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Chapter 1

Introduction

1.1 Stylized facts

1.1.1 State-space models

State-space models are not new in the statistics and econometric literatures. But, a growing
number of published papers that employ them demonstrates their usefulness and widening
application. In essence, the state-space model is one in which an observed variable is the sum
of a linear function of the state variable plus an error. The state variable, in turn, evolves
according to a stochastic difference equation that depends on parameters that in economic
applications are generally unknown. Thus, both the path of the state variable through time
and the parameters are to be inferred from the data. Harvey [1981] introduced to economists
Kalman filter for obtaining maximum likelihood estimates of parameters through prediction
error decomposition was introduced. It became clear from Harvey’s work and others’ that
a surprising range of econometric models, including regression models with time-varying
parameters, ARIMA models and unobserved components time series models, could be cast
in state-space form and thus be rendered amenable to Kalman machinery for parameter
estimation and extraction of state variables.

State-space models have a wide range of potential applications in econometrics - for ex-
ample, permanent income, expectations, the ex ante real rate of interest, and the reservation
wage. Engle and Watson [1981] applies it to modeling the behavior of wage rate; Garbage
and Wachetel [1978] and Antonic [1986] apply it to modeling the behavior of ex ante real
interests; Burmeister and Wall [1982] and Burmeister, Wall, and Hamilton [1986] apply it to
modeling a time-varying monetary reaction function of the Federal Reserve. Stock and Wat-
son’s [1991] dynamic factor model of coincident economic indicators is a recent application of
the state-space model. Thus, state-space models have highly productive paths for research
in econometrics and finance.

However, we rarely know priori structure of an exact model. In fact, investigators
estimate several models but may not undertake comprehensive testing of the adequacy of
their preffered model. Thus, there are some requirements for specification tests.
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1.1.2 Specification tests

Specification tests play an important role in the evaluation of econometric models. In fact,
there have been rapid depelopments in the field of testing for misspecification in both applied
and theoretical econometrics. The idea that a model must be tested before it can be taken to
be an adequate basis for studying economic behaviour has become widely accepted. Modern
empirical analysis usually include testing for a number of specification errors, and the range
of tests available to applied workers has increased enormously.

Most of specification tests are based either on the Wald, Likelihood Ratio, or Lagrange
Multiplier principle. These three general principles have a certain symmetry which has
revolutionized the teaching of hypothesis tests and the development of new procedures. Es-
sentially, the Lagrange Multiplier approach starts at the null and asks whether movement
toward the alternative would be an improvement, while the Wald approach starts at the al-
ternative and considers movement toward the null. The Likelihood Ratio method compares
the two hypotheses directly on an equal basis. Of the three classical tests, the Lagrange
Multiplier principle deserves special consideration when discussing tests for misspecification
because, unlike the asymptotically equivalent Wald and Likelihood Ratio methods, it does
not require the estimation of the more complex alternative in which the original model of
interest has been embedded.

1.2 Purpose of this study

This paper has two purposes. One is to propose specification tests for the dynamic factor
model. The weak exogeneity, linear dependency, and omitted explanatory variables tests will
be presented in this paper.

Another is to apply these tests to the factor augmented APT model and the term
structure model of yield curve. In the APT model, we will examine the adequacy of macroe-
conomic factors as systematic variables to the stock return. In the term structure model of
yield curve, we will examine the nature of the linkage between factors driving the yield curve
and macroeconomic factors.

Thus, we have grouped this paper into three categories: (1) specification testing in
dynamic factor models, (2) an asset pricing model, with links to macroeconomy, and (3) an
yield curve model, with links to macroeconomy.

1.3 Structure of this study

The rest of this paper is arranged as follows. Chapter 2 is “Specification Testing in Dynamic
Factor Models.” Chapter 3 is “Joint Estimation of Factor Sensitivities and Risk Premia
in the Factor Augumented APT Model.” Chapter 4 is “The Macroeconomy and the Yield
Curve: Specification Testing based on Lagrange Multiplier Approach.” The conclusion is
given in the last chapter.

9
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Chapter 2

Specification Testing in Dynamic
Factor Models

2.1 Introduction

Recently, researchers have been interested in economic and financial models in which the
dynamics of large scale economic variables can be specified by a smaller number of indices
or “common factors.” When the dynamic factor model proposed by Stock and Watson
[1989] is applied to a time series model, the result is a model based on the assumption that
one latent variable causes the co-movement of four observed variables. This approach has
provided some new perspectives on several economic analysis. For example, Diebold and
Rudebusch [1996] and Kim and Nelson [1998] applied it in the modeling of the business
cycles; Diebold et al. [2006] and Ghysels and Ng [1998] applied it in the characterization of
the yield curve; and Sentana [2004] and Lehmann and Modest [1988] applied it in mimicking
portfolios in an Arbitrage Pricing Theory (APT) model. However, we rarely know priori
structure of an exact model. In fact, investigators estimate several models but may not
undertake comprehensive testing of the adequacy of the preffered model. Thus, there are
some requirements for specification tests.

Because common factors are generally unobserved, we need to extract them using sta-
tistical techniques. Estimation procedure, such as Principal component analysis and Kalman
filter, are used to extract them. In the method of the former technique, a number of past
studies considered the problem of verifying the adequacy of the dynamic factor model. Lew-
bel [1991] and Donald [1997] used the rank of a matrix to test for the number of factors.
Cragg and Donald [1997], Stock and Watson [1998], and Forni et al. [2000] suggested the use
of modified information criteria for the model selection. In the method of the latter tech-
nique, however, little work has been done for the hypothesis testing or the model selection
on the dynamic factor model. This paper attempts to fill this gap, by proposing specification
tests for weak exogeneity, linear dependency, and omitted explanatory variables based on the
Lagrange Multiplier (LM) principle1.

1Note: See Davidson and Mackinnon [1993], Breusch and Pagan [1980], Godfrey and Wickens [1981], and
Engle [1984] for a detailed description of the LM test. See also Newey [1985], Tauchen [1985], and White
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This paper provides an expression for the score in this model, defined as the derivative of
the conditional log likelihood of the tth observation with respect to the parameter vector. This
permits calculation of all of the necessary test statistic as well as an intuitive interpretation
of what each test is based on. The score turns out to be a natural byproduct of the routine
used to calculate the expected value with respect to smoothed density. In addition, from
the same calculation we construct asymptotic standard errors for the parameter vector and
specification tests. Therefore, proposed tests can be calculated together from a single pass
through the data.

The LM principle deserves special consideration when discussing tests for misspecifica-
tion because, unlike Likelihood Ratio and Wald methods, it does not require the estimation
alternative in which the original model of interest has been embedded. In addition, the LM
test proposed here employs an estimate of the information matrix based on the average outer
product of the score as in Berndt et al. [1974]. Therefore, the LM test proposes a flexible
and easily implemented scheme and is often regarded as the most suitable for constructing
misspecification test.

The rest of the paper is organized as follows. Section 2.2 details the basic framework
and notation of the model and introduces the estimation framework. Section 2.3 derives the
general principles of specification tests. Section 2.4 reports Monte Carlo experiments and
checks the actual size and power of the tests. Section 2.5 briefly summarizes this study.

2.2 A dynamic factor model representation

2.2.1 The notations and assumptions

The dynamic factor model approach expresses a large set of observed variables as a function of
a small set of unobserved variables. Let ynt be an nth observation at time t for n = 1, 2, . . . , N
and t = 1, 2, . . . , T . Consider the following model:




y1t

y2t
...

yNt


 =




φ11 φ12 · · · φ1K

φ21 φ22 · · · φ2K
...

...
. . .

...
φN1 φN2 · · · φNK







c1t

c2t
...

cKt


 +




u1t

u2t
...

uNt


 , (2.2.1)

where ckt is a kth common factor at time t, φnk is an nth coefficient of factor loading associated
with ckt and unt is an nth idiosyncratic noise at time t for n = 1, 2, . . . , N, k = 1, 2, . . . , K,
and t = 1, 2, . . . , T . Equation (2.2.1) relates a set of N observed variables to unobserved
K common factors. Therefore, the observation ynt is decomposed into

∑K
k=1 φnkckt + unt of

two unobservable mutually orthogonal (at all leads and lags) parts, the common component∑K
k=1 φnkckt, and the idiosyncratic component unt, respectively.

If the dynamic movement of common factors follows a stationary vector autoregressive
process of first order, the model immediately forms a state-space system2. The dynamics of

[1987] for the general approach to specification testing .
2Note: As is well-known, ARMA state vector dynamics of any order may be readily accommodated in

state-space form. We maintain the VAR(1) assumption only for transparency and parsimony.
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common factors employed here is defined as follows:



c1t

c2t
...

cKt


 =




γ1 0 · · · 0
0 γ2 · · · 0
...

...
. . .

...
0 0 · · · γK







c1,t−1

c2,t−1
...

cK,t−1


 +




v1t

v2t
...

vKt


 , (2.2.2)

where γk is a kth autoregressive coefficient and vkt is a kth noise for k = 1, 2, . . . , K and
t = 1, 2, . . . , T . Note that our model restricts common factors to be orthogonal to each other
(at all leads and lags) but does not restrict the factor loadings at all.

According to the above specification, we write a state-space system that equation (2.2.1)
is the observation equation and equation (2.2.2) is the transition equation. In a vector/matrix
notation, the state-space system of our model is as follows:

yt
(N×1)

= Φ
(N×K)

ct
(K×1)

+ ut
(N×1)

, (2.2.3)

ct
(K×1)

= Γ
(K×K)

ct−1
(K×1)

+ vt
(K×1)

, (2.2.4)

where yt is a vector of observation, ct is a vector of common factors, Φ is a matrix of factor
loadings associated with ct, ut is a vector of idiosyncratic noise, Γ = diag (γ1, γ2, . . . , γK) is
a matrix of autoregressive coefficients, and vt is a vector of noise.

Further, we require that Gaussian white noises ut and vt be orthogonal to each other
(at all leads and lags) and to the initial state:

[
ut

vt

]
∼ i.i.d.N

([
0
0

]
,

[
Σ 0
0 Ω

])
, (2.2.5)

E
(
c1u

′
t

)
= 0, E

(
c1v

′
t

)
= 0. (2.2.6)

In much of our analysis, we assume that the matrix Σ is non-diagonal and the matrix Ω
is diagonal for simplicity. Therefore, the structure of the matrices Σ and Ω employed here
are defined as follows:

Σ =




σ11 σ21 · · · σN1

σ21 σ22 · · · σN2
...

...
. . .

...
σN1 σN2 · · · σNN


 ,Ω =




ω11 0 · · · 0
0 ω22 · · · 0
...

...
. . .

...
0 0 · · · ωKK


 , (2.2.7)

where σij is an ijth element of Σ and ωij is an ijth element of Ω. This is the basic structure
we adopt for the rest of this paper3.

In general, the state-space representation provides a powerful framework for estimation
and testing of dynamic models. The recognition that the dynamic factor model is put in

3Note: This framework is also called “Approximate Dynamic Factor Model” or “Generalized Dynamic
Factor Model”. On the other hand, the model with orthogonal idiosyncratic noise is called “Exact Dynamic
Factor Model”.
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state-space form is particularly useful because application of Kalman filter delivers maximum
likelihood estimates (MLE) and optimal filtered and smoothed estimates of the underlying
filter and smoother. In addition, we construct the test statistic from smoothed density and
do not require estimation of additional parameters. Finally, the state-space representation
paves the way for possible further extensions, such as allowance for heteroskedasticity and
markov-switching framework, although we do not pursue those extensions in our paper4.

2.2.2 The estimation framework

The previous subsection detailed the basic framework and notation of the model. This
subsection summarizes general estimation framework of the model. Suppose we want to
estimate an (M × 1) parameter vector θ based on a time series of T observations on a vector
yt. Consider the distribution yt conditional on the information up to t− 1,

f(yt|ψt−1;θ), where ψt−1 = (y′1,y
′
2, . . . ,y

′
t−1)

′. (2.2.8)

The task is to choose a parameter vector θ so as to maximize the log likelihood function

L(θ) ≡
T∑

t=1

log f(yt|ψt−1;θ). (2.2.9)

To derive the log likelifood function (2.2.9), we specify conditional densities of the observed
variable yt and the common factor ct. From equation (2.2.3), (2.2.4), and (2.2.5), these
conditional densities are defined as follows:

f(yt|ct;λ) = (2π)−N/2
∣∣Σ−1

∣∣1/2 exp
[
−1

2
(yt −Φct)′Σ−1(yt −Φct)

]
, (2.2.10)

f(ct|ct−1;η) = (2π)−K/2
∣∣Ω−1

∣∣1/2 exp
[
−1

2
(ct − Γct−1)′Ω−1(ct − Γct−1)

]
, (2.2.11)

where λ = ([vec(Φ)]′, [vech(Σ)]′)′,η = (γ1, γ2, . . . , γK , ω11, ω22, . . . , ωKK)′,

for t = 1, 2, . . . , T . Note that equation (2.2.10) and (2.2.11) are unobserved in actually. We
here assume that

c1 ∼ N
(
0, [IK2 − (Γ⊗ Γ)]−1 vec (Ω)

)
,

where the symbol ⊗ denotes the kronecker product and the vec (·) denotes the vec-operator.
Note that the observed likelihood (2.2.8) is parameterized by θ, which includes both the

parameter λ appearing in equation (2.2.10) and the parameter η in equation (2.2.11),

θ = (λ′,η′)′. (2.2.12)

According to the above specification, Kalman filter and a smoother for the dynamic
factor model are as follows.

4Note: See Kim and Nelson [1999] and Durbin and Koopman [2001] for a detailed further extensions.
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First, given the density of ct−1 conditional on the information up to t − 1, namely
f(ct−1|ψt−1;θ), the density of the predicted state variable ct is expressed as the integral

f(ct|ψt−1;θ) =
∫ ∞

−∞
f(ct|ct−1;η)f(ct−1|ψt−1;θ)dct−1, (2.2.13)

since it is implicitly assumed that the transition equation (2.2.11) given ct−1 is independent
of ψt−1, namely f(ct|ct−1;η) = f(ct|ct−1,ψt−1;η). Next, we can update the conditional
density of ct by obtaining the new observation yt as

f(ct|ψt;θ) =
f(yt|ct;λ)f(ct|ψt−1;θ)

f(yt|ψt−1;θ)
, (2.2.14)

where
f(yt|ψt−1;θ) =

∫ ∞

−∞
f(yt|ct;λ)f(ct|ψt−1;θ)dct, (2.2.15)

since it is assumed implicitly that the measurment equation (2.2.10) is independent of
the past information ψt−1, namely f(yt|ct;λ) = f(yt|ct,ψt−1;λ). The process of ob-
taining the conditional density of the state variable ct given ψt is called “filtering” in
the state-space framework, and we have the conditional likelihood of yt in the denomina-
tor of equation (2.2.14) as a byproduct of filtering. We can obtain the conditional likeli-
hood f(y1;θ), f(y2|ψ1;θ), . . . , f(yT |ψT−1;θ) using equation (2.2.13) and (2.2.14) recursively.
Thus, we obtain the unconditional density f(y1,y2, . . . ,yT ) and the maximum likelihood es-
timator. This filtering algorithm was proposed by Kitagawa [1987].

In obtaining the test statistic, the conditional density of the state variable ct given ψT ,
namely f(ct|ψT ;θ), is required, as will be shown in the next section. This process is referred
to by “smoothing.” We see that

f(ct, ct+1|ψT ;θ) = f(ct+1|ψT ;θ)f(ct|ct+1,ψT ;θ)

=
f(ct+1|ψT ;θ)f(ct+1|ct;η)f(ct|ψt;θ)

f(ct+1|ψt;θ)
, (2.2.16)

from the Bayes theorem and

f(ct|ct+1,ψt;θ) = f(ct|ct+1,ψT ;θ). (2.2.17)

The equation (2.2.17) is intuitive, since it is evident from equation (2.2.10) and (2.2.11) that,
given ct+1, the future observations yt+1,yt+2, . . . ,yT have no additional information with
respect to ct. Therefore the smoothed density

f(ct|ψT ;θ) =
∫ ∞

−∞
f(ct, ct+1|ψT ;θ)dct+1, (2.2.18)

is derived by integrating out ct+1 in equation (2.2.16). Then we obtain the smoothed density
at t using the smoothed density at t + 1, the transition density f(ct+1|ct;η), the filtered
density f(ct|ψt;θ) and the predicted density f(ct+1|ψt;θ). This is a general estimation
framework.
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Note that our model is linear and assumed to be normally distributed. Therefore,
conditional mean and covariance matrix can be computed through linear gaussian Kalman
filter and a smoother. Hence, there is no need for numerical integration. For details, see
Hamilton [1994] or Kim and Nelson [1999].

The use of state-space representation of the dynamic factor model is essential in this
paper, since we use the formula of Hamilton [1996], who showed that the LM statistic of the
Markov-switching model, a special case of the state-space model, can be obtained as expected
value with respect to smoothed density. In the next section, we will show this result.

2.3 Form of the specification tests for the dynamic factor
model

This section provides an expression for the score in the dynamic factor model and derives
the general specification framework based on the LM principle. Subsection 2.3.1 provides an
expression for the score in terms of the derivative of unobserved densities. Subsection 2.3.2
derives the general LM test statistic. Subection 2.3.3 introduces the framework of several
specification tests. Subsection 2.3.4 summarizes LM tests.

Before detailing discussions, it is worth calling to three standard “regularity conditions”
behind the formulas presented in this section. First, it is assumed that observations are
strict stationary. Second, it is assumed that the likelihood function allows two term Taylor
series expansions and the interchange of integral and derivative. Third, it is assumed that
the information matrix is non-singular, so that parameters are locally identified.

2.3.1 The score for the dynamic factor model

This subsection provides an expression for the score in the dynamic factor model. The score
of the tth observation is defined as

gt(θ) ≡ ∂ log f(yt|ψt−1;θ)
∂θ

. (2.3.1)

This score refers to the derivative of the observed conditional density (2.2.8). It turns out
that the element of the score corresponding to λ and η have a simple relation to derivatives
of unobserved conditional densities (2.2.10) and (2.2.11). We will show this relation below.

