x€[l,h]

= 91[% min(1— 7z(x), max u(x a)). (2.35)

O
Let us consider v(x,a) is quasi-convex continuous in X and quasi-concave continuous in
a sothat u(x,a) isquasi-convex continuousin X and quasi-concave continuousin a.We

have the following theorem.
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Theorem 2.12. If u(x,a) is quasi-convex continuous in X and quasi-concave continuous in

a, then we have

max min max(1— z(x),u(x,a)) = Xrl?llrh]] max(l—;z(x),agazl(]u(x,a)). (2.36)

ac[a, a1 xe[l,h]
Proof. Since z(x) is strictly quasi-concave, 1—z(x) is strictly quasi-convex. For any X;
and X,, we have

1—7(A%, + Q- A)%,) <max(1—z(x),1—-7(x,)), V A€(0]). (2.37)

u(x,a) isquasi-convexin X sothatforany X,, X, we have

u(Ax, + (@ —A)x,,a) <max(u(x,a),u(x,,a)), v 1<(01). (2.38)

Setting f (x,a) = max(1—z(x),u(x,a)) and considering (2.37) and (2.38), we have
f (A% + (L= 2)X,,a) = max(1— (A%, + (L— A)X,), u(Ax, + (1— A)X,,a))
< max(max( 1—7z(x,),1-7(X;)), max(u(x, a), u(x,, a)))
= max(max( 1—7z(x,), u(x;, a)), max(1—7(X,), u(x,, a)))
= max( f (x,,a), f(x,,a)), (2.39)

which means f(x,a) is quasi-convex in X. u(x,a) is a quasi-concave function of a, that

is,
u(x, 4a, +(1—2)a,) >min(u(x,a,),u(x,a,)), v 1€(01). (2.40)
Considering (2.40), we have
f(x, 42, + (1-A)a,) = max(1—7(x),u(x, 4a, + (1— 1)a,))
> max(1-7z(x), min(u(x,a,),u(x,a,)))
= min(max(1—7z(x),u(x,a,)), max(1— 7(x),u(x,a,)))
(2.41)

=min( f(x,a), f(x,a,)),

which means f(x,a) is quasi-concave in a. Since u(x,a) and z(x) are continuous,

f (x,a) isa continuous function. According to Sion’s minimax theorem (Sion, 1958), we have
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max min max(1— z(x),u(x,a)) = min max max(1—z(x),u(x,a))

aela ,a,] xe[l,h] xe[l,h] aelay ,a,]1

= Xrlgm] max(1— 7 (x), arrllax u(x,a)) - (2.42)

Theorem 2.13.

(1) If max u(x,a) is strictly increasing, then the unique optimal active focus point X;

aelay ay]

satisfies 77(X) = n[1ax u(x,a), xe(c,h) and a; =argmaxu(x;,a).

ac[a 3, ]

(2) If max u(x,a) is strictly increasing and max u(h,a) =1, then the unique optimal

ae[a a,] ae[a; ,ay]

daring focus pointis X, =h and a; =argmax u(x;,a).

aela; a,]

(3) If max u(x,a) is strictly decreasing, then the unique optimal active focus point X;

aelay a]

satisfies 7(X) = n[1ax u(x,a), Xxe(l,c) and a; =argmaxu(x;,a).

ac[a 3, ]

(4) If maxu(x,a) is strictly decreasing and max u(l,a) =1, then the unique optimal daring

focus pointis x; =1 and a, =argmax u(x;,a).

aela,ay ]
Proof.

(1) It follows from Berge maximum theorem that max u(x,a) is continuous because u(x,a)

aelay a]

is continuous. We have that F(x) = max u(x,a)—z(X) is strictly increasing continuous

ac[a a]

within [c,h] , F(c)= rpax]u(c,a)—yz(c)<0 and F(h)= rpax]u(h,a)—yz(h)>0.
aela a, a<lay,ay

Therefore, F(X) = max u(x,a)—z(x) =0 has a unique solution within (c,h), denoted as

aela ay]

X,. Since  max u(x,a) is strictly increasing within [I,h], vx e[l x,), we have

ae[ay ,ay]

min(z(x), max]u(x a))<arpax u(x,a) < max u(xo,a) (2.43)

aelay ap]
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Meanwhile, VX € (X,, h], we know
min(z(x), n[nax]u(x, a)) < z(X) < z(x,) - (2.44)

Since 7(X,) = max u(X,,a), X=X, satisfies max min(z(x), max u(x,a)). Considering
xe[l,h] aela ay]

aela a,]

Lemma 2.11(1), we know X, satisfies 7(x)= max u(x,a) , Xe(ch) and

aelay ,ay]

a, =arg max u(x;,a).

aelay a1

(2) Since max u(x,a) is strictly increasing within [l,h] , wx=h we have

aela;,a,]

max u(x,a)< max u(h,a)=1 . Meanwhile, 1—z(h)=1 holds. Considering Lemma

aefay ;] aelay ]

2.11(2), we know X, =h and a, =arg maxu(h,a).

acfay a1

Likewise, we can prove Theorem 2.13(3) and 2.13(4). m

2.4 Concluding Remarks

In this chapter, with an assumption that the normalized likelihood function and the satisfaction
function are quasi-concave, the general solutions of active, passive, apprehensive and daring focus
points and optimal alternatives are proposed and the existence theorem is established in the one-

shot decision theory.
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Chapter 3

Newsvendor Models for Innovative Products

3.1 Introduction

The newsvendor problem is a well-known inventory management problem. It has the following
characteristics. Prior to the season, the seller must decide the quantity of the goods to
purchase/produce. The procurement lead-time tends to be quite long relative to the selling season.
As a result, there’s not enough opportunity to replenish inventory once the season has begun.
Excess stock can only be salvaged at a loss once the season is over. The classical newsvendor
problem is characterized by the fixed selling and wholesale prices and the uncertain demand of
goods with a short life cycle, such as perishable items and fashion items. Its optimal order quantity
is solved by the critical fractile of the demand distribution. A considerable amount of research
(Grubbstrom, 2010; Wang, 2010; Caliskan-Demirag et al., 2011; Chen, 2011; Salinger and
Ampudia, 2011; Xu et. al., 2011; Brito and de Almeida, 2012; Seifert et al., 2012; Summerfield
and Dror, 2012; Murray etal. , 2012; Wang et al., 2012; Wu et al., 2012; Kwon and Cheong, 2014)
and bibliographies have appeared in the newsvendor literature, including those of Petruzzi and
Dada (1999), Khouja (1999) and Qin et al. (2011). Many extensions of the classic newsvendor
problem, such as different demand functions, different supplier pricing policies to coordinate the
supply chain, different retailer risk profits, supplier capacity constraints and multi-product cases
have been made. But almost all the extensions have been made in the probabilistic framework

where the uncertainty of the demand and the supply is characterized by probability distributions,
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and the objective function is used to maximize the expected utility or the probability measure of
achieving a target profit.

Guo and Ma (2012, 2014) examine the newsvendor problem for the innovative product as
defined by Fisher. According to Fisher (1997), products basically belong to either primarily
functional category or innovative one. Functional products satisfy basic needs and have stable,
predictable demand and long life cycles whereas innovative products have higher profit margins,
intrinsically unpredictable demands and short life cycles. In addition, for such an innovative
product, the procurement lead-time is usually longer than the selling season so that there is usually
only one opportunity to order goods before the season. For example, Sport Obermeyer, a major
supplier of fashion skiwear, ships its products in September, but has to commit itself to products
well before February (Fisher, 1997). However, the retailer season is only a few months long.
Hence, the newsvendor problems for innovative products can be regarded as one-shot decision
problems, which are typical for situations where a decision is made only once under uncertainty.
Since the life cycle of the innovative product is shorter than the procurement lead-time,
determining the optimal order quantity is a typical one-shot decision problem for the retailer.

In this chapter, the one-shot decision theory (OSDT) based newsvendor models are proposed.
In the proposed models, for each order quantity, the retailer chooses one demand amongst all
possible demands while considering the satisfaction level caused by the occurrence of the demand
and the likelihood of the demand occurring. The selected demand is called the focus point of the
order quantity. The optimal order quantity corresponds to the maximum satisfaction level of its
focus point. We take into account four types of decision makers, i.e. active, passive, apprehensive
and daring retailers who focus on the demand with a higher satisfaction and a higher likelihood,
the demand with a lower satisfaction and a higher likelihood, the demand with a lower satisfaction

and a lower likelihood, the demand with a higher satisfaction and a lower likelihood, respectively.
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The optimal order quantities for these four types of retailers are obtained and the theoretical
analysis is made.

The contributions of this chapter are as follows: The probabilistic newsvendor models seek the
optimal order quantities to maximize the expected values or the probability measures. They take
into account all demand values when determining the optimal order quantities. However, there is
one and only one demand that will appear when the selling season comes. We build the
newsvendor models with the one-shot decision theory which fit the one-shot feature of the
retailer’s order decision. The managerial insights into the behaviors of different types of retailers
are gained by the theoretical analysis. The proposed methods provide a fundamental alternative
to analyze the newsvendor problems for innovative products.

The remainder of this chapter is organized as follows: In Section 3.2, newsvendor models for
innovative products are developed based on the one-shot decision theory. In Section 3.3, the
results of analysis of the proposed newsvendor models are given. In Section 3.4, a numerical
example is used to demonstrate the proposed approach. Finally, the research conclusions are given

in Section 3.5.

3.2. Newsvendor Models with the One-Shot Decision Theory

Consider a retailer who sells an innovative product. The retailer orders g units before the season
at the unit wholesale price W. When the demand x is observed, the retailer sells units (limited by
the supply g and the demand X) at the exogenous unit revenue R with R >W . Any excess
product can be salvaged at the unit salvage price S, >0 with W >S_. If there is a shortage,

the unit opportunity costis S, > 0. The profit function of the retailer is as follows:

Rx+(g—-x)S,-Wqg;, Xx<(q

. (3.1)
(R=-W)gq-S,(x—-0q); x=q

r(x,q) ={
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The demand of the innovative product is a random variable X with the probability density

function f(x).According to Definition 2.1, the normalized likelihood function of demand is

fo (%)

e f.00 (3.2)

7o (X) =

In the following of this chapter, we suppose the following assumption.

Assumption 3.1: The probability density function f;(X) is a strictly quasi-concave continuous

function defined on the interval [d,,d,], the mode is d e(d,,d,), fy(d,)=0 and

fD(du):O'

Following Assumption 3.1, we know that 7,(X) satisfies 7,(d.)=1, z,(d,)=0 and
75(d,)=0. 7my(X) is strictly quasi-concave continuous; d, and d, are the lower and

upper bounds of the demand, respectively; d_ is the most possible amount of the demand. The

c

smaller the normalized likelihood of a demand x is, the more surprising the occurrence of x is.

