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Chapter 1 

 

Introduction 

 

In the increasingly fierce competitive environment, innovation has become a core competency 

of an industrial organization. Innovative products are featured by higher profit margins, 

intrinsically unpredictable demand and short life cycles (Fisher, 1997). Many researchers study 

the newsvendor problems and supply chain management problems for innovative products, such 

as fashion goods (see the review by Cachon, 2003). However, the intrinsic one-shot characteristic 

of the decision related to innovative products has not been taken into account yet. The research in 

this dissertation is on characterizing the one-shot feature of innovative products in the supply 

chain management models based on the one-shot decision theory (Guo, 2011). Speaking in detail, 

it can be divided into four parts, that is, 1: General solutions in the one-shot decision theory; 2: 

Newsvendor models for innovative products; 3: Price-setting newsvendor models for innovative 

products; 4: Wholesale price contracts in the supply chain for innovative products. The detailed 

introduction is as follows. 

 

1: General solutions in the one-shot decision theory 

 

Guo (2011) initially proposed the one-shot decision theory (OSDT) for the one-shot decision 

problem which is typical for a situation where a decision is made only once under uncertainty. 

The one-shot decision theory provides a scenario-based choice instead of the lottery-based 

choices in the existing decision theories. According to the one-shot decision theory, a person 
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makes a one-shot decision based on some particular scenario (state) which is the most appropriate 

one for him/her while considering the satisfaction level incurred by this scenario and its likelihood. 

The one-shot decision process is separated into two steps. The first step is to seek an appropriate 

scenario from all possible states for each alternative. This scenario is called as the focus point of 

the alternative. The second step is to evaluate the alternatives by the satisfaction levels incurred 

by the focus points for obtaining the optimal alternative. By the one-shot decision theory, the one-

shot decision problem is formulated as a bi-level optimization problem and there is no existing 

general optimization method for such problem. In this dissertation, with an assumption that the 

normalized likelihood function and the satisfaction function are quasi-concave, the general 

solutions of the focus points and the optimal alternatives are obtained and the existence theorem 

is established in the one-shot decision theory. 

 

2: Newsvendor models for innovative products 

 

The newsvendor problem is a well-known inventory management problem. It has the following 

common characteristics. Prior to the season, the retailer must decide the quantity of the product 

to purchase. The procurement lead-time tends to be quite long relative to the selling season so 

that there is often not enough opportunity to replenish inventory once the season has begun. 

Excess stock can only be salvaged at a loss once the season is over. As the life cycle of innovative 

product is usually shorter than the procurement lead times, determining optimal order quantities 

of such products is a typical one-shot decision problem for the retailer. Therefore, newsvendor 

models for innovative products are proposed based on the one-shot decision theory. In the models, 

for each order quantity, the retailer chooses one appropriate demand (focus point) amongst all 

possible demands while considering the satisfaction level caused by the occurrence of the demand 
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and the likelihood of the demand. The optimal order quantity corresponds to the maximum 

satisfaction level of its focus point. The proposed newsvendor model (newsvendor-OSDT) is 

fundamentally different from the subjective expected utility (SEU) based newsvendor model 

(newsvendor-SEU), because the core hypothesis of SEU is that selecting an alternative equals 

selecting a probability distribution whereas the core hypothesis of OSDT is that selecting an 

alternative corresponds to selecting one appropriate state (scenario). Therefore, the newsvendor-

SEU is lottery-based whereas the newsvendor-OSDT is scenario-based. 

 

3: Price-setting newsvendor models for innovative products 

 

In the classical newsvendor model, the retail price is considered as an exogenous value. It is 

only for a perfect competitive market where the retailers are price-takers. In a monopoly market, 

before the selling season, retail price and order quantity are set simultaneously, that is the price-

setting newsvendor problem. This part examines the price-setting newsvendor problem for an 

innovative product in a monopoly market. Due to its short lifecycle, there is often only one 

opportunity for the retailer to order an innovative products. Hence, this dissertation highlights that 

for a retailer who sells an innovative product, how to determine the optimal order quantity is a 

one-shot decision problem which is typical for a situation where a decision is made once under 

uncertainty. The existing price-setting newsvendor models seek the optimal order quantities and 

retail prices to maximize the expected utilities or the probability measures of achieving target 

profits. They take into account all demand values when make a decision. However, only one 

demand will occur when selling an innovative product due to its short life cycle. Considering the 

one-shot feature of the retailer’s decision making for ordering an innovative product, we propose 

the price-setting newsvendor model with the one-shot decision theory. In the proposed models, 
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each order quantity is evaluated only by the payoff of one selected demand (focus point) with 

considering the satisfaction level when this demand occurs and its occurrence likelihood. It is 

different from the expected utility based model in which the order quantity is evaluated by the 

average of the utilities caused by all demands. Hence, the proposed model is scenario-based which 

is fundamentally different for the existing models which is probability distribution based (lottery 

based). 

 

4: Wholesale price contracts in the supply chain for innovative products 

 

As a fundamental research of the supply chain management, a single manufacturer selling 

(innovative) products to a retailer who faces a newsvendor problem has been extensively 

researched (Lariviere and Porteus, 2001; Pasternack, 2008). This dissertation extended the 

existing literature mainly in the following three dimensions. Firstly, this dissertation considers the 

one-time feature of innovative products as follows: after observing the wholesale price, the 

retailer evaluating his/her order quantity only based on the selected demand (focus points). The 

optimal order quantity corresponds to the maximum satisfaction level of its focus point. Secondly, 

in the past decades, the value of information sharing in the supply chain has attracted much 

attention from both practitioners and researchers. But most of the works are focusing on the value 

of demand information sharing. Until now, the information sharing of participants’ personalities 

in the supply chain is still on ‘virgin territory’. In this dissertation, the retailer’s personality 

information are considered. The optimal wholesale price contracts for the manufacturer when 

he/she is facing different personalities of retailers are obtained. Thirdly, this dissertation examine 

the wholesale price contract both in the make-to-order and make-to-stock supply chain.  
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  The reminder of this dissertation is organized as follows. 

  In Chapter 2, the general solutions of active, passive, apprehensive and daring focus points and 

optimal alternatives are proposed and the existence theorem is established in the one-shot decision 

theory.  

  In Chapter 3, with considering the one-time feature of innovative products, we built the 

newsvendor models for innovative products for four types of retailers, i.e. active, passive, 

apprehensive and daring retailers; managerial insights into the behaviors of different types of 

retailers are gained by the theoretical analysis. 

  In Chapter 4, the price-setting newsvendor models with the one-shot decision theory which fit 

the one-time feature of the retailer’s joint price/quantity decision are built. The theoretical analysis 

provides the managerial insights into the behaviors of different types of retailers in the monopoly 

market. The proposed methods provide a fundamentally different vehicle for analyzing the 

newsvendor problems in a monopoly market of an innovative product. 

In Chapter 5, the Stackelberg equilibriums are obtained for the optimal wholesale price of 

manufacturer and the optimal order quantity of retailer both in the make-to-order and make-to-

stock supply chain for innovative products. Different types of retailers lead to different 

Stackelberg equilibriums. The managerial insights into the changes of behaviours of manufacturer 

and retailer when market grows are discussed. This chapter presents the first formal analysis of 

wholesale pricing of innovative products when the instinct one-time feature of the innovative 

product and the retailer’s personality information are considered. Our analysis shows the 

differences of the wholesale price contracts for the retailers with different personalities and the 

importance of personality information sharing.  

 

  Finally, we summarize the obtained results of this dissertation in Chapter 6.  
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Chapter 2 

 

General Solutions in the One-Shot Decision Theory 

 

2.1 Introduction 

 

Guo (2011) initially proposed the one-shot decision theory (OSDT) for the one-shot decision 

problem which is typical for a situation where a decision is made only once under uncertainty. 

The one-shot decision theory provides a scenario-based choice instead of the lottery-based 

choices in the existing decision theories. As the applications, a duopoly market of a new product 

with a short life cycle and the private real estate investment were analyzed (Guo, 2010a; Guo, 

2010b; Guo et al., 2010). Recently, the research (Guo, 2014) clarified the fundamental differences 

between the one-shot decision theory and other decision theories under uncertainty and pointed 

out the instinct problems in other decision theories to show that the one-shot decision theory is 

necessary to solve one-shot decision problems and manifested the relationship between the one-

shot decision theory and the probabilistic decision methods. Guo and Li (2014) proposed 

multistage one-shot decision making approaches and analyzed the optimal stopping problem. 

Different from the probabilistic decision methods in which selecting an alternative equals 

selecting a probability distribution, in the one-shot decision theory, a person makes a one-shot 

decision based on some particular scenario (state) which is the most appropriate one for him/her 

while considering the satisfaction level incurred by this scenario and its likelihood. The one-shot 

decision process is separated into two steps. The first step is to seek an appropriate scenario from 

all possible states for each alternative. This scenario is called as the focus point of the alternative. 
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The second step is to evaluate the alternatives by the satisfaction levels incurred by the focus 

points for obtaining the optimal alternative. Different from the expected utility based models in 

which the different behaviors of the decision makers are assumed to be caused by the different 

utility functions of the decision makers, i.e., convex, concave and linear ones, we argue that the 

different behaviors of the decision makers result from the different personalities of them. We 

divide the decision makers into four types, i.e., active, passive, apprehensive and daring according 

to which type of focus point (scenario) they choose. Such idea is intuitively well-accepted. By the 

one-shot decision theory, the one-shot decision problem is formulated as a bi-level optimization 

problem and there is no existing general optimization method for such problem. Guo and Ma 

(2014) gave the general solutions and the existence theorem in the one-shot decision theory; 

In this chapter, with an assumption that the normalized likelihood function and the satisfaction 

function are quasi-concave, the general solutions of the focus points and the optimal alternatives 

are obtained and the existence theorem is established in the one-shot decision theory. 

 

2.2 Four Types of Focus Points 

 

The set of a state x  is S . The state x  is a random variable X  with the probability density 

function )(xf . The normalized likelihood function of X  is given as below. 

 

Definition 2.1. Given the probability density function )(xf , the normalized likelihood function 

)(x  is  

)(max

)(
)(

xf

xf
x  .                                                       (2.1) 

 

)(x  can be regarded as the normalized probability density function and is used to represent the 

relative position of the likelihood of x . If X  is a discrete random variable, the normalized 

likelihood function can be obtained as the normalized probability mass function. Clearly, the 
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smaller the normalized likelihood of a demand x  is, the more surprising the occurrence of x  

is.  

 The set of an alternative a  is A . The consequence resulting from the combination of an 

alternative a  and a state x  is referred to as a payoff, denoted as ),( axv . The set of a payoff 

is V . The satisfaction level of a decision maker for a payoff is expressed by a satisfaction 

function, as defined below. 

 

Definition 2.2. The satisfaction function of the decision maker is the following continuous strictly 

increasing function of the payoff v, 

]1,0[: Vu .                                       (2.2) 

 

Because the payoff is a function of x  and a , we write the satisfaction function as ),( axu . 

Since one and only one state will come up for a one-shot decision problem, a decision maker 

should decide which state ought to be considered for making a one-shot decision. How to 

determine focus points (focused states) depends on his/her attitudes about likelihood and 

satisfaction. We take into account four types of states for each alternative with considering the 

likelihood degree and the satisfaction level, that is, the state with a higher satisfaction and a higher 

likelihood (Type A), a lower satisfaction and a higher likelihood (Type B), a higher satisfaction 

and a lower likelihood (Type C), a lower satisfaction and a lower likelihood (Type D). It is 

intuitively acceptable that active, passive, daring and apprehensive decision makers are inclined 

to take into account Type A, Type B, Type C and Type D states, respectively. Therefore, Type A, 

Type B, Type C and Type D states are called as active, passive, daring and apprehensive focus 

points, respectively (shown in Table I). 

 



9 

 

 

Table 2.1. Four types of focus points 

 

For characterizing the focus points, we introduce the following operators. 

Definition 2.3. Given a vector ],,,[ 21 nbbb  , ],,,[ 21 nbbblower   and ],,,[ 21 nbbbupper   

are defined as follows: 

],,,[],,,[
,1,1,1

21
ni
i

ni
i

ni
in bbbbbblower






 ,        (2.3) 

],,,[],,,[
,1,1,1

21
ni
i

ni
i

ni
in bbbbbbupper






 .        (2.4) 

],,,[ 21 nbbblower   and ],,,[ 21 nbbbupper   are the lower and upper bounds of 

],,,[ 21 nbbb  , respectively. For example, the normalized likelihood degree and the satisfaction 

level of a state x  are 0.3 and 0.8, respectively, which is represented as ]8.0,3.0[ .   

]3.0,3.0[]8.0,3.0[ lower  and ]8.0,8.0[]8.0,3.0[ upper   represent that x  has at least 0.3 

normalized likelihood degree and 0.3 satisfaction level and x  has at most 0.8 normalized 

likelihood degree and 0.8 satisfaction level. 

In the following, we consider four types of focus points. 

 

Active focus point: The state (scenario) with the higher likelihood and the higher satisfaction 

level is obtained as 

)],(),([maxarg)(1 axuxlowerax
Sx




 .                       (2.5) 

)(1 ax  is called an active focus point of an alternative a . )],(),([maxarg axuxlower
Sx




 

higher lower

higher active focus point passive focus point

lower daring focus point apprehensive focus point

satisfaction

likelihood
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represents an element of S  which maximizes )],(),([ axuxlower   with Sx . Because 

)],(),([ axuxlower   represents the lower bound of the vector )],(),([ axux , maximizing 

)],(),([ axuxlower  ( )],(),([max axuxlower
Sx




) will increase the likelihood and the 

satisfaction level simultaneously. Therefore, )],(),([maxarg axuxlower
Sx




 is for seeking the 

state that has the higher likelihood and the higher satisfaction level.  

In order to facilitate understanding (2.5), let us give an example. For four states 

},,,{ 4321 xxxxS  , we have 1.0)( 1 x , 3.0)( 2 x , 0.1)( 3 x , 6.0)( 4 x , 

6.0),( 1 axu , 2.0),( 2 axu , 3.0),( 3 axu  and 8.0),( 4 axu . )],(),([ axux , 

Sx  are four vectors: ]6.0,1.0[ , ]2.0,3.0[ , ]3.0,0.1[  and ]8.0,6.0[  represented by A, B, 

C and D, respectively (shown in Fig. 2.1.). )],(),([ axuxlower   transfers A, B, C and D into 

A , B , C  and D , which are ]1.0,1.0[ , ]2.0,2.0[ , ]3.0,3.0[  and ]6.0,6.0[ , 

respectively. )],(),([max axuxlower
Sx




 is 

]6.0,6.0[])6.0,6.0[],3.0,3.0[],2.0,2.0[],1.0,1.0max([   which corresponds to D . Thus, 

)],(),([maxarg axuxlower
Sx




  is 
4x . It is obvious that 

4x  have a higher likelihood (0.6) and 

a higher satisfaction level (0.8). 

 

 

Fig.2.1 The explanation of the formula (2.5) 
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Passive focus point: The state (scenario) with the higher likelihood and the lower satisfaction 

level is obtained as 

)],(),(1[minarg)(2 axuxupperax
Sx




.          (2.6) 

)(2 ax  is called a passive focus point of an alternative a . 