The density function of y1,y2, . . . ,yt is expressed as follows:

f(y1,y2, . . . ,yt;θ) =
∫ (t)

f(y1,y2, . . . ,yt|c1, c2, . . . , ct;λ)f(c1, c2, . . . , ct;η)dc(t), (2.3.2)

where

f(y1,y2, . . . ,yt|c1, c2, . . . , ct;λ) =
t∏

τ=1

f(yτ |cτ ;λ), (2.3.3)

f(c1, c2, . . . , ct;λ) =
t∏

τ=2

f(yτ |cτ−1;λ) · f(c1;λ). (2.3.4)
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Note that
∫ (t)

dc(t) denotes multiple integration:

∫ (t)

dc(t) ≡
∫ ∞

−∞

∫ ∞

−∞
· · ·

∫ ∞

−∞
dc1dc2 · · · dct.

Then, the derivative of the first t observation is

∂ log f(y1,y2, . . . ,yt;θ)
∂λ

=
1

f(y1,y2, . . . ,yt;θ)

×
∫ (t) ∂f(y1,y2, . . . ,yt|c1, c2, . . . , ct;λ)

∂λ
f(c1, c2, . . . , ct;η)dc(t)

=
∫ (t) ∂ log f(y1,y2, . . . ,yt|c1, c2, . . . , ct;λ)

∂λ

× f(y1,y2, . . . ,yt|c1, c2, . . . , ct;λ)f(c1, c2, . . . , ct;η)
f(y1,y2, . . . ,yt;θ)

dc(t). (2.3.5)

Using equation (2.3.3), equation (2.3.5) becomes

∂ log f(y1,y2, . . . ,yt;θ)
∂λ

=
t∑

τ=1

[∫ (t) ∂ log f(yτ |cτ ;λ)
∂λ

· f(c1, c2, . . . , ct|y1,y2, . . . ,yt;θ)dc(t)

]
, (2.3.6)

and the conditional density of c1, c2, . . . , ct given y1,y2, . . . ,yt is defined by

f(c1, c2, . . . , ct|y1,y2, . . . ,yt;θ) =
f(yt|ct;λ)f(ct|ct−1;η) · · · f(y1|c1;λ)f(c1;η)

f(y1,y2, . . . ,yt;θ)
. (2.3.7)

The multiple integral in (2.3.6) is simplified to a one-dimensional integral, since ∂ log f(yτ |cτ ;λ)/∂λ
depends only upon cτ . Therefore, equation (2.3.6) becomes

∂ log f (y1,y2, . . . ,yt;θ)
∂λ

=
t∑

τ=1

[∫ ∞

−∞

∂ log f (yτ | cτ ;λ)
∂λ

· f (cτ |ψt;θ) dcτ

]

=
t∑

τ=1

E[ξτ (θ)|ψt], for t = 1, 2, . . . , T, (2.3.8)

where
ξτ (θ) =

∂ log f (yτ | cτ ;λ)
∂λ

.

Note that the conditional density function f(cτ |ψt;θ) in equation (2.3.8) can be obtained as
the smoothed density of cτ in equation (2.2.18).

Further, the score of the tth observation with respect to λ can be evaluated by differ-
encing equation (2.3.6) as

∂ log f(yt|ψt−1;θ)
∂λ

=
∂ log f(y1,y2, . . . ,yt;θ)

∂λ
− ∂ log f(y1,y2, . . . ,yt−1;θ)

∂λ
, (2.3.9)
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where the derivative of the log likelihood for y1,y2, . . . ,yt for t < T on the right hand side
can be evaluated iteratively by applying the same routine used in obtaining equation (2.3.8)
for t = 1, 2, . . . , T .

Similarly, using equation (2.3.4), the score with respect to η becomes

∂ log f (y1,y2, . . . ,yt;θ)
∂η

=
t∑

τ=1

[∫ ∞

−∞

∂ log f (cτ | cτ−1;η)
∂η

· f (cτ |ψt;θ) dcτ

]

=
t∑

τ=1

E[ξτ (θ)|ψt], for t = 1, 2, . . . , T, (2.3.10)

where
ξτ (θ) =

∂ log f (cτ | cτ−1;η)
∂η

.

Then, the score of the tth observation with respect to η can be evaluated as

∂ log f(yt|ψt−1;θ)
∂η

=
∂ log f(y1,y2, . . . ,yt;θ)

∂η
− ∂ log f(y1,y2, . . . ,yt−1;θ)

∂η
. (2.3.11)

Therefore, all of the elements of the score take the form of simple function of smoothed
density. Note that the integration is necessary for derivation of equation (2.3.8) and (2.3.10).
But the whole score vector for Gaussian linear state-space model can be computed exactly
in a single pass of the Kalman filter and a smoother, so there is no need for numerical
integration. For details, see appendix A.

Because the score derived here can be used to construct an estimate of the information
matrix, this step is the most important part of the calculation of test statistic.

2.3.2 The general principle of specification tests

This subsection provides general approaches that can be used to test specification based on
the LM principle. Suppose that the conditional density of the tth observation is given by

∫ ∞

−∞
f(yt|ψt−1;θ)dyt = 1, (2.3.12)

Since equation (2.3.12) holds for all admissible values of θ, we can differentiate both sides
with respect to θ to conclude that

∫ ∞

−∞

∂f(yt|ψt−1;θ)
∂θ

dyt = 0. (2.3.13)

In addition, we multiply and divide the integrand in equation (2.3.13) by the conditional
density of yt:

∫ ∞

−∞

∂f(yt|ψt−1;θ)
∂θ

· 1
f(yt|ψt−1;θ)

· f(yt|ψt−1;θ)dyt = 0
∫ ∞

−∞

∂ log f(yt|ψt−1;θ)
∂θ

· f(yt|ψt−1;θ)dyt = 0. (2.3.14)
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Substitution of equation (2.3.1) into equation (2.3.14) reveals that
∫ ∞

−∞
gt(θ) · f(yt|ψt−1;θ)dyt = 0. (2.3.15)

Equation (2.3.15) indicates that if the data were really generated by the density (2.2.11),
then the expected value of the score conditional on information observed through date t− 1
should be zero:

E [gt(θ0)|ψt−1] = 0, (2.3.16)

where θ0 denotes true parameter value. In other words, the score function {gt(θ)}T
t=1 should

form a martingale difference sequence. Thus if the model is correctly specified, the score
gt(θ0) should be impossible to forecast on the basis of any information available at date t−1,
such as elements of the lagged score gt−1(θ0).

The vast majority of all testing problem is composite so that only a subset of parameters
is fixed under the null. Let θ = (θ′1,θ

′
2)
′. The first (M1 × 1) parameters are specified under

the null hypothesis to be θ10, whereas the remaining (M2 × 1) parameters are unrestricted
under both the null and the alternative. Thus, the maximum likelihood estimate of θ under
the null is denoted θ̃ ≡ (θ′10, θ̃

′
2)
′. Note that M1 + M2 = M .

Then at the constrained MLE θ̃, the first M1 elements of the average score T−1
∑T

t=1 gt(θ̃)
are nonzero, whereas the last M2 are zero. The magnitude of these first M1 elements re-
flects how much the likelihood function might increase if constraints were relaxed, and can
be used to assess the validity of constraints. Then, if we use the BHHH (outer product of
gradients) estimator to estimate the information matrix, the Lagrange Multiplier test of the
null hypothesis that restrictions are true is given by the following statistic:

LM =

[
T−1/2

T∑

t=1

gt(θ̃)

]′
·
[
T−1

T∑

t=1

gt(θ̃)g′t(θ̃)

]−1

·
[
T−1/2

T∑

t=1

gt(θ̃)

]
d−→ χ2

M1
. (2.3.17)

Namely, under the null hypothesis, the LM test statistic has a limiting χ2 distribution with
degrees of freedom equal to the number of restrictions.

In addition, let gt(θ̃) denote the tth term in the gradient of the log-likelihood function
at the constrained MLE θ̃. Then

g(θ̃) =
T∑

t=1

gt(θ̃) = G′(θ̃)iT . (2.3.18)

where G(θ̃) is the (T ×M) matrix with tth row equal to g′t(θ̃) and iT is a column of 1s of
order T . Then, equation (2.3.17) becomes

LM = i′T G(θ̃)
[
G′(θ̃)G(θ̃)

]−1
G′(θ̃)iT

d−→ χ2
M1

. (2.3.19)

Furthermore, let the matrix G(θ̃) be partitioned as follows.

G(θ̃) =
[

G1(θ̃)
(T×M1)

G2(θ̃)
(T×M2)

]
. (2.3.20)
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Then, equation (2.3.19) can be rewritten as follows5:

LM = s′1(θ̃)I 11
OP (θ̃)s1(θ̃) d−→ χ2

M1
, (2.3.21)

where

s1(θ̃) ≡
([

IM1 OM1,M2

] [
G′

1(θ̃)
G′

2(θ̃)

])
iT , (2.3.22)

I 11
OP (θ̃) ≡ [

IM1 OM1,M2

] [
G′(θ̃)G(θ̃)

]−1
[

IM1

O′
M1,M2

]
. (2.3.23)

Note that IM1 is the identity matrix of order M1 and OM1,M2 is the (M1 × M2) null
matrix. Equation (2.3.19) and (2.3.21) provide an extremely useful class of diagnostic tests,
enabling one to estimate a restricted model and test it against alternative without having
to estimate the more general model. Further, the test proposed here employs an estimate
of the information matrix based on the average outer product of the score. This form has
the advantage that it is very simple to compute, but has the disadvantage that it may have
substantially poorer finite sample properties than an estimate of the information matrix
based on the average of the matrix of second derivative.

2.3.3 Specification tests for the dynamic factor model

The partitioned framework and the notation of the model

As we might be interested in a restricted system, we partition the set of observed variables
into two groups of N1 and N2 variables and the set of common factors into two groups of K1

and K2 variables. Then, the system in equation (2.2.3) and (2.2.4) are partitioned as



y1t
(N1×1)

y2t
(N2×1)


 =




Φ11
(N1×K1)

Φ12
(N1×K2)

Φ21
(N2×K1)

Φ22
(N2×K2)







c1t
(K1×1)

c2t
(K2×1)


 +




u1t
(N1×1)

u2t
(N2×1)


 , (2.3.24)




c1t
(K1×1)

c2t
(K2×1)


 =




Γ1
(K1×K1)

0
(K1×K2)

0
(K2×K1)

Γ2
(K2×K2)







c1,t−1
(K1×1)

c2,t−1
(K2×1)


 +




v1t
(K1×1)

v2t
(K2×1)


 . (2.3.25)

Further, the matrices Σ and Ω are partitioned as

Σ =




Σ11
(N1×N1)

Σ12
(N1×N2)

Σ′
12

(N2×N1)

Σ22
(N2×N2)


 ,Ω =




Ω1
(K1×K1)

0
(K1×K2)

0
(K1×K2)

Ω2
(K2×K2)


 . (2.3.26)

5Note: The small-sample properties of specification tests are often better approximated by an F distribution
than by an asymptotically equivalent χ2 distribution-see for example Mackinnon and White [1985], Kiviet
[1986], and Ericsson [1991]. This small-sample adjustment involves two steps. First, there is a degree-of-
freedom adjustment to the estimate of the variance-covariance matrix that appear in a denominator of the
test statistics. Second, an F distribution rather than χ2 distribution is used to interpret the resulting test
statistics. Consequently, asymptotic Lagrange Multiplier tests with better small-sample performance are
obtained by multiplying (2.3.21) by (T − M2)/(TM1) and comparing the results with an F (M1, T − M2)
distribution.
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Note that N1 + N2 = N, K1 + K2 = K, and the matrices Γ1,Γ2,Ω1, and Ω2 are diagonal.
According to the above specification, the conditional joint log likelihood of y1t and y2t

is

log f(y1t,y2t|c1t, c2t) = −N

2
log 2π − 1

2
log

∣∣∣∣
Σ11 Σ12

Σ′
12 Σ22

∣∣∣∣

− 1
2

[
y1t − (Φ11c1t + Φ12c2t)
y2t − (Φ21c1t + Φ22c2t)

]′ [ Σ11 Σ12

Σ′
12 Σ22

]−1

×
[

y1t − (Φ11c1t + Φ12c2t)
y2t − (Φ21c1t + Φ22c2t)

]
. (2.3.27)

Then, the determinant of partitioned variance covariance matrix of (2.3.27) is
∣∣∣∣

Σ11 Σ12

Σ′
12 Σ22

∣∣∣∣ = |Σ22| ·
∣∣Σ11 −Σ12Σ−1

22 Σ′
12

∣∣ . (2.3.28)

And, the inverse of partitioned variance covariance matrix of (2.3.27) is

[
Σ11 Σ12

Σ′
12 Σ22

]−1

≡
[

Σ11 Σ12

(Σ12)′ Σ22

]

=
[

Σ11 −Σ11Σ12Σ−1
22

(−Σ11Σ12Σ−1
22 )′ Σ−1

22 + Σ−1
22 Σ′

12Σ
11Σ12Σ−1

22

]
, (2.3.29)

where Σ11 = (Σ11 −Σ12Σ−1
22 Σ′

12)
−1 and superscripts denote partitioned inverses.

Thus, substituting (2.3.28) and (2.3.29) into (2.3.27), the conditional joint log likelihood
function of y1t and y2t can be written as

log f(y1t,y2t|c1t, c2t) = −N

2
log 2π − 1

2
log |Σ22| − 1

2
log

∣∣Σ11 −Σ12Σ−1
22 Σ′

12

∣∣

− 1
2
u′1tΣ

11u1t − 1
2
u′2tΣ

22u2t − u′1tΣ
12u2t, (2.3.30)

where

u1t ≡ y1t − (Φ11c1t + Φ12c2t) , (2.3.31)
u2t ≡ y2t − (Φ21c1t + Φ22c2t) . (2.3.32)

Similarly, the conditional joint log likelihood function of c1t and c2t is

log f (c1t, c2t| c1,t−1, c2,t−1) = −K

2
log 2π − 1

2
log

∣∣∣∣
Ω1 0
0 Ω2

∣∣∣∣

− 1
2

[
c1t − Γ1c1,t−1

c2t − Γ2c2,t−1

]′ [ Ω1 0
0 Ω2

]−1 [
c1t − Γ1c1,t−1

c2t − Γ2c2,t−1

]
.

(2.3.33)
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Then, the determinant of partitioned variance covariance matrix of (2.3.33) is
∣∣∣∣

Ω1 0
0 Ω2

∣∣∣∣ = |Ω1| · |Ω2| . (2.3.34)

And, the inverse of partitioned variance covariance matrix of (2.3.33) is
[

Ω1 0
0 Ω2

]−1

=
[

Ω−1
1 0
0 Ω−1

2

]
. (2.3.35)

Thus, substituting (2.3.34) and (2.3.35) into (2.3.33), the conditional joint log likelihood
function of c1t and c2t can be written as

log f(c1t, c2t|c1,t−1, c2,t−1) = −K

2
log 2π − 1

2
log |Ω1| − 1

2
log |Ω2|

− 1
2
v′1tΩ

−1
1 v1t − 1

2
v′2tΩ

−1
2 v2t, (2.3.36)

where

v1t ≡ c1t − Γ1c1,t−1, (2.3.37)
v2t ≡ c2t − Γ2c2,t−1. (2.3.38)

According to above specifications, we will propose specification tests for weak exogeneity and
linear dependency.

The extended framework and the notation of the model

As we might be interested in omitted variable problem, we extend exogenous variable to the
observation equation. Then the system in equation (2.2.3) and (2.2.4) are augmented as
follows:

yt
(N×1)

= Φ
(N×K)

ct
(K×1)

+ Π
(N×J)

xt
(J×1)

+ ut
(N×1)

, (2.3.39)

ct
(K×1)

= Γ
(K×K)

ct−1
(K×1)

+ vt
(K×1)

. (2.3.40)

According to the above specification, the conditional likelihood of yt and ct are

log f(yt|ct,xt) = −N

2
log 2π − 1

2
log |Σ| − 1

2
u′tΣ

−1ut, (2.3.41)

log f(ct|ct−1) = −K

2
log 2π − 1

2
log |Ω| − 1

2
v′tΩ

−1vt, (2.3.42)

where

ut ≡ yt −Φct −Πxt, (2.3.43)
vt ≡ ct − Γct−1. (2.3.44)

According to above specification, we will propose a specification test for omitted explanatory
variable.
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Several specification tests in the model

The purpose of this subsection is to bring together a number of results on specification tests
for weak exogeneity, linear dependency, and omitted explanatory variables.

Before detailing discussions, it is worth to notice that weak exogeneity test is source of
controversy partly because of the variety of definitions of exogeneity implicit in the formula-
tion of the hypothesis. In this paper, the notion of weak exogeneity as formulated by Engle
et al. [1983] is used in the context of the dynamic factor model. In this case, weak exogene-
ity is essentially that the equations defining weak exogeneity implies, in addition, that the
variables in equation cannot be forecast by past values of endogenous variables which is the
definitions implicit in Granger [1968] “non-causality.”

In addition, if the data are generated by equation (2.2.3) and (2.2.4) with Π 6= 0, then
the omission of variable of Π will render the parameters biased and inconsistent and cause
autocorrelated disturbances and heteroskedasticity. Therefore, testing for omitted variables
is particularly important.

Several specification tests are as follows.