Because the demand is inside the interval [d,,d,], a reasonable order quantity should also lie in

this region. The highest profit of retailer is

r,=(R-W)d,, (3.3)
that is, the retailer orders the most q =d, and the demand is the largest d, . The lowest profit
is r,=min{d,R+(d, -d,)S,-dW,d,R-(d, —d,)S, —dW}. It is determined by the

minimum of two cases: in the first case, the retailer orders the most but the demand is the lowest:
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d,R+(d, —d,)S, —d,W ; in the second case, the retailer orders the lowest but the demand is
the highest: d,R—(d, —d,)S, —dW . We assume W >S_ +S,, which leads to
L=dR+(d,-d,)S,-dW. (3.4)
The satisfaction function of the retailer is the following strictly increasing function of the profit
r,

u:lr,r,]—[01], (3.5)

where u(r;)=0 and u(r,)=1.

(3.5) is a general form of the satisfaction function of the retailer where the satisfaction degree of
the lowest profit is 0 and the satisfaction degree of the highest profit is 1. The satisfaction function

is written as u(r(x, q)) in the following parts.

Proposition 3.1.

(1) u(r(x,q)) is strictly increasing continuous in X when = X and strictly decreasing
continuous in X when Qq<X.

(2) u(r(x,q)) is strictly increasing continuous in g when X=( and strictly decreasing

continuousin g when X<(Q.

(3) maxu(r(x,q))=u(r(x,x)) isstrictly increasing continuous.
q

Since the life cycle of the innovative product is generally shorter than the procurement lead-
time, the retailer has only one chance to determine the order quantity and one and only demand
will occur. It is reasonable that the retailer needs to contemplate which demand ought to be taken
into account before ordering products. The retailer chooses one demand (focus point) amongst all

possible ones while considering the normalized likelihood to which the demand will appear in the
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future and the satisfaction level that the demand can bring about for an order quantity. We consider

four types of focus points introduced in Chapter 2 as follows:

Active focus point of an order quantity: The active focus point of an order quantity Q, denoted

as X, (q),is
X, (q) € arg max lower [z (X),u(r(x,q))]. (3.6)
xe[d;,d, ]

X;(q) is a demand that has a higher likelihood and a higher satisfaction level for an order

quantity (.

Passive focus point of an order quantity: The passive focus point of an order quantity q,
denoted as X,(Q), is

X, (q) € arg min upper[L— 7 (x),u(r(x,q))]. (3.7)

xe[d;,d,]

X,(q) isademand that has a higher likelihood and a lower satisfaction level for an order quantity

qg.

Apprehensive focus point of an order quantity: The apprehensive focus point of an order
quantity 0, denoted as X,(q), is

X5 (q) € arg min upper[z(x),u(r(x,q))]. (3.8)

XE[dI vdu]

X5(q) is a demand with a lower likelihood and a lower satisfaction level for an order quantity

qg.

Daring focus point of an order quantity: The daring focus point of an order quantity (,

denoted as X;(Q), is
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X, (q) € arg min upper[z(x),1—u(r(x,q))]. (3.9)

xe[d, d, ]

X;(q) is a demand with a lower likelihood and a higher satisfaction level for an order quantity

For one order quantity, more than one demand might exist as one type of focus point. We denote

the sets of four types of focus points of an order quantity g as X, (q), X,(q) . X;(q)and

X,(q), respectively.

In the newsvendor problem, the retailer contemplates that the focus point is the most
appropriate scenarios (demand) for each order quantity and chooses one order quantity which can
bring about the best consequence (highest satisfaction level) with the assumption that only focus
points come true. The optimal order quantities are obtained as follows:

g, eargmax max u(r(x;(a),q)), (3.10)
qeld, d,1 % (@)eX1()

g, eargmax _min u(IF(X (@),9)), (3.11)
aeld;.d,] %2 (@)X (

g; eargmax min u(r(x;(a),q)), (3.12)
qeld, d,] *3(MeXs(a)

A, eargmax_max _u(r(x; (q),q)). (3.13)
qeld, ,d,] Xa(@eX4(a)

0 , 9,. g; and q, are called optimal active, passive, apprehensive and daring order

quantities, respectively. x;(0;), X,(d,), x;(g;) and x,(g,) are optimal active, passive,

apprehensive and daring demands, respectively. The retailer who takes into account the active,
passive, apprehensive or daring focus point is called active, passive, apprehensive or daring

retailer, respectively.
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Comments: The differences between the newsvendor model with the subjective expected utility
theory (Newsvendor-SEU) and the newsvendor model with the one-shot decision theory
(Newsvendor-OSDT) is shown below.

1. In Newsvendor-SEU, there are two steps as follows:

Step 1: Evaluating each order quantity by the weighted average of the utilities of all payoffs
brought about by all possible demands;

Step2: Selecting the order quantity with the maximum average.

In Newsvendor-OSDT, there are two steps as follows:

Step 1: Seeking an appropriate demand (focus point) for each order quantity;

Step 2: Choosing the order quantity with the maximum satisfaction level of the focus point
(selected demand).

2. In Newsvendor-SEU, a utility function is associated with risky situations. If a person is a risk
averter, the utility function is concave; if a person is a risk taker, the utility function is convex; if
a person is risk neutral, the utility function is linear. In Newsvendor-OSDT, the satisfaction
function has no relationship with risk situations. It represents the relative position of the payoff.
Which type of focus point is used for making a decision reflects the attitude of a decision maker
about uncertainty.

3. Newsvendor-SEU and Newsvendor-OSDT explain why some order quantity is optimal in
different ways. In Newsvendor-SEU an order quantity is evaluated based on the average; that is,
if the optimal order guantity is chosen every time then the total utility almost surely attains the
maximum in the sense of the strong law of large humbers. However, Newsvendor-OSDT gives a
clear answer to why some order quantity is optimal when only one decision chance is left to a

retailer.
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3.3. Analysis Results of OSDT Based Newsvendor Models

Let us first think about how to obtain the optimal active, passive, apprehensive and daring

order quantities.

Lemma 3.2. The optimal active order quantity ¢, is the solution of the following equation:
u(r(x,x)) =z,(x), xe(d.d,). (3.14)

The optimal active demand, i.e. X (Q,) is @ .

Proof. The proof follows directly from Theorem 2.13 (1) and Proposition 3.1 (3). m
Interestingly, Lemma 3.2 indicates that the focus point (selected demand) of the active retailer’s
optimal order quantity is the optimal order quantity itself. It means that the active retailer has

confidence that he/she can sell all the products that he/she has optimally ordered.

Lemma 3.3. The optimal passive order quantity g, is the solution of the following equation:

u(r(d,(a),a)) =u(r(d,,(a).g)). (3.15)
equivalently,
7o (d () = 75 (d,,(9)) (3.16)

where d;,(q) and d,(q) are the solutions of u(r(x,q))=1-7z,(x) within
[d,,min(q,d.)] and [max(q,d,),d,], respectively. The optimal passive demand, i.e. X,(q,)

are dpl(q;) and dpu(q;)
Proof. It follows from Proposition 3.1(3) that U(r(X, X)) is strictly increasing continuous within
[d,,d,]. 1—7z,(X) is strictly decreasing continuous within [d,,d.] and strictly increasing

continuous within [d.,d,]. Therefore F(X)=u(r(x,x))—@—7z5(X)) is continuous within
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[d,,d,] and strictly increasing within [d,,d.] . Since
F(d,)=u(r(d,,d,))-1-~,(d,))<0 , F(d,)=u(r(d.d.))-@Q-~7,(d,.)>0 and
F(.,)=u(r(d,,d,))-Q-75(d,)=0 , there is a unique solution  of
F(X)=u(r(x,x))—(1—z,(x))=0 within (d,,d,), denoted as d;,;and there is at least one
solution within (d,d,], the minimum solution is denoted as d;u. In what follows, we consider
g.ie geld,d,]1, qge[d,,d,] and qe[d,,d].

Case 1: q e[d,,d;,] . Thatis, u(r(g,q))<1-7z,(q) and g<d,. It follows from Theorem

2.2(3) that the passive focus pointof qe[d,,d;,] is X;(d) =d (). From Proposition 3.1(2)

and Corollary 2.5(2), we have

Jmax u(r(x,(a),q)) = max u(r(d,,(@). ) =u(r(d,,(d;).d,). (317)

Case 2: (eld,,d,]. For the case u(r(d,q)) <1-7,(q), Theorem 2.2(2) shows that the
passive focus point is X,(Q)=d,(d) . In the case u(r(q,q))>1-7y(q) , since
u(r(d,,,@)) <u(r(d;,,d;,)) =1-7,(d,,) and F(x)=u(r(x,q))-1-7z5(x)) is a
continuous function, 3x, e[d,,q] F(X,)=u(r(x,,q)) —(1—75(X,)) =0 holds. From
Corollary 2.3(1), we know that the passive focus point is X,(q)=d,(d) . Therefore,

vqeld;, d,], the passive focus point is X,(q)=d;(d) . From Proposition 3.1(2) and

pu?’ ~u
Corollary 2.5(1), we have

max u(r(x,(a), q)) =u(r(d, (@), @) =u(r(d, (d7),d5)). (3.18)

geldpy,dy
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Case3: qe[d,,d;]. Thatis, u(r(g,q))>1-7,(q). It follows from Theorem 2.2(1) that
u(r(x,(a),a)) = min(u(r(d (a),a)), u(r(d,(a),a))). (3.19)

From Theorem 2.8, we know that u(r(d,(q),q)) and u(r(d,(q),q)) are uniformly

continuous in qe[d;,d ,]. Considering F(q)=u(r(d,(a),q))-u(r(d,(a),q) , it
follows from Proposition 3.1(2) and Corollary 2.5 that F(Q) is strictly decreasing within

[d,.d;,].For g=d; and q=d;,, we have
F(d,)=u(r(d,(d;).d;))—u(r(d,(d;).d;)) >0, (3.20)
F(d,,)=u(r(d,(d;,,).d;)-u(rd,(d;,).d;)) <0, (3.21)

Therefore, there is a unique §e(d;,d;,) satisfying u(r(d,(@),d))=u(r(d,,@).d)) .