Apprehensive focus point: The state (scenario) with the lower likelihood and the lower 

satisfaction level is obtained as 

)],(),([minarg)(3 axuxupperax
Sx




 .              (2.7) 

)(3 ax  is called an apprehensive focus point of an alternative a . 

 

Daring focus point: The state (scenario) with the lower likelihood and the higher satisfaction 

level is obtained as 

)],(1),([minarg)(4 axuxupperax
Sx




 .         (2.8) 

)(4 ax  is called a daring focus point of an alternative a . 

 

Comments:  

1. (2.5) to (2.8) are from four bi-objective optimization problems ( ),(max),(max axux ;

),(min),(max axux ; ),(min),(min axux ; ),(max),(min axux ). They are for 

seeking the state of natures that have the higher likelihood and higher satisfaction, the higher 

likelihood and the lower satisfaction, the lower likelihood and the lower satisfaction and the lower 

likelihood and the higher satisfaction, respectively. From (2.5) to (2.8), we know that no other 

)],(),([ axux  satisfies ))(()( 1 axx    and )),((),( 1 aaxuaxu  ; or ))(()( 2 axx    

and )),((),( 2 aaxuaxu  ; or ))(()( 3 axx    and )),((),( 3 aaxuaxu  ; or 
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))(()( 4 axx    and )),((),( 4 aaxuaxu  . In other words, there is no state which has a 

higher likelihood and a higher satisfaction degree than the active focus point; a higher likelihood 

and a lower satisfaction level than the passive focus point; a lower likelihood and a lower 

satisfaction level than the apprehensive focus point; a lower likelihood and a higher satisfaction 

level than the daring focus point.  

2. The normalized likelihood degrees and the satisfaction levels are treated equally. We take the 

active focus points as an example. Equation (2.5) is equivalent to the following equation. 

2

|),()(|),()(
maxarg)(1

axuxaxux
ax

Sx







.                             (2.9) 

From (2.9), we know that to seek the active focus point is to increase the sum of the normalized 

likelihood degree and the satisfaction level and to decrease the differences between them.   

3. For one alternative, more than one state might exist as one type of focus point. We denote the 

sets of four types of focus points of an alternative a  as )(1 aX , )(2 aX , )(3 aX  and 

)(4 aX , respectively.  

 

In a one-shot decision problem, a decision maker contemplates that the focus points are the 

most appropriate scenarios for him/her. After determining the focus points of each alternative, the 

decision maker will make a decision only based on the focus points and chooses the optimal 

alternative which can bring about the highest satisfaction level once its focus point comes true. 

The four kinds of optimal alternatives are obtained as follows: 

)),((maxmaxarg 1
)()(

1
11

aaxua
aXaxAa 

 ,               (2.10) 

)),((minmaxarg 2
)()(

2
22

aaxua
aXaxAa 

  ,                      (2.11) 

)),((minmaxarg 3
)()(

3
33

aaxua
aXaxAa 

 ,                (2.12) 
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)),((maxmaxarg 4
)()(

4
44

aaxua
aXaxAa 

 .        (2.13) 

In the case where multiple active focus points of an alternative a  exist, )),((max 1
)()( 11

aaxu
aXax 

 

is used to represent the highest satisfaction level amongst all active focus points of a . It reflects 

an optimistic attitude of a decision maker whereas )),((min 2
)()( 22

aaxu
aXax 

 describes a 

conservative attitude of a decision maker. 


1a , 


2a , 


3a  and 


4a  are called optimal active, 

passive, apprehensive and daring alternatives, respectively. Setting )( 111

  axx , )( 222

  axx , 

)( 333

  axx  and )( 444

  axx , 


1x , 


2x , 


3x  and 


4x  are called optimal active, passive, 

apprehensive and daring focus points, respectively. 

 

2.3 General Solutions of Focus Points and Optimal Alternatives 

 

If S  and A  are nonempty finite sets, there are always solutions of (2.5)-(2.13). For the 

continuous cases, let us consider the solutions of (2.5)-(2.13) with the following conditions. 

Basic Assumptions: In the following parts, we suppose 

(1) The sets of states and alternatives are ],[ hlS   and ],[ hl aaA  , respectively. 

(2) )(x  is a strictly quasi-concave continuous function (see the definition in the book (Madden, 

1986)), ),( hlc , 1)( c , 0)( l  and 0)( h . 

(3) ),( axv  is continuous and strictly quasi-concave in x . 

Clearly, )(x  is strictly increasing within ],[ cl  and strictly decreasing within ],[ hc . 

),( axu  is continuous and strictly quasi-concave in x . a  ),( axu  attains its maximum at a 

unique state ),(maxarg)(ˆ
],[

axuax
hlx

  and is strictly increasing within )](ˆ,[ axl  for lax )(ˆ  
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and strictly decreasing within ]),(ˆ[ hax  for hax )(ˆ .  

We have the following theorems. 

Theorem 2.1. The active focus point of an alternative a , )(1 ax , is as follows: 

(1) if ))(ˆ()),(ˆ( axaaxu  , then )(ˆ)(1 axax  ; 

(2) if ))(ˆ()),(ˆ( axaaxu   and cax )(ˆ , then )()(1 axax ol ; 

(3) if ))(ˆ()),(ˆ( axaaxu   and cax )(ˆ , then )()(1 axax ou . 

)(axol
 and )(axou  are the solutions of )(),( xaxu   within ]),(ˆ[ cax  and )](ˆ,[ axc , 

respectively. 

Proof.  

(1) We have 

)]),(ˆ(),),(ˆ([)],(),,([max)],(),([max
],[],[

aaxuaaxuaxuaxuaxuxlower
hlxhlx




 .       (2.14) 

)],(),([ axuxlower   attains its maximum )]),(ˆ(),),(ˆ([ aaxuaaxu  if and only if )(ˆ axx  . 

It means )(ˆ)(1 axax  . 

(2)  First, let us consider the cases satisfying cax )(ˆ . We have that )(),()( xaxuxF   

is strictly decreasing continuous within ]),(ˆ[ cax , 0))(ˆ()),(ˆ())(ˆ(  axaaxuaxF   and 

01),()(),()(  acucacucF  . Therefore 0)(),()(  xaxuxF   has a unique 

solution within ]),(ˆ[ cax , that is )(axol . ))(,[ axlx ol , )(x  is strictly increasing so that 

))](()),(([)](),([)],(),([ axaxxxaxuxlower olol   .      (2.15) 

]),(( haxx ol , ),( axu  is a strictly decreasing function of x  so that 

)]),((),),(([)],(),,([)],(),([ aaxuaaxuaxuaxuaxuxlower olol .     (2.16) 

Recalling )),(())(( aaxuax olol  , we have 
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)()],(),([(maxarg)(
],[

1 axaxuxlowerax ol
hlx




 .       (2.17) 

We can directly check that (2.16) also holds for cax )(ˆ . 

(3) Similarly, we have )()(1 axax ou . )(axou  is the solution of )(),( xaxu   within 

)](ˆ,[ axc .                                                                    □ 

 

Theorem 2.2. The passive focus point of an alternative a , )(2 ax , is as follows: 

(1) if  ))(ˆ(1)),(ˆ( axaaxu  , then ),(minarg)(
)}(),({

2 axuax
axaxx pupl

 ; 

(2) if ))(ˆ(1)),(ˆ( axaaxu   and cax )(ˆ , then )()(2 axax pl ; 

(3) if ))(ˆ(1)),(ˆ( axaaxu   and cax )(ˆ , then  )()(2 axax pu . 

)(axpl  and )(axpu  are the solutions of )(1),( xaxu   within )]),(ˆmin(,[ caxl  and 

]),),(ˆ[max( hcax , respectively. 

Proof.  

(1) First, let us consider the cases satisfying lax )(ˆ , hax )(ˆ  and 

))(ˆ(1)),(ˆ( axaaxu  . We have that ))(1(),()( xaxuxF   is strictly increasing 

continuous within )]),(ˆmin(,[ caxl , 01),())(1(),()(  alulalulF  ,  

0)))(ˆ(1()),(ˆ())(ˆ(  axaaxuaxF   and 0),())(1(),()(  acucacucF  . 

Therefore,  0))(1(),()(  xaxuxF   has a unique solution within )]),(ˆmin(,[ caxl . 

Similarly, it is easy to know that 0))(1(),()(  xaxuxF   have a unique solution within 

]),),(ˆ[max( hcax . These two solutions are )(axpl  and )(axpu , respectively. 

))(,[ axlx pl , )(1 x  is strictly decreasing so that 

))]((1)),((1[)](1),(1[)],(),(1[ axaxxxaxuxupper plpl   .      (2.18) 
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)]),(ˆmin(),(( caxaxx pl , ),( axu  is a strictly increasing function of x  so that 

)]),((),),(([)],(),,([)],(),(1[ aaxuaaxuaxuaxuaxuxupper plpl .          (2.19) 

Recalling )),(())((1 aaxuax plpl  , we have 

)()],(),(1[minarg
)]),(ˆmin(,[

axaxuxupper pl
caxlx




 .                                (2.20) 

Similarly, we have  

)()],(),(1[minarg
]),),(ˆ[max(

axaxuxupper pu
hcaxx




 .                               (2.21) 

If cax )(ˆ , the interval )]),(ˆmax(),),(ˆ[min( caxcax  becomes )](ˆ,[ axc . Since ),( axu  is 

strictly increasing within )](ˆ),([ axaxpl , we have 

)],(),,([min)],(),(1[min
)](ˆ,[)](ˆ,[

axuaxuaxuxupper
axcxaxcx 

  

)],(),,([ acuacu )]),((),),(([ aaxuaaxu plpl .                             (2.22) 

Similarly, if cax )(ˆ , the interval )]),(ˆmax(),),(ˆ[min( caxcax  becomes ]),(ˆ[ cax . Since

),( axu  is strictly decreasing within )](),(ˆ[ axax pu , we have 

)]),((),),(([)],(),(1[min
]),(ˆ[

aaxuaaxuaxuxupper pupu
caxx




 .                   (2.23) 

From (2.20) to (2.23), we know 

),(minarg)],(),(1[minarg)(
)}(),({],[

2 axuaxuxupperax
axaxxhlx

pupl

  .                  (2.24) 

It is easy to check that (2.24) also holds for the case ))(ˆ(1)),(ˆ( axaaxu   or lax )(ˆ  or 

hax )(ˆ . 

Likewise, we can prove Theorem 2.2(2) and 2.2(3).                  □ 

Corollary 2.3. Suppose ))(ˆ(1)),(ˆ( axaaxu  . The passive focus point )(2 ax  is as follows: 

(1) if cax )(ˆ  and )](ˆ,(0 axcx   )(1),( 00 xaxu   holds, then 
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)(),(minarg)(
)}(),({

2 axaxuax pl
axaxx pupl




; 

(2) if cax )(ˆ  and )),(ˆ[0 caxx   )(1),( 00 xaxu   holds, then 

)(),(minarg)(
)}(),({

2 axaxuax pu
axaxx pupl




. 

Proof.  

(1) Since  )(1 x  is strictly increasing within ],[ hc  and haxxc pu  )(0 , 

)(1))((1 0xaxpu    holds. Since ),( axu  is strictly increasing within )](ˆ,[ axlx  and 

)(ˆ)( 0 axxcaxl pl  , )),((),( 0 aaxuaxu pl  holds. Therefore, we have 

)),((),()(1))((1)),(( 00 aaxuaxuxaxaaxu plpupu   .     (2.25) 

From Theorem 2.2(1), we know )()(2 axax pl .  

(2) Likewise, we can prove Corollary 2.3(2).                             □ 

 

Lemma 2.4.  

(1) Aaa  21,  )),(()),(( 2211 aaxuaaxu plpl   holds if and only if )()( 21 axax plpl   holds; 

and )),(()),(( 2211 aaxuaaxu plpl   holds if and only if )()( 21 axax plpl   holds. 

(2) Aaa  21,  )),(()),(( 2211 aaxuaaxu pupu   holds if and only if )()( 21 axax pupu   

holds; and )),(()),(( 2211 aaxuaaxu pupu   holds if an only if )()( 21 axax pupu   holds. 

 

Corollary 2.5.  

(1) Assume that ))(ˆ(1)),(ˆ( iii axaaxu   or ))(ˆ(1)),(ˆ( iii axaaxu   with cax i )(ˆ , 

2,1i . If ),(),( 21 axuaxu   holds for any ))](ˆ),(ˆmin(,[ 21 axaxlx , then 
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)),(()),(( 2211 aaxuaaxu plpl   holds; and if ),(),( 21 axuaxu   holds for any 

))](ˆ),(ˆmin(,[ 21 axaxlx , then )),(()),(( 2211 aaxuaaxu plpl   holds.   

(2) Assume that ))(ˆ(1)),(ˆ( iii axaaxu   or ))(ˆ(1)),(ˆ( iii axaaxu   with cax i )(ˆ , 

2,1i . If ),(),( 21 axuaxu   holds for any ])),(ˆ),(ˆ[max( 21 haxaxx , then 

)),(()),(( 2211 aaxuaaxu pupu   holds; and if ),(),( 21 axuaxu   holds for any 

])),(ˆ),(ˆ[max( 21 haxaxx , then )),(()),(( 2211 aaxuaaxu pupu   holds. 

 

Lemma 2.6. The apprehensive focus point of an alternative a , )(3 ax , is as follows: 

),(minarg)(
},{

3 axuax
hlx

 .          (2.26) 

Proof. ),( axu  is a strictly quasi-concave function in x  so that

)],(),,([)],(),,([)],(),,([min)],(),([min
],[],[

ahuahualualuaxuaxuaxuxupper
hlxhlx




 , (2.27) 

where the equality holds if and only if ),(minarg
},{

axux
hlx

  because 0)()(  hl  . 

Therefore, (2.26) holds.                                                        □ 

 

Lemma 2.7. The daring focus point of an  alternative a , )(4 ax , is as follows: 

(1) if ))(ˆ()),(ˆ(1 axaaxu  , then )(ˆ)(4 axax  ; 

(2) if ))(ˆ()),(ˆ(1 axaaxu  , then ),(maxarg)(
)}(),({

4 axuax
axaxx dudl

 .                                             

)(axdl  and )(axdu  are the solutions of )(),(1 xaxu   within )]),(ˆmin(,[ caxl  and 

]),),(ˆ[max( hcax , respectively. 

Proof. (1) We have 
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)],(1),,(1[min)],(1),([min
],[],[

axuaxuaxuxupper
hlxhlx




  

)]),(ˆ(1),),(ˆ(1[ aaxuaaxu  ,                      (2.28) 

where the equation holds if and only if )(ˆ axx  . That is, )(ˆ)(4 axax  . 

(2) Referring to the proof of Theorem 2.2(1), we have 

  ),(m i na r g)],(1),([maxarg)(
)}(),({

4 axuaxuxupperax
axaxxSx dldl

  .                  (2.29) 

                        □ 

Theorem 2.8. If there is an closed interval ],[ hl aaG   and Ga  )(axol  exists, then 

)(axol , ))(( axol , )),(( aaxu ol  are uniformly continuous within G . )(axou , ))(( axou , 

)),(( aaxu ou , )(axpl , ))(( axpl , )),(( aaxu pl
, )(axpu , ))(( axpu , )),(( aaxu pu

, 

)(axdl , ))(( axdl , )),(( aaxu dl , )(axdu , ))(( axdu  and )),(( aaxu du  are also 

uniformly continuous within their corresponding closed intervals, respectively. 