Example 1: Specification test for weak exogeneity of y1t

The group of the variable represented by y1 is said to block-exogeneous in the time series
sense with respect to the variable in c2 if the element in c2 is of no help improving a forecast
of any variable contained in y1 alone. In the system of (2.3.24), (2.3.25), and (2.3.26), y1

is block-exogenous when Φ12 = Σ12 = 0. Therefore, we conduct a LM test of the null
hypothesis

H0 : Φ12 = Σ12 = 0. (2.3.45)

Thus, the differential with respect to vec(Φ12) under the null is

d log f (y1t,y2t| c1t, c2t) = −1
2
d

(
u′1tΣ

11u1t

)
= −1

2
tr

[
d

(
u′1tΣ

11u1t

)]

= −1
2
tr

[
(du1t)

′Σ−1
11 (y1t −Φ11c1t) + (y1t −Φ11c1t)

′Σ−1
11 (du1t)

]

= −tr
[
(y1t −Φ11c1t)

′Σ−1
11 (du1t)

]
= −tr

[
(y1t −Φ11c1t)

′Σ−1
11 (−dΦ12) c2t

]

= tr
[
c2t (y1t −Φ11c1t)

′Σ−1
11 (dΦ12)

]
= tr

[{
Σ−1

11 (y1t −Φ11c1t) c′2t

}′ (dΦ12)
]

=
(
vec

[
Σ−1

11 (y1t −Φ11c1t) c′2t

])′
dvec(Φ12), (2.3.46)

using identity Σ11 = Σ−1
11 and tr(AB) = [vec(A′)]′ vec(B). Note that tr(·) denotes the

trace-operator. Then, the derivative with respect to vec(Φ12) is

∂ log f (y1t,y2t| c1t, c2t)
∂vec(Φ12)

∣∣∣∣
Φ12=Σ12=0

= vec
[
Σ−1

11 (y1t −Φ11c1t) c′2t

]
. (2.3.47)
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The differential with respect to vec(Σ12) under the null is

d log f (y1t,y2t| c1t, c2t) = −d
(
u′1tΣ

12u2t

)
= −tr

[
(y1t −Φ11c1t)

′ (dΣ12
)
u2t

]

= −tr
(
(y1t −Φ11c1t)

′ [−Σ−1
11 (dΣ12)Σ−1

22

]
u2t

)

= tr
[
(y1t −Φ11c1t)

′Σ−1
11 (dΣ12)Σ−1

22 u2t

]

= tr
[
Σ−1

22 u2t (y1t −Φ11c1t)
′Σ−1

11 (dΣ12)
]

= tr
([

Σ−1
11 (y1t −Φ11c1t) u′2tΣ

−1
22

]′ (dΣ12)
)

=
(
vec

[
Σ−1

11 (y1t −Φ11c1t) u′2tΣ
−1
22

])′
dvec(Σ12), (2.3.48)

using identity Σ11 = Σ−1
11 and Σ12 = −Σ11Σ12Σ−1

22 . Then, the derivative with respect to
vec(Σ12) is

∂ log f (y1t,y2t| c1t, c2t)
∂vec(Σ12)

∣∣∣∣
Φ12=Σ12=0

= vec
[
Σ−1

11 (y1t −Φ11c1t) u′2tΣ
−1
22

]
. (2.3.49)

And, the number of restricted parameters under the null hypothesis is N1(N2 + K2).

Example 2: Specification test for weak exogeneity of y2

As well as example 1, the group of the variable represented by y2 is said to block-exogeneous
in the time series sense with respect to the variable in c1 if the element in c1 is of no help
improving a forecast of any variable contained in y2 alone. In the system of (2.3.24), (2.3.25),
and (2.3.26), y2 is block-exogenous when Φ21 = Σ12 = 0. Therefore, we conduct a LM test
of the null hypothesis

H0 : Φ21 = Σ12 = 0. (2.3.50)

Then, derivatives with respect to vec(Φ21) and vec(Σ12) are

∂ log f (y1t,y2t| c1t, c2t)
∂vec (Φ21)

∣∣∣∣
Φ21=Σ12=0

= vec
[
Σ−1

22 (y2t −Φ22c2t) c′1t

]
, (2.3.51)

∂ log f (y1t,y2t| c1t, c2t)
∂vec (Σ12)

∣∣∣∣
Φ21=Σ12=0

= vec
[
Σ−1

11 u1t (y2t −Φ22c2t)Σ−1
22

]
. (2.3.52)

And, the number of restricted parameters under the null hypothesis is N2(N1 + K1).

Example 3: Specification test for linear dependency between y1 and y2

In the system of (2.3.24), (2.3.25), and (2.3.26), there is no relation between y1 and y2 when
Φ12 = Φ21 = Σ12 = 0. Therefore, we conduct a LM test of the null hypothesis

H0 : Φ12 = Φ21 = Σ12 = 0. (2.3.53)
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Then, derivatives with respect to vec(Φ12), vec(Φ21), and vec(Σ12) are

∂ log f (y1t,y2t| c1t, c2t)
∂vec (Φ12)

∣∣∣∣
Φ12=Φ21=Σ12=0

= vec
[
Σ−1

11 (y1t −Φ11c1t) c′2t

]
, (2.3.54)

∂ log f (y1t,y2t| c1t, c2t)
∂vec (Φ21)

∣∣∣∣
Φ12=Φ21=Σ12=0

= vec
[
Σ−1

22 (y2t −Φ22c2t) c′1t

]
, (2.3.55)

∂ log f (y1t,y2t| c1t, c2t)
∂vec (Σ12)

∣∣∣∣
Φ12=Φ21=Σ12=0

= vec
[
Σ−1

11 (y1t −Φ11c1t) (y2t −Φ22c2t)Σ−1
22

]
.

(2.3.56)

And the number of restricted parameters under the null hypothesis is N1N2 +N1K2 +N2K1.

Example 4: Specification test for omitted explanatory variable

In the system of (2.3.39) and (2.3.40), observed variables yt are specified by common factor ct

only, that is restriction that Π = 0. Therefore, we conduct a LM test of the null hypothesis

H0 : Π = 0. (2.3.57)

Then, the differential with respect to vec(Π) under the null is

d log f(yt| ct,xt) = −1
2
d(u′tΣ

−1ut) = −1
2
tr[d(u′tΣ

−1ut)]

= −1
2
tr

[
(dut)′Σ−1(yt −Φct) + (yt −Φct)′Σ−1(dut)

]

= −tr
[
(yt −Φct)′Σ−1(dut)

]
= −tr

[
(yt −Φct)′Σ−1(−dΠ)xt

]

= tr
[
xt(yt −Φct)′Σ−1(dΠ)

]
= tr

[{
Σ−1(yt −Φct)x′t

}′ (dΠ)
]

=
(
vec

[
Σ−1(yt −Φct)x′t

])′
dvec(Π). (2.3.58)

Therefore, the derivative with respect to vec(Π) under the null is

∂ log f(yt| ct,xt)
∂vec(Π)

∣∣∣∣
Π=0

= vec
[
Σ−1(yt −Φct)x′t

]
. (2.3.59)

And, the number of restricted parameters under the null is NJ .

2.3.4 Lagrange Multiplier tests

In this subsection, we test the dynamic factor model (2.2.3) and (2.2.4) against the alternative
such as weak exogeneity, linear dependency, and omitted explanatory variables, according to
the specification of subsection 2.3.3.

Suppose that parameter vector is partitioned as in subsection 2.3.2. Then, when θ1 ⊆ λ,
the score of the tth observation with respect to θ1 under the null hypothesis is given by

gt(θ̃) =
t∑

τ=1

E[ξτ (θ̃)|ψt]−
t−1∑

τ=1

E[ξτ (θ̃)|ψt], for t = 2, 3, . . . , T (2.3.60)
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where

ξτ (θ̃) =
∂ log f (yτ |cτ ;θ)

∂θ1

∣∣∣∣
„1=0

.

Similarly, when θ1 ⊆ η, the score of the tth observation with respect to θ1 under the
null hypothesis is given by

gt(θ̃) =
t∑

τ=1

E[ξτ (θ̃)|ψt]−
t−1∑

τ=1

E[ξτ (θ̃)|ψt], for t = 2, 3, . . . , T (2.3.61)

where

ξτ (θ̃) =
∂ log f (cτ |cτ−1;θ)

∂θ1

∣∣∣∣
„1=0

.

Then, LM test statistic is derived by stacking scores (2.3.60) and (2.3.61) as in equation
(2.3.19) and (2.3.21) for t = 1, 2, · · · , T . Table 2.1 presents formulas necessary to implement
LM tests against the alternative. To implement any of the tests, one only needs to estimate
the model under the null and calculate gt(θ̃) in the manner described in subsection 2.3.1
using the restricted estimates θ̃ to form the smoothed density.

Table 2.1: Values to use for ξt in Lagrange Multiplier tests

1. To test for weak exogeneity of y1

H0 : Φ12 = Σ12 = 0
ξt(θ̃) = vec

[
Σ−1

11 (y1t −Φ11c1t)c′2t

]
, vec

[
Σ−1

11 (y1t −Φ11c1t)u′2tΣ
−1
22

]
M1 = N1(N2 + K2)

2. To test for weak exogeneity of y2

H0 : Φ21 = Σ12 = 0
ξt(θ̃) = vec

[
Σ−1

22 (y2t −Φ22c2t)c′1t

]
, vec

[
Σ−1

11 u1t(y2t −Φ22c2t)′Σ−1
22

]
M1 = N2(N1 + K1)

3. To test for linear dependency between y1 and y2

H0 : Φ12 = Φ21 = Σ12 = 0
ξt(θ̃) = vec

[
Σ−1

11 (y1t −Φ11c1t)c′2t

]
, vec

[
Σ−1

22 (y2t −Φ22c2t)c′1t

]
, vec

[
Σ−1

11 u1t(y2t −Φ22c2t)′Σ−1
22

]
M1 = N1N2 + N1K2 + N2K1

4. To test for omitted explanatory variable x

H0 : Π = 0
ξt(θ̃) = vec[Σ−1(yt −Φct)x′t]
M1 = NJ
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2.4 Monte Carlo analysis of the tests

This section examines finite sample properties of LM tests for the weak exogeneity, linear
dependency, and omitted explanatory variable through simulation experiments. All the work
described subsequently was conducted using GAUSS programming language. The true model
in the experiment is as follows.

• Observation equation



y1t

y2t

y3t


 =




2 0
1.5 0
0 2




[
c1t

c2t

]
+




0
0
0


 · xt +




u1t

u2t

u3t


 ,

• Transition equation
[

c1t

c2t

]
=

[
0.8 0
0 0.8

] [
c1,t−1

c2,t−1

]
+

[
v1t

v2t

]
,

• Structure of covariance matrices



u1t

u2t

u3t


 ∼ i.i.d.N







0
0
0


 ,




1 0.8 0
0.8 1 0
0 0 1





 ,

[
v1t

v2t

]
∼ i.i.d.N

([
0
0

]
,

[
1 0
0 1

])
,

for t = 1, 2, . . . , T . The expression xt is generated from a unifrom distribution, and ut and
vt are generated from a normal distribution. The sample size is 500, 1000, and 1500, and
the number of iteration is 1000 in our experiments. One iteration under the null hypothesis
takes approximately 40 seconds using GAUSS 8.0 on a PC with Pentium 4, but it takes
longer under the alternative hypothesis. In our experiment, all parameter values are set near
to the estimates of the empirical analysis reported later.

First, we consider the size of specification tests. Table 2.2 through 2.4 present sim-
ulation results for the sizes of the specification tests. The null hypothesis of Table 2.2
specifies (φ12, φ22, φ31, σ31, σ32) = (0, 0, 0, 0, 0), the null hypothesis of Table 2.3 specifies
(φ31, σ31, σ32) = (0, 0, 0), and the null hypothesis of Table 2.4 specifies (β1, β2, β3) = (0, 0, 0).

We can see in Table 2.2 and 2.3 that LMs1 and LMs2 show similar results. Both tests
have correct size except when φ11 or φ32 takes small value. For φ11 = 1.4 or φ32 = 1.4,
there are considerable size distortions (too many rejections) even for T = 1000. Conversely,
for Table 2.4, there are considerable size distortions (too few rejections) for any parameter
values.

Next, we consider the power of the tests. Table 2.4 through 2.6 present simulation
results giving the power of the test. We can see in Table 2.5 and 2.6 that powers of LMp1

and LMp2 have appreciable power except when φ31 = 0.1 and σ31 = 0.1. For φ31 = 0.1 and
σ31 = 0.1, power increases as T increases. In Table 2.7, we can also see that LMp3 shows
good peformance for any parameter values.

Thus, specification tests proposed in this paper are reliable in the presence of i.i.d. errors.
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2.5 Summary

In this peper, we provided an analytic representation for the score statistic for the dynamic
factor model, and suggested a variety of specification tests based on these scores. These scores
turned out to be a natural byproduct of the routine used to calculate the expected value with
respect to smoothed density. In addition, from the same calculation we constructed asymp-
totic standard errors for the parameter vector and specification tests. Therefore, proposed
tests could be calculated together from a single pass through the data, and they do not re-
quire the estimation of additional parameters by maximum likelihood. We also investigated
finite sample properties of the tests. Monte Carlo results showed that the tests are reliable
in terms of both size and power performance.

It should be noted that it is open to question whether the tests work under the autocor-
relation or heteroskedasticity of the disturbances. This question awaits further research.

Appendix A: Score vector for gaussian linear state-space model

This appendix shows that the score vector for Gaussian linear state-space model takes on a
simple form which can be computed in a single pass of the Kalman filter and a smoother.
The state-space representation is given by

yt = Φct + Πxt + ut, (2.A.1)
ct = Γct−1 + vt (2.A.2)

for t = 1, 2, . . . , T . Here, Φ, Π, and Γ are matrices of parameters, yt is a vector of observed
variables, ct is a vector of unobserved state variables, and xt is a vector of exogenous or
predetermined variables. Equation (2.A.1) is an observation equation, and (2.A.2) is a state
equation. The vector ut and vt are vectors of Gaussian white noise, respectively. We require
that ut and vt be orthogonal to each other (at all leads and lags) and to the initial state:

[
ut

vt

]
∼ i.i.d.N

([
0
0

]
,

[
Σ 0
0 Ω

])
, (2.A.3)

E
(
c1u

′
t

)
= 0, E

(
c1v

′
t

)
= 0. (2.A.4)

where Σ and Ω are positive definite symmetric matrices, respectively.
Therefore, the conditional densities of the observed vector yt and the unobserved state

vector ct are defined as follows:

f(yt|ct,xt) = (2π)−N/2
∣∣Σ−1

∣∣1/2 exp
[
−1

2
(yt −Φct −Πxt)′Σ−1(yt −Φct −Πxt)

]
,

(2.A.6)

f(ct|ct−1;η) = (2π)−K/2
∣∣Ω−1

∣∣1/2 exp
[
−1

2
(ct − Γct−1)′Ω−1(ct − Γct−1)

]
, (2.A.7)

where λ = ([vec(Φ)]′, [vec(Π)]′, [vech(Σ)]′)′,η = ([vec(Γ)]′, [vech(Ω)]′)′.
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Note that parameter vector θ includes both the parameter λ appearing in equation (2.A.6)
and the parameter η in equation (2.A.7),

θ = (λ′,η′)′. (2.A.8)

According to the above specification, we will show the whole score vector can be com-
puted exactly in a single pass of the Kalman filter and a smoother below. From the Bayes
theorem, f(y1,y2, . . . ,yT ;θ) is given by

f(y1,y2, . . . ,yT ;θ)

=
f(y1,y2, . . . ,yT |c1, c2, . . . , cT ,x1,x2, . . . ,xT ;λ)f(c1, c2, . . . , cT ,x1,x2, . . . ,xT ;η)

f(c1, c2, . . . , cT ,x1,x2, . . . ,xT |y1,y2, . . . ,yT ;θ)
(2.A.9)

Then, log f(y1,y2, . . . ,yT ;θ) is as follows

log f(y1,y2, . . . ,yT ;θ) =
T∑

t=1

log f(yt|ct,xt;λ) +
T∑

t=1

log f(ct,xt|ct−1,xt−1;λ)

− log f(c1, c2, . . . , cT ,x1,x2, . . . ,xT |y1,y2, . . . ,yT ;θ)

=
T∑

t=1

log f(yt|ct,xt;λ) +
T∑

t=1

log f(ct|ct−1;λ)

− log f(c1, c2, . . . , cT |y1,y2, . . . ,yT ;θ) (2.A.10)

Further, substituting equation (2.A.6) and (2.A.7), equation (2.A.10) becomes

log f(y1,y2, . . . ,yT ;θ) =
T∑

t=1

(
−N

2
log 2π − 1

2
log |Σ| − 1

2
tr

[
(yt −Φct −Πxt)

′Σ−1 (yt −Φct −Πxt)
])

+
T∑

t=1

(
−K

2
log 2π − 1

2
log |Ω| − 1

2
tr

[
(ct − Γct−1)

′Ω−1 (ct − Γct−1)
])

− log f (c1, c2, . . . , cT |y1,y2, . . . ,yT ;θ)

= −
[
T (N + K)

2

]
log 2π −

(
T

2

)
(log |Σ|+ log |Ω|)

− 1
2

T∑

t=1

tr
[
Σ−1 (yt −Φct −Πxt) (yt −Φct −Πxt)

′]

− 1
2

T∑

t=1

tr
[
Ω−1 (ct − Γct−1) (ct − Γct−1)

′]

− log f (c1, c2, . . . , cT |y1,y2, . . . ,yT ;θ) . (2.A.11)

To be able to derive the score at a point θ̂, we will first integrate both sides of equation
(A.11) with respect to the joint density of the smoother f(c1, c2, . . . , cT |y1,y2, . . . ,yT ; θ̂),
to get

log f(y1,y2, . . . ,yT ;θ) = Q(θ, θ̂)−R(θ, θ̂), (2.A.12)
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where

Q(θ, θ̂) = −T

2
(log |Σ|+ log |Ω|)− 1

2

T∑

t=1

tr(Σ−1Ŵt|T )− 1
2

T∑

t=1

tr(Ω−1Ẑt|T ),

R(θ, θ̂) =
∫ (T )

log f(c1, c2, . . . , cT |y1,y2, . . . ,yT ;θ)f(c1, c2, . . . , cT |y1,y2, . . . ,yT ; θ̂)dc(T ),

Ŵt|T ≡ ût|T û′t|T + ΦP t|TΦ′,

Ẑt|T ≡ v̂t|T v̂t|T + Pt|T − ΓP t−1,t|T − Pt−1,t|TΓ′ + ΓP t−1|TΓ′.