Theorem 2.2(1) shows

%, (@) ={d,(d),d,, (@3} (3.22)
Let us consider the case > g . From Proposition 3.1(2), we know u(r(x,q)) < u(r(x, §))
for xe[d,,d];and u(r(x,q))>u(r(x,g)) for xe[q,d,]. From Corollary 2.5, we have

u(r(d,, (a),q)) <u(r(d,(a).qd)). (3.23)

u(r(d,,(a),q)) >u(r(d,(@),q))- (3.24)
From Theorem 2.2(1), we have

max_ u(r(x,(a), a)) =u(r(x,(@).q). (3.25)

qe[ﬁ,d;u

Likewise, we have

max_u(r(x,(a),q)) = u(r(x,(4).9)). (3.26)

qe[dp, 4]

From (3.17), (3.18), (3.25) and (3.26), we know @, =argmax u(r(x,(q),q)) =q , which
geld; .d, ]
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means that (3.15) and (3.16) hold. (3.22) means that the optimal passive demand, i.e. X,(0,)

are d(g,) and d,,(q;). D

Lemma 3.3 implies that the passive retailer chooses the optimal order quantity which makes its
two focus points (selected demands) have the same normalized likelihoods and the same

satisfaction levels.

Lemma 3.4. The optimal apprehensive order quantity g, is the solution of

u(r(d,,q)) =u(r(d,,q)), (3.27)
that is,
* (R — So)dl + Sudu
g, = R_ SO n Su . (3.28)

The optimal apprehensive demand, i.e. x;(g;) are d, and d,.

Proof: It follows from Lemma 2.6 that Vq e[d,,d,] we have

u(r(x,(a), 9)) = min(u(r(d,, a)), u(r(d,, a))) , (3.29)
which leads to

gs = arg max u(r(x,(q), q)) = arg max min(u(r(d,,q)), u(r(d,,a))) . (3.30)

qE[dI’du] q€[d|,du]

Suppose q is the solution of u(r(d,,q))=u(r(d,,q)), thatis,

u(r(d,,@)) =u(r(d,,q)). (331)
Proposition 3.1(2) shows if q<q@ then u(r(d,,q))>u(r(d,,q)) and if gq>q then

u(r(d,,q)) <u(r(d,,q)) so that we have

max , min(u(r(d,,q)),u(r(d,,q)))

ge[d, d,

= max min(u(r(d,, a)),u(r(d,, a))) v max min(u(r(d;, )), u(r(d, )))

qeld, q]

36



= max u(r(d,. ¢)) v max u(r(d,.q)) = u(r(d,, @) v u(r(d, ) . (6:32)

qeld, gl

Therefore, q; is g, which is the solution of (3.27). (3.27) leads to (3.28) with considering (3.1).

(2.23) implies that x;(qg;) are d, and d,. O

Lemma 3.4 shows that the apprehensive retailer takes into account two extreme demands (the
highest and the lowest demand) and chooses the optimal order quantity which makes the

satisfaction levels of the highest demand and the lowest demand equal.

Lemma 3.5. The optimal daring order quantity is

d,=d,. (3.33)

The optimal daring demand, i.e. X;(q;) is d,.

Proof. The proof follows directly from Theorem 2.13(2) and Proposition 3.1(3). m
According to Lemma 3.5, for the daring retailer, the highest demand is his/her optimal order
quantity and he/she believes all ordered products can be sold.
It is helpful to discuss the relationships amongst the four types of optimal order quantities and
focus points and how the four types of optimal order quantities and focus points change with the

parameters. We have the following lemmas.

Lemma 3.6.
(1) The optimal daring order quantity g, is always larger than any other type of optimal order

quantity.

(2) Supposing the normalized likelihood function 7z, (X) is symmetric, we have

dpi(0;) +d,,(0z) =d, +d, <2x(q)<2d,, (3.34)
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G >0, >0 (3.35)
Proof.
(1) It is straightforward that , is always larger than any other type of optimal order quantity.
(2) From Lemma 3.3 and the monotonicity of u(r(x,()), we have

r(dg(az),dz) = r(d,;,(9;).9;). (3.36)
which is equal to

Rd,(az) +S,(a; —d,(0)) ~Wa, = (R-W)a, - S, (d,,,(02) —92) - (3.37)
From (3.37), we obtain

*_ (R - So)dpl(q;) + Sudpu(q;)
2 (R-S,)+S,

. (3.38)

Hence,

(R_So)d pl(q;)—i_sudpu(q;) _ (R _So)(d;u _dpl(q;))_su (d pu(q;)_d;u)
(R-S,)+S, (R-S,)+S,

q —-q,=d,, — ,(3.39)
where g, =d,, is the solution of u(r(x,x))=7,(x) within (d.,d,) (See Lemma 3.2).
From (3.16), we have

7(d i (02)) = 7(d,(92)) (3.40)
If 75 (X) is symmetric, (3.40) implies

dyi(a3)—d, =d, —d,(g3) > 0. (3.41)
(3.41) is equal to

d,(9;)+d,(q;) =d, +d, =2d, <2d;, <2d,, (3.42)
which proves (3.34). From (3.42), we have

d, —d,(0z) >d, (g;)—dg, - (3.43)
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Obviously, dg, —d,(g;) >0 holds. Recalling

R-S,>S, >0, (3.44)
from (3.39) we know
o —g; >0. (3.49)

By using (3.38) and (3.28), we have

u

* * _ (R_So)d pl(q;) +Sudpu(q;) _ (R_So)dl +Sud

%% (R-S,)+S, (R-S,)+S,
:(R_So)(dpl(QZ)_dl)_Su(du _dpu(q;)) . (3.46)
(R=S,)+S,

By using (3.41) and (3.44), we know

a,—0; >0. (3.47)
(3.46) and (3.47) means (3.35). m
Lemma 3.7. Set the satisfaction function as the following linear function

u(r(x,q)) = S D=0 (3.48)

=

u

The optimal active order ¢ and the optimal active demand X;(q,) are decreasing in the unit

wholesale price W, increasing in the unit revenue R and the unit salvage price S, . The unit

opportunity cost S, has no effect on them.
Proof. Since r,(W)=(R-W)d, and r(W)=d,R+(d,—d,)S,—d,W, by using (3.48) we

have

(x—d)R+(d, -q)W - (d, -d, +x-0)S,
rW,x,q)-nW) _ (d,-d,)(R-S,) if x<q
Lw)-rw) |@-d)R+(d, W —(d, —d})S, —(x=)S, ;if x>q
(d,-d)(R-S,)

u(r(W,x,q)) =

. (3.49)
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Therefore,

(x=d))R+(d, —x)W - (d, =d,)S

u(r(w, x,x)) = o (3.50)
(du - dI )(R - So)
Differentiating (3.50) with respectto W , we have
du(r(W, x,x)) _ (d, —x) >0, (3.51)

dw (d,-d)(R-S,)

which means YW, <W, u(r(W,, x, x)) <u(r(W,, x,x)) holds so that we have
u(r(W, o; (W), o (W))) < u(r(W;, a; (W), ; (W) . (3.52)

where @; (W,) is the optimal active order quantity with the wholesale price W, . According to

Lemma 3.2, 7 (g, (W,)) =u(r(W,, g, (W,),q, (W,))) holds so that we have

75 (G (Wp)) < u(r(W,, oy (W), o (W) - (3.53)

Recalling u(r(w,,d.,d.))<=z,(d.,)=1, due to the monotonicity of 7z (x) and

u(r(wW,, x,x)) within [d_, g, (W,)], there is a unique solution of u(r(W,, x, X)) =z, (X)
within [d_,g; (W,)], that is @, (W,) and we have ¢, (W,)>q, (W,). Therefore, the optimal
active order ¢ and the active focus point X (Q,) are decreasingin W .

Similarly, we can prove the optimal active order g, and the optimal active demand X, (q;)

are increasingin R and S, . Since thereisnot S, in(3.50), S, has no effect on the optimal

active order quantity and the optimal active demand. m
Lemma 3.7 is intuitively obvious if we know that an active retailer believes he/she can sell

what he/her optimally orders (shown in Lemma 3.2).
Let us think about the optimal passive order g, . If the unit opportunity cost price S,

increases, U(r(x,q)) will remain the same for Xx<(q but decrease for X > (. Considering

Proposition 3.1(2) and Lemma 3.3, we have the following proposition.
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Proposition 3.8. The optimal passive order quantity g, increases in the unit opportunity cost

S

"
Proposition 3.8 shows that the passive retailer offsets the loss caused by the increase of the unit

opportunity cost by increasing the order quantity.

For the optimal apprehensive order @, let us consider (3.28). Obviously, we have

dq; (du _dl)su

= >0, 3.54
ds, (R+S,-S,) (3.54)
dS,  (R+S,-S.)
dq3 - _ (du _dl)Su > 0 ’ (356)
dR ~ (R+S,-S.)
a4 g (3.57)
dw

which can be concluded as the following proposition.

Proposition 3.9. The optimal apprehensive order quantity ¢, increases in the unit salvage
price S, and the unit opportunity cost S, decreases in the unitrevenue R . The unit wholesale
price W has no effecton q; .

Proposition 3.9 points out that for an apprehensive retailer, he/she orders less at the higher unit
revenue and the unit wholesale price has no effect on the optimal order quantity. Interestingly,
other researchers (Wang and Webster, 2009; Wang et al., 2009) have arrived at similar results in
“risk-averse” and “loss-averse” newsvendor models. However, such results were regarded as the
limitations of the expected utility theory (EUT) by themselves. Our model can explain these

results as follows:
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As shown in Lemma 3.4, the apprehensive retailer worries about two extreme demands, i.e. the

smallest demand d, and the largest demand d, and seeks an optimal order quantity to make

the satisfaction levels of these two demands equal. (3.1) shows that for the same order quantity,

the increase of the unit revenue will increase the satisfaction level of d, morethan d, . To offset
this effect, the retailer will decrease the order quantity.

For examining the result related to W, let us begin with the optimal apprehensive order
quantity @, . When the unit wholesale price becomes lower and the order quantity remains the

same, the payoff at the demand d, is exactly the same as the one at the demand d,. On the

other hand, from Proposition 3.1(2) we know that if the order quantity increases, the satisfaction
level of the demand d, will become worse; and if the order quantity decreases, the satisfaction

level of the demand d, will become worse. Therefore, the optimal apprehensive order quantity

remains ;.

Definition 3.1. 7z5(X) is said to be more informed than 7zy(x) if and only if Wx

75 (X) < 75 (X) holds.

Lemma 3.10. Suppose 7zp5(X) is more informed than z(X) . The optimal active order

quantities based on normalized likelihood functions 7zj(X) and zp(X) are denoted as Q.
and qg* , respectively; the optimal passive order quantities based on normalized likelihood

functions 7,(X) and 7y (X) are denoted as g, and q2, respectively; the optimal

apprehensive order quantities based on normalized likelihood functions 7 (X) and 7zj(X) are

denoted as g* and 2", respectively; the optimal daring order quantities based on normalized
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likelihood functions 7;(X) and 75 (X) aredenotedas g} and g3, respectively. We have
(1) 65 =0a,";

@ oy =0, a =05

(3) if normalized likelihood functions 7;,(x) and 7z (x) are symmetric, then o <q2".
Proof.