 

Proof. Gaa  21, , for simplicity we assume )()( 21 axax olol  . Since )),(( 2 aaxu ol  is a 

continuous function of a  within ],[ hl aa , )),(( 2 aaxu ol  is a uniformly continuous function. 

That is, 0 , 0  such that  || 21 aa  implies  

 |)),(()),((| 2212 aaxuaaxu olol .        (2.30) 

)()()(ˆ 211 axaxax olol   leads to )),(()),(( 1211 aaxuaaxu olol  so that we have 

)),(()),(()),(()),(( 22122211 aaxuaaxuaaxuaaxu olololol  .     (2.31) 

Recalling caxax olol  )()( 21 , we have 

0))(())(()),(()),(( 212211  axaxaaxuaaxu olololol  .     (2.32) 

Therefore,  
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|)),(()),((||))(())((| 221121 aaxuaaxuaxax olololol   

 |)),(()),((| 2212 aaxuaaxu olol .              (2.33) 

We know that ))(( axol , )),(( aaxu ol
 are uniformly continuous functions within G  so 

that )(axol  is uniformly continuous within G . Likewise, we have the same conclusions for 

)(axou , ))(( axou , )),(( aaxu ou
, )(axpl , ))(( axpl , )),(( aaxu pl

, )(axpu ,

))(( axpu , )),(( aaxu pu
, )(axdl , ))(( axdl , )),(( aaxu dl , )(axdu , ))(( axdu  and 

)),(( aaxu du .               □ 

 

Lemma 2.9.  

(1) )),(),(min(max)),((
],[

1 axuxaaxu
hlx




 , 

(2) )),(),(1max(min)),((
],[

2 axuxaaxu
hlx




, 

(3) )),(),(max(min)),((
],[

3 axuxaaxu
hlx




 , 

(4) )),(),(1min(max)),((
],[

4 axuxaaxu
hlx




.              

 

Theorem 2.10 (Existence Theorem). If the basic assumptions (1), (2) and (3) hold, then 


1a , 



2a , 

3a , 


4a , )( 11

ax , )( 22

ax , )( 33

ax  and )( 44

ax  always exist and they satisfy the 

following relations: 

(1) )),(),(min(maxmax)),((
],[],[

111 axuxaaxu
hlxaaa hl




  , 

(2) )),(),(1max(minmax)),((
],[],[

222 axuxaaxu
hlxaaa hl




 , 

(3) )),(),(max(minmax)),((
],[],[

333 axuxaaxu
hlxaaa hl




  , 
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(4) )),(),(1min(maxmax)),((
],[],[

*

4

*

44 axuxaaxu
hlxaaa hl




. 

Proof. Set )),(),(min(),( axuxaxg  . Since ),( axu  is continuous on ],[],[ hl aahl  and 

)(x  is continuous on ],[ hl , ),( axg  is continuous on ],[],[ hl aahl  . Using Berge 

maximum theorem and Lemma 2.9(1), we know )),(),(min(max)),((
],[

1 axuxaaxu
hlx




  is 

continuous so that 

1a  and )( 11

ax  exist and satisfy Theorem 10(1). Likewise, we can prove 

Theorem 2.10(2), 2.10(3) and 2.10(4).                          □ 

 

Lemma 2.11.  

(1) )),(max),(min(max)),((
],[],[

111 axuxaaxu
hl aaahlx 

   , 

(2) )),(max),(1min(max)),((
],[],[

444 axuxaaxu
hl aaahlx 

   . 

Proof. From Theorem 2.10(1), we have 

)),(),(min(maxmax)),((
],[],[

111 axuxaaxu
hlxaaa hl




   

)),(max),(min(max)),(),(min(maxmax
],[],[],[],[

axuxaxux
hlhl aaahlxaaahlx 

  .               (2.34) 

From Theorem 2.10(4), we have 

  )),(),(1min(maxmax)),((
],[],[

*

4

*

44 axuxaaxu
hlxaaa hl




 

             )),(max),(1min(max
],[],[

axux
hl aaahlx 

  .                        (2.35) 

□ 

  Let us consider ),( axv  is quasi-convex continuous in x  and quasi-concave continuous in 

a  so that ),( axu  is quasi-convex continuous in x  and quasi-concave continuous in a . We 

have the following theorem. 
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Theorem 2.12. If ),( axu  is quasi-convex continuous in x  and quasi-concave continuous in 

a , then we have 

)),(max),(1max(min)),(),(1max(minmax
],[],[],[],[

axuxaxux
hlhl aaahlxhlxaaa 

  .          (2.36) 

Proof. Since )(x  is strictly quasi-concave, )(1 x  is strictly quasi-convex. For any 1x  

and 2x , we have 

))(1),(1max())1((1 2121 xxxx   ,  )1,0( .     (2.37) 

),( axu  is quasi-convex in x  so that for any 1x ,  we have 

)),(),,(max(),)1(( 2121 axuaxuaxxu   ,  )1,0( .      (2.38) 

Setting )),(),(1max(),( axuxaxf   and considering (2.37) and (2.38), we have 

)),)1((),)1((1max(),)1(( 212121 axxuxxaxxf    

))),(),,(max()),(1),(1max(max( 2121 axuaxuxx    

))),(),(1max()),,(),(1max(max( 2211 axuxaxux    

)),(),,(max( 21 axfaxf ,         (2.39) 

which means ),( axf  is quasi-convex in x . ),( axu  is a quasi-concave function of a , that 

is, 

)),(),,(min())1(,( 2121 axuaxuaaxu   ,  )1,0( .      (2.40) 

Considering (2.40), we have    

)))1(,(),(1max())1(,( 2121 aaxuxaaxf    

))),(),,(min(),(1max( 21 axuaxux  

))),(),(1max()),,(),(1min(max( 21 axuxaxux    

)),(),,(min( 21 axfaxf ,         (2.41) 

which means ),( axf  is quasi-concave in a . Since ),( axu  and )(x  are continuous, 

),( axf  is a continuous function. According to Sion’s minimax theorem (Sion, 1958), we have 

2x



23 

 

)),(),(1max(maxmin)),(),(1max(minmax
],[],[],[],[

axuxaxux
hlhl aaahlxhlxaaa

 


 

)),(max),(1max(min
],[],[

axux
hl aaahlx 

  .        (2.42) 

□ 

Theorem 2.13. 

(1) If ),(max
],[

axu
hl aaa

 is strictly increasing, then the unique optimal active focus point 


1x  

satisfies ),(max)(
],[

axux
hl aaa

 , ),( hcx  and ),(maxarg *

1
],[

*

1 axua
hl aaa

 . 

(2) If ),(max
],[

axu
hl aaa

 is strictly increasing and 1),(max
],[




ahu
hl aaa

, then the unique optimal 

daring focus point is hx 

4  and ),(maxarg *

4
],[

*

4 axua
hl aaa

 . 

(3) If ),(max
],[

axu
hl aaa

 is strictly decreasing, then the unique optimal active focus point 


1x  

satisfies ),(max)(
],[

axux
hl aaa

 , ),( clx  and ),(maxarg *

1
],[

*

1 axua
hl aaa

 . 

(4) If ),(max axu
a

 is strictly decreasing and 1),(max alu
a

, then the unique optimal daring 

focus point is lx 

4  and ),(maxarg *

4
],[

*

4 axua
hl aaa

 . 

Proof.  

(1) It follows from Berge maximum theorem that ),(max
],[

axu
hl aaa

 is continuous because ),( axu  

is continuous. We have that )(),(max)(
],[

xaxuxF
hl aaa




 is strictly increasing continuous 

within ],[ hc , 0)(),(max)(
],[




cacucF
hl aaa

  and 0)(),(max)(
],[




hahuhF
hl aaa

 . 

Therefore,  0)(),(max)(
],[




xaxuxF
hl aaa

  has a unique solution within ),( hc , denoted as 

0x . Since ),(max
],[

axu
hl aaa

 is strictly increasing within ],[ hl , ),[ 0xlx , we have 

),(max),(max)),(max),(min( 0
],[],[],[

axuaxuaxux
hlhlhl aaaaaaaaa 

 .      (2.43) 
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Meanwhile, ],( 0 hxx , we know 

)()()),(max),(min( 0
],[

xxaxux
hl aaa

 


.        (2.44) 

Since ),(max)( 0
],[

0 axux
hl aaa

 , 0xx   satisfies )),(max),(min(max
],[],[

axux
hl aaahlx 

 . Considering 

Lemma 2.11(1), we know 


1x  satisfies ),(max)(
],[

axux
hl aaa

 , ),( hcx  and 

),(maxarg *

1
],[

*

1 axua
hl aaa

 .  

(2) Since ),(max
],[

axu
hl aaa

 is strictly increasing within ],[ hl , hx   we have 

1),(max),(max
],[],[




ahuaxu
hlhl aaaaaa

. Meanwhile, 1)(1  h  holds. Considering Lemma 

2.11(2), we know hx 

4  and ),(maxarg
],[

*

4 ahua
hl aaa

 . 

Likewise, we can prove Theorem 2.13(3) and 2.13(4).           □ 

 

2.4 Concluding Remarks 

 

In this chapter, with an assumption that the normalized likelihood function and the satisfaction 

function are quasi-concave, the general solutions of active, passive, apprehensive and daring focus 

points and optimal alternatives are proposed and the existence theorem is established in the one-

shot decision theory.  
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Chapter 3 

 

Newsvendor Models for Innovative Products 

 

3.1 Introduction  

 

The newsvendor problem is a well-known inventory management problem. It has the following 

characteristics. Prior to the season, the seller must decide the quantity of the goods to 

purchase/produce. The procurement lead-time tends to be quite long relative to the selling season. 

As a result, there’s not enough opportunity to replenish inventory once the season has begun. 

Excess stock can only be salvaged at a loss once the season is over. The classical newsvendor 

problem is characterized by the fixed selling and wholesale prices and the uncertain demand of 

goods with a short life cycle, such as perishable items and fashion items. Its optimal order quantity 

is solved by the critical fractile of the demand distribution. A considerable amount of research 

(Grubbstrom, 2010; Wang, 2010; Caliskan-Demirag et al., 2011; Chen, 2011; Salinger and 

Ampudia, 2011; Xu et. al., 2011; Brito and de Almeida, 2012; Seifert et al., 2012; Summerfield 

and Dror, 2012; Murray et al. , 2012; Wang et al., 2012; Wu et al., 2012; Kwon and Cheong, 2014) 

and bibliographies have appeared in the newsvendor literature, including those of Petruzzi and 

Dada (1999), Khouja (1999) and Qin et al. (2011). Many extensions of the classic newsvendor 

problem, such as different demand functions, different supplier pricing policies to coordinate the 

supply chain, different retailer risk profits, supplier capacity constraints and multi-product cases 

have been made. But almost all the extensions have been made in the probabilistic framework 

where the uncertainty of the demand and the supply is characterized by probability distributions, 
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and the objective function is used to maximize the expected utility or the probability measure of 

achieving a target profit.  

  Guo and Ma (2012, 2014) examine the newsvendor problem for the innovative product as 

defined by Fisher. According to Fisher (1997), products basically belong to either primarily 

functional category or innovative one. Functional products satisfy basic needs and have stable, 

predictable demand and long life cycles whereas innovative products have higher profit margins, 

intrinsically unpredictable demands and short life cycles. In addition, for such an innovative 

product, the procurement lead-time is usually longer than the selling season so that there is usually 

only one opportunity to order goods before the season. For example, Sport Obermeyer, a major 

supplier of fashion skiwear, ships its products in September, but has to commit itself to products 

well before February (Fisher, 1997). However, the retailer season is only a few months long. 

Hence, the newsvendor problems for innovative products can be regarded as one-shot decision 

problems, which are typical for situations where a decision is made only once under uncertainty. 

Since the life cycle of the innovative product is shorter than the procurement lead-time, 

determining the optimal order quantity is a typical one-shot decision problem for the retailer.  

In this chapter, the one-shot decision theory (OSDT) based newsvendor models are proposed. 

In the proposed models, for each order quantity, the retailer chooses one demand amongst all 

possible demands while considering the satisfaction level caused by the occurrence of the demand 

and the likelihood of the demand occurring. The selected demand is called the focus point of the 

order quantity. The optimal order quantity corresponds to the maximum satisfaction level of its 

focus point. We take into account four types of decision makers, i.e. active, passive, apprehensive 

and daring retailers who focus on the demand with a higher satisfaction and a higher likelihood, 

the demand with a lower satisfaction and a higher likelihood, the demand with a lower satisfaction 

and a lower likelihood, the demand with a higher satisfaction and a lower likelihood, respectively. 
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The optimal order quantities for these four types of retailers are obtained and the theoretical 

analysis is made. 

The contributions of this chapter are as follows: The probabilistic newsvendor models seek the 

optimal order quantities to maximize the expected values or the probability measures. They take 

into account all demand values when determining the optimal order quantities. However, there is 

one and only one demand that will appear when the selling season comes. We build the 

newsvendor models with the one-shot decision theory which fit the one-shot feature of the 

retailer’s order decision. The managerial insights into the behaviors of different types of retailers 

are gained by the theoretical analysis. The proposed methods provide a fundamental alternative 

to analyze the newsvendor problems for innovative products. 

The remainder of this chapter is organized as follows: In Section 3.2, newsvendor models for 

innovative products are developed based on the one-shot decision theory. In Section 3.3, the 

results of analysis of the proposed newsvendor models are given. In Section 3.4, a numerical 

example is used to demonstrate the proposed approach. Finally, the research conclusions are given 

in Section 3.5. 

 

3.2. Newsvendor Models with the One-Shot Decision Theory 

 

Consider a retailer who sells an innovative product. The retailer orders q units before the season 

at the unit wholesale price W. When the demand x is observed, the retailer sells units (limited by 

the supply q  and the demand x ) at the exogenous unit revenue R with WR  . Any excess 

product can be salvaged at the unit salvage price 0oS  with oSW  . If there is a shortage, 

the unit opportunity cost is 0uS . The profit function of the retailer is as follows: 










);()(

;)(
),(

qxSqWR

WqSxqRx
qxr

u

o  
qx

qx




.                                   (3.1) 
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The demand of the innovative product is a random variable X  with the probability density 

function )(xfD . According to Definition 2.1, the normalized likelihood function of demand is  

)(max

)(
)(

xf

xf
x

D

D
D  .                                                     (3.2) 

In the following of this chapter, we suppose the following assumption. 

 

Assumption 3.1: The probability density function )(xfD  is a strictly quasi-concave continuous 

function defined on the interval ],[ ul dd , the mode is ),( ulc ddd  , 0)( lD df  and 

0)( uD df . 

 

Following Assumption 3.1, we know that )(xD  satisfies 1)( cD d , 0)( lD d  and 

0)( uD d . )(xD  is strictly quasi-concave continuous; ld  and ud  are the lower and 

upper bounds of the demand, respectively; cd  is the most possible amount of the demand. The 

smaller the normalized likelihood of a demand x is, the more surprising the occurrence of x is. 