Here, ût|T and v̂t|T are the smoothed estimates of ut and vt respectively, Pt|T is the mean
squared error (mse) of ĉt|T , and Pt,t−1|T is the covariance between the estimates of ĉt|T and
ĉt−1|T . All these smoothed quantities are computed with θ taken to be θ̂ by first running a
Kalman filter which is given by

ĉt+1|t = Γĉt|t−1 + Ktζt|t−1,Pt+1|t = ΓP t|t−1L
′
t + Ω,

ζt|t−1 = yt −Φĉt|t−1 −Πxt,Ft|t−1 = ΦP t|t−1Φ
′ + Σ, (2.A.13)

Kt = ΓP t|t−1Φ
′F−1

t|t−1,Lt = Γ−KtΦ,

for t = 1, 2, . . . , T . Then, the De Jong [1989] and De Jong and MacKinnon [1988] smoothing
algorithms deliver

ût|T = yt −Φĉt|T −Πxt, v̂t|T = ĉt|T − Γĉt−1|T ,

ĉt|T = ĉt|t−1 + Pt|t−1rt−1,Pt|T = Pt|t−1 − Pt|t−1Nt−1Pt|t−1, (2.A.14)

rt−1 = Φ′F−1
t|t−1ζt|t−1+L′trt,Nt−1 = Φ′F−1

t|t−1Φ+L′tNtLt,Pt−1,t|T = Pt−1|t−2L
′
t−1(I−Nt−1Pt|t−1)

for t = T, T − 1, . . . , 1. If equation (2.A.12) is differentiated with respect to θ, then

∂ log f (y1,y2, . . . ,yT ;θ)
∂θ

=
∂Q(θ, θ̂)

∂θ
− ∂R(θ, θ̂)

∂θ
,

but it can be shown that

∂R(θ, θ̂)
∂θ

∣∣∣∣∣
„=„̂

=
∂

∂θ

[∫ (T )

log f (c1, c2, . . . , cT |y1,y2, . . . ,yT ;θ) f (c1, c2, . . . , cT |y1,y2, . . . ,yT ;θ) dc(T )

]∣∣∣∣∣
„=„̂

=
∫ (T ) ∂ log f (c1, c2, . . . , cT |y1,y2, . . . ,yT ;θ)

∂θ

∣∣∣∣
„=„̂

f (c1, c2, . . . , cT |y1,y2, . . . ,yT ;θ) dc(T )

=
∫ (T ) ∂f (c1, c2, . . . , cT |y1,y2, . . . ,yT ;θ)

∂θ

∣∣∣∣
„=„̂

dc(T )

=
∂

∂θ

[∫ (T )

f (c1, c2, . . . , cT |y1,y2, . . . ,yT ;θ) dc(T )

]∣∣∣∣∣
„=„̂

=
∂1
∂θ

∣∣∣∣
„=„̂

= 0
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and so

∂ log f (y1,y2, . . . ,yT ;θ)
∂θ

∣∣∣∣
„=„̂

=
∂Q(θ, θ̂)

∂θ

∣∣∣∣∣
„=„̂

− ∂R(θ, θ̂)
∂θ

∣∣∣∣∣
„=„̂

=
∂Q(θ, θ̂)

∂θ

∣∣∣∣∣
„=„̂

.

Then, the differential with respect to vec(Φ) is

d log f(y1,y2, . . . ,yT ,θ) = −1
2

T∑

t=1

dtr(Σ−1Ŵt|T ) = −1
2

T∑

t=1

tr
[
Σ−1d(ût|T û′t|T + ΦP t|TΦ′)

]

= −1
2

T∑

t=1

tr
[
−2

{
Σ−1(ût|T ĉ′t|T −ΦP t|T )

}′
(dΦ)

]

=
T∑

t=1

(
vec

[
Σ−1(ût|T ĉ′t|T −ΦP t|T )

])′
dvec(Φ). (2.A.15)

Therefore, the score vector with respect to vec (Φ) evaluated at θ̂ is

∂ log f(y1,y2, . . . ,yT ;θ)
∂vec(Φ)

∣∣∣∣
„=„̂

=
T∑

t=1

vec
[
Σ̂−1(ût|T ĉ′t|T − Φ̂Pt|T )

]
. (2.A.16)

Next, the differential with respect to vec(Π) is similarly found by setting

d log f(y1,y2, . . . ,yT ,θ) = −1
2

T∑

t=1

dtr(Σ−1Ŵt|T ) = −1
2

T∑

t=1

tr
[
Σ−1d(ût|T û′t|T )

]

= −1
2

T∑

t=1

tr
[
−2

(
Σ−1ût|T x′t

)′ (dΠ)
]

=
T∑

t=1

[
vec

(
Σ−1ût|T x′t

)]′
dvec(Π). (2.A.17)

Then, the score vector with respect to vec (Π) evaluated at θ̂ is

∂ log f(y1,y2, . . . ,yT ,θ)
∂vec(Π)

∣∣∣∣
„=„̂

=
T∑

t=1

vec
(
Σ̂−1ût|T x′t

)
. (2.A.18)
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The differeintial with respect to vec (Σ) is

d log f(y1,y2, . . . ,yT ;θ) = −T

2
d(log |Σ|)− 1

2

T∑

t=1

tr
[
(dΣ−1)Ŵt|T

]

= −T

2
tr

[
Σ−1(dΣ)

]
+

1
2

T∑

t=1

tr
[
Σ−1(dΣ)Σ−1Ŵt|T

]

= −1
2

T∑

t=1

tr
[
Σ−1(IN − Ŵt|TΣ−1)(dΣ)

]

= −1
2

T∑

t=1

(
vec

[
Σ−1(IN − Ŵt|TΣ−1)

])′
dvec(Σ). (2.A.19)

using identity dlog |A| = tr[A−1(dA)], dA−1 = −A−1(dA)A−1. Then, the score vector with
respect to vec (Σ) evaluated at θ̂ is

∂ log f(y1,y2, . . . ,yT ;θ)
∂vec(Σ)

∣∣∣∣
„=„̂

= −1
2

T∑

t=1

vec
[
Σ̂−1(IN − Ŵt|T Σ̂−1)

]
. (2.A.20)

The differential with respect to vec (Γ) is similarly found by setting

d log f(y1,y2, . . . ,yT ;θ)

=− 1
2

T∑

t=1

dtr(Ω−1Ẑt|T )

=− 1
2

T∑

t=1

tr
[
Ω−1d

(
v̂t|T v̂′t|T − ΓP t,t−1|T − Pt,t−1|TΓ′ + ΓP t−1|TΓ′

)]

=− 1
2

T∑

t=1

tr
[
−2

{
Ω−1

(
v̂t|T ĉ′t−1|T + Pt,t−1|T − ΓP t−1|T

)}′
(dΓ)

]

=
T∑

t=1

(
vec

[
Ω−1

(
v̂t|T ĉ′t−1|T + Pt,t−1|T − ΓP t−1|T

)])′
dvec(Γ). (2.A.21)

Then, the score vector with respect to vec (Γ) is

∂ log f (y1,y2, . . . ,yT ;θ)
∂vec (Γ)

∣∣∣∣
„=„̂

=
T∑

t=1

vec
[
Ω̂−1

(
v̂t|T ĉ′t−1|T + Pt−1,t|T − Γ̂Pt−1|T

)]
. (2.A.22)
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Finally, the differential with respect to vec (Ω) is

d log f(y1,y2, . . . ,yT ;θ) = −T

2
d(log |Ω|)− 1

2

T∑

t=1

tr
[
(dΩ−1)Ẑt|T

]

= −T

2
tr

[
Ω−1(dΩ)

]
+

1
2

T∑

t=1

tr
[
Ω−1(dΩ)Ω−1Ẑt|T

]

= −1
2

T∑

t=1

tr
[
Ω−1(IN − Ẑt|TΩ−1)(dΩ)

]

= −1
2

T∑

t=1

(
vec

[
Ω−1(IK − Ẑt|TΩ−1)

])′
dvec(Ω). (2.A.23)

Then, the score vector with respect to vec (Ω) evaluated at θ̂ is

∂ log f(y1,y2, . . . ,yT ;θ)
∂vec(Ω)

∣∣∣∣
„=„̂

= −1
2

T∑

t=1

vec
[
Ω̂−1(IK − Ẑt|T Ω̂−1)

]
. (2.A.24)

Therefore, we conclude that the whole score vector can be computed exactly in a single
pass of the Kalman filter and a smoother.

Appendix B: Some useful results of matrix calculus

This appendix introduces some useful results of matrix calculus. We use these results for
calculation of log likelihood functions. For a complete exposition, see Magnus and Neudecker
[1988].

B.1. Relationship of vec-operator and trace

For any two matrices of the same order, the following relation holds:

[vec(A)]′ vec(B) = tr(A′B). (2.B.1)

Proof : Let A = (aij),B = (bij) be (I × J) matrices. Then,

[vec(A)]′ vec(B) =
I∑

i=1

J∑

j=1

aijbij =
J∑

j=1

(A′B)jj = tr(A′B).

B.2. Differential of the determinant

For any nonsingular matrix A, the following relation holds:

d |A| = |A| tr [
A−1(dA)

]
. (2.B.2)
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Proof : Let A = (aij) be an (I×I) matrix. Recall that the minor of aij is the determinant
of the [(I−1)×(I−1)] submatrix of A obtained by deleting the i-th row and the j-th column,
and the cofactor cij of aij is (−1)i+j times the minor. The cofactors are can be put into an
(I × I) matrix C = (cij). Then,

|A| =
I∑

i=1

cijaij for j = 1, 2, . . . , I.

The crucial step is to realize that, for given j, c1j , c2j , · · · , cIj do not depend on aij . This
gives

∂ |A|
∂aij

=
∂(c1ja1j + c2ja2j + · · ·+ cijaij + · · ·+ cIjaIj)

∂aij
= cij ,

and hence

d |A| =
I∑

i=1

I∑

j=1

cijdaij = tr[C ′(dA)] = tr[( |A|A−1)(dA)]

= |A| tr[A−1(dA)]. ( ∵ C ′ = |A|A−1)

B.3. Differential of log |A|
For any nonsingular matrix A and |A| > 0, the following relation holds:

d log |A| = tr
[
A−1(dA)

]
. (2.B.3)

Proof : Using the results of equation (B.2), we have

d log |A| = d |A|
|A| =

|A| tr[A−1(dA)]
|A| = tr[A−1(dA)].

B.4. Differential of the inverse

For any nonsingular matrix A, the following relation holds:

dA−1 = −A−1(dA)A−1. (2.B.4)

Proof : Since A−1A = I, we have

d(A−1A) = dI

(dA−1)A + A−1(dA) = O

dA−1 = −A−1(dA)A−1.
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Table 2.2: Size of the test for linear dependency between y1 and y2: LMs1

T φ11 φ32 γ1 σ21 σ33 10 % level 5 % level 1 % level
500 2 2 0.8 0.8 1 15.1 9.7 2.7
1000 2 2 0.8 0.8 1 12.9 7.8 3.1
1500 2 2 0.8 0.8 1 11.9 6 2.3
1000 1.8 2 0.8 0.8 1 13.1 8.2 3.5
1000 1.6 2 0.8 0.8 1 14.7 8.6 2.4
1000 1.4 2 0.8 0.8 1 15.2 8.6 2.5
1000 2 1.8 0.8 0.8 1 12.7 6.9 2.5
1000 2 1.6 0.8 0.8 1 14.2 9.4 3.4
1000 2 1.4 0.8 0.8 1 13.2 7.5 2.7
1000 2 2 0.83 0.8 1 12.4 7 2.4
1000 2 2 0.85 0.8 1 13.2 8.9 3
1000 2 2 0.87 0.8 1 11.3 6.2 2
1000 2 2 0.8 0.6 1 15.3 9.9 2.3
1000 2 2 0.8 0.4 1 10.3 5.7 1.9
1000 2 2 0.8 0.2 1 12.4 7.1 2.2
1000 2 2 0.8 0.8 0.8 13 7.6 2.5
1000 2 2 0.8 0.8 0.6 12.5 7.5 2.8
1000 2 2 0.8 0.8 0.4 13.2 7.4 2
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Table 2.3: Size of the test for weak exogeneity of y2: LMs2

T φ11 φ32 γ1 σ21 σ33 10 % level 5 % level 1 % level
500 2 2 0.8 0.8 1 20.1 13.3 5.1
1000 2 2 0.8 0.8 1 20.3 13 3.3
1500 2 2 0.8 0.8 1 18.9 12.1 5
1000 1.8 2 0.8 0.8 1 20.4 12.6 4.6
1000 1.6 2 0.8 0.8 1 23.2 13.9 5.4
1000 1.4 2 0.8 0.8 1 19.7 12.6 4.7
1000 2 1.8 0.8 0.8 1 20 12.2 4.3
1000 2 1.6 0.8 0.8 1 18.5 11.6 4.1
1000 2 1.4 0.8 0.8 1 19.3 11.1 3.8
1000 2 2 0.83 0.8 1 20.4 13 4.4
1000 2 2 0.85 0.8 1 19.2 12.7 3.4
1000 2 2 0.87 0.8 1 18.6 11.9 2.1
1000 2 2 0.8 0.6 1 19.8 12.3 3.7
1000 2 2 0.8 0.4 1 18.9 11 2.9
1000 2 2 0.8 0.2 1 19.8 10.5 3.8
1000 2 2 0.8 0.8 0.8 20.5 12.3 4.7
1000 2 2 0.8 0.8 0.6 19.8 12.4 5.4
1000 2 2 0.8 0.8 0.4 19.4 11.9 4.1
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Table 2.4: Size of the test for omitted explanatory variable xt: LMs3

T φ11 φ32 γ1 σ21 σ33 10 % level 5 % level 1 % level
500 2 2 0.8 0.8 1 4 1.6 0.7
1000 2 2 0.8 0.8 1 2.6 1 0.3
1500 2 2 0.8 0.8 1 2 0.6 0.1
1000 1.8 2 0.8 0.8 1 2.8 0.6 0.1
1000 1.6 2 0.8 0.8 1 2.5 1.1 0.1
1000 1.4 2 0.8 0.8 1 2 0.7 0.3
1000 2 1.8 0.8 0.8 1 2.8 0.6 0.1
1000 2 1.6 0.8 0.8 1 2.8 0.9 0.1
1000 2 1.4 0.8 0.8 1 2.2 1.5 0.1
1000 2 2 0.83 0.8 1 2.4 1.1 0.3
1000 2 2 0.85 0.8 1 2 0.6 0.1
1000 2 2 0.87 0.8 1 2.6 1.5 0.4
1000 2 2 0.8 0.6 1 2.3 0.9 0.1
1000 2 2 0.8 0.4 1 2.1 1.1 0.1
1000 2 2 0.8 0.2 1 1.8 0.6 0.1
1000 2 2 0.8 0.8 0.8 2.3 0.9 0.2
1000 2 2 0.8 0.8 0.6 1.7 0.5 0.1
1000 2 2 0.8 0.8 0.4 2.2 1.1 0.3
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Table 2.5: Power of the test for linear dependency between y1 and y2: LMp1

T φ12 φ31 σ31 10 % level 5 % level 1 % level
500 0.1 0 0 98.1 96.4 89.5
500 0.2 0 0 100 100 100
500 0.3 0 0 100 100 100
500 0 0.1 0 26.3 13.8 6.5
500 0 0.2 0 38.2 27.1 14.3
500 0 0.3 0 64.6 54.1 33.3
500 0 0 0.1 25.4 17.2 7.3
500 0 0 0.2 40.5 33.2 19.6
500 0 0 0.3 84.9 77 59
1000 0.1 0 0 100 100 99.6
1000 0.2 0 0 100 100 100
1000 0.3 0 0 100 100 100
1000 0 0.1 0 21.8 14.5 5.5
1000 0 0.2 0 56.3 45.4 26
1000 0 0.3 0 86.3 79.9 63.7
1000 0 0 0.1 40.9 34.5 22.5
1000 0 0 0.2 79.5 69.9 47
1000 0 0 0.3 98.7 97.7 92.6
1500 0.1 0 0 100 100 100
1500 0.2 0 0 100 100 100
1500 0.3 0 0 100 100 100
1500 0 0.1 0 28.2 20 8.9
1500 0 0.2 0 72.8 62.6 41.9
1500 0 0.3 0 96.5 93.8 83.8
1500 0 0 0.1 41.1 29.5 13.7
1500 0 0 0.2 94 88.5 75.3
1500 0 0 0.3 100 100 100
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Table 2.6: Power of the test for weak exogeneity of y2: LMp2

T φ31 σ31 10 % level 5 % level 1 % level
500 0.1 0 30.2 24.2 18.6
500 0.2 0 54.1 46.4 29.1
500 0.3 0 79.9 72.1 53.8
500 0 0.1 33.7 24.6 10.5
500 0 0.2 57.8 46.5 28.7
500 0 0.3 70.6 61.3 54.9
1000 0.1 0 37.8 29.1 14.9
1000 0.2 0 75.4 67.6 47.8
1000 0.3 0 97 94.5 85.3
1000 0 0.1 42.8 33 16.8
1000 0 0.2 80.6 73.4 57.1
1000 0 0.3 95.6 93.6 86.1
1500 0.1 0 42.5 33.3 16.8
1500 0.2 0 86.8 81 65.7
1500 0.3 0 98.8 97.9 95.5
1500 0 0.1 54.8 44.6 24.3
1500 0 0.2 95.3 91.3 79.6
1500 0 0.3 99.7 99.4 98.1

Table 2.7: Power of the test for omitted explanatory variable xt: LMp3

T β2 10 % level 5 % level 1 % level
500 0.1 43.9 33.2 16
500 0.2 80.6 74.7 69.9
500 0.3 99.8 99.8 99.6
1000 0.1 75.5 64.2 41.1
1000 0.2 100 100 99.8
1000 0.3 100 100 100
1500 0.1 90.6 85.5 66.1
1500 0.2 100 100 100
1500 0.3 100 100 100
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Chapter 3

Joint Estimation of Factor
Sensitivities and Risk Premia in
the Factor Augmented APT Model

3.1 Introduction

There is a long tradition of factor or multi-index models in finance where they were originally
introduced to simplify the computation of the covariance of returns in a mean-variance port-
folio allocation framework. In this context, two major theories provide a rigorous foundation
for computing the trade-off between risk and return: the capital asset pricing model (CAPM)
and the arbitrage pricing theory (APT).

The CAPM, for which William F. Sharp shared the 1990 Nobel Memorial Prize in
Economic Sciences, predicts that only one type of nondiversifiable risk influences expected
returns, and that single type of risk is “market risk.” In 1976, a little more than a decade
after the CAPM was proposed, Stephen A. Ross invented the APT. The APT is more general
than the CAPM in accepting a variety of different sources. A number of paper indicate that
the APT performs better than the CAPM in terms of describing the expected returns of
risky assets. For example, Chen [1983] estimates a version of the APT and finds this model
outperforms the CAPM in the U.S. stock market.

The APT takes the view that there need not be any single way to measure systematic
risk. There are two alternative approaches to estimate them. The first approach relies in
statistical techniques such as factor analysis or principal component to estimate risk exposure
profiles and associated risk premiums. The second approach estimates them from available
macroeconomic and financial data.

Each of these approaches has its merits and is appropriate for certain types of analysis.
In particular, the first approach is useful for determining an appropriate number of factors
that are significant in pricing and statistically characterizing them. The estimates extracted
using statistical techniques have undesirable property, however, that render them difficult
to interpret; This problem arises because, by the nature of the technique, the estimated
risk exposure profiles and the associated risk premiums are nonunique linear combinations of
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more fundamental underlying economic forces. Therefore, the extracted factors lack intuitive
economic meaning.