(1) The solution of u(r(x,x)) =75 (x) within (d.,d,) is denoted as d,.. From Lemma
3.2 and Definition 3.1, we know 75 (d;:) = u(r(d,.,d.:)) > 77 (d..) . Due to the monotonicity

of zZ(x) and u(r(x,x)) and u(r(d,,d.)) <z5(d,)=1, there is a unique solution of

u(r(x,x)) = 75 (x) within (d_,d_;], denotedas d.;2.Wehave d..>d.2,thatis, g, >q>.

ou '’

1%

(2) It follows directly from Lemmas 3.4 and 3.5that . =q2* and q; =q>".
(3) The solutions of u(r(x,q))=1—x5(x) within [d;,min(q,d.)] and [max(q,d.),d,]
are denoted as d (q) and d; (q), respectively. The solutions of u(r(x,q))=1-7z5(x)

within  [d,,min(q,d.)] and [max(q,d.),d,] are denoted as d(q) and d7,(q) ,
respectively. Lemma 3.3 shows

u(r(d,(ay). g;)) =u(r(d;,(g;).a;)) . (3.58)

u(r(dg,(a;).957)) = u(r(dg.(ag"). a;") - (3.59)
Due to the symmetry of 75 (X), (3.59) implies

d, —d}(ay) =d},(a;) —d,. (3.60)

From Lemma 3.3 and Definition 3.1, we know
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u(r(ay . a;)) >1-75(ay), (3.61)

u(r(ay’, ;) >1-75(a7) 21-75(a;) - (362)
Suppose ¢, >q_". Considering Proposition 3.1(2), u(r(x,qy)) <u(r(x,q3")) holds for any
x e[l,05"]. Considering (3.61) and using Corollary 2.5(1), we have

u(r(d;,(a;),9;)) <u(r(d;(a;),a;7) - (3.63)
Likewise, u(r(x,q7))>u(r(x,q2")) holdsforany xe[q;,h].Considering (3.62)and using
Corollary 2.5(2), we have

u(r(d;,(ay),9;)) >u(r(dp,(a;).a;7) - (3.64)
(3.58), (3.63) and (3.64) imply

u(r(d; (a;").95") > u(r(d;,(a;7).95)) - (3.65)
Due to the symmetry of 7 (X), (3.65) means

dc—d;,(qﬁ*)>d;u(qﬁ*)—dc. (3.66)
(3.60) and (3.66) mean

dpi(a;)—dg(ay) >d, (A7) —dg. @A) (3.67)
Since 75 (X) < 75 (X), considering Lemma 3.3 it is easy to know

df,(a;) —df,(a;) =0. (3.68)
From (3.1), we have

r(d, (a:).q5)
=r(d} @)+ (dy (@) —dr (a37)).a57)

=r(dp(a;).d5) +(R=S,)(d} (a;) —dy (A7) - (3.69)
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Similarly, we have

r(d;,(@3).q5)
=r(d7,(a;)+(d, (@) —d;,(a2)).a:)

=r(d;,(957),95)+S,(dp, (@) —dp,(a7)) - (3.70)
From (3.5), (3.59), (3.67)-(3.70) and R>S, +S, : we know
u(r(d’,(92),0%)) <u(r(d;,(a2),q2)) , which conflicts with (3.65). As a result, q; <q2".

O
Lemma 3.10 shows that the increase of the uncertainty of the demand can make an active
retailer order more and make a passive retailer order less but does not have any effect on the

apprehensive and daring retailers.

3.4. Numerical Example

A fashion store, located in Yokohama, Japan, is planning to order a new design fashion

sportswear. The unit wholesale price W , the unit revenue R, the unit salvage price S, and the

unit opportunity cost S, are 7, 10, 1 and 4, respectively. Suppose the probability function of the

demand is a triangular function f(X), as shown below.

0, x<0

F () = 4x107°x, 0<x<50 | 3.71)
4x107%(100—x) 50<x<100
0 x>100

In the classical newsvendor models, for the risk neutral retailer, the optimal order quantity q~ is
set such that
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R-W +S 7
F(g' )= ———4 — | 3.72
@) R-S,+S, 13 (3.72)

From (3.72), we have the optimal order quantity " =54.8. In the following we see the optimal

order quantities for Newsvendor-OSDT. The corresponding normalized likelihood function of the

demand 7, (x) is

0, x<0
0.02x, 0<x<50
7o (X) = : (3.73)
0.02(100—-x) 50<x<100
0 X >100

The range of the possible demand is [0,100], thatis, d, =0 and d, =100. By using (3.1),

the profit function is

9x—-6q, x<(

. (3.74)
7q9-4x, x=q

r(x,q) ={

The highest profit is r,=(R-W)d, =300 and the lowest profit is

h=d,R+(d,—d,)S, —d W =-600. The satisfaction function is set as

u(r(x,q)) = FD=1

u—h
1 2 2
100 30003 *°
- , (3.75)
7 4 2
— X+, qu
900 900 3

where 0<x,q<100 . For illustration of the decision process of Newsvendor-OSDT, we
examine the active focus points and their corresponding satisfactions when order quantity q =0,

g=50 and q=100.As shown by Fig3.1, Fig 3.2 and Fig 3.3, the active focus points of order
guantity q=0 , q=50 and =100 are x/(0)=273 , x/(50)=50 and

X, (100) =66.7 , respectively. Their corresponding satisfactions are 0.55, 0.83 and 0.67,

46



respectively. Thus, amongst these three order quantities, =50 is the best.

75 (X)

u(r(x,0))

v

Fig.3.1 The focus point when ¢q=0.

75 (X)

u(r(x,50))

v

Fig.3.2 The focus point when q=50.

75 (X)

u(r(x,100))

v

Fig.3.3 The focus point when ¢ =100.

By using (3.14), (3.15), (3.28) and (3.33), we obtain g, =57.1, ¢, =38.3, qg; =30.8 and

g, =100. Clearly, we have ; <@, <@, <q; which shows that the order quantity of the

apprehensive retailer is less than the one of the passive retailer; the order quantity of the passive
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retailer is less than the one of the active retailer; the order quantity of the active retailer is less
than the one of the daring retailer. Such results are quite in agreement with the situations
encountered in the real business world.

In the following we examine how the optimal order quantities change with the parameters.
From (3.72), easily we have that the risk neutral optimal order quantity increases in unit revenue
R, the unit salvage price S, and the unit opportunity cost S ; decreases in wholesale price W.
In Lemma 3.5, Lemma 3.7 and Proposition 3.9, how the optimal active, apprehensive and daring
order quantities change with the parameters is shown clearly. From Proposition 3.8, the optimal
passive order quantity increases in the unit opportunity cost. In this numerical example, Fig. 3.4,
Fig. 3.5 and Fig. 3.6 show how the optimal passive order quantity changes with the unit revenue,

unit wholesale price and unit salvage price, respectively.
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Fig. 3.4 Relationships between the unit revenue and the optimal passive order quantity
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Optimal passive order gquantity

55 6 6.5 7 7B g 85 9 95 10
Wholesale price W

Fig. 3.5 Relationships between the wholesale price and the optimal passive order quantity
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optimal passive order guantity

3B 1 1 1 1 I
0

05 1 15 2 25 3
unit salvage price

Fig. 3.6 Relationships between the unit salvage price and the optimal passive order quantity

3.5. Concluding Remarks

This research analyzes the newsvendor problems for innovative products. Following the same
idea of Fisher (1997), the innovative products are featured by the unpredictable demand and short
life cycles. Due to the shorter life cycle than the procurement lead-time, determining the order

quantity is a typical one-shot decision problem. Instead of using the subjective expected utility
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theory (SEU), we utilize the one-shot decision theory (OSDT) to analyze the newsvendor
problems. The proposed models are scenario-based decision models; they are fundamentally
different from the newsvendor models with SEU which are lottery-based models.

Newsvendor models with four types of focus points are developed for four types of retailers;
i.e., the active retailer, the passive retailer, the apprehensive retailer and the daring retailer. The
active retailer takes into account a demand with a higher satisfaction and a higher likelihood; the
passive retailer focuses on a demand with a lower satisfaction and a higher likelihood; the
apprehensive retailer thinks over a demand with a lower satisfaction and a lower likelihood; the
daring retailer considers a demand with a higher satisfaction and a lower likelihood. The optimal
order quantities for these four types of retailers are obtained and we have the following
conclusions:

(1) The focus point of the active retailer’s optimal order quantity is the optimal order quantity
itself. It means that the active retailer has confidence that he/she can sell all the products that
he/she has optimally ordered.

(2) The passive retailer chooses the optimal order quantity which makes its two focus points have
the same normalized likelihoods and the same satisfaction levels.

(3) The apprehensive retailer takes into account two extreme demands (the highest and the lowest
demand) and chooses the optimal order quantity which makes the satisfaction levels of the highest
demand and the lowest demand equal.

(4) For the daring retailer, the highest demand is his/her optimal order quantity and he/she believes
all ordered products can be sold.

(5) The optimal daring order quantity is always larger than any other type of optimal order quantity.
If the normalized likelihood function is symmetric, the optimal active order quantity is larger than

the optimal passive one; the optimal passive order quantity is larger than the optimal apprehensive
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one.
(6) Setting the satisfaction function as a linear function, the optimal active order quantity and its
focus point are decreasing in the unit wholesale price, increasing in the unit revenue and the unit
salvage price. The unit opportunity cost has no effect on them.

(7) The passive retailer offsets the loss caused by the increase of the unit opportunity cost by
increasing the order quantity.

(8) The optimal apprehensive order quantity increases in the unit salvage price and the unit
opportunity cost, decreases in the unit revenue. The unit wholesale price has no effect on it.

(9) The increase of the uncertainty of the demand can make an active retailer order more and
make a passive retailer order less but does not have any effect on the apprehensive and daring
retailers.

The above results provide managerial insights into the behaviors of different types of retailers.
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Chapter 4

Price-Setting Newsvendor Models for Innovative

Products

4.1 Introduction

The newsvendor models have been extensively reviewed (Cachon, 2003; Petruzzi and Dada,
1999; Petruzzi and Dada, 2010; Qin et al, 2011). In the classic newsvendor problem, the retail
price is considered as an exogenous value. It is only for a perfect competitive market where the
retailers are price-takers. There are many papers related to price-setting newsvendor models
(Chen and Simchi-Levi, 2004; Raz and Porteus, 2006; Lau et al, 2007; Arcelus et al, 2007; Xu et
al, 2011; Kocabiyikoglu and Popescu, 2011; Wang et al, 2012; Xu and Lu, 2013; Chen et al, 2014).
Until now, almost all price-setting newsvendor models are built to maximize the subjective
expected utilities or the probability measures of achieving target profits.