Because the demand is inside the interval ],[ ul dd , a reasonable order quantity should also lie in 

this region. The highest profit of retailer is  

uu dWRr )(  ,                                                         (3.3) 

that is, the retailer orders the most udq   and the demand is the largest ud . The lowest profit 

is })(,)(min{ WdSddRdWdSddRdr lululuolull  . It is determined by the 

minimum of two cases: in the first case, the retailer orders the most but the demand is the lowest: 
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WdSddRd uolul  )( ; in the second case, the retailer orders the lowest but the demand is 

the highest: WdSddRd lulul  )( . We assume uo SSW  , which leads to  

WdSddRdr uolull  )( .                                             (3.4) 

The satisfaction function of the retailer is the following strictly increasing function of the profit 

r , 

]1,0[],[: ul rru ,                               (3.5) 

where 0)( lru  and 1)( uru . 

(3.5) is a general form of the satisfaction function of the retailer where the satisfaction degree of 

the lowest profit is 0 and the satisfaction degree of the highest profit is 1. The satisfaction function 

is written as )),(( qxru in the following parts. 

 

Proposition 3.1. 

(1) )),(( qxru  is strictly increasing continuous in x  when xq   and strictly decreasing 

continuous in x  when xq  .  

(2) )),(( qxru  is strictly increasing continuous in q  when qx   and strictly decreasing 

continuous in q  when qx  .  

(3) )),(()),((max xxruqxru
q

  is strictly increasing continuous. 

Since the life cycle of the innovative product is generally shorter than the procurement lead-

time, the retailer has only one chance to determine the order quantity and one and only demand 

will occur. It is reasonable that the retailer needs to contemplate which demand ought to be taken 

into account before ordering products. The retailer chooses one demand (focus point) amongst all 

possible ones while considering the normalized likelihood to which the demand will appear in the 
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future and the satisfaction level that the demand can bring about for an order quantity. We consider 

four types of focus points introduced in Chapter 2 as follows: 

 

Active focus point of an order quantity: The active focus point of an order quantity q , denoted 

as )(1 qx
, is 

))],((),([maxarg)(
],[

1 qxruxlowerqx D
ddx ul




  .                             (3.6) 

)(1 qx
 is a demand that has a higher likelihood and a higher satisfaction level for an order 

quantity q . 

Passive focus point of an order quantity: The passive focus point of an order quantity q , 

denoted as )(2 qx
, is 

))],((),(1[minarg)(
],[

2 qxruxupperqx D
ddx ul





.                                 (3.7) 

)(2 qx
 is a demand that has a higher likelihood and a lower satisfaction level for an order quantity 

q . 

Apprehensive focus point of an order quantity: The apprehensive focus point of an order 

quantity q , denoted as )(3 qx
, is 

))],((),([minarg)(
],[

3 qxruxupperqx
ul ddx




  .                                    (3.8) 

)(3 qx
 is a demand with a lower likelihood and a lower satisfaction level for an order quantity 

q . 

Daring focus point of an order quantity: The daring focus point of an order quantity q , 

denoted as )(4 qx
, is 
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))],((1),([minarg)(
],[

4 qxruxupperqx
ul ddx




  .                                  (3.9) 

)(4 qx
 is a demand with a lower likelihood and a higher satisfaction level for an order quantity 

q . 

  For one order quantity, more than one demand might exist as one type of focus point. We denote 

the sets of four types of focus points of an order quantity q  as )(1 qX , )(2 qX , )(3 qX and

)(4 qX , respectively.  

In the newsvendor problem, the retailer contemplates that the focus point is the most 

appropriate scenarios (demand) for each order quantity and chooses one order quantity which can 

bring about the best consequence (highest satisfaction level) with the assumption that only focus 

points come true. The optimal order quantities are obtained as follows: 

))),(((maxmaxarg 1
)()(],[

1
11

qqxruq
qXqxddq ul








 ,                                      (3.10) 

))),(((minmaxarg 2
)()(],[

2
22

qqxruq
qXqxddq ul








 ,                                      (3.11) 

))),(((minmaxarg 3
)()(],[

3
33

qqxruq
qXqxddq ul








 ,                                      (3.12) 

))),(((maxmaxarg 4
)()(],[

4
44

qqxruq
qXqxddq ul








 .                                      (3.13) 



1q , 


2q , 

3q  and 


4q  are called optimal active, passive, apprehensive and daring order 

quantities, respectively. )( 11

 qx , )( 22

 qx , )( 33

 qx  and )( 44

 qx  are optimal active, passive, 

apprehensive and daring demands, respectively. The retailer who takes into account the active, 

passive, apprehensive or daring focus point is called active, passive, apprehensive or daring 

retailer, respectively.  
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Comments: The differences between the newsvendor model with the subjective expected utility 

theory (Newsvendor-SEU) and the newsvendor model with the one-shot decision theory 

(Newsvendor-OSDT) is shown below. 

1. In Newsvendor-SEU, there are two steps as follows:  

Step 1: Evaluating each order quantity by the weighted average of the utilities of all payoffs 

brought about by all possible demands; 

Step2: Selecting the order quantity with the maximum average. 

In Newsvendor-OSDT, there are two steps as follows: 

Step 1: Seeking an appropriate demand (focus point) for each order quantity; 

Step 2: Choosing the order quantity with the maximum satisfaction level of the focus point 

(selected demand). 

2. In Newsvendor-SEU, a utility function is associated with risky situations. If a person is a risk 

averter, the utility function is concave; if a person is a risk taker, the utility function is convex; if 

a person is risk neutral, the utility function is linear. In Newsvendor-OSDT, the satisfaction 

function has no relationship with risk situations. It represents the relative position of the payoff. 

Which type of focus point is used for making a decision reflects the attitude of a decision maker 

about uncertainty. 

3. Newsvendor-SEU and Newsvendor-OSDT explain why some order quantity is optimal in 

different ways. In Newsvendor-SEU an order quantity is evaluated based on the average; that is, 

if the optimal order quantity is chosen every time then the total utility almost surely attains the 

maximum in the sense of the strong law of large numbers. However, Newsvendor-OSDT gives a 

clear answer to why some order quantity is optimal when only one decision chance is left to a 

retailer. 
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3.3. Analysis Results of OSDT Based Newsvendor Models 

 

Let us first think about how to obtain the optimal active, passive, apprehensive and daring 

order quantities. 

Lemma 3.2. The optimal active order quantity 


1q  is the solution of the following equation: 

)()),(( xxxru D , ),( uc ddx .                          (3.14) 

The optimal active demand, i.e. )( 11

 qx  is 


1q . 

Proof. The proof follows directly from Theorem 2.13 (1) and Proposition 3.1 (3).          □ 

Interestingly, Lemma 3.2 indicates that the focus point (selected demand) of the active retailer’s 

optimal order quantity is the optimal order quantity itself. It means that the active retailer has 

confidence that he/she can sell all the products that he/she has optimally ordered. 

Lemma 3.3. The optimal passive order quantity 


2q  is the solution of the following equation: 

))),((())),((( qqdruqqdru pupl  ,                                         (3.15) 

equivalently, 

  ))(())(( qdqd puDplD   ,         (3.16) 

where )(qd pl  and )(qd pu  are the solutions of )(1)),(( xqxru D  within 

)],min(,[ cl dqd  and ]),,[max( uc ddq , respectively. The optimal passive demand, i.e. )( 22

 qx  

are )( 2

qd pl  and )( 2

qd pu . 

Proof. It follows from Proposition 3.1(3) that )),(( xxru  is strictly increasing continuous within

],[ ul dd . )(1 xD  is strictly decreasing continuous within ],[ cl dd  and strictly increasing 

continuous within ],[ uc dd . Therefore ))(1()),(()( xxxruxF D  is continuous within
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],[ ul dd  and strictly increasing within ],[ cl dd . Since 

0))(1()),(()(  lDlll dddrudF  , 0))(1()),(()(  cDccc dddrudF   and 

0))(1()),(()(  uDuuc dddrudF  , there is a unique solution of  

0))(1()),(()(  xxxruxF D  within ),( cl dd , denoted as 
*

pld ; and there is at least one 

solution within ],( uc dd , the minimum solution is denoted as 


pud . In what follows, we consider 

q, i.e. ],[ *

pll ddq , ],[ *

upu ddq  and ],[ **

pupl ddq .  

Case 1: ],[ *

pll ddq . That is, )(1)),(( qqqru D  and cdq  . It follows from Theorem 

2.2(3) that the passive focus point of ],[ *

pll ddq
 

is )()(2 qdqx pu
. From Proposition 3.1(2) 

and Corollary 2.5(2), we have  

  ))),((())),(((max))),(((max **

],[
2

],[
plplpupu

ddqddq
dddruqqdruqqxru

pllpll


 

.        (3.17) 

Case 2:  ],[ upu ddq  . For the case )(1)),(( qqqru D , Theorem 2.2(2) shows that the 

passive focus point is )()(2 qdqx pl . In the case )(1)),(( qqqru D , since 

)(1)),(()),((   puDpupupu dddruqdru   and ))(1()),(()( xqxruxF D  is a 

continuous function, ],[0 qdx pu

  0))(1()),(()( 000  xqxruxF D  holds. From 

Corollary 2.3(1), we know that the passive focus point is )()(2 qdqx pl . Therefore, 

],[ upu ddq  , the passive focus point is )()(2 qdqx pl . From Proposition 3.1(2) and 

Corollary 2.5(1), we have  

  ))),((())),((())),(((max **

2
],[

pupuplpl
ddq

dddruqqdruqqxru
upu




.              (3.18) 
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Case 3: ],[ **

pupl ddq . That is, )(1)),(( qqqru D . It follows from Theorem 2.2(1) that  

  )))),((()),),(((min())),((( 2 qqdruqqdruqqxru pupl .      (3.19) 

From Theorem 2.8, we know that ))),((( qqdru pl  and ))),((( qqdru pu  are uniformly 

continuous in ],[ **

pupl ddq . Considering ))),((())),((()( qqdruqqdruqF pupl  , it 

follows from Proposition 3.1(2) and Corollary 2.5 that )(qF  is strictly decreasing within 

],[ **

pupl dd . For  pldq  and  pudq , we have 

0))),((())),((()( *  

plplpuplplplpl dddrudddrudF ,       (3.20) 

0))),((())),((()( *  

pupupupupuplpu dddrudddrudF .       (3.21) 

Therefore, there is a unique ),(~ **

pupl ddq  satisfying ))~),~((())~),~((( qqdruqqdru pupl  . 

Theorem 2.2(1) shows 

  )}~(),~({)~(2 qdqdqx pupl .                             (3.22) 

Let us consider the case qq ~ . From Proposition 3.1(2), we know ))~,(()),(( qxruqxru   

for ]~,[ qdx l ; and ))~,(()),(( qxruqxru   for ],[ udqx . From Corollary 2.5, we have  

))~),~((())),((( qqdruqqdru plpl   ,        (3.23) 

))~),~((())),((( qqdruqqdru pupu  .                                        (3.24) 

From Theorem 2.2(1), we have 

  ))~),~((())),(((max 22
],~[ *

qqxruqqxru
pudqq




.                                   (3.25) 

Likewise, we have 

  ))~),~((())),(((max 22
]~,[ *

qqxruqqxru
qdq pl




.                                   (3.26) 

From (3.17), (3.18), (3.25) and (3.26), we know qqqxruq
ul ddq

~))),(((maxarg 2
],[

2 



, which 
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means that (3.15) and (3.16) hold. (3.22) means that the optimal passive demand, i.e. )( 22

 qx  

are )( 2

qd pl  and )( 2

qd pu .                                                    □ 

Lemma 3.3 implies that the passive retailer chooses the optimal order quantity which makes its 

two focus points (selected demands) have the same normalized likelihoods and the same 

satisfaction levels. 

Lemma 3.4. The optimal apprehensive order quantity 


3q  is the solution of 

)),(()),(( qdruqdru ul  ,                             (3.27) 

that is, 

uo

uulo

SSR

dSdSR
q




 )(

3 .                             (3.28) 

The optimal apprehensive demand, i.e. )( 33

 qx  are ld  and ud . 

Proof: It follows from Lemma 2.6 that ],[ ul ddq  we have 

  ))),(()),,((min())),((( 3 qdruqdruqqxru ul ,       (3.29) 

which leads to 

  ))),(()),,((min(maxarg))),(((maxarg
],[

3
],[

3 qdruqdruqqxruq ul
ddqddq ulul 

  .     (3.30) 

Suppose q~  is the solution of )),(()),(( qdruqdru ul  , that is, 

))~,(())~,(( qdruqdru ul  .         (3.31)                                                

Proposition 3.1(2) shows if qq ~  then )),(()),(( qdruqdru ul   and if qq ~  then 

)),(()),(( qdruqdru ul   so that we have 

))),(()),,((min(max
],[

qdruqdru ul
ddq ul

 

))),(()),,((min(max))),(()),,((min(max
],~[]~,[

qdruqdruqdruqdru ul
dqq

ul
qdq ul 


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))~,(())~,(()),((max)),((max
],~[]~,[

qdruqdruqdruqdru lul
dqq

u
qdq ul




.     (3.32) 

Therefore, 
*

3q  is q~ , which is the solution of (3.27). (3.27) leads to (3.28) with considering (3.1). 

(2.23) implies that )( 33

 qx  are ld  and ud .                                  □ 

Lemma 3.4 shows that the apprehensive retailer takes into account two extreme demands (the 

highest and the lowest demand) and chooses the optimal order quantity which makes the 

satisfaction levels of the highest demand and the lowest demand equal. 

 

Lemma 3.5. The optimal daring order quantity is 

udq 

4 .                                                               (3.33) 

The optimal daring demand, i.e. )( 44

 qx  is ud . 

Proof. The proof follows directly from Theorem 2.13(2) and Proposition 3.1(3).           □ 

According to Lemma 3.5, for the daring retailer, the highest demand is his/her optimal order 

quantity and he/she believes all ordered products can be sold. 

  It is helpful to discuss the relationships amongst the four types of optimal order quantities and 

focus points and how the four types of optimal order quantities and focus points change with the 

parameters. We have the following lemmas. 

 

Lemma 3.6. 

(1) The optimal daring order quantity 


4q  is always larger than any other type of optimal order 

quantity.  

(2) Supposing the normalized likelihood function )(xD  is symmetric, we have 

uulpupl dqxddqdqd 2)(2)()( 1122  
,                                (3.34) 



38 

 

  321 qqq .                                                          (3.35) 

Proof.  

(1) It is straightforward that 


4q  is always larger than any other type of optimal order quantity. 

(2) From Lemma 3.3 and the monotonicity of )),(( qxru , we have 

)),(()),(( 2222

  qqdrqqdr pupl
,         (3.36) 

which is equal to 

))(()())(()( 2222222

  qqdSqWRWqqdqSqRd puuplopl .             (3.37) 

From (3.37), we obtain 

uo

puuplo

SSR

qdSqdSR
q






)(

)()()( *

2

*

2*

2 .         (3.38)                                                                       

Hence, 

uo

oupuuplouo

uo

puuplo

ou
SSR

dqdSqddSR

SSR

qdSqdSR
dqq















)(

))(())()((

)(

)()()( 2222

21
,(3.39) 

where 
**

1 oudq   is the solution of )()),(( xxxru D  within ),( uc dd   (See Lemma 3.2). 