The advantage of the second approach is that it provides an intuitively appealing set of
factors that admit economic interpretation of the risk exposure profiles and the associated risk
premiums. From a purely statistical view, this approach has the advantage of using economic
information in addition to stock returns. This additional information will, in general, lead
to statistical estimates of better properties, but of cource, insofar as economic variables are
measured with errors, these advantages are diminished.

The objective of this paper is to unify these two approaches and overcome the weakness of
them. We propose a framework composed of observed macroeconomic factors and unobserved
factors based on state-space system. Employing our framework, we estimate risk exposure
profiles and associated risk premiums and extract unobserved factors simultaneously. In
addition, we examine the adequacy of macroeconomic factors as the systematic variables
based on Chiba [2007]’s framework.

The rest of the paper is organized as follows. Section 3.2 reviews the literature on the
APT model. Section 3.3 details the APT basics and derives the equations of the APT.
Section 3.4 describes empirical hypothesis and derives observed macroeconomic factors that
are the underlying sources of risk. In section 3.5, data are described and in section 3.6 we
present main results. Section 3.7 briefly summarizes this study.

3.2 Literature review

A number of reserchers have investigated empirically the relationship between unanticipated
innovations in observed economic variables (or unobserved fundamentals) and stock returns
based on the APT model. For example, Roll and Ross [1980] conducts a factor analysis to
extract systematic factors influencing stock returns. Brown and Weinstein [1983] and Chen
[1983] also utilize factor analysis. These results are confirmed by Connor and Korajczyk
[1989], who use principal components to estimate the APT. Given that statistical techniques
such as factor analysis and principal components offer little in the way of economic intuition
when attempting to interpret the estimated risk premia, attention has focused on prespeci-
fying observed macroeconomic and financial factors as candidates for systematic risk factors.
For example, Chen et al. [1986] find five statistically significant observed risk factors in the
U.S. stock market. There are, shocks to real industrial production, twists in the yield curve, a
measure of default risk, unexpected inflation and the change in expected inflation. Following
this pioneering study, a plethora of related work has confirmed the result that stock returns
are related to observed macroeconomic and financial factors.

Beenstock and Chan [1988] conducted similar analysis for the London stock market and
found that significant risk factors were interest rate, input cost, money supply, and inflation.
Similarly, Antoniou et al. [1998] analyzed two samples of assets and found that three factors
relating money supply, inflation, and excess return on the stock market were priced in the
APT model and these factors carried the same price of risk in both sample.

The papers listed above are based on the two-stage cross-sectional estimation technique
introduced by Fama and Macbeth [1973]. However, this technique has a number of economic
flaws. First, the estimation of asset exposures to the factors in one period and the resulting
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estimates of the prices of risk in another period lead to an errors-in-variables problem. Second,
forming portfolios does not necessarily remove errors-in-variables problem and consequently
failure to correct fully for errors in variables may well to invalid inferences regarding which
factors are statistically significant. Thus, there is some requirement for estimation framework
of the APT, which is robust to the above problem. In next section, we attempt to overcome
these problems, by proposing the framework based on the state-space system.

3.3 APT model representation with observed and unobserved
factors

This section details the APT basics and derives the equations of the APT. While some
theoretical formulation of the APT can be demanding, appealing basics behind the APT are
easy to understand. Moreover, the APT provides a portfolio manager with a variety of new
and easily implemented tools to control risks and to enhance portfolio performance.

The APT model expresses a set of observed asset returns as a function of risk factors.
Let rt be a vector of actual asset return for t = 1, 2, . . . , T . Consider the following model:

rt
(N×1)

= r̄
(N×1)

+ Φ
(N×K)

ft
(K×1)

+ ut
(N×1)

, (3.3.1)

where ft is a vector of systematic factors, Φ is a matrix of factor loadings (risk exposure
profiles) associated with ft, and ut is a vector of idiosyncratic risks. We assume that ft and
ut have zero means so that r̄t denotes a vector of expected return. Equation (3.3.1) merely
says that the actual return equals to the sum, the expected return, plus over all risk factors,
of the risk exposure multiplied by the realization for that risk factor, plus idiosyncratic error
term. The model addresses how expected return behave in a market with no arbitrage
opportunities1 and predicts that an asset’s expected return is linearly related to the factor
loading:

r̄
(N×1)

= rf
(N×1)

+ Φ
(N×K)

p
(K×1)

, (3.3.2)

where rf is a vector of risk-free return and p is a vector of risk premiums. Equation (3.3.2)
is based on the rationale that unsystematic risk is diversifiable and therefore should have a
zero price in the market with no arbitrage opportunities.

In addition, in order to distinguish between observed and unobserved factor, we partition
the set of K factors into two groups of K1 unobserved factors and K2 observed factors. Then

1Note: No arbitrage opportunities mean that because of competition in financial markets, it is impossible
for an investor to earn a positive expected return on any combination of assets without undertaking some risk
and without making some net investment of funds.

46



equation (3.3.1) is partitoned as

rt = r̄ +
[

Φ1
(N×K1)

Φ2
(N×K2)

]



f1t
(K1×1)

f2t
(K2×1)


 + ut

= r̄ + Φ1f1t + Φ2f2t + ut. (3.3.3)

Note that K = K1 + K2, f1t is a vector of unobserved factor, and f2t is a vector of observed
factor. If the unoberved factor follows a stationary vector autoregressive process of first order,
the model forms state-space system. Thus, substituting (3.3.3) into (3.3.2), the state-space
system of our model is as follows:

Rt = µ + Φ1f1t + ut, (3.3.4)
f1t = Γf1,t−1 + vt, (3.3.5)

where
µ ≡ Φp + Φ2f2t,Rt ≡ rt − rf .

Here, Rt is a vector of asset returns in excess of the risk-free rate, µ is a vector of observed
components, Γ = diag(γ1, γ2, . . . , γK1) is a matrix of autoregressive coefficients, and vt is a
vector of noises.

Further, we require that Gaussian white noise ut and vt be orthogonal to each other
and to the initial state: [

ut

vt

]
∼ i.i.d.N

([
0
0

]
,

[
Σ 0
0 Ω

])
, (3.3.6)

E(f11u
′
t) = E(f11v

′
t) = 0. (3.3.7)

In our analysis, we assume that Σ and Ω are diagonal matrices for simplicity. Therefore, the
structures of the matrices Σ and Ω employed here are defined as follows:

Σ = diag(σ1,σ2, . . . ,σN ), Ω = diag(ω1,ω1, . . . ,ωK).

This is the basic structure we adopt for the rest of this paper. Consequently, the APT
is completely general and does not specify exactly what the systematic risks are, or even
how many such risks exist, academic and commercial research suggests that there are several
primary sources of risk which consistently impact returns.

In general, the state-space representation provides a powerful framework for estimation
and testing of the models. The recognition that the APT model is easily put in state-space
form is particularly useful, because the application of Kalman filter then delivers maximum
likelihood estimates (MLE) and optimal filtered and smoothed estimates of parameters and
unobserved risk factors. In addition, the one-step Kalman filter approach of this paper
is preferable to the Fama and Macbeth approach, because the simultaneous estimation of
all parameters produces correct inference via the standard theory. Whereas, the two-step
procedure suffers from the errors-in-variable as discussed in Section 3.2. In addition, state-
space representation facilitates specification testing regarding the adequacy of macroeconomic
factors on the systematic variables based on the LM principle. Therefore, our framework has
a number of advantages over the Fama and MacBeth methodology.
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3.4 Examines factors

3.4.1 Theory

We have defined that asset returns are function of unobserved and observed factors in section
3.2. But, what are observed factors? If we knew them, we could attribute a particular
fraction of the observed price movement in a given stock (or portfolio) to movements in
observed factors.

Unfortunately, there is no formal theoretical guidance in choosing the appropriate group
of observed factors to be included in the APT model. However, stock prices are usually
considered as responding to external forces (even though they may have a feedback on other
variables). Therefore, our goal is to “model stock returns as functions of observed economic
factors and unobserved factors.”

Our choice of economic factors was based on the general hypothesis that stock returns
are influenced by macroeconomic factors. Changes in any of these factors could be expected
to change investor’s perceptions of cash flows and therefore affect asset prices. In other words,
any systematic factors that affect the economy’s pricing operator or that influence dividends
would also influence stock market returns. Additionally, any factors that are necessary to
complete the description of the state of nature will also be part of the description of systematic
risk factors. Therefore, the choice of factors is typically justified by reference to the traditional
discounted cash flows (DCF) valuation formula. The DCF valuation formula is given by:

pt =
∞∑

τ=0

(
1

1 + r

)τ+1

Et(dt+τ ), (3.4.1)

where Et(·) denotes an expectation of unknown future quantity based on information available
to investors at date t, r denotes the appropriate discount rate, and dt+τ is the dividend paid
at the end of period t+ τ . Any economic announcements will affect stock price movements if
the new information revealed by announcement affects either expectations of future dividends
or discount rate or both.

Expected dividends are affected by anything which influences cash flows. Changes in
industrial production influences profits and hence dividends. Unexpected inflation would
influence nominal expected cash flows as well as the nominal rate of interest. Perhaps a more
important reason to expect a relationship between stock returns and unexpected inflation is
that unexpected inflation contains new information about future levels of expected informa-
tion. If unexpected inflation is bad news for the stock market, and if the announcement of
the Consumer Price Index (CPI) contains new information about inflation, then unexpected
inflation (deflation) should be associated with a decrease (increase) in stock prices at the
time of the announcement. The relationship between inflation and common stock returns
has been studied extensively.

The discount rate in equation (3.4.1) is constructed from the prevailing risk-free rate and
a risk premium, and is an average of rates over time, and it changes with both the level of
rate and the term structure spread across different maturities. Unanticipated changes in the
risk-less interest rate influences returns. The discount rate also depends on the risk premium;
hence, unanticipated changes in the premium influences returns.
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3.4.2 Constructing macroeconomic factors

This subsection details the derivation of macroeconomic factors we use in this paper. Several
primary sources of risk from unanticipated changes in the fundamental economic factors are
as follows.

Business cycle risk (monthly and annual growth of industrial production)

Business cycle risk represents unanticipated changes in the level of business activity. Their
basic series are computed as the growth rate in U.S. industrial activity. If IPt denotes the
rate of industrial production in month t, then the monthly growth rate is

MPt = log IPt − log IPt−1, (3.4.2)

and the annual growth rate is

Y Pt = log IPt − log IPt−12. (3.4.3)

Hence, a positive realization of Business cycle risk indicates that the expected rate of
the economy has increased. Note that MPt measures the change in industiral production
lagged by at least a partial month. To make this variable contemporaneous with other series,
subsequent statistical work will lead it by 1 month. Similarly, Y Pt measures the change in
industiral production in the long run. Therefore, subsequent statistical work will lead it by
1 year.

Inflation risk (expected and unexpected inflation)

Inflation risk is a combination of the unexpected components of short- and long-run inflation
rate. If UIt denotes the unexpected inflation in month t, UIt is derived as

UIt = It − Et−1(It), (3.4.4)

where It is the realized monthly first difference in the logarithm of the Consumer Price Index
for period t. The series of expected inflation Et−1(It) is obtained from Fama and Gibbons
[1984]. If RHOt denotes the ex post real rate of interest applicable in period t and TBt−1

denotes the return on 1-month Treasury-bill known at the end of period t− 1 and applying
to period t, the Fisher’s equation asserts that

TBt−1 = Et−1(RHOt) + Et−1(It). (3.4.5)

Hence, TBt−1 − It measures the ex post return on Treasury-bill in the period. Another
inflation variable that is unanticipated and that might have an influence separable from UI
is

DEIt = Et(It+1)− Et−1(It), (3.4.6)

the change in expected inflation. We subscript this variable with t since it is unknown at the
end of month t− 1.
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Since most stocks have negative exposures to Inflation risk, a positive inflation surprise
causes a negative contribution to return, whereas a negative inflation surprise (deflation
surprise) contirbutes positively toward them.

Note that chnages in industrial production is a proxy for the discounted future cash flow.
And, the inflation related variables enter because assets are not risk neutral; their nominal
cash flow growth rates do not always match expected inflation rates.

Time horizon risk (the term structure)

Time horizon risk is the unanticipated change in investor’s desired time to payout. It is
measured as follows:

UTSt = LGBt − TBt−1. (3.4.7)

Note that LGB denotes the return on twenty-year government bonds. A positive realization
of Time horizon risk means that the price of long-term bonds has risen relative to the 1-
month Treasury-bill price. This is a signal that investors require a lower compensation for
holding investments with relatively longer time to payout.

The term structure would seem intuitively to be more related to the denominator of
in the DCF formula-i.e., to the risk adjusted discount rate. The term structure of interest
rate enters because most assets have multiple year cash flows, for reasons relating to time
preference, the discount rate that applies to cash flows in future.

These variables make intuitive sense, and it also makes sense that they are indeed “sys-
tematic.” It is possible, of course, to think of many other potential systematic factors.
However, many of them influence returns only through their impact on the above five fac-
tors. The money supply, for example, is an important variable, but it is not good yardstick
to measure exposures, because most of the influence of money supply changes is captured by
other variables.

We summarize the result of the derivation of macroeconomic factors in Table 3.1.

3.5 The data

3.5.1 Description of the data

The basic data2 for this study consists of rates of return on all securities trading on the
all NYSE, AMEX, and NASDAQ from April 1941 through June 2000. This period is long
enough, so we divide the entire time period into three a priori to discuss different magnitude
of the influence of risk factors on asset pricing.

The dependent variables are six portfolios in excess of risk-free rate, which are con-
structed at the end of each June, are the intersections of 2 portfolios formed on size3 (market

2Note: The data was kindly made available on Kenneth R. French’s website.
3Note: The size is computed as price of stock multiplied by outstanding volume. The size is known to be

strongly related to average return, and we hoped that it would provide the desired dispersion without biasing
the macroeconomic factors.
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Table 3.1: Hypothesized macroeconomic factors

Symbol Macroeconomic factors Definition or Source
Basic Series

I Inflation Log relative of U.S. Consumer Price Index
TB Treasury-bill rate End-of-period term on 1-month bills

LGB Long-term goverment bonds Return on long-term goverment bonds
IP Industrial Production Industrial Production during month

Derived series
MP Monthly growth, industrial production log IPt − log IPt−1

Y P Annual growth, industrial production log IPt − log IPt−12

EI Expected Inflation Fama and Gibbons [1984]
UI Unexpected Inflation It − Et−1(It)

RHO Ex post real interest TBt−1 − It

DEI Change in expected inflation Et(It+1)− Et−1(It)
UTS Term structure LGBt − TBt−1

equity, ME) and 3 portfolios formed on the ratio of book equity to market equity (BE/ME).
The size breakpoint for year t is the median NYSE market equity at the end of June of year t.
BE/ME for June of year t is the book equity for the last fiscal year end in t−1 divided by ME
for December of t−1. The BE/ME breakpoints are the 30th and 70th NYSE percentiles. The
risk-free rate is taken from the 1-month Treasury-bill rate that is known to at the beginning
of each month. The six portfolio returns are fully adjusted for dividends. Monthly returns
are used in all subsequent analysis because most macroeconomic data are only available on
monthly basis. Macroeconomic factors we use are monthly and annual growth of industrial
production, unexpected inflation, the change in expected inflation, and the spread between
long and short interest. Data for those macroeconomic factors were obtained from the Federal
Reserve System.

3.5.2 Statistical characteristics of the data

This subsection describes statistical characteristics of the data. Descriptive statistics for six
portfolios and five macroeconomic factors are given in Table 3.24.

The eighth column of Table 3.2 shows that the kurtosis of all stock return portfolios is
much larger than the kurtosis of the normal distribution (is equal to 3). This reflects the
fact that the tails of distribution of these portfolios are fatter than the tail of the normal
distribution. Put differently, large observations occur much more often than one might expect

4Note: Glossary: SV : small value portfolio, SN : small neutral portfolio, SG: small growth portfolio, BV :
big value portfolio, BN : big neutral portfolio, BG: big growth portfolio. JB test statistic is Chi-squared
with 2 degree of freedom and LB test statistic is Chi-squared with 12 degree of freedom. Bold entries denote
test statistic are significant at the 5 percent level.
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for a normally distributed variable.
This is illustrated further in Figure 3.1, which show histograms of the monthly returns

on six portfolios. Clearly, all histograms are more peaked and have fatter tails than the
normal distribution. Thus, both very small and very large observations occur more often
compared to a normally distributed variable with the same first and second moment.

Further, all six portfolios except for portfolio BG have negative skewness, which implies
that the left tail of the distribution is fatter than the right tail, or that large negative returns
tend to occur more often than large positive one. This is visible in the histograms in Figure
3.1 as well as more extreme values are presented in the left tail than in the right tail. In
addition, JB test rejects the null hypothesis in all portfolios, which suggests the normality
hypothesis on these six portfolios are not satisfied exactly.

Table 3.2 displays correlation matrices for macroeconomic factors. The correlation ma-
trices of Table 3.2 are computed for several different periods; part A covers the entire 711-
month sample period from April 1941 through June 2000, and the remaining part cover three
subperiods, with breaks at December 1960 and September 1980.

We find that the strongest correlation is between DEI and UI. This is expected since
they both contain the EI series. A number of other correlations are not too strong and the
variables are quite far from perfectly correlated.

Table 3.4 and Figure 3.3 illustrate that all macroeconomic factors display mild autocor-
relations, in particular Y P and UTS are highly autocorrelated and have seasonals: The Y P
has seasonals at 12-month lag. Whereas, the UTS has seasonals at 30-month lag. These
results imply the existence of an errors-in-variable problem that bias estimates of the load-
ings of the stock returns on these variables and will bias downward estimates of statistical
significance.