In this chapter, the price-setting newsvendor problem for the innovative product is considered.
As introduced in Chapter 3, this dissertation highlights that for a retailer who sells an innovative
product, how to determine the optimal order quantity can be regarded as a one-shot decision
problem, which is typical for a situation where a decision is made only once under uncertainty. In
a one-shot decision problem, there is one and only one chance for only one state of nature
(scenario) occurring. Guo (2011) initially proposed the one-shot decision theory (OSDT) for

dealing with such one-shot decision problems. The one-shot decision making problems have been
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researched in the papers (Guo, 2010a; Guo, 2010b; Guo et al, 2010; Guo, 2011; Guo, 2014; Guo
and Li, 2014). Guo and Ma (2014) proposed a newsvendor model for innovative products based
on the one-shot decision theory where the retailer was in a perfect competitive market so that the
selling price was given. Ma and Guo (2013) and Ma (2014) examined the price-setting
newsvendor models in the supply chain for innovative products.

This chapter takes into account the retailer who sells an innovative product in a monopoly
market. In this case, the retailer has only one chance to decision the order quantity and the retail
price with the uncertain demand. The one-shot decision theory (OSDT) based price-setting
newsvendor models are proposed for this situation. In the proposed models, the procedure for
determining the optimal order quantity and the optimal retail price is divided into three steps. In
the first step, the retail price is fixed. For each order quantity, the retailer will contemplate one
state (scenario) from all possible states with considering the satisfaction level when this state
occurs and its occurrence likelihood. The selected state (scenario) is called the focus point of the
order quantity. The retailers who take into account the state (scenario) with a higher satisfaction
and a higher likelihood, a lower satisfaction and a higher likelihood, a higher satisfaction and a
lower likelihood, a lower satisfaction and a lower likelihood are called active, passive, daring and
apprehensive retailers, respectively. In the second step, the order quantity whose focus point
corresponds to the highest satisfaction level is determined as the optimal order quantity for this
fixed retail price. The profit which corresponds to the highest satisfaction level is used to evaluate
this given retail price. In the third step, we determine the optimal retail price which leads to the
highest profit. In this research, the optimal order quantities and retail prices for the four types of
retailers are obtained and the theoretical analysis is made.

The contributions of this chapter are as follows: The existing price-setting newsvendor models

are the subjective expected utility based or the probability measure based. They seek the optimal
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order quantity and the optimal retail price to maximize the expected utility or the probability
measure of achieving a target profit. They take into account all demand values when determining
the optimal order quantity and the optimal retail price. However, one and only one demand will
occur when selling an innovative product due to its short life cycle. This chapter analyzes the
price-setting newsvendor models with the one-shot decision theory (OSDT) which fit the one-
time feature of the retailer’s joint price/quantity decision. Different from the subjective expected
utility based models in which the retailer’s risk attitude is reflected by different utility functions,
in OSDT based models the retailer chooses which type of focus point (scenario) for making a
decision characterizes the attitude of this retailer about uncertainty. The theoretical analysis
provides the managerial insights into the behaviors of different types of retailers. The proposed
methods provide a fundamentally different vehicle for analyzing the newsvendor problems in a
monopoly market of an innovative product.

The reminder of this chapter is organized as follows. In Section 4.2, price-setting newsvendor
models for innovative products are proposed. In Section 4.3, the theoretical analysis results are
given. In Section 4.4, a numerical example is used to demonstrate the proposed models. Some

concluding remarks are provided in Section 4.5.

4.2 Price-Setting Newsvendor Models Based on One-Shot Decision

Theory

As shown in Chapter 3, we built the Newsvendor-OSDT which is only for a perfect competitive

market where the retailers are price-takers. However, it provided an alternative way to analyze

newsvendor problems for innovative products. In the following we consider a retailer who sells
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an innovative product in the monopoly market. The retailer orders q units before the season at the
unit wholesale price W. The following linear inverse demand function is considered:
Xx=b-aR, 4.1)
where x>0 is the demand and R is the retail price. b>0 is the x-intercept of (4.1) representing the
limit demand of the innovative product when the retail price approaches to zero. a >0 s the
slope of (4.1) showing the demand decreases when the retail price increases by one unit. We call
a as the price sensitivity of the market demand. The uncertainty of the demand is represented by
the parameter b with a normalized likelihood function 7 (D) . The profit function for the retailer
is a function with the retail price and the order quantity as the decision variables. With considering

(3.1), it can be expressed as:

(R-W)(b—-aR)-(W -S,)(g—b+aR); b-aR<q

: (4.2)
(R-W)q-S,(b—aR—-q); b—aR>q

r(R,b,q) = {
Recall Definition 2.2, we have the the satisfaction function, i.e. U(R,b, (). Four types of focus

points which have been introduced in Chapter 2 and Chapter 3 are considered as follows.

Active focus point: For a fixed retail price R, the active focus point of the order quantity q,
denoted as b, (R,Q), is

b, (R,q) € arg max lower[z(b),u(R,b,q)]. 4.3)

For a fixed retail price R, b (R,g)—aR is the focused demand value that has a higher

likelihood and a higher satisfaction level for an order quantity g.

Passive focus point: For a fixed retail price R, the passive focus point of the order quantity q,
denoted as b, (R,Qq), is

b, (R,q) earg bmin upper[l—z(b),u(R,b,q)]. (4.4)

55



For a fixed retail price R, b,(R,gq)—aR is the focused demand value that has a higher

likelihood and a lower satisfaction level for an order quantity g.

Apprehensive focus point: For a fixed retail price R, the apprehensive focus point of the order

quantity q, denotedas b;(R,q),is

b; (R, q) earg brnin upper[z(b),u(R,b,q)]. (4.5)

For a fixed retail price R, b, (R,q)—aR is the focused demand value that has a lower likelihood

and a lower satisfaction level for an order quantity g.

Daring focus point: For a retail price R, the daring focus point of the order quantity q, denoted
as b,(R,q),is

b,(R,q) earg brnin upper[z(b),1-u(R,b,q)]. (4.6)

For a fixed retail price R, b, (R,q)—aR isthe focused demand value that has a lower likelihood

and a higher satisfaction level for an order quantity qg.

For a fixed retail price R, we denote the sets of four types of focus points of the order quantity
q as B, (R,q),B,(R,q),B;(R,q) and B,(R,q), respectively. The optimal order quantities

for four types of the retailers are

R max max R , 4.7
g, (R) e arg q bf(R’q)EBl(M)u(R, b, (R,0),q) 4.7

R max mi R,b,(R,0),q), 4.8
qz( ) earg g b;(qu)Elrg(R’q) U( ) ( q) q) (4.8)

g;(R)eargmax min  u(R,b,(R,q),0), (4.9

q  Bi(Ra)eBs(R.a)

g,(R)yeargmax max u(R,b,(R,q),q). (4.10)
q

b; (R,q)eB, (R,q)
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From (4.3)-(4.10), we can see that for a fixed R, the profit functions of the active, passive,
apprehensive and daring retailers are r(R,b, (R,q,(R)),q,(R)), r(R,b,(R,0,(R)),0,(R)),
r(R,b;(R,0;(R)),q,(R)) and r(R,b,(R,q,(R)),q,(R)) , respectively, which are called
active, passive, apprehensive and daring profit functions, respectively. Because they are the
functions of single variable R, for simplicity, we use 1, (R), r,(R), ,(R) and r, (R) in

the following. For each type of retailer, the optimal retail price is which to maximize his/her profit

function.
R earg ;nax L(R), g €09, (R)); (4.11)
R;earanaxz(R), 0, €9,(R;); (4.12)
R, earg ;nax L(R), 0; €0,(R;); (4.13)
R, earanax4(R), q, €9, (R;). (4.19)

R, R;, R; and R; are called optimal active, passive, apprehensive and daring retail

prices, respectively.

4.3. Analysis Results

In this section, we suppose the following assumption.

Assumption: The normalized likelihood function f (b) is a unimodal function defined on the

interval [b,b,], the modeis b, €(b,b,), f(,)=0 and f(b,)=0.
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From (4.1), we know b, —aR and b, —aR are the lower and upper bounds of the demand

respectively; b, —aR is the most possible amount of demand. Because the demand is inside the

e
interval [b, —aR,b, —aR], a reasonable supply also should lie in this region. The highest profit
of retailer is

r,(R)=(R-W)(b, —-aR), (4.15)
that is, the retailer orders the most ¢ =b, —aR and the demand is the largest b, —aR . The

lowest profit is determined by the minimum of two cases, one is that the retailer orders the most

but the demand is the lowest: (b, —aR)R+ (b, —b,)S, — (b, —aR)W ; the other is that the retailer
orders the lowest but the demand is the highest: (b, —aR)(R-W)—(b, —b)S, . For the sake of
simplification, the assumption W > S_ + S, is made, which leads to

i (R)=(b —aR)R+ (b, —b)S, — (b, —aR)W . (4.16)

For a fixed retail price R, the satisfaction level of a retailer is the following continuous strictly

increasing function of the profit r,
u:[r(R),r,(R)]—[01], (4.17)
where u(r (R))=0,u(r,(R)) =1.

(4.17) gives a general form of a satisfaction function of a retailer where the satisfaction level of
the lowest profit is 0 and the satisfaction level of the highest profit is 1.

We have the following lemmas and propositions. Lemma 4.1-4.4 are similar to Lemma 3.2-3.5.
Lemma 4.1. For a fixed retail price R, the optimal active focus point b, (R,q,(R)) is the

solution of the following equation:
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u(R,b,b—aR) = z(b), beb,,b,]. (4.18)

Its corresponding focused demand value is b, (R, g,(R)) —aR, the optimal active order quantity
is g,(R)=b, (R,q,(R))—aR and the active profit function is

L (R)=(R-W)q,(R). (4.19)

The Lemma 4.1 indicates that the focused demand value of the active retailer’s optimal order
quantity is the optimal order quantity itself. It means that the active retailer has confidence that

he/she can sell all the products that he/she has optimally ordered.