From (3.16), we have  

))(())(( 22

  qdqd pupl  .                                                (3.40) 

If )(xD is symmetric, (3.40) implies 

0)()( 22   qdddqd puulpl .                        (3.41) 

(3.41) is equal to 

uouculpupl dddddqdqd 222)()( 22  
,                           (3.42) 

which proves (3.34). From (3.42), we have 

  oupuplou dqdqdd )()( 22 .         (3.43) 
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Obviously, 0)( 2   qdd plou
 holds. Recalling 

0 uo SSR ,           (3.44) 

from (3.39) we know 

021   qq .           (3.45) 

By using (3.38) and (3.28), we have 

uo

uulo

uo

puuplo

SSR

dSdSR

SSR

qdSqdSR
qq















)(

)(

)(

)()()( 22

32  

uo

puuulplo

SSR

qddSdqdSR








)(

))(())()(( 22
.           (3.46) 

By using (3.41) and (3.44), we know  

032   qq .           (3.47) 

(3.46) and (3.47) means (3.35).                                               □ 

 

Lemma 3.7. Set the satisfaction function as the following linear function 

lu

l

rr

rqxr
qxru






),(
)),(( .                              (3.48) 

The optimal active order 

1q  and the optimal active demand )( 11

 qx  are decreasing in the unit 

wholesale price W , increasing in the unit revenue R  and the unit salvage price 
oS . The unit 

opportunity cost 
uS  has no effect on them. 

Proof. Since uu dWRWr )()(   and WdSddRdWr uolull  )()( , by using (3.48) we 

have 

qx

qx

if

if

SRdd

SqxSddWqdRdq

SRdd

SqxddWqdRdx

WrWr

WrqxWr
qxWru

olu

uoluul

olu

oluul

lu

l




























;

;

))((

)()()()(

))((

)()()(

)()(

)(),,(
)),,((

. (3.49) 
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Therefore, 

))((

)()()(
)),,((

olu

oluul

SRdd

SddWxdRdx
xxWru




 .     (3.50) 

Differentiating (3.50) with respect to W , we have 

0
))((

)()),,((







olu

u

SRdd

xd

dW

xxWrdu
,         (3.51) 

which means 21 WW   )),,(()),,(( 21 xxWruxxWru   holds so that we have 

  )))(),(,(()))(),(,(( 1111211111 WqWqWruWqWqWru   ,      (3.52) 

where )( 11 Wq
 is the optimal active order quantity with the wholesale price 1W . According to 

Lemma 3.2, )))(),(,(())(( 1111111 WqWqWruWqD

   holds so that we have 

  )))(),(,(())(( 1111211 WqWqWruWqD

  .         (3.53) 

Recalling 1)()),,(( 2  cDcc dddWru  , due to the monotonicity of )(xD  and 

)),,(( 2 xxWru  within )](,[ 11 Wqdc


, there is a unique solution of )()),,(( 2 xxxWru D  

within )](,[ 11 Wqdc


, that is )( 21 Wq

 and we have )()( 2111 WqWq   . Therefore, the optimal 

active order 

1q  and the active focus point )( 11

 qx  are decreasing in W .  

Similarly, we can prove the optimal active order 

1q  and the optimal active demand )( 11

 qx  

are increasing in R  and 
oS . Since there is not uS  in (3.50), uS  has no effect on the optimal 

active order quantity and the optimal active demand.                     □ 

Lemma 3.7 is intuitively obvious if we know that an active retailer believes he/she can sell 

what he/her optimally orders (shown in Lemma 3.2).  

Let us think about the optimal passive order 


2q . If the unit opportunity cost price uS  

increases, )),(( qxru
 

will remain the same for qx   but decrease for qx  . Considering 

Proposition 3.1(2) and Lemma 3.3, we have the following proposition. 
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Proposition 3.8. The optimal passive order quantity 

2q  increases in the unit opportunity cost 

uS . 

Proposition 3.8 shows that the passive retailer offsets the loss caused by the increase of the unit 

opportunity cost by increasing the order quantity. 

For the optimal apprehensive order 


3q , let us consider (3.28). Obviously, we have 

0
)(

)(
2

3 







ou

ulu

o SSR

Sdd

dS

dq
,          (3.54) 

0
)(

))((
2

3 







ou

olu

u SSR

SRdd

dS

dq
,         (3.55) 

0
)(

)(
2

3 







ou

ulu

SSR

Sdd

dR

dq
,                                              (3.56) 

03 


dW

dq
,                                   (3.57) 

which can be concluded as the following proposition. 

Proposition 3.9.  The optimal apprehensive order quantity 


3q  increases in the unit salvage 

price oS  and the unit opportunity cost uS , decreases in the unit revenue R . The unit wholesale 

price W  has no effect on 


3q .  

Proposition 3.9 points out that for an apprehensive retailer, he/she orders less at the higher unit 

revenue and the unit wholesale price has no effect on the optimal order quantity. Interestingly, 

other researchers (Wang and Webster, 2009; Wang et al., 2009) have arrived at similar results in 

“risk-averse” and “loss-averse” newsvendor models. However, such results were regarded as the 

limitations of the expected utility theory (EUT) by themselves. Our model can explain these 

results as follows: 
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As shown in Lemma 3.4, the apprehensive retailer worries about two extreme demands, i.e. the 

smallest demand 
ld  and the largest demand 

ud  and seeks an optimal order quantity to make 

the satisfaction levels of these two demands equal. (3.1) shows that for the same order quantity, 

the increase of the unit revenue will increase the satisfaction level of 
ud  more than 

ld . To offset 

this effect, the retailer will decrease the order quantity.  

For examining the result related to W , let us begin with the optimal apprehensive order 

quantity 


3q . When the unit wholesale price becomes lower and the order quantity remains the 

same, the payoff at the demand ud  is exactly the same as the one at the demand ld . On the 

other hand, from Proposition 3.1(2) we know that if the order quantity increases, the satisfaction 

level of the demand ld  will become worse; and if the order quantity decreases, the satisfaction 

level of the demand ud  will become worse. Therefore, the optimal apprehensive order quantity 

remains 


3q . 

 

Definition 3.1. )(xD   is said to be more informed than )(xD  if and only if x  

)()( xx DD    holds.  

 

Lemma 3.10. Suppose )(xD   is more informed than )(xD . The optimal active order 

quantities based on normalized likelihood functions )(xD  and )(xD   
are denoted as 

1

oq  

and 
2

oq ,
 
respectively; the optimal passive order quantities based on normalized likelihood 

functions )(xD  and )(xD   
are denoted as 1

pq  and 2

pq ,
 

respectively; the optimal 

apprehensive order quantities based on normalized likelihood functions )(xD  and )(xD   
are 

denoted as 1

aq  and 2

aq ,
 
respectively; the optimal daring order quantities based on normalized 
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likelihood functions )(xD  and )(xD   
are denoted as 1

dq  and 2

dq ,
 
respectively. We have 

(1) 
  21

oo qq ; 

(2) 
  21

aa qq , 
  21

dd qq ; 

(3) if normalized likelihood functions )(xD   and )(xD   are symmetric, then   21

pp qq . 

Proof. 

(1) The solution of )()),(( xxxru D  
within ),( uc dd  is denoted as 

1*

oud .  From Lemma 

3.2 and Definition 3.1, we know )()),(()( 111*1  
ouDouououD dddrud  . Due to the monotonicity 

of )(xD   and )),(( xxru  and 1)()),((  cDcc dddru  , there is a unique solution of 

)()),(( xxxru D   within ],( 1*

ouc dd , denoted as 
2*

oud . We have 
2*1*

ouou dd  , that is, 
  21

oo qq . 

(2) It follows directly from Lemmas 3.4 and 3.5 that 
  21

aa qq  and 
  21

dd qq . 

(3) The solutions of )(1)),(( xqxru D  
within )],min(,[ cl dqd  and ]),,[max( uc ddq  

are denoted as )(qd pl
  and )(qd pu

 , respectively. The solutions of )(1)),(( xqxru D   

within )],min(,[ cl dqd  and ]),,[max( uc ddq  are denoted as )(qd pl
  and )(qd pu

 , 

respectively. Lemma 3.3 shows  

))),((())),((( 1111  
pppupppl qqdruqqdru ,                                    (3.58) 

  ))),((())),((( 2222  
pppupppl qqdruqqdru .        (3.59) 

Due to the symmetry of )(xD  , (3.59) implies 

cppupplc dqdqdd   )()( 22 .                           (3.60) 

From Lemma 3.3 and Definition 3.1, we know 
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)(1)),(( 111   pDpp qqqru  ,                (3.61) 

  )(1)(1)),(( 2222   pDpDpp qqqqru  .        (3.62) 

Suppose   21

pp qq . Considering Proposition 3.1(2), )),(()),(( 21   pp qxruqxru  holds for any 

],[ 2 pqlx . Considering (3.61) and using Corollary 2.5(1), we have 

))),((())),((( 2211  
ppplpppl qqdruqqdru .                                    (3.63) 

Likewise, )),(()),(( 21   pp qxruqxru  holds for any ],[ 1 hqx p

 . Considering (3.62) and using 

Corollary 2.5(2), we have 

))),((())),((( 2211  
pppupppu qqdruqqdru .                                   (3.64) 

(3.58), (3.63) and (3.64) imply 

))),((())),((( 2222  
pppupppl qqdruqqdru .                                   (3.65) 

Due to the symmetry of )(xD  , (3.65) means 

cppupplc dqdqdd   )()( 22 .                        (3.66) 

(3.60) and (3.66) mean  

)()()()( 2222  
ppuppupplppl qdqdqdqd .                      (3.67) 

Since )()( xx DD   , considering Lemma 3.3 it is easy to know 

0)()( 22  

ppuppu qdqd .                                                 (3.68) 

From (3.1), we have 

))),()(()((

)),((

2222

22









ppplpplppl

pppl

qqdqdqdr

qqdr
                  

))()()(()),(( 2222   pplpplopppl qdqdSRqqdr .              (3.69) 
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Similarly, we have 

))),()(()((

)),((

2222

22









pppuppuppu

pppu

qqdqdqdr

qqdr
 

))()(()),(( 2222   ppuppuupppu qdqdSqqdr .       (3.70) 

From (3.5), (3.59), (3.67)-(3.70) and uo SSR  , we know 

))),((())),((( 2222  
pppupppl qqdruqqdru , which conflicts with (3.65). As a result,   21

pp qq . 

            □ 

Lemma 3.10 shows that the increase of the uncertainty of the demand can make an active 

retailer order more and make a passive retailer order less but does not have any effect on the 

apprehensive and daring retailers. 

 

3.4. Numerical Example 

 

A fashion store, located in Yokohama, Japan, is planning to order a new design fashion 

sportswear. The unit wholesale price W , the unit revenue R , the unit salvage price oS  and the 

unit opportunity cost uS  are 7, 10, 1 and 4, respectively. Suppose the probability function of the 

demand is a triangular function )(xfD , as shown below.  






















0

)100(104

,104

,0

)(
2

2

x

x
xfD  

100

10050

500

0









x

x

x

x

.                                  (3.71) 

In the classical newsvendor models, for the risk neutral retailer, the optimal order quantity 
q  is 

set such that  
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13

7
)( 






uo

u

SSR

SWR
qF .                                              (3.72) 

From (3.72), we have the optimal order quantity 8.54q . In the following we see the optimal 

order quantities for Newsvendor-OSDT. The corresponding normalized likelihood function of the 

demand )(xD  is  
















0

)100(02.0

,02.0

,0

)(
x

x
xD  

100

10050

500

0









x

x

x

x

.                                    (3.73) 

The range of the possible demand is ]100,0[ , that is, 0ld  and  100ud . By using (3.1), 

the profit function is 










qxxq

qxqx
qxr

,47

,69
),( .                                              (3.74) 

The highest profit is 300)(  uu dWRr  and the lowest profit is 

600)(  WdSddRdr uolull . The satisfaction function is set as 

lu

l

rr

rqxr
qxru






),(
)),((

 









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qxxq
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2
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4
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7

,
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2

300

2

100

1

,                                (3.75) 

where 100,0  qx . For illustration of the decision process of Newsvendor-OSDT, we 

examine the active focus points and their corresponding satisfactions when order quantity 0q , 

50q  and 100q . As shown by Fig3.1, Fig 3.2 and Fig 3.3, the active focus points of order 

quantity 0q , 50q  and 100q  are 3.27)0(1 x , 50)50(1 x  and 

7.66)100(1 x , respectively. Their corresponding satisfactions are 0.55, 0.83 and 0.67, 
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respectively. Thus, amongst these three order quantities, 50q  is the best.  

 

 

 

 

 

Fig.3.1 The focus point when 0q . 

 

 

 

 

 

Fig.3.2 The focus point when 50q . 

 

 

 

 

 

Fig.3.3 The focus point when 100q . 

 

By using (3.14), (3.15), (3.28) and (3.33), we obtain 1.571 
q , 3.382 

q , 8.303 
q  and 

1004 
q . Clearly, we have 

  4123 qqqq  which shows that the order quantity of the 

apprehensive retailer is less than the one of the passive retailer; the order quantity of the passive 

)(xD  

))0,(( xru  

)(xD  

))100,(( xru  

)(xD  

))50,(( xru  
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retailer is less than the one of the active retailer; the order quantity of the active retailer is less 

than the one of the daring retailer. Such results are quite in agreement with the situations 

encountered in the real business world. 

  In the following we examine how the optimal order quantities change with the parameters. 

From (3.72), easily we have that the risk neutral optimal order quantity increases in unit revenue 

R, the unit salvage price 
oS  and the unit opportunity cost 

uS ; decreases in wholesale price W. 

In Lemma 3.5, Lemma 3.7 and Proposition 3.9, how the optimal active, apprehensive and daring 

order quantities change with the parameters is shown clearly. From Proposition 3.8, the optimal 

passive order quantity increases in the unit opportunity cost. In this numerical example, Fig. 3.4, 

Fig. 3.5 and Fig. 3.6 show how the optimal passive order quantity changes with the unit revenue, 

unit wholesale price and unit salvage price, respectively.  

 

Fig. 3.4 Relationships between the unit revenue and the optimal passive order quantity 
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Fig. 3.5 Relationships between the wholesale price and the optimal passive order quantity 

 

 

Fig. 3.6 Relationships between the unit salvage price and the optimal passive order quantity 

 

3.5. Concluding Remarks 

 

This research analyzes the newsvendor problems for innovative products. Following the same 

idea of Fisher (1997), the innovative products are featured by the unpredictable demand and short 

life cycles. Due to the shorter life cycle than the procurement lead-time, determining the order 

quantity is a typical one-shot decision problem. Instead of using the subjective expected utility 
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theory (SEU), we utilize the one-shot decision theory (OSDT) to analyze the newsvendor 

problems. The proposed models are scenario-based decision models; they are fundamentally 

different from the newsvendor models with SEU which are lottery-based models. 

Newsvendor models with four types of focus points are developed for four types of retailers; 

i.e., the active retailer, the passive retailer, the apprehensive retailer and the daring retailer. The 

active retailer takes into account a demand with a higher satisfaction and a higher likelihood; the 

passive retailer focuses on a demand with a lower satisfaction and a higher likelihood; the 

apprehensive retailer thinks over a demand with a lower satisfaction and a lower likelihood; the 

daring retailer considers a demand with a higher satisfaction and a lower likelihood. The optimal 

order quantities for these four types of retailers are obtained and we have the following 

conclusions: 

(1) The focus point of the active retailer’s optimal order quantity is the optimal order quantity 

itself. It means that the active retailer has confidence that he/she can sell all the products that 

he/she has optimally ordered. 