Table 3.2: Descriptive statistics of six portfolios and macroeconomic factors

Factor Mean Median Min Max SD Skew Kurt JB LB(12)
SV 0.739 0.910 -32.820 28.490 6.199 -0.363 5.649 173.720 0.371
SN 1.003 1.350 -28.680 26.240 5.094 -0.439 6.073 193.602 4.804
SG 1.242 1.430 -28.460 29.810 5.480 -0.056 6.171 278.943 14.834
BV 0.709 1.030 -23.810 20.760 4.407 -0.332 4.868 76.861 3.235
BN 0.760 0.860 -20.900 16.520 4.028 -0.298 4.892 80.448 1.726
BG 1.006 1.180 -19.990 20.630 4.602 0.006 4.230 84.557 7.636
MP 0.313 0.360 -10.962 9.937 1.349 -0.814 18.731 5416.768 4.250
Y P 3.730 4.177 -40.380 25.530 7.813 -1.092 8.615 167.153 14.632

UTS 1.248 1.280 -4.700 4.590 1.231 -0.594 4.944 184.589 413.921
UI -0.006 -0.011 -5.282 6.130 0.760 0.578 16.245 5252.970 66.600

DEI 0.005 0.003 -5.035 5.468 0.587 0.275 23.019 11968.739 107.476
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Figure 3.1: Histogram of six portfolios
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Figure 3.2: Macroeconomic factors, April 1941-June 2000
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Table 3.3: Correlation matrices for macroeconomic factors

Factor MP Y P UTS UI DEI

A: 1941.04-2000.06
MP 1.000
Y P -0.083 1.000

UTS 0.075 -0.079 1.000
UI 0.025 -0.102 0.068 1.000

DEI 0.129 -0.119 -0.050 0.772 1.000
B: 1941.04-1960.12

MP 1.000
Y P -0.090 1.000

UTS 0.039 0.069 1.000
UI 0.095 -0.197 0.060 1.000

DEI 0.120 -0.211 -0.002 0.979 1.000
C: 1961.01-1980.09

MP 1.000
Y P -0.067 1.000

UTS 0.279 -0.370 1.000
UI -0.138 0.103 -0.006 1.000

DEI 0.120 0.327 -0.282 0.293 1.000
D: 1980.10-2000.06

MP 1.000
Y P -0.079 1.000

UTS 0.086 0.005 1.000
UI -0.155 0.070 0.265 1.000

DEI 0.233 0.042 0.144 0.365 1.000
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Figure 3.3: Autocorrelation of macroeconomic factors
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Table 3.4: Autocorrelation of macroeconomic factors, April 1941-June 2000

Factor ρ̂(1) ρ̂(6) ρ̂(12) ρ̂(18) ρ̂(24) ρ̂(30)
MP 0.371 0.013 -0.132 -0.007 -0.137 -0.009
Y P 0.966 0.527 -0.039 -0.134 -0.099 -0.068

UTS 0.925 0.673 0.541 0.387 0.254 0.146
UI 0.314 -0.010 -0.308 0.008 -0.018 -0.075

DEI 0.378 0.073 -0.391 0.020 -0.077 -0.121
Factor ρ̂(36) ρ̂(42) ρ̂(48) ρ̂(54) ρ̂(60) ρ̂(66)

MP -0.064 -0.019 0.070 -0.058 -0.008 -0.013
Y P -0.025 0.039 -0.006 -0.199 -0.242 -0.131

UTS 0.089 0.072 0.063 0.149 0.178 0.164
UI -0.138 -0.043 0.152 0.167 -0.031 0.012

DEI -0.171 -0.083 0.194 0.175 -0.019 0.020

3.6 Main results

3.6.1 Estimation results

This subsection describes the relationship of stock returns and risk factors. We estimate the
linear factor model with the APT restrictions imposed for six portfolio excess returns by
Kalman filter and a smoother with all of the factor included.

The risk exposure profiles and the corresponding prices of risk are shown in Table 3.5
through Table 3.8. For each risk factor, the contribution to the expected return is the product
of the risk exposure profiles (Column 2) and the corresponding risk premiums (Column 3),
and the sum of these products is equal to the expected return is excess of 1-month Treasury-
bill rate (Column 4). The risk premium of factor determines how much expected return will
change because of an increase or decrease in the portfolio’s exposure to that type of risk.
Hence, the risk premium is particular important in the APT model.

One of the features which stand out most prominently is the sign of risk factors. Over the
entire period and in any subperiod, the effects on MP and Y P have positive signs. Whereas,
UTS, UI, and DEI have negative signs. The positive risk premiums of MP and Y P reflect
the value of real systematic production risks. In addition, the negative risk premium of UTS
indicates that stocks whose returns are inversely related to increases in long rates over short
rate are more valuable. One interpretation of this result is that UTS measures a change in
the long-term real rate of interest. After long-term real rates decrease, there is subsequently a
lower real return on any form of capital. Investors who want protection against this possibility
will place a relatively higher value on assets whose price increases when long-term real rates
decline, and such assets carry a negative risk premium. Further, the negative signs of UI and
DEI probably mean that stock market assets are generally perceived to be hedges against
the adverse influence on other assets.

Next, we consider the magnitude of risk premium. From Table 3.6 through Table 3.8, we
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find that the absolute magnitude of risk premiums have changed in each period: for instance,
the magnitude of the risk premium for Y P and UTS have changed drastically, whereas,
the magnitude of the risk premium for MP , UI, and DEI have not changed very much.
However, the risk premium for UC have greately changed in magnitude and in sign.

Finally, we consider the contribution of each factor to the expected excess return. we
find that some of the absolute contribution of UC are larger than the total one of observed
factors in each period. This reflects that the large proportion of the expected excess return
depends on UC in any period.

3.6.2 Specification tests

The subsection 3.6.1 discussed the contribution of the expected excess return for each risk
factor. Then, which macroeconomic factor is adequate to explain the expected excess return?
This subsection constructs the specification test for the adequacy of macroeconomic factors
on the systematic variables based on Chiba [2007]’s framework and derive their results.

In the system of (3.3.4) and (3.3.5), when the excess asset return Rt is specified without
the macroeconomic factor fkt, that is restriction that pk = φk1 = φk2 = · · · = φkN = 0. To
ascertain whether macroeconomic factors are related to the stock return, we conduct a LM
test of the null hypothesis as follows:

H0 : pk = φ1k = φ2k = · · · = φNk = 0 for k = K1 + 1,K1 + 2, . . . , K. (3.6.1)

If the null hypothesis is rejected, the macroeconomic factor fkt has a significant effect on the
stock return and their pricing influence does exist. Whereas, if the null hypothesis cannot
be rejected, the macroeconomic factor does not have a significant effect on the stock return.

Part A of Table 3.95 displays specification results over the entire period. Part B through
part D of Table 3.9 display specification results in each period. We find that MP , UI, and
DEI are significant, while Y P and UTS are not significant over the entire period. We also
find that all macroeconomic factors are significant in period B. However, Y P , UTS, and
DEI are not significant in period C, further MP is not significant in Period D.

Therefore, we expect that the number of macroeconomic factor which has a significant
effect on the stock return are decreasing as time goes by. One interpretation of this result
is that the degree of the innovation of macroeconomic factors are decreasing. As we noted
earlier, the APT relates the risk of assets to the covariance of unanticipated innovations
in observed economic variables (or unobserved fundamentals). Actually, the amplitude of
all macroeconomic factors except for UTS are weakening as time goes by. (see Figure 3.2.)
Therefore, we conclude that the effect of macroeconomic factors on stock returns is decreasing
in recent years.

5Note: LM statistic for ALL is Chi-squared with 35 degree of freedom. LM statistic for MP , Y P , UTS,
UI, and DEI are Chi-squared with 7 degree of freedom. Bold entries denote each test statistic are significant
at the 5 percent level.
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3.7 Summary

In this paper, we proposed new APT framework composed of unobserved factors and ob-
served macroeconomic factors based on state-space system. Employing our framework, we
estimate risk exposure profiles and associated risk premiums, and extract unobserved factors
simultaneously. In addition, we used simple arguments to choose a set of macroeconomic
factors as sources of systematic asset risk. Macroeconomic factors we use are monthly and
annual growth of industrial production, unexpected inflation, the change in expected infla-
tion, and the spread between long and short interest. From the estimation result, we found
that the large proportion of the expected excess return depends on the unobserved factor.
Therefore we found that the contribution by the total one of macroeconomic factors are
relatively decreasing.

Further, we examined the adequacy of macroeconomic factors as systematic variables
based on Chiba [2007]’s framework. From the result of specification test, we found that three
macroeconomic factors have significant influence on the stock return. They are monthly
growth of industrial production, unexpected inflation, and the change in expected inflation.
We also found that the number of macroeconomic factor which has a significant effect on
the stock return are decreasing as time goes by. Therefore, we conclude that the effect of
macroeconomic factors to stock returns is decreasing in recent years.

References

• Antoniou, A., Garrette, I., and Priestly, R. (1998), “Macroeconomic variables as com-
mon pervasive risk factors and the empirical content of the arbitrage pricing content of
the arbitrage pricing theory,” Journal of Empirical Finance 5, 221-240.

• Beenstock, M. and Chan, K. (1988), “Economic forces and London stock market,”
Oxford Bulletin of Economics and Studies 50, 27-29.

• Berry, M. A., Burmeister, E., and McElroy, M. B. (1988a), “Sorting Out Risks Using
Known APT Factors,” Financial Analysis Journal 29-43.

• Berry, M. A., Burmeister, E., and McElroy, M. B. (1988b), “A Practical Perspective
on Evaluating Mutual Fund Risk,” Investment Management Review 2(2), 78-86.

• Brown, S. J. and Weinstein, M. I. (1988), “New Approach to Testing Asset Pricing
Theories: The Billinear Paradigm,” Journal of Finance 63(3), 721-733.

• Burmeister, E. and McElroy, M. B. (1988), “Joint Estimation of Factor Sensitivities
and and Risk Premia for the Arbitrage Pricing Theory,” Journal of Finance 63(3),
721-733.

• Burmeister, E., Roll, R., and Ross, S. A., (1994), “A Practitioner’s Guide to Arbi-
trage Pricing Theory,” in A Practitioner’s Guide to Factor Model, Charlottesville, VA:
Research Foundation of the Institute of Chartered Financial Analysts.

59



• Burmeister, E. and Wall, K. D. (1986), “The Arbitrage Pricing Theory and Macroeco-
nomic Factor Measures,” The Financial Review 21, 1-20.

• Burmeister, E., Wall, K. D., and Hamilton, J. D. (1986), “Estimation of Unobserved
Expected Monthly Inflation Using Kalman Filtering,” Journal of Business and Eco-
nomic Statistics 4, 147-160.

• Chen, N. (1983), “Some Empirical Tests of the Theory of Arbitrage Placing.” Journal
of Finance 38, 1392-1414.

• Chen, N. and Ingersoll, J. (1983), “Exact Pricing in Linear factor Models with Finitely
Many Assets: A Note,” Journal of Finance 38, 985-988.

• Chen, N., Roll, R., and Ross, S. A. (1986), “Economic Forces and the Stock Market,”
Journal of Business 59, 383-403.

• Connor, G. (1984), “Unified Beta Pricing Theory,” Journal of Economic Theory 34,
13-31.

• Connor, G. and Korajczyk, R. A. (1989), “An Intertemporal Equilibrium Beta Pricing
Model,” The Review of Financial Studies 2(3), 373-392.

• Chiba, M. (2007), “Specification testing in dynamic factor models,” Manuscript.

• Cox, J. C., Ingersoll, J. E., and Ross, S. A. (1985), “An Intertemporal General Equi-
librium Model of Asset Prices,” Econometrica 53, 363-384.

• Dybvig, P. H. (1983), ”An Explicit Bound on Deviations from APT Pricing in a Finite
Economy,” Journal of Financial Economics 12, 483-496.

• Dybvic, P. H. and Ross, S. A. (1985), “Yes, the APT is testable,” Journal of finance
40, 1173-1188.

• Elton, E., J., Gruber, M., J., Modern Portfolio Theory and Investment Analysis, fifth
ed. Wiley.

• Fama, E. F. (1981) “Stock returns, real activity, inflation, and money,” American
Economic Review 71, 545-565.

• Fama, E. F. and French, K. R. (1992), “The Cross-Section of Expected Stock Returns,”
Journal of Finance 47(2), 427-465.

• Fama, E. F. and Gibbons, M. (1984), “A comparison of inflation forecasts,” Journal of
Monetary Economics 13, 327-348.

• Fama, E. F. and MacBeth, J. (1973), “Risk and Return: some empirical tests,” Journal
of Political economy 81, 607-636.

• Gibbons, M. R. (1982), “Multivariate tests of financial models: a new approach,”
Journal of Econometrics 3, 35-50.

60



• Huberman, G. (1982), “A simple Approach to Arbitrage Pricing Theory,” Journal of
Economic Theory 78, 183-191.

• Ingersoll, J. (1984), “Some Results in the Theory of Arbitrage Pricing,” Journal of
Finance 39, 1021-1039.

• Li, Y. (1998), “Expected stock returns, risk premiums and volatilities of economic
factors,” Journal of Empirical Finance 5, 69-97.

• McElroy, M. B. and Burmeister, E. (1988), “Arbitrage Pricing Theory as a restricted
nonlinear multivariate regression model: interated nonlinear seemingly unrelated re-
gressions estimates,” Journal of Business and Economic Statistics 6, 29-42.

• McElroy, M. B., Burmeister, E., and Wall, K. D. (1985), “Two Estimators for the APT
model when Factors are Measured,” Economic Letters 19, 271-275.

• Priestly, R. (1996), “The Arbitrage Pricing Theory, macroeconomic and financial fac-
tors and the expectation generating process,” Journal of Banking and Finance 20,
869-890.

• Roll, R. and Ross, S. A. (1980), “An Empirical Investigation of the Arbitrage Pricing
Theory,” Journal of Finance 35, 1073-1103.

• Ross, S. A. (1976), “The Arbitrage Theory of Capital Asset Pricing,” Journal of Eco-
nomic Theory 13, 341-360.

• Ross, S. A. (1977), “Return, Risk, and Arbitrage,” Risk and Return in Finance, Cam-
bridge, MA: Baillinger, 189-219.

• Ross, S. A. (1978), “Mutual Fund Separation in Financial Theory-The Separating Dis-
tributions,” Journal of Economic Theory 17, 254-286.

• Ross, S. A., and Roll, R. (1984), “The arbitrage Pricing Theory Approach to Strategic
Portfolio Planning,” Financial Analysis Journal 14-26.

• Shanken, J. (1992), “On the estimation of beta pricing models,” Review of Financial
Studies 5, 1-33.

• Sharpe, William F. (1977), “The Capital Asset Pricing Model: Multi-Beta Interpreta-
tion,” Financial Decision Making Under Uncertainty, eds. Haim Levy and Marshall
Sarnat, New York: Academic Press.

• Wei, K. C. John. (1988), “An Asset-Pricing Theory Unifying the CAPM and the APT,”
Journal of Finance 63(4), 881-892.

• Willem, T. (1997), “On stock market returns and monetary policy,” Journal of Finance
2, 635-655.

61



Table 3.5: Calculation of expected excess return for six portfolios, April 1941-June 2000

Factor Price of risk Exposure Contribution Factor Price of risk Exposure Contribution
SV BV
UC 1.123 5.812 6.527 UC 1.123 3.840 4.313
MP 3.521 0.472 1.663 MP 3.521 0.304 1.071
Y P 0.888 0.037 0.033 Y P 0.888 0.038 0.034

UTS -8.293 0.060 -0.497 UTS -8.293 -0.039 0.324
UI -8.434 -0.898 7.570 UI -8.434 -0.695 5.858

DEI -4.478 3.233 -14.479 DEI -4.478 2.431 -10.886
Return 0.817 Return 0.714

SN BN
UC 1.123 4.965 5.576 UC 1.123 3.585 4.027
MP 3.521 0.349 1.230 MP 3.521 0.322 1.134
Y P 0.888 0.034 0.030 Y P 0.888 0.027 0.024

UTS -8.293 -0.022 0.181 UTS -8.293 -0.045 0.375
UI -8.434 -0.740 6.244 UI -8.434 -0.376 3.167

DEI -4.478 2.745 -12.292 DEI -4.478 1.785 -7.995
Return 0.970 Return 0.732

SG BG
UC 1.123 5.236 5.880 UC 1.123 4.126 4.634
MP 3.521 0.312 1.097 MP 3.521 0.301 1.061
Y P 0.888 0.032 0.029 Y P 0.888 0.034 0.030

UTS -8.293 -0.022 0.184 UTS -8.293 -0.052 0.428
UI -8.434 -0.655 5.527 UI -8.434 -0.271 2.283

DEI -4.478 2.577 -11.539 DEI -4.478 1.671 -7.481
Return 1.178 Return 0.955
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Table 3.6: Calculation of expected excess return for six portfolios, April 1941-December 1960

Factor Price of risk Exposure Contribution Factor Price of risk Exposure Contribution
SV BV
UC -0.627 4.420 -2.772 UC -0.627 3.431 -2.151
MP 3.852 0.452 1.741 MP 3.852 0.355 1.369
Y P 10.555 -0.033 -0.351 Y P 10.555 -0.051 -0.539

UTS -0.652 0.179 -0.116 UTS -0.652 0.352 -0.230
UI -1.205 -0.038 0.045 UI -1.205 0.871 -1.049

DEI -1.641 -1.512 2.481 DEI -1.641 -2.365 3.882
Return 1.028 Return 1.281

SN BN
UC -0.627 4.581 -2.873 UC -0.627 3.542 -2.221
MP 3.852 0.366 1.408 MP 3.852 0.345 1.328
Y P 10.555 -0.036 -0.383 Y P 10.555 -0.037 -0.393

UTS -0.652 0.036 -0.023 UTS -0.652 0.293 -0.191
UI -1.205 0.344 -0.415 UI -1.205 1.161 -1.400

DEI -1.641 -1.956 3.210 DEI -1.641 -2.541 4.170
Return 0.924 Return 1.293

SG BG
UC -0.627 5.707 -3.579 UC -0.627 4.970 -3.117
MP 3.852 0.390 1.503 MP 3.852 0.390 1.500
Y P 10.555 -0.048 -0.508 Y P 10.555 -0.059 -0.622

UTS -0.652 -0.259 0.169 UTS -0.652 -0.377 0.245
UI -1.205 0.470 -0.566 UI -1.205 0.147 -0.178

DEI -1.641 -2.272 3.728 DEI -1.641 -1.701 2.792
Return 0.747 Return 0.621
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Table 3.7: Calculation of expected excess return for six portfolios, January 1961-September
1980

Factor Price of risk Exposure Contribution Factor Price of risk Exposure Contribution
SV BV
UC 3.026 6.967 21.085 UC 3.026 4.044 12.238
MP 3.258 -2.518 -8.203 MP 3.258 -1.379 -4.491
Y P 8.790 -0.187 -1.641 Y P 8.790 -0.101 -0.888

UTS -6.594 1.505 -9.924 UTS -6.594 0.924 -6.093
UI -0.482 0.035 -0.017 UI -0.482 -0.026 0.012

DEI -0.246 2.289 -0.562 DEI -0.246 1.904 -0.468
Return 0.738 Return 0.311

SN BN
UC 3.026 5.956 18.025 UC 3.026 3.793 11.480
MP 3.258 -2.145 -6.988 MP 3.258 -1.609 -5.243
Y P 8.790 -0.140 -1.233 Y P 8.790 -0.041 -0.364