Lemma 4.2. The optimal passive order quantity 0, (R) is the solution of the following equation:

u(b, (@), 9) =u(b,,(a).q). (4.20)
where b, (R,q) and b, (R,q) are the solutions of U(R,b,q)=1-7x(b) within
[b,min(g+aR,b.)] and [max(q+aR,b.),b,] . respectively. The optimal passive focus
points, i.e. b,(R,g,(R)) are b,(R,q,(R)) and b, (R,d,(R)) . Their corresponding
focused demand values are b, (R,q,(R))-aR and b,,(R,qg,(R))—aR, respectively. The

passive profit function is

I, (R)=(R-S,)(b, (R,q,(R)) —aR) - (W —S,)q,(R). (4.21)

Lemma 4.2 implies that the passive retailer chooses the optimal order quantity which makes its

two focus points have the same relative satisfaction level.
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Lemma 4.3. The optimal apprehensive order quantity g, (R) is the solution of

u(R,b,q) =u(R,b,,q), (4.22)

that is,

)= (R-S,)(b,—aR)+S, (b, —aR)

R
% R-S, +S,

(4.23)
The optimal apprehensive focus points, i.e. b, (R,q;(R)) are b, and b, . Their corresponding

focused demand values are by —aR and b, —aR , respectively. The apprehensive profit

function is

(R)=(R-S,)(b —aR) - (W -S,)q,(R).- (4.24)

Lemma 4.3 shows that the apprehensive retailer always takes into account two extreme values
of the parameter b (the higher and lower bounds of b) and chooses the optimal order quantity

which makes the satisfaction levels of the higher and lower bounds of b equal.

Lemma 4.4. The optimal daring order quantity is

q,(R)=b, —aR. (4.25)
The optimal daring focus point, i.e. b,(R,q,(R)) is b, . Its corresponding focused demand

value is b, —aR. The daring profit function is

r,(R) = (R—W)(b, —aR) . (4.26)

According to Lemma 4.4, the daring retailer always thinks the higher bound of the parameter

b. The corresponding focused demand value (the highest possible demand) is his/her optimal
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order quantity and he/she believes all ordered products can be sold.

The following proposition indicates the relationships amongst the four types of retailers’
focused profits.
Proposition 4.5. Forany R >W , we have the following relationships amongst the four types of

retailers’ focused profits.
rL(R)y>r, (R)>r,(R)>r,(R). (4.27)

Proof.

First, we prove r, (R)>r, (R). From Lemma 4.1 and 4.4, we have r, (R)=(R-W)q,(R),

r,(R)=(R-W)(b, —aR) and q,(R) <b, —aR so that we know r, (R) >r, (R). Then, we
prove I, (R)>r, (R). From Lemma 4.2, we have
r, (R) <(R-W)(b,(R,q,(R)) —aR) <(R-W)q,(R)=r, (R). (4.28)
Finally, we prove T, (R) > r, (R). From (4.21) and (4.24), we know
I, (R)—r; (R)=(R—-S,)(b, (R,0,(R)) —b) —(W —-S,)(0,(R) - 0:(R)) - (4.29)
Considering R—-S,>W -5 >S5,>0 and b, (R,q,(R))-b >q,(R)-g,(R)>0 , we

have 1, (R)—r, (R)>0. O

: . - b
Since the demand is not less than zero, it is reasonable that Re[W,—-] and b, >aW .
a

r(R! b! q) B r-I (R)
L(R)-r(R)

and the solution of the optimal active retail price, as shown below.

Suppose U(R,b,q) = , we analyze the concavity of the active profit function

Proposition 4.6. If Vbe(b,b,), z(d) and u(R,b,o—aR) are of class C', and
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_uRbb-aR) o b, —b,

7 ®) ob '
(B, ~b)(S, ~W)7'®)

hold, then the active profit
function r, (R) is concave. Furthermore, if b, —aW >b, —b,, then the unique solution of

I/(R)=0 liesontheinterval R e (VV,H) , which is the optimal active retail price R;.
a

Proof.

First, we prove the concavity of r, (R). Using Lemma 1 and the implicit function theorem, we

know b, (R,q,(R)) isa continuously differentiable function of R, and

M(”,(b) ~ 6u(R,b,b—aR)) | 0°u(R,b,b—aR) du(R,b,b-aR)
" _ R’ ob oboR R
b/(R, ¢, (R)) = — R, . (4.30)
(7 (b)—T)

ou(R,b,b—aR) 0

Since b, <b<b,, with considering (4.18), we have z'(b)<O0, o

2 a—
ou(R,b,b—aR) <0 . 0 u(R,b,E aR) 20
oR oR

b/(R,q,(R)) < 0. Meanwhile,

2
J"u(R,b,b-aR) _

0 , that s
OboR

’ _ (bu _b)(\N B So)
) = R Y R-W =6, ~bIR-S)7 ) s
Considering Lemma 4.1, we have
% =2¢;(R)+(R-W)q/(R) =2(b;(R) —a) + (R-W)b/(R) <0. (4.32)

(4.32) implies the active profit function r,(R) is concave.
: : . b,
Next we prove if by —aW >b, —b,, then the mode of r,(R) liesontheinterval R e (W,—).
a

The first derivative of the active profit function is

F(R) =a,(R) +(R-W)q(R) = a,(R) + (R-W)(bi(R, q,(R)) —a) . (4.33)

Easily we know r(W)=qW)>0 . Considering b —aW >b,—b  and

b/(R,q,(R)) . <a,we have r/(R) b <0.

a

Q0
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Since r(R) is concave, K/(R)/zy >0 and K(R)| , <O, the unique solution of
R="
a

I/(R)=0 liesontheinterval R e (\N,H) . O
a

Proposition 4.6 shows that the concavity of the active profit function is related to the price
sensitivity of the market demand. Propositions 4.7, 4.8 and 4.9 examine the concavities of passive,
apprehensive and daring profit functions, respectively; and provide the solutions of optimal
passive, apprehensive and daring retail prices. Proofs of Proposition 4.7, 4.8 and 4.9 are similar

to Proof of Proposition 4.6.

Proposition 4.7. If z(b) is of class C' for be(b,b,) and be(b,b,) and u(R,b,q)
is of class C' for qe(b-aRb,-aR) , be(b,b) and be(b,b,) and

2(b, (R, q,(R)) —a) + (R-S,)b;, (R, 0, (R))
W =S,

g,(R) > holds, then the passive profit function

r, (R) is concave. Furthermore, if for any Re[W, %] :

s RS, b, (R, 0,(R))
05(R) > =2y (R, (R)) + =

o] 0]

holds, then the optimal passive retail price is

bpl(\NiqZ(\N))_aW
W =S,

. b . , '
Rz - ;I ; if qZ(R)| Raw < +bp|(R’q2(R))| rRaw — @ and

D0+ (-8, )0 (R (R, 20 -5,

(R > 2 hold, then the unique
a;(R) b WS, q

a

solutionof r,(R)=0 liesontheinterval R e (W, E) , Which is the optimal passive retail price
a
R;.
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Proposition 4.7 points out that the concavity of the passive profit function depends on the
relationship between the changes in retail price R of the optimal passive order quantity and of its

corresponding focused demand value.

Proposition 4.8. The apprehensive profit function r, (R) is concave. Furthermore, if
b, —aW >b, —b, , then the optimal apprehensive retail price is the unique solution of r;(R) =0
- b,
within Re (W,—).
a

Proposition 4.9. The daring profit function r, (R) is concave. If b —aW >b, —b,, then the

b, +aW

optimal daring retail price is R, = 5
a

. : b .
, and lies on the interval R e (W,—1); otherwise,
a

. b
R; =

Propositions 4.8 and 4.9 show that the apprehensive and daring profit functions are always
concave. Suppose the four types of retailers have concave focused profit functions, we have

Proposition 4.10 and 4.11 as follows.

Proposition 4.10. We have the following relationships amongst the four types of retailers’ optimal

retail prices.

R, >R >R, >R;. (4.34)
Proof.
First we prove R; >R/ . From Lemma 4.1 and Proposition 4.6, we know the optimal active

retail price R, is the solution of K/(R)=q,(R)+(R-W)q;(R)=0,thatis R/ :W—%.
1
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From Lemma 4.1 and Proposition 4.5, we have b,—aR<q,(R)<b,—aR and

1 : . Db . : . W .
—a<q1’(R)<—Ea, which lead to R <—+—-R/ +W . Thatis, R < b, ;a =R, . Next
a a
we prove R'>R, . From Lemma 41 and Lemma 42, we have

(R)—r(R)>b (R)—b, (R,q,(R)) >0 . With considering the concavities of 1, (R) and

r, (R),wehave R’ >R;.Similarly, we canprove R, >R;. O
Proposition 4.11. The optimal active, passive, apprehensive and daring retail prices are
decreasing in a.

Proof.

b, +aW
2a

It is trivial to prove that the optimal daring retail price R, = is decreasing in a. In

the following, we show the optimal active retail price is decreasing in a. For a, <a,, from
Lemma 4.1, we know ¢,(a,,R)—q,(a,,R)=(a,—a,)R and q;(a,,R)—q;(a,,R)=a,—a,,
which lead to
r(a,R)—r(a,R)

=q(a, R)— g (a;, R) + (R-W)(q;(a,, R) —g;(a,, R)) . (4.35)

=W(a,—a,)>0.
With considering the concavity of 1, (R), we know the optimal active price R, is decreasing
in a. Similarly, we can prove the optimal passive and apprehensive retail price is decreasing in

the parameter a. O

Proposition 4.11 shows that the increase of the price sensitivity of the market demand can make

four types of retailers charge lower retail prices.
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4.4 Numerical Example

A fashion store, located in Yokohama, Japan, is planning to order a new design fashion clothes
from France. The fashion store is monopoly in the east Japan market. The unit wholesale price W,
the unit salvage price S, and the unit opportunity cost S, are 7000, 1000 and 4000 (JPY),
respectively. The market demand depends on the retail price and b, =1500, b, =1000. Let us
consider the retailer’s pricing policies when a=0.02, a=0.05 and a=0.10. As an
example, let us see the details when a=0.05.

Suppose  the normalized likelihood  function of the parameter b s

b—-1250
7(b) = 0'004_‘W . By using (4.2), the profit function is
F(Rb.q) - (R—7000)(b—0.05R) ~6000(q ~b +0.05R); b—0.05R <q .36
(R —7000)q — 4000(b — 0.05R — q): b—0.05R >q

We obtain R =16767, R, =14328, R;=13919 and R, =18500; r =4598000,
r, =2792900 , r; =1394500 and r, =6612500 . Similarly, we can obtain that when
a=0.02, R =36804, R,=29384, R;=28797, R,=41000, r =17507000 ,
r, =10766000 , r; =8865800 and r, =23120000 ; when a=0.10, R; =10000,
R, =9033, R;=8922, R;=10000, r"=857140, r, =400110, r; =-799350 and

r, =1500000. The relationships between retail prices and profits when a=0.02, a=0.05

and a=0.10 are shown in Fig. 4.1, Fig. 4.2 and Fig. 4.3, respectively.
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%10 Relationships between retail prices and profits when a=0.02
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The numerical example shows three interesting phenomena. First, the numerical example
indicates that forany R>W, r, (R)>r, (R)>r, (R)>r, (R). That is the focused profits of

the daring retailer are higher than the ones of active retailer; the focused profits of the active

retailer are higher than the ones of passive retailer; the focused profits of the passive retailer are
higher than the ones of apprehensive retailer. Second, we have R; >R’ >R, >R, which

shows that the optimal retail prices of the daring retailer is higher than the ones of active retailer;
the optimal retail prices of the active retailer is higher than the ones of passive retailer; the optimal
retail prices of the passive retailer is higher than the ones of apprehensive retailer. Third, we
observe that with the increase of the price sensitivity of market demand (the increase of parameter
a), all of the four types of retailers charge the lower retail prices. Such phenomena are quite in

agreement with the situations encountered in the real business world.