(2) The passive retailer chooses the optimal order quantity which makes its two focus points have 

the same normalized likelihoods and the same satisfaction levels. 

(3) The apprehensive retailer takes into account two extreme demands (the highest and the lowest 

demand) and chooses the optimal order quantity which makes the satisfaction levels of the highest 

demand and the lowest demand equal. 

(4) For the daring retailer, the highest demand is his/her optimal order quantity and he/she believes 

all ordered products can be sold. 

(5) The optimal daring order quantity is always larger than any other type of optimal order quantity. 

If the normalized likelihood function is symmetric, the optimal active order quantity is larger than 

the optimal passive one; the optimal passive order quantity is larger than the optimal apprehensive 
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one. 

(6) Setting the satisfaction function as a linear function, the optimal active order quantity and its 

focus point are decreasing in the unit wholesale price, increasing in the unit revenue and the unit 

salvage price. The unit opportunity cost has no effect on them. 

(7) The passive retailer offsets the loss caused by the increase of the unit opportunity cost by 

increasing the order quantity. 

(8) The optimal apprehensive order quantity increases in the unit salvage price and the unit 

opportunity cost, decreases in the unit revenue. The unit wholesale price has no effect on it.  

(9) The increase of the uncertainty of the demand can make an active retailer order more and 

make a passive retailer order less but does not have any effect on the apprehensive and daring 

retailers. 

The above results provide managerial insights into the behaviors of different types of retailers.  
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Chapter 4 

 

Price-Setting Newsvendor Models for Innovative 

Products 

 

4.1 Introduction  

 

The newsvendor models have been extensively reviewed (Cachon, 2003; Petruzzi and Dada, 

1999; Petruzzi and Dada, 2010; Qin et al, 2011). In the classic newsvendor problem, the retail 

price is considered as an exogenous value. It is only for a perfect competitive market where the 

retailers are price-takers. There are many papers related to price-setting newsvendor models 

(Chen and Simchi-Levi, 2004; Raz and Porteus, 2006; Lau et al, 2007; Arcelus et al, 2007; Xu et 

al, 2011; Kocabiyikoglu and Popescu, 2011; Wang et al, 2012; Xu and Lu, 2013; Chen et al, 2014). 

Until now, almost all price-setting newsvendor models are built to maximize the subjective 

expected utilities or the probability measures of achieving target profits.  

In this chapter, the price-setting newsvendor problem for the innovative product is considered. 

As introduced in Chapter 3, this dissertation highlights that for a retailer who sells an innovative 

product, how to determine the optimal order quantity can be regarded as a one-shot decision 

problem, which is typical for a situation where a decision is made only once under uncertainty. In 

a one-shot decision problem, there is one and only one chance for only one state of nature 

(scenario) occurring. Guo (2011) initially proposed the one-shot decision theory (OSDT) for 

dealing with such one-shot decision problems. The one-shot decision making problems have been 
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researched in the papers (Guo, 2010a; Guo, 2010b; Guo et al, 2010; Guo, 2011; Guo, 2014; Guo 

and Li, 2014). Guo and Ma (2014) proposed a newsvendor model for innovative products based 

on the one-shot decision theory where the retailer was in a perfect competitive market so that the 

selling price was given. Ma and Guo (2013) and Ma (2014) examined the price-setting 

newsvendor models in the supply chain for innovative products.  

This chapter takes into account the retailer who sells an innovative product in a monopoly 

market. In this case, the retailer has only one chance to decision the order quantity and the retail 

price with the uncertain demand. The one-shot decision theory (OSDT) based price-setting 

newsvendor models are proposed for this situation. In the proposed models, the procedure for 

determining the optimal order quantity and the optimal retail price is divided into three steps. In 

the first step, the retail price is fixed. For each order quantity, the retailer will contemplate one 

state (scenario) from all possible states with considering the satisfaction level when this state 

occurs and its occurrence likelihood. The selected state (scenario) is called the focus point of the 

order quantity. The retailers who take into account the state (scenario) with a higher satisfaction 

and a higher likelihood, a lower satisfaction and a higher likelihood, a higher satisfaction and a 

lower likelihood, a lower satisfaction and a lower likelihood are called active, passive, daring and 

apprehensive retailers, respectively. In the second step, the order quantity whose focus point 

corresponds to the highest satisfaction level is determined as the optimal order quantity for this 

fixed retail price. The profit which corresponds to the highest satisfaction level is used to evaluate 

this given retail price. In the third step, we determine the optimal retail price which leads to the 

highest profit. In this research, the optimal order quantities and retail prices for the four types of 

retailers are obtained and the theoretical analysis is made.  

The contributions of this chapter are as follows: The existing price-setting newsvendor models 

are the subjective expected utility based or the probability measure based. They seek the optimal 
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order quantity and the optimal retail price to maximize the expected utility or the probability 

measure of achieving a target profit. They take into account all demand values when determining 

the optimal order quantity and the optimal retail price. However, one and only one demand will 

occur when selling an innovative product due to its short life cycle. This chapter analyzes the 

price-setting newsvendor models with the one-shot decision theory (OSDT) which fit the one-

time feature of the retailer’s joint price/quantity decision. Different from the subjective expected 

utility based models in which the retailer’s risk attitude is reflected by different utility functions, 

in OSDT based models the retailer chooses which type of focus point (scenario) for making a 

decision characterizes the attitude of this retailer about uncertainty. The theoretical analysis 

provides the managerial insights into the behaviors of different types of retailers. The proposed 

methods provide a fundamentally different vehicle for analyzing the newsvendor problems in a 

monopoly market of an innovative product. 

The reminder of this chapter is organized as follows. In Section 4.2, price-setting newsvendor 

models for innovative products are proposed. In Section 4.3, the theoretical analysis results are 

given. In Section 4.4, a numerical example is used to demonstrate the proposed models. Some 

concluding remarks are provided in Section 4.5. 

 

4.2  Price-Setting Newsvendor Models Based on One-Shot Decision 

Theory 

 

As shown in Chapter 3, we built the Newsvendor-OSDT which is only for a perfect competitive 

market where the retailers are price-takers. However, it provided an alternative way to analyze 

newsvendor problems for innovative products. In the following we consider a retailer who sells 
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an innovative product in the monopoly market. The retailer orders q units before the season at the 

unit wholesale price W. The following linear inverse demand function is considered: 

aRbx  ,                                                             (4.1) 

where x>0 is the demand and R is the retail price. b>0 is the x-intercept of (4.1) representing the 

limit demand of the innovative product when the retail price approaches to zero. 0a  is the 

slope of (4.1) showing the demand decreases when the retail price increases by one unit. We call 

a  as the price sensitivity of the market demand. The uncertainty of the demand is represented by 

the parameter b with a normalized likelihood function )(b . The profit function for the retailer 

is a function with the retail price and the order quantity as the decision variables. With considering 

(3.1), it can be expressed as:  










);()(

);)(())((
),,(

qaRbSqWR

aRbqSWaRbWR
qbRr

u

o  
qaRb

qaRb




.             (4.2) 

Recall Definition 2.2, we have the the satisfaction function, i.e. ),,( qbRu . Four types of focus 

points which have been introduced in Chapter 2 and Chapter 3 are considered as follows. 

 

Active focus point: For a fixed retail price R, the active focus point of the order quantity q , 

denoted as ),(1 qRb , is 

)],,(),([maxarg),(1 qbRublowerqRb
b

 .                                   (4.3) 

For a fixed retail price R, aRqRb ),(1  is the focused demand value that has a higher 

likelihood and a higher satisfaction level for an order quantity q. 

Passive focus point: For a fixed retail price R, the passive focus point of the order quantity q , 

denoted as ),(2 qRb , is 

)],,(),(1[minarg),(2 qbRubupperqRb
b

 .                                (4.4) 
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For a fixed retail price R, aRqRb ),(2  is the focused demand value that has a higher 

likelihood and a lower satisfaction level for an order quantity q. 

Apprehensive focus point: For a fixed retail price R, the apprehensive focus point of the order 

quantity q , denoted as ),(3 qRb , is 

)],,(),([minarg),(3 qbRubupperqRb
b

 .                                   (4.5) 

For a fixed retail price R, aRqRb ),(3  is the focused demand value that has a lower likelihood 

and a lower satisfaction level for an order quantity q. 

Daring focus point: For a retail price R, the daring focus point of the order quantity q , denoted 

as ),(4 qRb , is 

)],,(1),([minarg),(4 qbRubupperqRb
b

  .                                (4.6) 

For a fixed retail price R, aRqRb ),(4  is the focused demand value that has a lower likelihood 

and a higher satisfaction level for an order quantity q. 

 

  For a fixed retail price R, we denote the sets of four types of focus points of the order quantity 

q  as ),(1 qRB , ),(2 qRB , ),(3 qRB  and ),(4 qRB , respectively. The optimal order quantities 

for four types of the retailers are 

)),,(,(maxmaxarg)( 1
),(),(

1
11

qqRbRuRq
qRBqRbq 

 ,                               (4.7) 

)),,(,(minmaxarg)( 2
),(),(

2
22

qqRbRuRq
qRBqRbq 

 ,                               (4.8) 

)),,(,(minmaxarg)( 3
),(),(

3
33

qqRbRuRq
qRBqRbq 

 ,                                (4.9) 

)),,(,(maxmaxarg)( 4
),(),(

4
44

qqRbRuRq
qRBqRbq 

 .                              (4.10) 
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From (4.3)-(4.10), we can see that for a fixed R, the profit functions of the active, passive, 

apprehensive and daring retailers are ))()),(,(,( 111 RqRqRbRr , ))()),(,(,( 222 RqRqRbRr , 

))()),(,(,( 333 RqRqRbRr  and ))()),(,(,( 444 RqRqRbRr , respectively, which are called 

active, passive, apprehensive and daring profit functions, respectively. Because they are the 

functions of single variable R, for simplicity, we use  )(1 Rr , )(2 Rr , )(3 Rr  and )(4 Rr  in 

the following. For each type of retailer, the optimal retail price is which to maximize his/her profit 

function. 

)(maxarg 11 RrR
R

 , )( 211

 Rqq ;                                        (4.11) 

  )(m a xa r g 22 RrR
R

 , )( 222

 Rqq ;                                        (4.12) 

)(maxarg 33 RrR
R

 , )( 333

 Rqq ;                                        (4.13) 

  )(m a xa r g 44 RrR
R

 , )( 444

 Rqq .                                        (4.14) 



1R , 

2R , 

3R  and 

4R  are called optimal active, passive, apprehensive and daring retail 

prices, respectively.  

 

4.3. Analysis Results  

 

  In this section, we suppose the following assumption. 

Assumption: The normalized likelihood function )(bf  is a unimodal function defined on the 

interval ],[ ul bb , the mode is ),( ulc bbb  , 0)( lbf  and 0)( ubf . 
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From (4.1), we know aRbl   and aRbu   are the lower and upper bounds of the demand 

respectively; aRbc   is the most possible amount of demand. Because the demand is inside the 

interval ],[ aRbaRb ul  , a reasonable supply also should lie in this region. The highest profit 

of retailer is  

))(()( aRbWRRr uu  ,                                              (4.15) 

that is, the retailer orders the most aRbq u   and the demand is the largest aRbu  . The 

lowest profit is determined by the minimum of two cases, one is that the retailer orders the most 

but the demand is the lowest: WaRbSbbRaRb uolul )()()(  ; the other is that the retailer 

orders the lowest but the demand is the highest: ulul SbbWRaRb )())((  . For the sake of 

simplification, the assumption uo SSW   is made, which leads to  

WaRbSbbRaRbRr uolull )()()()(  .                             (4.16) 

For a fixed retail price R, the satisfaction level of a retailer is the following continuous strictly 

increasing function of the profit r , 

]1,0[)](),([: RrRru ul ,                                                (4.17) 

where 0))(( Rru l , 1))(( Rru u . 

(4.17) gives a general form of a satisfaction function of a retailer where the satisfaction level of 

the lowest profit is 0 and the satisfaction level of the highest profit is 1.  

We have the following lemmas and propositions. Lemma 4.1-4.4 are similar to Lemma 3.2-3.5. 

Lemma 4.1. For a fixed retail price R, the optimal active focus point ))(,( 11 RqRb  is the 

solution of the following equation: 
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)(),,( baRbbRu  , ],[ uc bbb .                                       (4.18) 

Its corresponding focused demand value is aRRqRb ))(,( 11
, the optimal active order quantity 

is aRRqRbRq  ))(,()( 111
 and the active profit function is 

  )()()( 11 RqWRRr  .                                                  (4.19) 

 

The Lemma 4.1 indicates that the focused demand value of the active retailer’s optimal order 

quantity is the optimal order quantity itself. It means that the active retailer has confidence that 

he/she can sell all the products that he/she has optimally ordered.  

 

Lemma 4.2. The optimal passive order quantity )(2 Rq  is the solution of the following equation: 

)),(()),(( qqbuqqbu pupl  ,                                            (4.20) 

where ),( qRbpl  and ),( qRbpu  are the solutions of )(1),,( bqbRu   within 

)],min(,[ cl baRqb   and ]),,[max( uc bbaRq  , respectively. The optimal passive focus 

points, i.e. ))(,( 22 RqRb  are ))(,( 2 RqRbpl  and ))(,( 2 RqRbpu . Their corresponding 

focused demand values are aRRqRbpl ))(,( 2  and aRRqRbpu ))(,( 2 , respectively. The 

passive profit function is  

)()()))(,()(()( 222 RqSWaRRqRbSRRr oplo  .                     (4.21) 

 

Lemma 4.2 implies that the passive retailer chooses the optimal order quantity which makes its 

two focus points have the same relative satisfaction level. 
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Lemma 4.3. The optimal apprehensive order quantity )(3 Rq  is the solution of 

),,(),,( qbRuqbRu ul  ,                                     (4.22) 

that is, 

uo

uulo

SSR

aRbSaRbSR
Rq






)())((
)(3 .                           (4.23) 

The optimal apprehensive focus points, i.e. ))(,( 33 RqRb  are lb  and ub . Their corresponding 

focused demand values are aRbl   and aRbu  , respectively. The apprehensive profit 

function is  

)()())(()( 33 RqSWaRbSRRr olo  .                                 (4.24)     

 

Lemma 4.3 shows that the apprehensive retailer always takes into account two extreme values 

of the parameter b (the higher and lower bounds of b) and chooses the optimal order quantity 

which makes the satisfaction levels of the higher and lower bounds of b equal. 

 

Lemma 4.4. The optimal daring order quantity is 

aRbRq u )(4 .                                                       (4.25) 

The optimal daring focus point, i.e. ))(,( 44 RqRb  is ub . Its corresponding focused demand 

value is aRbu  . The daring profit function is 

))(()(4 aRbWRRr u  .                                               (4.26) 

 

According to Lemma 4.4, the daring retailer always thinks the higher bound of the parameter 

b. The corresponding focused demand value (the highest possible demand) is his/her optimal 
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order quantity and he/she believes all ordered products can be sold.  

 

The following proposition indicates the relationships amongst the four types of retailers’ 

focused profits. 

Proposition 4.5. For any WR  , we have the following relationships amongst the four types of 

retailers’ focused profits.  