UTS -6.594 1.281 -8.444 UTS -6.594 0.741 -4.884
UI -0.482 -0.160 0.077 UI -0.482 0.103 -0.050

DEI -0.246 1.851 -0.454 DEI -0.246 0.666 -0.163
Return 0.983 Return 0.776

SG BG
UC 3.026 6.184 18.714 UC 3.026 4.610 13.951
MP 3.258 -2.252 -7.336 MP 3.258 -1.835 -5.978
Y P 8.790 -0.140 -1.231 Y P 8.790 -0.061 -0.534

UTS -6.594 1.325 -8.740 UTS -6.594 0.967 -6.374
UI -0.482 -0.388 0.187 UI -0.482 -0.051 0.024

DEI -0.246 1.321 -0.324 DEI -0.246 0.239 -0.059
Return 1.270 Return 1.031
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Table 3.8: Calculation of expected excess return for six portfolios, October 1980-June 2000

Factor Price of risk Exposure Contribution Factor Price of risk Exposure Contribution
SV BV
UC 0.576 -6.229 -3.589 UC 0.576 -4.283 -2.468
MP 1.111 0.868 0.964 MP 1.111 1.022 1.135
Y P 0.660 0.142 0.094 Y P 0.660 0.160 0.105

UTS -1.713 -0.138 0.236 UTS -1.713 -0.259 0.444
UI -0.821 0.507 -0.416 UI -0.821 0.785 -0.644

DEI -1.372 -2.379 3.263 DEI -1.372 -1.786 2.451
Return 0.552 Return 1.024

SN BN
UC 0.576 -4.605 -2.653 UC 0.576 -3.681 -2.121
MP 1.111 0.615 0.684 MP 1.111 0.840 0.933
Y P 0.660 0.051 0.033 Y P 0.660 0.096 0.064

UTS -1.713 -0.067 0.115 UTS -1.713 -0.018 0.031
UI -0.821 0.194 -0.159 UI -0.821 0.192 -0.157

DEI -1.372 -2.194 3.010 DEI -1.372 -1.289 1.769
Return 1.030 Return 0.518

SG BG
UC 0.576 -4.202 -2.421 UC 0.576 -3.143 -1.811
MP 1.111 0.565 0.628 MP 1.111 0.521 0.579
Y P 0.660 0.011 0.007 Y P 0.660 0.047 0.031

UTS -1.713 0.013 -0.022 UTS -1.713 -0.074 0.127
UI -0.821 -0.031 0.025 UI -0.821 -0.184 0.151

DEI -1.372 -2.057 2.822 DEI -1.372 -1.318 1.808
Return 1.039 Return 0.886
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Table 3.9: Specification testing for omitted macroeconomic factors

Symbol LM statistic P -value Symbol LM statistic P -value
A: 1941.04-2000.06 B: 1941.04-1960.12

ALL 134.586 0.000 ALL 510.835 0.000
MP 12.592 0.201 MP 13.156 0.041
Y P 5.189 0.520 Y P 16.760 0.010

UTS 6.611 0.358 UTS 24.712 0.000
UI 67.799 0.000 UI 237.506 0.000

DEI 31.093 0.000 DEI 154.144 0.000
Symbol LM statistic P -value Symbol LM statistic P -value

B: 1961.01-1980.09 D: 1980.10-2000.06
ALL 236.904 0.000 ALL 72.398 0.000
MP 44.240 0.000 MP 11.418 0.076
Y P 5.210 0.517 Y P 7.341 0.290

UTS 6.060 0.417 UTS 4.875 0.560
UI 35.567 0.000 UI 17.807 0.007

DEI 19.411 0.004 DEI 18.012 0.006
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Chapter 4

The Macroeconomy and the Yield
Curve: Specification Testing based
on Lagrange Multiplier Approach

4.1 Introduction

Understanding the term structure of interest rate has been a topic on the agenda of both
financial economists and macroeconomists, albeit for different reasons. Therefore, they all
have attempted to build good and tractable model of the yield curve, yet unusually large
gap is apparent between the yield curve model developed by financial economists and the
model developed by macroeconomists. Financial economists have mainly and pricing interest
rate-related securities: They have developed powerful models based on the assumption of
absence of opportunities, but typically left unspecified the relationship between the term
structure and other economic variables. Macroeconomists, on the other hand, have focused on
understanding the relationship between interest rates, monetary policy, and macroeconomic
fundamentals. Thus, combining these two lines of research seems fruitful, in that there are
potential gains both ways.

Recently, a number of papers take a step toward bridging this gap by formulating and
estimating an yield curve model that integrates macroeconomic and financial factors. For
example, Ang and Piazzesi [2003], Hördahl et al. [2002], and Wu [2002], who explicitly
incorporate macro determinants into multi-factor yield curve models. However, those papers
only consider a unidirectional macro linkage, because output and inflation are assumed to
be determined independently of the shape of the yield curve, but not vice versa. In contrast
to this assumption of a one-way macro-to-yields link, the opposite view is taken in another
large literature typified by Estrella and Hardouvelis [1991] and Estrella and Mishkin [1998],
which assumes yields-to-macro link and focuses only on the unidirectional predictive power
of the yield curve for the economy. These literatures, however, forcus only one-way yields-
to-macro or macro-to-yields links, so the interactions between macroeconomic and term-
structure dynamics have also been left unexplored.

In order to redress these shortcomings, Diebold et al. [2006] constructs a dynamic
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term structure model entirely based on macroeconomic factors, which allows for an explicit
feedback from the yield curve to macroeconomic outcomes. The joint modelling of these
key macroeconomic factors - namely, capacity utilization, the federal funds rate, and annual
price inflation - should allow us to obtain a more accurate (endogenous) description of the
dynamics of the yield curve. Therefore, we employ Diebold’s framewok in this paper for
analyzing the potential bidirectional feedback from the yield curve to the economy and back
again1.

Diebold et al. [2006] estimates many parameters by numerical optimization and examine
the interactions between the macroeconomy and the yield curve based on Likelihood Ratio
and Wald methods. However, this approach needs high numerical task. The Lagrange Multi-
plier procedure is regarded as the most suitable for that situation because, unlike Likelihood
Ratio and Wald procedure, it does not require the estimation of the alternative. Therefore,
this paper attempts to ease this difficulty, by proposing formal test of macro and yield curve
inteactions based on Chiba [2007]’s testing framework.

The rest of the paper is organized as follows. Section 4.2 describes the main features
of Diebold’s framework. Section 4.3 describing the data. Section 4.4 estimates the model
and examines causal direction between the macroeconomy and the yield curve. Section 4.5
briefly summarizes this study.

4.2 The model

In this section, we first review the dynamic Nelson-Siegel model in subsection 4.2.1 and
introduce a detailed description of the Diebold et al. [2006]’s framework in subsection 4.2.2.

4.2.1 The dynamic Nelson-Siegel model

The original Nelson-Siegel model fits the yield curve with the simple functional form

yt(τ) = β1 + β2

[
1− exp(−λτ)

λτ

]
+ β3

[
1− exp(−λτ)

λτ
− exp(−λτ)

]
(4.2.1)

for t = 1, 2, . . . , T . Here, yt(τ) is the zero-coupon yield with τ dates to maturity at time
t, and β1, β2, β3, and λ are parameters. Note that the parameter λ governs the exponential
rate; small value of λ produces fast decay and can better fit the curve at long maturities,
while large value of λ produces slow decay and can better fit the curve at short maturities.

This representation is commonly used by financial researchers and market practitioners
to fit the yield curve at a point in time. Although for some purposes such a static represen-
tation appears useful, a dynamic version is required to understand the evolution of the bond
market over time. Therefore, Diebold and Li [2006] reinterpreted the coefficients β1, β2, and
β3 as time-varying level, slope, and curvature factors and the terms that multiply these these

1Note: Diebold’s framewok is not the usual no-arbitrage factor representation typically used in the finance
literature. Such no arbitrage factor models often appear to fit the cross-section of yields at a particular point
in time, but they do less well in describing the dynamics of the yield curve over time.
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factors are factor loadings. Thus, we write

yt(τ) = Lt + St

[
1− exp(−λτ)

λτ

]
+ Ct

[
1− exp(−λτ)

λτ
− exp(−λτ)

]
, (4.2.2)

for t = 1, 2, . . . , T . Diebold and Li [2006] assumes an autoregressive stucture, which yields
the DNS curve. This model is very flexible and capable of accommodating several stylized
facts on the term structure and its dynamics.

4.2.2 An yield curve with macroeconomic factors

We wish to characterize the dynamic interactions between the yield curve and the macroe-
conomy. Therefore, we need to formulate the expanded yield model that integrates macroe-
conomic and financial factors. Our measures of the activity include three key variables:
manufacturing capacity utilization (CUt), the federal funds rate (FFRt), and annual price
inflation (INFRt). These three variables represent the level of real economic ativity rela-
tive to potential, the monetary policy instrument, and the inflation rate, which are widely
considered to be minimum set of fundamentals to capture basic macroeconomic dynamics.

If the dynamic movement of Lt, St, and Ct follow a vector autoregressive process of first
order, the yield curve model forms a state-space model. Therefore, the yield curve employed
here is as follows.

yt =
[

Φ 0
] [

βt

xt

]
+ ut, (4.2.3)

[
βt

xt

]
=

[
µ1

µ2

]
+

[
Γ11 Γ12

Γ21 Γ22

] [
βt−1

xt−1

]
+

[
v1t

v2t

]
, (4.2.4)

where

yt ≡




yt(τ1)
yt(τ2)

...
yt(τN )


 ,Φ ≡




1
1− exp(−λτ1)

λτ1

1− exp(−λτ1)
λτ1

− exp(−λτ1)

1
1− exp(−λτ2)

λτ2

1− exp(−λτ2)
λτ2

− exp(−λτ2)
...

...
...

1
1− exp(−λτN )

λτN

1− exp(−λτN )
λτN

− exp(−λτN )




,

βt ≡



Lt

St

Ct


 ,xt ≡




CUt

FFRt

INFRt


 ,ut ≡




u1t

u2t
...

uNt


 ,µt ≡




µ1t
(3×1)

µ2t
(3×1)


 =




µ1t

µ2t

µ3t

µ4t

µ5t

µ6t




,
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Γ ≡




Γ11
(3×3)

Γ12
(3×3)

Γ21
(3×3)

Γ22
(3×3)


 =




γ11 γ12 γ13 γ14 γ15 γ16

γ21 γ22 γ23 γ24 γ25 γ26

γ31 γ32 γ33 γ34 γ35 γ36

γ41 γ42 γ43 γ44 γ45 γ46

γ51 γ52 γ53 γ54 γ55 γ56

γ61 γ62 γ63 γ64 γ65 γ66




,vt ≡




v1t
(3×1)

v2t
(3×1)


 =




v1t

v2t

v3t

v4t

v5t

v6t




.

In this framework, equation (4.2.3) is an observation equation, and equation (4.2.4)
is a transition equation. Here, yt is the vector of zero-coupon yield, βt is the vector of
time-varying latent factors, and xt is the observed macroeconomic factors. For linear least-
square optimality, we require that the Gaussian white noise in observation and transition
disturbances are orthogonal to each other and to the initial state:

[
ut

vt

]
∼ i.i.d.N

([
0
0

]
,

[
Σ 0
0 Ω

])
, (4.2.5)

E(ξ1u
′
t) = 0, E(ξ1v

′
t) = 0. (4.2.6)

where ξt ≡ (β′t,x′t)′. Furthermore, we assume that Σ is an identity matrix and Ω is a potitive
definite symmetric matrix for compurational tractability:

Σ =




1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


 , (4.2.6)

Ω ≡




Ω11
(3×3)

Ω12
(3×3)

Ω′
12

(3×3)

Ω22
(3×3)


 =




σ11 σ12 σ13 σ14 σ15 σ16

σ12 σ22 σ23 σ24 σ25 σ26

σ13 σ23 σ33 σ34 σ35 σ36

σ14 σ24 σ34 σ44 σ45 σ46

σ15 σ25 σ35 σ54 σ55 σ56

σ16 σ26 σ36 σ64 σ65 σ66




. (4.2.7)

According to the above parameter configuration, we proceed to evaluate the Gaussian likeli-
hood function of the model using the prediction-error decomposition of the likelihood. How-
ever, we must estimate many parameters in this model: The measurement matrix Φ contains
one free parameter, λ. the transition matrix Γ contains 36 free parameters, the mean state
vector µ contains 6 free parameters. Moreover, the trasition covariance matrix Ω contains 21
free parameters. All told, then, 64 parameters must be estimated by numerical optimization.
Therefore, the parameter space is quite large and the optimization problem of maximization
problem the likelihood function is non-trivial and time consuming. Then, we propose formal
test of macro and yield curve inteactions based on Chiba [2007]’s framework. This framework
does not require the estimation of the alternative hypothesis and constructs the test statistic
from a single pass of the Kalman filter and a smoother. Therefore, our approach eases nu-
merical task for analyzing the potential bidirectional feedback between the yield curve and
the macroeconomy.
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4.3 Statistical characteristics of the data

This section intorduces the data we use in this paper and discusses their statistical charac-
teristics. We use U.S. Treasury yields with maturities of 3, 6, 9, 12, 15, 18, 21, 24, 30, 36,
48, 60, 72, 84, 96, 108, and 120 months. The yields are derived from bid-ask average price
quotes, from January 1970 through December 2000, taken from Diebold’s website. They are
measured as of the beggining of each month, where a month is defined as 30.4375 days.

Figure 4.1: Yield Curves, January 1970-December 2000

In Figure 4.1 we provide a three-dimentional plot of our yield curve data. We find that
the variation of the yield curve is quite similar. In Table 4.12, we present descriptive statistics
for the yields. It is clear that the long rate yield curve are less volatile and more persistent
than the short rate yield curve from first and second moments.

In Figure 4.2, we plot three estimated factors and macroeconomic factors as a function
of time. We find that the level factor is very persistent except from 1980 through 1985 and
is of cource positive - in the neighborhood of 8 percent. In contrast, the slope and curvature
are volatile and assume both positive and negative values.

In Table 4.23, we present descriptive statistics of estimated level, slope, curvature fac-
2Note: The JB test statistic is Chi-squared with 2 degree of freedom and the LB test statistic is Chi-

squared with 12 degree of freedom. Bold entries denote statistical significance at the 5 percent level.
3Note: The JB test statistic is Chi-squared with 2 degree of freedom and the LB test statistic is Chi-

squared with 12 degree of freedom. Bold entries denote statistical significance at the 5 percent level.
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Table 4.1: Descriptive statistics of yield curves

Yield Mean Med Min Max SD Skew Kurt JB LB(12)
M3 6.755 5.928 2.732 16.020 2.655 1.265 4.642 119.421 340.216
M6 6.983 6.243 2.891 16.481 2.662 1.205 4.385 119.312 343.327
M9 7.105 6.404 2.984 16.394 2.640 1.165 4.254 119.239 345.367

M12 7.201 6.612 3.107 15.822 2.569 1.114 4.063 119.215 347.351
M15 7.306 6.752 3.288 16.043 2.517 1.095 3.992 119.201 349.378
M18 7.378 6.780 3.482 16.229 2.502 1.111 4.004 119.172 350.633
M21 7.441 6.807 3.638 16.177 2.490 1.123 3.996 119.164 351.589
M24 7.459 6.811 3.777 15.650 2.443 1.106 3.893 119.236 352.159
M30 7.552 6.928 4.043 15.397 2.365 1.081 3.747 119.386 354.348
M36 7.631 7.060 4.204 15.765 2.341 1.122 3.839 119.356 355.468
M48 7.769 7.220 4.308 15.821 2.284 1.117 3.750 119.520 357.179
M60 7.841 7.365 4.347 15.005 2.248 1.086 3.570 119.695 359.000
M72 7.957 7.425 4.384 14.979 2.222 1.085 3.512 119.812 360.429
M84 7.987 7.454 4.352 14.975 2.182 1.094 3.577 119.875 359.963
M96 8.046 7.506 4.433 14.936 2.171 1.054 3.412 120.010 361.827

M108 8.078 7.541 4.429 15.018 2.180 1.064 3.485 119.981 362.131
M120 8.047 7.589 4.443 14.925 2.135 1.066 3.578 120.031 361.349

Table 4.2: Descriptive statistics of estimated level, slope, curvature factors, and macroeco-
nomic factors

Factor Mean Med Min Max SD Skew Kurt JB LB(12)
L 8.196 7.848 4.542 14.385 0.623 0.926 3.268 120.382 364.522
S -1.512 -1.643 -5.347 2.908 1.773 0.263 2.579 112.015 224.391
C 0.434 0.476 -1.280 1.778 2.106 -0.619 3.858 67.339 244.249

CU 80.405 80.872 68.494 88.271 3.728 -0.654 3.626 123.877 361.486
FFR 7.367 6.510 2.920 19.100 3.193 1.342 5.034 120.789 331.183

INFR 5.160 4.165 1.100 14.760 3.103 1.211 3.660 138.705 321.127
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Figure 4.2: Estimates of level, slope, curvature factors, and macroeconomic factors
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Figure 4.3: Autocorrelation of estimated level, slope, curvature factors, and macroeconomic
factors
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Table 4.3: Autocorrelation of estimated level, slope, curvature factors, and macroeconomic
factors

Factor ρ̂(1) ρ̂(6) ρ̂(12) ρ̂(18) ρ̂(24) ρ̂(30)
L 0.984 0.905 0.818 0.733 0.674 0.604
S 0.986 0.824 0.591 0.325 0.091 -0.093
C 0.996 0.921 0.745 0.558 0.411 0.284

CU 0.983 0.782 0.458 0.137 -0.124 -0.240
FFR 0.977 0.822 0.691 0.517 0.359 0.239

INFR 0.993 0.920 0.759 0.584 0.410 0.293
Factor ρ̂(36) ρ̂(42) ρ̂(48) ρ̂(54) ρ̂(60) ρ̂(66)

L 0.540 0.449 0.334 0.226 0.151 0.092
S -0.231 -0.291 -0.281 -0.178 -0.089 -0.033
C 0.162 0.030 -0.088 -0.165 -0.176 -0.155

CU -0.298 -0.250 -0.133 -0.009 0.053 0.069
FFR 0.160 0.110 0.074 0.108 0.094 0.110

INFR 0.236 0.225 0.243 0.275 0.305 0.303

tors, and macroeconnomic variables. The estimates indicate that persistence decreases, and
volatility increases, as we move the level factor through the curvature factor.