4.5 Concluding Remarks

This chapter examines the price-setting newsvendor problems for the innovative product. As
mentioned by Fisher (1997), the innovative products are featured by the unpredictable demand
and short life cycles. Considering the one-time feature of the retailer’s decision making problem
for ordering the innovative product, the price-setting newsvendor model with the one-shot
decision theory is proposed. Different from the price-setting newsvendor model with the
subjective expected utility theory where the optimal order quantity and the optimal retail price are
obtained based on the weighted average of the utilities of all payoffs, the price-setting newsvendor
model with the one-shot decision theory determines the optimal order quantity and the optimal

retail price only based on the satisfaction level of its focus point (one selected demand). Hence,
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the proposed model is scenario-based which is fundamentally different from the existing models
which are probability distribution based (lottery-based).

Four types of retailers are considered. They are the active retailer who considers the focus point
with a higher satisfaction and a higher likelihood; the passive retailer who thinks the focus point
with a lower satisfaction and a higher likelihood; the apprehensive retailer who identifies the focus
point with a lower satisfaction and a lower likelihood and the daring retailer who takes into
account the focus point with a higher satisfaction and a lower likelihood. Suppose the four types
of retailers have concave profit functions, there are following conclusions:

For any retail price larger than unit wholesale price, the daring retailer will imagine the higher
profit than the active retailer; the active retailer will imagine the higher one than the passive
retailer; the passive retailer will imagine the higher one than the apprehensive retailer.

The optimal daring retail price is higher than the optimal active one; the optimal active retail
price is higher than the optimal passive one; the optimal passive retail price is higher than the
optimal apprehensive one.

With the increase of the price sensitivity of the market demand, every type of the retailer
charges a lower retail price.

The above results provide managerial insights into the behaviors of different types of retailers

in the monopoly market of the innovative product.
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Chapter 5

Wholesale Price Contract in the Supply Chain for

Innovative Products

5.1 Introduction

As a fundamental research of the supply chain management, a single manufacturer selling a
product to a retailer who faces a newsvendor problem has been extensively researched. Due to its
simplicity, the wholesale price contract is wildly used in practice and it has been studied in various
aspects (Cachon, 2003). However, most of models for the wholesale price contract have been
developed within the expected utility (EU) framework which is not characterize the one-time
feature of innovative products (Lariviere and Porteus, 2001; Sarmah et al., 2006; Pasternack,
2008). Furthermore, the value of information sharing in the supply chain has attracted much
attention from both practitioners and researchers in the past decades. But most of the works are
focusing on the value of demand information sharing (Cachon and Fisher, 2000; Lee et al., 1997a;
Lee etal., 1997b; Lee et al., 2000; Zhou and Benton Jr, 2007). Until now, the information sharing
of participants’ personalities in the supply chain is still on “virgin territory’.

This chapter is focusing on the two-echelon supply chain for the innovative product. The supply
chain consists a single manufacturer and a single retailer. The manufacturer produces a kind of
innovative product and sells it to the retailer. With conjecturing the retailer’s order quantity, the

manufacturer charges a wholesale price of the product. After observing the wholesale price, the
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retailer who is facing uncertain demand need to decide his/her order quantity. It is a typical
Stackelberg game in the supply chain where the manufacturer acts as a Stackelberg leader and the
retailer acts as follower. Due to the one-time feature of innovative products, how to determine the
optimal order amount can be regarded as a one-shot decision problem for the retailer, which are
typical for situations where a decision is made only once under uncertainty. Ma et al. (2013), Ma
and Guo (2013) and Ma (2014) studied the supply chain of innovative products.

In the proposed models of this charpter, after observing the wholesale price, for each order
quantity, the retailer chooses one demand amongst all possible demands while considering the
satisfaction level caused by the occurrence of the demand and the likelihood of the demand
occurring. The selected demand is called the focus point of the order quantity. The optimal order
quantity corresponds to the maximum satisfaction level of its focus point. The different retailers
who focus on different demands are regarded as retailers with different personalities. The optimal
wholesale price contracts for the manufacturer when he/she is facing different types of retailers
are obtained and some further theoretical analysis is made.

The key contributions to the literature are as follows. This chapter presents a first formal
analysis of the information sharing of the participants’ personalities in the supply chain. The
analysis shows the differences of the wholesale price contracts for the retailers with different
personalities and the importance of personality information sharing both in the make-to-order and
make-to-stock supply chain. This chapter also provides the managerial insights into the different
behaviors of the supply chain participants for innovative products.

The reminder of this chapter is organized as follows. In Section 5.2, the Stackelberg game in
the supply chain of innovative products is introduced. In Section 5.3, the analysis results are

obtained. Some summary of concluding remarks are provided in section 5.4.
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5.2 The Stackelberg Game in the Supply Chain of Innovative

Products

A manufacturer produces a kind of innovative product and sells it to a retailer. For simplicity,
the manufacturer’s production cost is assumed to be zero. The retailer faces a newsvendor
problem as described in the Chapter 3. The manufacturer acts as a Stackelberg leader, offering
the wholesale price W. With conjecturing the retailer’s order quantity g, the manufacturer charges

an optimal wholesale price, which maximize his/her profit, that is

f(W,q)=Wq, (5.1)
After observing W, the retailer places an optimal order quantity, which maximizes his/her own
satisfaction level, and then the market demand is realized. The market demand is characterized

by a normalized likelihood function 7z (x) as defined by Definition 2.1.

5.2.1 The lower level problem: the retailer’s model
For the retailer, the wholesale price W is provided by the manufacturer. Following (3.1), the

profit function of the retailer is

RX+(q—X)S, -Wa;  x<q

. (5.2)
(R-W)g-S,(x—0q); x=q

f(W,X,Q)={

The satisfaction function of retailer, as defined by Definition 2.2, can be written as u(W, x,q) .

We consider four types of retailers introduced in previous chapters.

Active retailer
Based on the above analysis, the active retailer takes into account a demand with a higher
satisfaction and a higher likelihood. His/her decision-making procedure within the one-shot

decision framework is described as follows:
Step 1: After observing the wholesale price w, determine the active focus point X, (W,q) for
each order quantity (:
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X, W, q) € arg max lower [z(x),u(r(W, x,q))]. (5.3)

Step 2:  obtain the optimal active order quantity ¢,(W) for the fixed wholesale price W:

A4
QW) cagmax | max u(r(W, xW,q).). (54

where X,;(W,q) is the set of active focus points x,(W,q) .

Passive retailer
If the retailer is of passive type, he/she focuses on a demand with a lower satisfaction and a
higher likelihood. His/her decision-making procedure within the one-shot decision framework is

described as follows:

Step 1: After observing the wholesale price w , determine the passive focus point x,(W,q) for

each order quantity Q:
X, (W, q) € arg min upper[L— z(x),u(r(W, x,q))]. (5.5)

Step 2:  obtain the optimal passive order quantity g,(W) for the fixed wholesale price W:

q,(W)eargmax max — u(r(W,x,(W,q),q)), (5.6)
q

X (W,q)eX, (W,q)

where X, (W,q) is the set of passive focus points X, (W,qQ).

Apprehensive retailer
The apprehensive retailer thinks over a demand with a lower satisfaction and a lower
likelihood and he/she makes an order decision as follows:

Step 1: After observing the wholesale price w , determine the apprehensive focus point

X, (W, q) for each order quantity Q:
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X, (W, q) € arg min upper[z(x),u(r(W, x,q))]. (5.7)

Step 2:  obtain the optimal apprehensive order quantity g,(W) for the fixed wholesale price
W:

g;(W)eargmax ~max — u(r(W,x,W,a),q)), (5.8)
q

Xg(W,q)eX5(W,q)

where X,(W,q) is the set of apprehensive focus points X, (W,qQ) .

Daring retailer
The daring retailer’s considers a demand with a higher satisfaction and a lower likelihood and

his/her decision-making procedure is as follows:

Step 1: After observing the wholesale price w, determine the daring focus point x,(W,q) for

each order quantity Q:
x,(W,q) € arg min upper[z(x),1—u(r(W, x,q))]. (5.9)

Step 2:  obtain the optimal daring order quantity ¢, (W) for the fixed wholesale price W:

q,W)eargmax max u(r(W,x,(W,q),q)), (5.10)
q

X4 (W,q)eX4(W,q)

where X,(W,q) is the set of daring focus points x,(W,Q) .

5.2.2 The upper level problem: the manufacturer’s model

Two types of supply chain are examined in this section: make-to-order and make-to-stock. In
the make-to-order supply chain, the manufacturer performs production after the retailer’s ordering
decision. Therefore, there are no demand uncertain for the manufacturer. On the other hand, in
the make-to-stock supply chain, the manufacturer performs production before the retailer’s

ordering decision. If the manufacturer produces too much innovative products, the unsold
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products will be salvaged; if the manufacturer’s production quantity is less than the demand,

he/she will suffer an opportunity cost. We consider the make-to-order supply chain firstly.

5.2.2.1 Make-to-order supply chain

The retailer’s optimal response ¢, W), q,W), qg,(W) or qg,(W) is obtained in the

lower level problem. With consideration of (5.1), the imagined profit functions of the

manufacturer who is facing active, passive, apprehensive or daring retailer are as follows:

f(W,q, W))=Wag, (W); (5.11)
fW,q,(W)) =Wa,(W). (5.12)
fW, g, (W)) =Wa,(W); (5.13)
fW,q,(W))=Wa,(W). (5.14)

The manufacturer’s optimal wholesale prices when he/she is facing different retailers are as

follows:

W." eargmax f(W,q, W)),i=1,2,3 0r 4. (5.15)
w

W, W,, W, and W," are the optimal wholesale prices of the manufacturer when he/she

is facing active, passive, apprehensive and daring retailers, respectively.
The imagined profit of the whole supply chain when the manufacturer is facing active, passive,

apprehensive or daring retailer is as follows

Q =(R-W,")q, (W) ; (5.16)
Q, =(R-W,)q,W,). (5.17)
Q; =(R-W;)a; (W) ; (5.18)
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Q, =(R-W,)q,(W,). (5.19)
Q;, Q,, Q; and Q] are called optimal active, passive, apprehensive and daring profits,

respectively.