)()()()( 3214 RrRrRrRr  .                                          (4.27) 

Proof. 

 

First, we prove )()( 14 RrRr  . From Lemma 4.1 and 4.4, we have )()()( 11 RqWRRr  , 

))(()(4 aRbWRRr u   and aRbRq u )(1
 so that we know )()( 14 RrRr  . Then, we 

prove )()( 21 RrRr  . From Lemma 4.2, we have  

)()()()))(,()(()( 1122 RrRqWRaRRqRbWRRr pl  .            (4.28) 

Finally, we prove )()( 32 RrRr  . From (4.21) and (4.24), we know 

))()()(()))(,()(()()( 32232 RqRqSWbRqRbSRRrRr olplo  .         (4.29) 

Considering 0 uoo SSWSR  and 0)()())(,( 322  RqRqbRqRb lpl , we 

have 0)()( 32  RrRr .                                                       □ 

 

Since the demand is not less than zero, it is reasonable that ],[
a

b
WR l  and aWbl  . 

Suppose 
)()(

)(),,(
),,(

RrRr

RrqbRr
qbRu

lu

l




 , we analyze the concavity of the active profit function 

and the solution of the optimal active retail price, as shown below.  

Proposition 4.6. If ),( uc bbb , )(b  and ),,( aRbbRu   are of class 
1C , and



62 

 

0
),,(

)( 





b

aRbbRu
b  and 

)())(( bWSbb

bb
a

olu

cu

 


  hold, then the active profit 

function )(1 Rr  is concave. Furthermore, if 
lul bbaWb  , then the unique solution of 

0)(1  Rr  lies on the interval ),(
a

b
WR l , which is the optimal active retail price 

1R .   

Proof. 

First, we prove the concavity of )(1 Rr . Using Lemma 1 and the implicit function theorem, we 

know ))(,( 11 RqRb  is a continuously differentiable function of R, and  

2

2

2

2

11

)
),,(

)((

),,(),,(
)

),,(
)((

),,(

))(,(

b

aRbbRu
b

R

aRbbRu

Rb

aRbbRu

b

aRbbRu
b

R

aRbbRu

RqRb






























. (4.30) 

Since uc bbb  , with considering (4.18), we have 0)(  b , 0
),,(






b

aRbbRu
, 

0
),,(






R

aRbbRu
, 0

),,(
2

2






R

aRbbRu
, 0

),,(2






Rb

aRbbRu
, that is 

0))(,( 11  RqRb . Meanwhile,   

a
bSRbbWRSR

SWbb
RqRb

oluo

ou 





))())(()((

))((
))(,( 11


.                   (4.31) 

Considering Lemma 4.1, we have  

 0)()())((2)()()(2
)(

11112

1

2

 RbWRaRbRqWRRq
dR

Rrd
.            (4.32) 

(4.32) implies the active profit function )(1 Rr  is concave.  

Next we prove if 
lul bbaWb  , then the mode of )(1 Rr  lies on the interval ),(

a

b
WR l . 

The first derivative of the active profit function is 

)))(,()(()()()()()( 111111 aRqRbWRRqRqWRRqRr  .             (4.33) 

Easily we know 0)()( 11  WqWr . Considering 
lul bbaWb   and 

aRqRb
a

b
R l




))(,( 11 , we have 0)(1 


a

b
R l

Rr . 
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Since )(1 Rr  is concave, 0)(1 
WRRr  and 0)(1 


a

b
R l

Rr , the unique solution of 

0)(1  Rr  lies on the interval ),(
a

b
WR l .                                       □ 

 

Proposition 4.6 shows that the concavity of the active profit function is related to the price 

sensitivity of the market demand. Propositions 4.7, 4.8 and 4.9 examine the concavities of passive, 

apprehensive and daring profit functions, respectively; and provide the solutions of optimal 

passive, apprehensive and daring retail prices. Proofs of Proposition 4.7, 4.8 and 4.9 are similar 

to Proof of Proposition 4.6. 

Proposition 4.7. If )(b  is of class 
1C  for ),( cl bbb  and ),( uc bbb  and ),,( qbRu  

is of class 
1C  for ),( aRbaRbq ul  , ),( cl bbb  and ),( uc bbb  and 

o

plopl

SW

RqRbSRaRqRb
Rq






))(,()()))(,((2
)(

22

2  holds, then the passive profit function 

)(2 Rr  is concave. Furthermore, if for any ],[
a

b
WR l , 

o

pl

pl

o

o

SW

RqRb
RqRb

SW

SR
Rq









))(,(
))(,()(

2

22  holds, then the optimal passive retail price is

a

b
R l

2 ; if aRqRb
SW

aWWqWb
Rq WRpl

o

pl

WR 





 ))(,(
))(,(

)( 2

2

2  and 

o

ol

a

b
R

plo
lll

pl

a

b
R SW

aSbRqRbS
a

b

a

b
q

a

b
b

Rq

l

l 








2))(,()())(,(

)(

22

2  hold, then the unique 

solution of 0)(2  Rr  lies on the interval ),(
a

b
WR l , which is the optimal passive retail price 



2R .  
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Proposition 4.7 points out that the concavity of the passive profit function depends on the 

relationship between the changes in retail price R of the optimal passive order quantity and of its 

corresponding focused demand value. 

 

Proposition 4.8. The apprehensive profit function )(3 Rr  is concave. Furthermore, if 

lul bbaWb  , then the optimal apprehensive retail price is the unique solution of 0)(3  Rr  

within ),(
a

b
WR l .  

Proposition 4.9. The daring profit function )(4 Rr  is concave. If 
lul bbaWb  , then the 

optimal daring retail price is 
a

aWb
R u

2
4




, and lies on the interval ),(
a

b
WR l ; otherwise, 

a

b
R l

4 .  

 

Propositions 4.8 and 4.9 show that the apprehensive and daring profit functions are always 

concave. Suppose the four types of retailers have concave focused profit functions, we have 

Proposition 4.10 and 4.11 as follows.   

 

Proposition 4.10. We have the following relationships amongst the four types of retailers’ optimal 

retail prices.  

  3214 RRRR .                                                     (4.34) 

Proof.  

First we prove   14 RR  . From Lemma 4.1 and Proposition 4.6, we know the optimal active 

retail price 

1R  is the solution of 0)()()()( 111  RqWRRqRr , that is 
)(

)(

1

1
1

Rq

Rq
WR




. 
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From Lemma 4.1 and Proposition 4.5, we have aRbRqaRb uc  )(1
 and 

aRqa
2

1
)(1  , which lead to WR

a

b
R u  

11 . That is, 
 


 41

2
R

a

aWb
R u . Next 

we prove   21 RR . From Lemma 4.1 and Lemma 4.2, we have 

0))(,()()()( 221  RqRbRbRrRr pll . With considering the concavities of )(1 Rr  and 

)(2 Rr , we have   21 RR . Similarly, we can prove 
  32 RR .                         □ 

Proposition 4.11. The optimal active, passive, apprehensive and daring retail prices are 

decreasing in a . 

Proof. 

It is trivial to prove that the optimal daring retail price 
a

aWb
R u

2
4




 is decreasing in a . In 

the following, we show the optimal active retail price is decreasing in a . For 21 aa  , from 

Lemma 4.1, we know RaaRaqRaq )(),(),( 122111   and 212111 ),(),( aaRaqRaq  , 

which lead to  

),(),( 2111 RarRar   

)),(),()((),(),( 21112111 RaqRaqWRRaqRaq  .                        (4.35) 

0)( 12  aaW . 

With considering the concavity of )(1 Rr , we know the optimal active price 


1R  is decreasing 

in a . Similarly, we can prove the optimal passive and apprehensive retail price is decreasing in 

the parameter a .                                                             □ 

 

Proposition 4.11 shows that the increase of the price sensitivity of the market demand can make 

four types of retailers charge lower retail prices. 
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4.4  Numerical Example  

 

A fashion store, located in Yokohama, Japan, is planning to order a new design fashion clothes 

from France. The fashion store is monopoly in the east Japan market. The unit wholesale price W, 

the unit salvage price 
oS  and the unit opportunity cost 

uS  are 7000, 1000 and 4000 (JPY), 

respectively. The market demand depends on the retail price and 1500ub , 1000lb . Let us 

consider the retailer’s pricing policies when 02.0a , 05.0a  and 10.0a . As an 

example, let us see the details when 05.0a . 

Suppose the normalized likelihood function of the parameter b is 

62500

1250
004.0)(




b
b . By using (4.2), the profit function is  










);05.0(4000)7000(

);05.0(6000)05.0)(7000(
),,(

qRbqR

RbqRbR
qbRr  

qRb

qRb





05.0

05.0
.   (4.36) 

We obtain 167671 
R , 143282 

R , 139193 
R  and 185004 

R ; 45980001 r , 

27929002 r , 13945003 r  and 66125004 r . Similarly, we can obtain that when 

02.0a , 368041 
R , 293842 

R , 287973 
R , 410004 

R , 175070001 r , 

107660002 r , 88658003 r  and 231200004 r ; when 10.0a , 100001 
R , 

90332 
R , 89223 

R , 100004 
R , 8571401 r , 4001102 r , 7993503 r  and 

15000004 r . The relationships between retail prices and profits when 02.0a , 05.0a  

and 10.0a  are shown in Fig. 4.1, Fig. 4.2 and Fig. 4.3, respectively.  
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Fig.4.1. Relationships between retail prices and profits when 02.0a  

 

Fig.4.2. Relationships between retail prices and profits when 05.0a  

 

Fig.4.3. Relationships between retail prices and profits when 10.0a  
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The numerical example shows three interesting phenomena. First, the numerical example 

indicates that for any WR  , )()()()( 3214 RrRrRrRr  . That is the focused profits of 

the daring retailer are higher than the ones of active retailer; the focused profits of the active 

retailer are higher than the ones of passive retailer; the focused profits of the passive retailer are 

higher than the ones of apprehensive retailer. Second, we have 
  3214 RRRR  which 

shows that the optimal retail prices of the daring retailer is higher than the ones of active retailer; 

the optimal retail prices of the active retailer is higher than the ones of passive retailer; the optimal 

retail prices of the passive retailer is higher than the ones of apprehensive retailer. Third, we 

observe that with the increase of the price sensitivity of market demand (the increase of parameter 

a ), all of the four types of retailers charge the lower retail prices. Such phenomena are quite in 

agreement with the situations encountered in the real business world. 

 

4.5  Concluding Remarks 

 

This chapter examines the price-setting newsvendor problems for the innovative product. As 

mentioned by Fisher (1997), the innovative products are featured by the unpredictable demand 

and short life cycles. Considering the one-time feature of the retailer’s decision making problem 

for ordering the innovative product, the price-setting newsvendor model with the one-shot 

decision theory is proposed. Different from the price-setting newsvendor model with the 

subjective expected utility theory where the optimal order quantity and the optimal retail price are 

obtained based on the weighted average of the utilities of all payoffs, the price-setting newsvendor 

model with the one-shot decision theory determines the optimal order quantity and the optimal 

retail price only based on the satisfaction level of its focus point (one selected demand). Hence, 
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the proposed model is scenario-based which is fundamentally different from the existing models 

which are probability distribution based (lottery-based).  

Four types of retailers are considered. They are the active retailer who considers the focus point 

with a higher satisfaction and a higher likelihood; the passive retailer who thinks the focus point 

with a lower satisfaction and a higher likelihood; the apprehensive retailer who identifies the focus 

point with a lower satisfaction and a lower likelihood and the daring retailer who takes into 

account the focus point with a higher satisfaction and a lower likelihood. Suppose the four types 

of retailers have concave profit functions, there are following conclusions: 

For any retail price larger than unit wholesale price, the daring retailer will imagine the higher 

profit than the active retailer; the active retailer will imagine the higher one than the passive 

retailer; the passive retailer will imagine the higher one than the apprehensive retailer. 

The optimal daring retail price is higher than the optimal active one; the optimal active retail 

price is higher than the optimal passive one; the optimal passive retail price is higher than the 

optimal apprehensive one. 

With the increase of the price sensitivity of the market demand, every type of the retailer 

charges a lower retail price. 

The above results provide managerial insights into the behaviors of different types of retailers 

in the monopoly market of the innovative product.  
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Chapter 5 

 

Wholesale Price Contract in the Supply Chain for 

Innovative Products 

 

5.1 Introduction  

 

As a fundamental research of the supply chain management, a single manufacturer selling a 

product to a retailer who faces a newsvendor problem has been extensively researched. Due to its 

simplicity, the wholesale price contract is wildly used in practice and it has been studied in various 

aspects (Cachon, 2003). However, most of models for the wholesale price contract have been 

developed within the expected utility (EU) framework which is not characterize the one-time 

feature of innovative products (Lariviere and Porteus, 2001; Sarmah et al., 2006; Pasternack, 

2008). Furthermore, the value of information sharing in the supply chain has attracted much 

attention from both practitioners and researchers in the past decades. But most of the works are 

focusing on the value of demand information sharing (Cachon and Fisher, 2000; Lee et al., 1997a; 

Lee et al., 1997b; Lee et al., 2000; Zhou and Benton Jr, 2007). Until now, the information sharing 

of participants’ personalities in the supply chain is still on ‘virgin territory’. 

This chapter is focusing on the two-echelon supply chain for the innovative product. The supply 

chain consists a single manufacturer and a single retailer. The manufacturer produces a kind of 

innovative product and sells it to the retailer. With conjecturing the retailer’s order quantity, the 

manufacturer charges a wholesale price of the product. After observing the wholesale price, the 
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retailer who is facing uncertain demand need to decide his/her order quantity. It is a typical 

Stackelberg game in the supply chain where the manufacturer acts as a Stackelberg leader and the 

retailer acts as follower. Due to the one-time feature of innovative products, how to determine the 

optimal order amount can be regarded as a one-shot decision problem for the retailer, which are 

typical for situations where a decision is made only once under uncertainty. Ma et al. (2013), Ma 

and Guo (2013) and Ma (2014) studied the supply chain of innovative products. 

In the proposed models of this charpter, after observing the wholesale price, for each order 

quantity, the retailer chooses one demand amongst all possible demands while considering the 

satisfaction level caused by the occurrence of the demand and the likelihood of the demand 

occurring. The selected demand is called the focus point of the order quantity. The optimal order 

quantity corresponds to the maximum satisfaction level of its focus point. The different retailers 

who focus on different demands are regarded as retailers with different personalities. The optimal 

wholesale price contracts for the manufacturer when he/she is facing different types of retailers 

are obtained and some further theoretical analysis is made. 

The key contributions to the literature are as follows. This chapter presents a first formal 

analysis of the information sharing of the participants’ personalities in the supply chain. The 

analysis shows the differences of the wholesale price contracts for the retailers with different 

personalities and the importance of personality information sharing both in the make-to-order and 

make-to-stock supply chain. This chapter also provides the managerial insights into the different 

behaviors of the supply chain participants for innovative products. 