5.2.2.1 Make-to-stock supply chain

Due to the short life cycle of innovative products (usually shorter than the lead-time),
shortening the lead-time becomes an important topic of the supply chain management of such
products. Knowing the personalities of the retailers, the manufacturer is able to perform the
production in advance. Facing the retailers with different personalities, the manufacturer selects
a strategy and its corresponding optimal wholesale price contract to coordinate the supply chain
(production quantity equals to order quantity).

In this make-to-stock supply chain, the manufacturer imagine that he/she performs as an
integrated manufacturer and decides a production quantity in advance, which is a typical

newsvendor problem. The profit function of the integrated manufacturer is shown as below.

R+ (P—X)S, —c_P;
f(x,P):{ XTPoX% —6P - x<P (5.20)

(R—c,)P—SM(x—P); x=P’

where x is the market demand, P is the production quantity, S_ is the unit salvage price, SuM

0

is the integrated manufacturer’s unit opportunity cost, C, is the production costand ¢, >S,.

The satisfaction level of the integrated manufacturer is writtenas u, (x,q).

Similar as Chapter 3, there are active, passive, apprehensive and daring focus points lead to
active, passive, apprehensive and daring production quantity, i.e., B, , P, , P, and P, ,

which represent active, passive, apprehensive and daring strategies, respectively.
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5.3 Analysis Results

In this section we suppose the probability density function of demand satisfies the Assumption

3.1. After observing the wholesale price W represented by the manufacturer, following (3.3) and

(3.4), the retailer’s highest profit r, (W) and lowest profit r, (W) are obtained as follows.
r,W)=(R-W)d,. (5.21)

nWwW)=dR+(,—-d,)S, —d,W, (supposing W =S +S,). (5.22)

5.3.1 The analysis results of make-to-order supply chain

r(\N,X,Q)—n(VV) If
LW)-rWw)

We suppose the satisfaction function of the retailer is u(W,x,q) =

vxe(d,,d,), m(x) isof class C', then we have Theorem 5.1.
Theorem 5.1. When the manufacturer faces active retailer, the manufacturer’s imagined profit

function f(W,q, (W))=Wq, (W) is a concave function of wholesale price W.

Proof.

From (5.11), we have

f"(W,0,(W)) =20, (W) +Wa;(W) . (5.23)
From (3.20), we have
ou(W, x, x)
q,(W) = oW (5.24)

7(x) - au(v;),(x, X)

which lead to
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o*u(W, x,x) (20 au(\N,x,x))+ d*u(W,x,x) au(W,x,x)
qlﬂ(\N) — 8W2 OX OXoW oW . (5'25)
(- XXy

Since x e(d,,d,), with considering (3.2), (5.2) and Definition 2.2, we have

7'(x) <0, (5.26)
ou(W, x, X) _ R-W 0 (5.27)
OX (du _dl)(R_So) .
Gu(\N,x,x)= d, —X 20 (5.28)
oW (d, —d))(R-S,) '
oUW, x,x)
Taw? =0, (5.29)
OuW, x,x) _ -1 <0 (5.30)
OXoW (d,-d)R-S,) '
From (5.23) to (5.30), we know f"(W,q,(W))<O0. O

If z(x) issymmetric, and itis of class C' for x e (d,, d.) and xe(d.,d,), then we have

Theorem 5.2.

Theorem 5.2. When the manufacturer faces passive retailer, the manufacturer’s imagined profit

function f(W,q,(W))=Wq, (W) is a concave function of wholesale price W.

Proof.

From (5.12), we have

f"(W,q,(W)) = 2q; (W) +Wa, (W) (5.31)
From (3.22), we have

or(d,W,q)) 0oz(d,,(W,q))

' _ oW oW
%)= 5, W) ox(d,W,q)° 632
oq oq
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which lead to

orm(d,W,q) oz(d,,W,q)), 0°z(d,,W,q)) &*z(d,W,q))

—( X )
" oW oW oqow oqow
= 5.33
%) 27,00, 0)_0x(d, 0, 39
aq aq
With considering (3.2), (5.2) and Definition 2.2, we know g,(W) <0 and q;(W) <0, which
leadto f"(W,q,(W))<0. O

Proposition 5.3. When the manufacturer is facing the apprehensive or daring retailer, he/she
always sets the wholesale price equal to retail price and obtains the whole profit in the supply
chain.

Proposition 5.4. The imagined profits of the supply chain when the manufacturer is facing

different types of retailers have the relationships:

Q,<Q, <0 <Q, (5.34)

In the following we examine the behaviors of supply chain participants when the market
changes. Suppose the market demand is a triangular distribution with range [d,,d,]. The

normalized likelihood function 7(x) can expressed as

% d, <x<d, +4(d, —d,)
= ud_—l>)< ' (5.35)
m d, +4(d, —d,)<x<d,

where 0< A <1.

d, +4(d, —d,)e(d,,d,) isthe peak of the normalized likelihood function and it is the most

possible demand. The most possible demand d, +A(d, —d,) is increasing in parameter A .
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We examine the situation that the manufacturer is facing active retailer. Suppose the

manufacturer’s optimal wholesale price W," €(d,,d,) , that is f'(W,q,(W))=0 has a

solution in (d,,d,). We have the following theorem.

Proposition 5.5. When the manufacturer is facing the active retailer, his/her optimal wholesale
price increases while the most possible demand increases.

Proof.

From (5.11), we have

O’ T W, QW) A) _ oq,W,2) \\ 0°a(W,2)

(5.36)
OAOW oA OAOW
From (3.20), we have
d,(R-S,)+1-A)(d,R-dW +(d, —d,)S,)
- , 5.37
%) R-S, +(1-A)(R-W) (.37)
which lead to
2 _ _ _ 2
G W) _ 201, ~d)R-S,) 639
OAOW (R-S,+(1-2)(R-W))
Since x e (d,,d,), with considering (3.20) and (5.35), we have
oW, 1) >0. (5.39)
oA

2
From (5.36), (5.38) and (5.39), we know 0 f(v(\?//,igi/?/N)J) > 0. Referring the concavity of

f(W,q, (W)), we know that the manufacturer’s optimal wholesale price is increasing in A .o

Theorem 5.5 provide the managerial insights into the changes of supply chain performance and

behaviors of manufacturer and retailer when market grows.

5.3.1 The analysis results of make-to-stock supply chain
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Proposition 5.6. If Vxe(d,,d,), z(x) and U, (X, pP) are of class C', there is a unique
W, €(c,,R) which satisfies ¢, (W,) =P,.
Proof.
From (3.14), we know that @, (W) is the solution of

u(W, x, x) = z(X) . (5.40)
Using the implicit function theorem, we know that ¢,(W) is a continuously differentiable

function of W, and ¢; (W) < 0. With considering Lemma 3.6, we know that there is a unique

W, €(c,,R) which satisfies ¢, (W,) =P,. o

W, in Proposition 5.6 is called passive wholesale price contract, which is corresponded to the

passive strategy of the manufacturer. From Proposition 5.6 we can see that when the manufacturer
faces active retailer, the passive strategy can coordinate (production quantity equals to order
guantity) the supply chain. From Proposition 3.8, with the changing of wholesale price, the
changes of passive order quantity is depending on the setting of parameters, we have the following

Proposition.

Proposition 5.7. When the manufacturer is facing the passive retailer, no strategy can surely

coordinate the supply chain.

From Lemma 3.5 and Proposition 3.9, the wholesale price has no effect on apprehensive and

daring order quantities, we obtain Proposition 5.8.
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Proposition 5.8. When the manufacturer is facing the apprehensive/daring retailer, the

apprehensive/daring strategy can coordinate the supply chain.

5.4 Concluding Remarks

This chapter examines the wholesale price contract in a simple supply chain of the innovative
product. We use the one-shot decision theory to analyze the behaviors of supply chain
participants. The one-time feature of innovative products is considered. Different from the
existing models, we introduce the personalities of the supply chain participants into our models,
and we show the importance of personality information sharing. Stackelberg equilibriums are
proposed to analyze the optimal wholesale pricing of manufacturer and the optimal order quantity
of retailer both in the make-to-order and make-to-stock supply chains. To the best of my
knowledge, it is the first time that the contracts in the make-to-stock supply chain is studied.
Different types of retailers, called active, passive, apprehensive and daring retailers, lead to
different Stackelberg equilibriums. The managerial insights into the changes of supply chain

performance and behaviors of manufacturer and retailer when market grows are also discussed.
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Chapter 6

Conclusions

In this dissertation, three supply chain management models which fit the one-shot feature of
innovative products are studied based on the one-shot decision theory. The general solutions and
existence theorem are proposed in one-shot decision theory so that the mathematical basics in
analyzing the supply chain management models are given. The main achievements obtained in
this dissertation are summarized as follows.

In Chapter 2, the general solutions of active, passive, apprehensive and daring focus points and
optimal alternatives are proposed and the existence theorem is established in the one-shot decision
theory.

In Chapter 3, newsvendor models for innovative products are proposed based on the one-shot
decision theory. Four types of retailers who choose four different types of focus points, i.e. active,
passive, apprehensive and daring retailers are examined by one-shot decision theory. The
proposed models are scenario-based decision models which provide a fundamental alternative to
analyze the newsvendor problems of innovative products.

In Chapter 4, price-setting newsvendor models for innovative products are proposed. In the
classic newsvendor problem, the retail price is considered as an exogenous value. It is only for a
perfect competitive market where the retailers are price-takers. When the retailer is selling an
innovative product in a monopoly market, he/she has only one chance to determine not only the
order quantity but also the retail price the retail price to maximize his/her profit. The one-shot

decision theory based price-setting newsvendor models are proposed for this situation.
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In Chapter 5, the wholesale price contracts in the supply chain for innovative products are
discussed. In this supply chain, a single manufacturer sells innovative products to a retailer who
is facing a newsvendor problem. Based on one-shot decision theory, the Stackelberg equilibriums
are obtained for the optimal wholesale price of manufacturer and the optimal order quantity of
retailer both in the make-to-order and make-to-stock supply chain. Different types of retailers lead
to different Stackelberg equilibriums. In the proposed models, the one-time feature of innovative
products and the information sharing of personalities are considered. The managerial insights into
the changes of supply chain performance and behaviors of manufacturer and retailer when market

grows are also discussed.
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