The reminder of this chapter is organized as follows. In Section 5.2, the Stackelberg game in 

the supply chain of innovative products is introduced. In Section 5.3, the analysis results are 

obtained. Some summary of concluding remarks are provided in section 5.4. 
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5.2  The Stackelberg Game in the Supply Chain of Innovative 

Products 

 

A manufacturer produces a kind of innovative product and sells it to a retailer. For simplicity, 

the manufacturer’s production cost is assumed to be zero. The retailer faces a newsvendor 

problem as described in the Chapter 3. The manufacturer acts as a Stackelberg leader, offering 

the wholesale price W. With conjecturing the retailer’s order quantity q, the manufacturer charges 

an optimal wholesale price, which maximize his/her profit, that is  

WqqWf ),( ,                                                          (5.1) 

After observing W, the retailer places an optimal order quantity, which maximizes his/her own 

satisfaction level, and then the market demand is realized. The market demand is characterized 

by a normalized likelihood function )(x  as defined by Definition 2.1.  

 

5.2.1 The lower level problem: the retailer’s model  

For the retailer, the wholesale price W is provided by the manufacturer. Following (3.1), the 

profit function of the retailer is  










);()(

;)(
),,(

qxSqWR

WqSxqRx
qxWr

u

o  
qx

qx




.                                 (5.2) 

The satisfaction function of retailer, as defined by Definition 2.2, can be written as ),,( qxWu . 

We consider four types of retailers introduced in previous chapters. 

 

Active retailer 

Based on the above analysis, the active retailer takes into account a demand with a higher 

satisfaction and a higher likelihood. His/her decision-making procedure within the one-shot 

decision framework is described as follows: 

Step 1: After observing the wholesale price W , determine the active focus point ),(1 qWx  for 

each order quantity q : 
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))],,((),([maxarg),(1 qxWruxlowerqWx
x

 .                                (5.3) 

Step 2:  obtain the optimal active order quantity )(1 Wq  for the fixed wholesale price W: 

))),,(,((maxmaxarg)( 1
),(),(

1
11

qqWxWruWq
qWXqWxq 

 ,                             (5.4) 

where ),(1 qWX  is the set of active focus points ),(1 qWx . 

 

Passive retailer 

If the retailer is of passive type, he/she focuses on a demand with a lower satisfaction and a 

higher likelihood. His/her decision-making procedure within the one-shot decision framework is 

described as follows: 

Step 1: After observing the wholesale price W , determine the passive focus point ),(2 qWx  for 

each order quantity q : 

))],,((),(1[minarg),(2 qxWruxupperqWx
x

 .                              (5.5) 

Step 2:  obtain the optimal passive order quantity )(2 Wq  for the fixed wholesale price W: 

))),,(,((maxmaxarg)( 2
),(),(

2
22

qqWxWruWq
qWXqWxq 

 ,                            (5.6) 

where ),(2 qWX  is the set of passive focus points ),(2 qWx . 

 

Apprehensive retailer 

The apprehensive retailer thinks over a demand with a lower satisfaction and a lower 

likelihood and he/she makes an order decision as follows: 

Step 1: After observing the wholesale price W , determine the apprehensive focus point 

),(3 qWx  for each order quantity q : 
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))],,((),([minarg),(3 qxWruxupperqWx
x

 .                                (5.7) 

Step 2:  obtain the optimal apprehensive order quantity )(1 Wq  for the fixed wholesale price 

W: 

))),,(,((maxmaxarg)( 3
),(),(

3
33

qqWxWruWq
qWXqWxq 

 ,                            (5.8) 

where ),(3 qWX  is the set of apprehensive focus points ),(3 qWx . 

 

Daring retailer 

The daring retailer’s considers a demand with a higher satisfaction and a lower likelihood and 

his/her decision-making procedure is as follows: 

Step 1: After observing the wholesale price W , determine the daring focus point ),(4 qWx  for 

each order quantity q : 

))],,((1),([minarg),(4 qxWruxupperqWx
x

  .                              (5.9) 

Step 2:  obtain the optimal daring order quantity )(4 Wq  for the fixed wholesale price W: 

))),,(,((maxmaxarg)( 4
),(),(

4
44

qqWxWruWq
qWXqWxq 

 ,                           (5.10) 

where ),(4 qWX  is the set of daring focus points ),(4 qWx . 

 

5.2.2 The upper level problem: the manufacturer’s model  

  Two types of supply chain are examined in this section: make-to-order and make-to-stock. In 

the make-to-order supply chain, the manufacturer performs production after the retailer’s ordering 

decision. Therefore, there are no demand uncertain for the manufacturer. On the other hand, in 

the make-to-stock supply chain, the manufacturer performs production before the retailer’s 

ordering decision. If the manufacturer produces too much innovative products, the unsold 
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products will be salvaged; if the manufacturer’s production quantity is less than the demand, 

he/she will suffer an opportunity cost. We consider the make-to-order supply chain firstly.  

 

5.2.2.1 Make-to-order supply chain  

The retailer’s optimal response )(1 Wq , )(2 Wq , )(3 Wq  or )(4 Wq  
is obtained in the 

lower level problem. With consideration of (5.1), the imagined profit functions of the 

manufacturer who is facing active, passive, apprehensive or daring retailer are as follows: 

)())(,( 11 WWqWqWf  ;                                                (5.11) 

)())(,( 22 WWqWqWf  .                                                (5.12) 

)())(,( 33 WWqWqWf  ;                                                (5.13) 

)())(,( 44 WWqWqWf  .                                                (5.14) 

The manufacturer’s optimal wholesale prices when he/she is facing different retailers are as 

follows: 

))(,(maxarg WqWfW i
W

i 


, i=1,2,3 or 4.                                   (5.15) 



1W , 


2W , 


3W  and 


4W  are the optimal wholesale prices of the manufacturer when he/she 

is facing active, passive, apprehensive and daring retailers, respectively.   

The imagined profit of the whole supply chain when the manufacturer is facing active, passive, 

apprehensive or daring retailer is as follows 

)()( 1111

  WqWR ;                                                  (5.16) 

  )()( 2222

  WqWR .                                                  (5.17) 

)()( 3333

  WqWR ;                                                  (5.18) 
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  )()( 4244

  WqWR .                                                  (5.19) 

1
, 

2
, 3

 and 
4

 are called optimal active, passive, apprehensive and daring profits, 

respectively. 

 

5.2.2.1  Make-to-stock supply chain  

Due to the short life cycle of innovative products (usually shorter than the lead-time), 

shortening the lead-time becomes an important topic of the supply chain management of such 

products. Knowing the personalities of the retailers, the manufacturer is able to perform the 

production in advance. Facing the retailers with different personalities, the manufacturer selects 

a strategy and its corresponding optimal wholesale price contract to coordinate the supply chain 

(production quantity equals to order quantity).  

In this make-to-stock supply chain, the manufacturer imagine that he/she performs as an 

integrated manufacturer and decides a production quantity in advance, which is a typical 

newsvendor problem. The profit function of the integrated manufacturer is shown as below.  












);()(

;)(
),(

PxSPcR

PcSxPRx
Pxf

M

up

po
 

Px

Px




,                               (5.20) 

where x is the market demand, P is the production quantity, oS  is the unit salvage price, 
M

uS  

is the integrated manufacturer’s unit opportunity cost, pc  is the production cost and op Sc  . 

The satisfaction level of the integrated manufacturer is written as ),( qxu f
.  

  Similar as Chapter 3, there are active, passive, apprehensive and daring focus points lead to 

active, passive, apprehensive and daring production quantity, i.e., 1P , 2P , 3P  and 4P , 

which represent active, passive, apprehensive and daring strategies, respectively.   
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5.3 Analysis Results  

 

In this section we suppose the probability density function of demand satisfies the Assumption 

3.1. After observing the wholesale price W represented by the manufacturer, following (3.3) and 

(3.4), the retailer’s highest profit )(Wru  and lowest profit )(Wrl  are obtained as follows. 

uu dWRWr )()(  .                                                    (5.21) 

WdSddRdWr uolull  )()( , (supposing uo SSW  ).                  (5.22) 

 

5.3.1 The analysis results of make-to-order supply chain  

We suppose the satisfaction function of the retailer is 
)()(

)(),,(
),,(

WrWr

WrqxWr
qxWu

lu

l




 . If 

),( uc ddx , )(x  is of class 
1C , then we have Theorem 5.1. 

Theorem 5.1. When the manufacturer faces active retailer, the manufacturer’s imagined profit 

function )())(,( 11 WWqWqWf   is a concave function of wholesale price W. 

Proof.  

From (5.11), we have 

)()(2))(,( 111 WqWWqWqWf  .                                        (5.23)  

From (3.20), we have  

x

xxWu
x
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xxWu

Wq











),,(

)(

),,(

)(1



,                                     (5.24) 

which lead to  
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.         (5.25) 

Since ),( uc ddx , with considering (3.2), (5.2) and Definition 2.2, we have  

0)(  x ,                                                             (5.26) 

0
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0
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,                                                       (5.29) 

0
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1),,(2











olu SRddWx

xxWu
.                                     (5.30) 

From (5.23) to (5.30), we know 0))(,( 1  WqWf .                                 □ 

 

If )(x  is symmetric, and it is of class 
1C  for ),( cl ddx  and ),( uc ddx , then we have 

Theorem 5.2. 

Theorem 5.2. When the manufacturer faces passive retailer, the manufacturer’s imagined profit 

function )())(,( 22 WWqWqWf   is a concave function of wholesale price W. 

Proof.  

From (5.12), we have 

)()(2))(,( 212 WqWWqWqWf  .                                       (5.31)  

From (3.22), we have  
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which lead to  
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With considering (3.2), (5.2) and Definition 2.2, we know 0)(2  Wq  and 0)(2  Wq , which 

lead to 0))(,( 2  WqWf .                                                     □ 

 

Proposition 5.3. When the manufacturer is facing the apprehensive or daring retailer, he/she 

always sets the wholesale price equal to retail price and obtains the whole profit in the supply 

chain. 

Proposition 5.4. The imagined profits of the supply chain when the manufacturer is facing 

different types of retailers have the relationships: 

  4123
                                                     (5.34) 

 

In the following we examine the behaviors of supply chain participants when the market 

changes. Suppose the market demand is a triangular distribution with range ],[ ul dd . The 

normalized likelihood function )(x  can expressed as  
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,                           (5.35) 

where 10   . 

),()( ullul ddddd   is the peak of the normalized likelihood function and it is the most 

possible demand. The most possible demand )( lul ddd   is increasing in parameter  . 
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We examine the situation that the manufacturer is facing active retailer. Suppose the 

manufacturer’s optimal wholesale price ),(1 ul ddW  , that is 0))(,( 1  WqWf  has a 

solution in ),( ul dd . We have the following theorem. 

Proposition 5.5. When the manufacturer is facing the active retailer, his/her optimal wholesale 

price increases while the most possible demand increases. 

Proof.  

From (5.11), we have 
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From (3.20), we have  
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which lead to  
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Since ),( uc ddx , with considering (3.20) and (5.35), we have  

0
),(1 







Wq
.                                                         (5.39) 

From (5.36), (5.38) and (5.39), we know 0
)),(,( 1

2






W

WqWf




. Referring the concavity of 

))(,( 1 WqWf , we know that the manufacturer’s optimal wholesale price is increasing in  . □ 

Theorem 5.5 provide the managerial insights into the changes of supply chain performance and 

behaviors of manufacturer and retailer when market grows. 

 

5.3.1 The analysis results of make-to-stock supply chain  
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Proposition 5.6. If ),( uc ddx , )(x  and ),( pxu f  are of class 
1C , there is a unique 

),(2 RcW p  which satisfies 221 )( PWq  .  

Proof.  

From (3.14), we know that )(1 Wq  is the solution of  

)(),,( xxxWu  .                                                      (5.40)  

Using the implicit function theorem, we know that )(1 Wq  is a continuously differentiable 

function of W, and 0)(1  Wq . With considering Lemma 3.6, we know that there is a unique 

),(2 RcW p  which satisfies 221 )( PWq  .                                        □ 

 

2W  in Proposition 5.6 is called passive wholesale price contract, which is corresponded to the 

passive strategy of the manufacturer. From Proposition 5.6 we can see that when the manufacturer 

faces active retailer, the passive strategy can coordinate (production quantity equals to order 

quantity) the supply chain. From Proposition 3.8, with the changing of wholesale price, the 

changes of passive order quantity is depending on the setting of parameters, we have the following 

Proposition. 

 

Proposition 5.7. When the manufacturer is facing the passive retailer, no strategy can surely 

coordinate the supply chain.  

 

From Lemma 3.5 and Proposition 3.9, the wholesale price has no effect on apprehensive and 

daring order quantities, we obtain Proposition 5.8.  
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Proposition 5.8. When the manufacturer is facing the apprehensive/daring retailer, the 

apprehensive/daring strategy can coordinate the supply chain.  

 

5.4  Concluding Remarks 

 

This chapter examines the wholesale price contract in a simple supply chain of the innovative 

product. We use the one-shot decision theory to analyze the behaviors of supply chain 

participants. The one-time feature of innovative products is considered. Different from the 

existing models, we introduce the personalities of the supply chain participants into our models, 

and we show the importance of personality information sharing. Stackelberg equilibriums are 

proposed to analyze the optimal wholesale pricing of manufacturer and the optimal order quantity 

of retailer both in the make-to-order and make-to-stock supply chains. To the best of my 

knowledge, it is the first time that the contracts in the make-to-stock supply chain is studied. 

Different types of retailers, called active, passive, apprehensive and daring retailers, lead to 

different Stackelberg equilibriums. The managerial insights into the changes of supply chain 

performance and behaviors of manufacturer and retailer when market grows are also discussed. 
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Chapter 6 

 

Conclusions 

 

In this dissertation, three supply chain management models which fit the one-shot feature of 

innovative products are studied based on the one-shot decision theory. The general solutions and 

existence theorem are proposed in one-shot decision theory so that the mathematical basics in 

analyzing the supply chain management models are given. The main achievements obtained in 

this dissertation are summarized as follows. 

In Chapter 2, the general solutions of active, passive, apprehensive and daring focus points and 

optimal alternatives are proposed and the existence theorem is established in the one-shot decision 

theory.  

In Chapter 3, newsvendor models for innovative products are proposed based on the one-shot 

decision theory. Four types of retailers who choose four different types of focus points, i.e. active, 

passive, apprehensive and daring retailers are examined by one-shot decision theory. The 

proposed models are scenario-based decision models which provide a fundamental alternative to 

analyze the newsvendor problems of innovative products.  

In Chapter 4, price-setting newsvendor models for innovative products are proposed. In the 

classic newsvendor problem, the retail price is considered as an exogenous value. It is only for a 

perfect competitive market where the retailers are price-takers. When the retailer is selling an 

innovative product in a monopoly market, he/she has only one chance to determine not only the 

order quantity but also the retail price the retail price to maximize his/her profit. The one-shot 

decision theory based price-setting newsvendor models are proposed for this situation.  
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In Chapter 5, the wholesale price contracts in the supply chain for innovative products are 

discussed. In this supply chain, a single manufacturer sells innovative products to a retailer who 

is facing a newsvendor problem. Based on one-shot decision theory, the Stackelberg equilibriums 

are obtained for the optimal wholesale price of manufacturer and the optimal order quantity of 

retailer both in the make-to-order and make-to-stock supply chain. Different types of retailers lead 

to different Stackelberg equilibriums. In the proposed models, the one-time feature of innovative 

products and the information sharing of personalities are considered. The managerial insights into 

the changes of supply chain performance and behaviors of manufacturer and retailer when market 

grows are also discussed. 
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