In Table 4.3 and Figure 4.3 we present the autocorrelations of estimated level, slope,
curvature factors, and macroeconnomic variables. We can see that all variables are highly
persistent, and that the level factor is the most persistent, and that the slope factor is more
persistent than the curvature factor.

Table 4.4: Correlation matrix for estimated level, slope, curvature factors, and macroeco-
nomic factors

Factor L S C CU FFR INFR

L 1.000
S -0.011 1.000
C 0.414 0.147 1.000

CU -0.056 0.381 -0.342 1.000
FFR 0.117 0.106 0.364 -0.112 1.000

INFR 0.397 0.069 0.034 -0.037 0.677 1.000

In Table 4.4 we provide the correlation matrix for estimated level, slope, curvature
factors, and macroeconnomic variables. We find that level, slope, and curvature are not
highly correlated with each other; all pairwise correlations are less than 0.414. The correlation
0.397 between the level factor and actual inflation is consistent with a link between the level
of the yield curve and inflationary expectations, as suggested by the Fisher equation. In
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addition, the correlation 0.381 between the slope factor and capacity utilization suggest that
yield curve slope is intimately connected to the cyclical dynamics of the economy.

4.4 Main results

4.4.1 Estimation results

In this subsection, we propose estimation results of the model under the several null hypoth-
esis. In Table 4.5 and 4.64, we present estimation results of Γ and Ω matrices.

The diagonal elements of Γ11 matrix indicates highly persistent own dynamics of Lt, St,
and Ct under all null hypotheses. Wheras, many of the off diagonal elements of Γ11 indicate
relative low values. Thus, cross factor dynamics appear unimportant.

In addition, Γ12 and Γ21 matrices indicate that many of the off diagonal elements appear
significant. In particular, estimates of Γ21 indicate relative high values. And, the significance
of γ16 and γ24 suggests that links from yields to macroeconomy strongly exist as discussed
in section 4.2.

The estimated Ω matrix is provided in Table 4.6. The estimates of Ω11 suggest that
volatility shock increase as we move from Lt to St to Ct. Several of the off diagonal covariances
appear significant individually.

4.4.2 Specification tests

This subsection constructs specification tests and derives their results. There are two links
from yields to the macroeconomy in our setup: the contemporaneous link given by Ω12, and
the effects of lagged yields on macroeconomy embodied in Γ21. Conversely, links from the
macroeconomy to yields are embodied in Γ12. Therefore, we construct the null hypotheses
for analyzing a bidirectional link between the macroeconomy and the yield curve as follows.

Specification test for no links from the macroeconomy to yields

The latent factor represented by βt is called “block exogenous” in the time series with respect
to the lagged macro factor xt−1 if the elements in xt−1 are of no help improving a forecast of
any variable contained in βt alone. In our setup, βt is block-exogenous when Γ12 = Ω12 = 0,
and there is no links from the macroeconomy to yields. Therefore, we conduct the LM test
of the null hypothesis as follows:

H0 : Γ12 = Ω12 = 0. (4.4.1)

Specification test for no links from yields to the macroeconomy

The latent factor represented by xt is called “block exogenous” in the time series with respect
to the lagged macro factor βt−1 if the elements in βt−1 are of no help improving a forecast of
any variable contained in xt alone. In our setup, xt is block-exogenous when Γ21 = Ω12 = 0,

4Note: Bold entries denote parameter estimates significant at the 5 percent level. Standard errors appear
in parentheses.
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Table 4.5: Estimated Γ matrix under the several null hypotheses

A: Diagonal Lt−1 St−1 Ct−1 CUt−1 FFRt−1 INFRt−1

Lt 0.995
(0.018)

0.023
(0.021)

− 0.022
(0.032)

− 0.005
(0.005)

− 0.013
(0.015)

0.015
(0.008)

St 0.101
(0.013)

1.090
(0.015)

0.017
(0.022)

0.015
(0.004)

−0.103
(0.010)

0.001
(0.005)

Ct −0.009
(0.003)

− 0.006
(0.004)

0.995
(0.006)

− 0.001
(0.001)

0.007
(0.003)

0.002
(0.001)

CUt 0.267
(0.037)

0.222
(0.041)

− 0.049
(0.060)

0.987
(0.012)

−0.222
(0.029)

−0.052
(0.015)

FFRt 0.501
(0.031)

0.550
(0.034)

−0.188
(0.051)

0.009
(0.009)

0.589
(0.024)

−0.030
(0.013)

INFRt 0.029
(0.020)

0.027
(0.023)

− 0.016
(0.037)

0.043
(0.006)

− 0.004
(0.016)

0.982
(0.009)

B: No intersection Lt−1 St−1 Ct−1 CUt−1 FFRt−1 INFRt−1

Lt 0.996
(0.008)

0.021
(0.009)

− 0.032
(0.027)

St −0.023
(0.006)

0.990
(0.007)

0.010
(0.022)

Ct 0.001
(0.001)

0.003
(0.002)

0.984
(0.005)

CUt 0.980
(0.009)

−0.033
(0.014)

−0.040
(0.014)

FFRt 0.029
(0.009)

0.968
(0.015)

0.002
(0.015)

INFRt 0.043
(0.004)

0.016
(0.008)

0.985
(0.008)

C: No macro to yield Lt−1 St−1 Ct−1 CUt−1 FFRt−1 INFRt−1

Lt 0.996
(0.008)

0.021
(0.009)

− 0.032
(0.027)

St −0.023
(0.006)

0.990
(0.007)

0.010
(0.022)

Ct 0.001
(0.001)

0.003
(0.002)

0.994
(0.005)

CUt 0.267
(0.037)

0.222
(0.042)

− 0.049
(0.062)

0.987
(0.011)

-0.222
(0.030)

−0.052
(0.015)

FFRt 0.501
(0.031)

0.550
(0.035)

−0.188
(0.052)

0.009
(0.009)

0.589
(0.025)

−0.030
(0.013)

INFRt 0.029
(0.021)

0.027
(0.023)

− 0.016
(0.036)

0.043
(0.006)

− 0.004
(0.016)

0.982
(0.009)

D: No yield to macro Lt−1 St−1 Ct−1 CUt−1 FFRt−1 INFRt−1

Lt 0.995
(0.018)

0.023
(0.021)

− 0.022
(0.030)

− 0.005
(0.005)

− 0.013
(0.015)

0.015
(0.008)

St 0.101
(0.013)

1.090
(0.014)

0.017
(0.021)

0.015
(0.004)

−0.103
(0.010)

0.001
(0.005)

Ct −0.009
(0.003)

− 0.006
(0.004)

0.995
(0.005)

− 0.001
(0.001)

0.007
(0.003)

0.002
(0.001)

CUt 0.980
(0.009)

−0.033
(0.014)

−0.040
(0.014)

FFRt 0.029
(0.009)

0.968
(0.014)

0.020
(0.015)

INFRt 0.043
(0.004)

0.016
(0.008)

0.985
(0.008)
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Table 4.6: Estimated Ω matrix under the several null hypotheses

A: Diagonal L S C CU FFR INFR

Ωii 0.003
(0.000)

0.041
(0.003)

0.085
(0.006)

0.352
(0.026)

0.248
(0.018)

0.104
(0.008)

B: No intersection L S C CU FFR INFR

L 0.003
(0.000)

S 0.031
(0.004)

0.055
(0.004)

C 0.010
(0.001)

0.001
(0.001)

0.087
(0.006)

CU 0.402
(0.029)

FFR 0.143
(0.023)

0.447
(0.033)

INFR 0.027
(0.011)

0.026
(0.011)

0.104
(0.008)

C: No macro to yield L S C CU FFR INFR

L 0.003
(0.000)

S 0.031
(0.004)

0.055
(0.004)

C 0.010
(0.001)

0.001
(0.001)

0.087
(0.006)

CU 0.352
(0.026)

FFR 0.049
(0.016)

0.248
(0.018)

INFR 0.022
(0.010)

0.015
(0.009)

0.104
(0.008)

D: No yield to macro L S C CU FFR INFR

L 0.003
(0.000)

S 0.031
(0.004)

0.041
(0.003)

C 0.010
(0.001)

0.002
(0.001)

0.085
(0.006)

CU 0.352
(0.026)

FFR 0.049
(0.016)

0.447
(0.034)

INFR 0.022
(0.010)

0.026
(0.011)

0.104
(0.008)
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and there is no links from yields to the macroeconomy. Therefore, we conduct the LM test
of the null hypothesis as follows:

H0 : Γ21 = Ω12 = 0. (4.4.2)

Specification test for no links between yields and the macroeconomy

Further, in our setup, there is no relation between β and x when Γ12 = Γ21 = Ω12 = 0, and
there is no link between the macroeconomy and yields. Therefore, we conduct the LM test
of the null hypothesis as follows:

H0 : Γ12 = Γ21 = Ω12 = 0. (4.4.3)

We report in Table 4.75 the results of several specification tests based on LM procedure.
All four tests overwhelmingly reject the null hypotheses. Therefore, we conclude that there
is clear evidence in favor of a bidirectional link between the macroeconomy and the yield
curve.

Table 4.7: Specification tests for links between the macroeconomy and the yield curve and
diagonality of Ω

Case Restricted parameters LM statistic df P -value
Diagonality of Ω matrix Ω = diag(σ11, σ22, . . . , σ66) 323.443 15 0.000

No intersection Γ12 = Γ21 = Ω12 = 0 249.600 27 0.000
No macro to yield Γ12 = Ω12 = 0 45.213 18 0.000
No yield to macro Γ21 = Ω12 = 0 43.423 18 0.001

4.5 Summary

We have specified and estimated the yield curve model that incorporates both yield curve
factors (level, slope, and curvature) and macroeconomic factors (manufacturing capacity
utilization, the federal funds rate, and annual price inflation) based on Diebold et al. [2006].
This model’s convenient state-space representation facilitates estimation, the extraction of
latent yield-curve factors. However, this model is highly complicated and the parameter
space is quite large and the optimization problem of maximization problem of the likelihood
function is non-trivial and time consuming. Therefore, we propose specification tests based
on the LM procedure in application of Chiba [2007]’s framework. This framework does
not require the estimation of alternative and eases numerical task for analyzing dynamic
interactions between the macroeconomy and the yield curve. From the results of specification

5Note: Bold entries denote test statistics significant at the 5 percent level. All test statistics is a Chi-
squared.
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testing, we find evidence of macroeconomic effects on the future yield curve and evidence of
yield curve effects on future macroeconomic development Hence, the results indicate that the
bidirectional causality between them is present.
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Chapter 5

Conclusion

State-space models are important for macroeconomic and financial analysis, for example, the
modeling of the business cycle, the characterization of the yield curve, and the mimicking
portfolios in the APT model. However, we rarely know priori structure of the exact form. In
Chapter 2, we attempted to fill this gap, by proposing specification tests for weak exogene-
ity, linear dependency, and omitted explanatory variables based on the Lagrange Multiplier
principle.

In Chapter 3, we proposed the new APT framework composed of unobserved factors and
observed macroeconomic factors, based on the state-space system. Employing our framework,
we estimated risk exposure profiles and associated risk premiums, and extract unobserved
factors simultaneously. From the estimation result, we found that the large proportion of the
expected excess return depends on the unobserved factor. Further, we examine the adequacy
of macroeconomic factors as systematic variables. From the result of specification tests, we
also found that the effect of macroeconomic factors to the stock return is decreasing in recent
years.

In Chapter 4, we specified and estimated the yield curve model that incorporate both
yield curve factors (level, slope, and curvature) and macroeconomic factors (manufacturing
capacity utilization, the federal funds rate, and annual price inflation) based on Diebold’s
paper. This model, however, was highly complicated and the parameter space is quite large.
Hence, the optimization problem for maximization problem of the likelihood function is non-
trivial and time consuming. We attempted to ease this difficulty, by proposing formal tests
of macro and yield curve inteactions based on our testing framework. From the result of
specification testing, we found strong evidence of macroeconomic effects on the future yield
curve and evidence of yield curve effects on future macroeconomic development.

It should be noted that it is open to question whether the test work under the autocor-
relation or heteroskedasticity of the disturbances. Try to expand the specification tests to a
more general case is our future work.
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The abstract of the doctoral dissertation

Chiba Masaru

Title

Specification Testing in State-Space Models

and Its Applications to Financial Data

1 State-space models

State-space models are not new in the statistics and econometric literatures. But, a

growing number of published papers that employ them demonstrates their usefulness

and widening application. Harvey [1981] introduced to economists Kalman filter

for obtaining maximum likelihood estimates of parameters through prediction error

decomposition was introduced. It became clear from Harvey’s work and others’ that a

surprising range of econometric models, including regression models with time-varying

parameters, ARIMA models and unobserved componenents time series models, could

be cast in state-space form and thus be rendered amenable to Kalman machinery for

parameter estimation and extraction of state variables.

State-space models have a wide range of potential applications in econometrics -

for example, permanent income, expectations, the ex ante real rate of interest, and

the reservation wage. Engle and Watson [1981] apply it to modeling the behavior of

wage rate; Garbage and Wachetel [1978] and Antonicic [1986] apply it to modeling the

behavior of ex ante real interests; Burmeister and Wall [1982] and Burmeister, Wall,

1



and Hamilton [1986] apply it to modeling a time-varying monetary reaction function

of the Federal Reserve. Stock and Watson’s [1991] dynamic factor model of coincident

economic indicators is a recent application of state-space models. Thus, state-space

models have highly productive paths for research in econometrics and finance.

However, we rarely know priori structure of an exact model. In fact, investigators

estimate several models but may not undertake comprehensive testing of the adequacy

of their preffered model. Thus, there are some requirements for specification testing.

2 Purpose of this study

This paper has two purposes. One is to propose specification tests for the dynamic

factor model. The weak exogeneity, linear dependency, and omitted explanatory

variables tests will be presented in this paper.

Another is to apply these tests to the factor augumented arbitrage pricing theory

(APT) model and the term structure model of yield curve. In the APT model, we

will examine the adequacy of macroeconomic factors on systematic variables to the

stock return. In the term structure model of yield curve, we will examine the nature

of the linkage between factors driving the yield curve and macroeconomic factors.

Thus, we have grouped this paper into three categories: (1) specification testing in

dynamic factor models, (2) an asset pricing model, with links to macroeconomy, and

(3) an yield curve model, with links to macroeconomy.

3 Structure of this study

This paper is arranged as follows. Chapter 1 is introduction of this paper. Chapter 2

is “Specification Testing in Dynamic Factor Models.” Chapter 3 is “Joint Estimation

of Factor Sensitivities and Risk Premia in the Factor Augumented APT Model.”

Chapter 4 is “The Macroeconomy and the Yield Curve: Specification Testing based

on Lagrange Multiplier Approach.” The conclusion is given in Chapter 5.
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4 The abstract

4.1 The abstract of Chapter 2

Recently, researchers have been interested in economic and financial models in which

the dynamics of large scale economic variables can be specified by a smaller number

of indices or “common factors.” When the dynamic factor model proposed by Stock

and Watson [1989] is applied to a time series model, the result is a model based on the

assumption that one latent variable causes the co-movement of four observed variables.

This approach has provided some new perspectives on several economic analysis.

However, we rarely know priori structure of an exact model. In fact, investigators

estimate several models but may not undertake comprehensive testing of the adequacy

of the preffered model. Thus, there are some requirements for specification testing.

Because common factors are generally unobserved, we need to extract them using

statistical techniques. Estimation procedure, such as Principal component analysis

and Kalman filter, are used to extract them. In the method of the former technique,

a number of past studies considered the problem of verifying the adequacy of the

model. However, in the method of the latter technique, little work has been done for

the hypothesis testing or the model selection on the dynamic factor model. Thus, in

Chapter 2, we attempts to fill this gap, by proposing specification tests for weak exo-

geneity, linear dependency, and omitted explanatory variables based on the Lagrange

Multiplier principle.

We provides an expression for the score in this model, defined as the derivative of

the conditional log likelihood of the tth observation with respect to the parameter

vector. This permits calculation of all of the necessary test statistic as well as an

intuitive interpretation of what each test is based on. The score turns out to be a

natural byproduct of the routine used to calculate the expected value with respect to

smoothed density. In addition, from the same calculation we construct asymptotic

standard errors for the parameter vector and specification tests. Therefore, proposed

tests can be calculated together from a single pass through the data.

We also investigate finite sample properties of the tests. Monte Carlo results show

that tests are reliable in terms of both size and power performance.
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4.2 The abstract of Chapter 3

There is a long tradition of factor or multi-index models in finance where they were

originally introduced to simplify the computation of the covariance of returns in a

mean-variance portfolio allocation framework. In this context, two major theories

provide a rigorous foundation for computing the trade-off between risk and return:

the capital asset pricing model (CAPM) and the arbitrage pricing theory (APT).

The APT takes the view that there need not be any single way to measure system-

atic risk. There are two alternative approaches to estimate them. The first approach

relies in statistical techniques such as factor analysis or principal component to es-

timate risk exposure profiles and associated risk premiums. The second approach

estimates them from available macroeconomic and financial data. However, each of

these two approaches has its merits and demerits.

Then, in Chapter 3, we unify these two approaches and overcome the weakness of

them. We propose a framework composed of observed macroeconomic factors and

unobserved factors, based on the state-space system. Employing our framework, we

estimate risk exposure profiles and associated risk premiums, and extract unobserved

factors simultaneously. In addition, we examine the adequacy of the macroeconomic

factors on the systematic variables based on the framework of Chapter 2.

In addition, we use simple arguments to choose a set of macroeconomic factors that

were candidates as sources of systematic asset risk. Macroeconomic factors we use

are monthly and annual growth of industrial production, unexpected inflation, the

change in expected inflation, and the spread between long and short interest. From

the estimation result, we find that the large proportion of the expected excess return

depends on the unobserved factor. Therefore, we conclude that the contribution by

the total one of macroeconomic factors are relatively decreasing.

Further, from the result of specification tests, we find that three macroeconomic

factors have significant influence on the stock return. They are monthly growth of

industrial production, unexpected inflation, and the change in expected inflation. We

also find that the number of unobserved factor which has a significant effect on the

stock return are decreasing as time goes by. Therefore, we conclude that the effect of

macroeconomic factors to the stock return is decreasing in recent years.
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4.3 The abstract of Chapter 4

Understanding the term structure of interest rate has been a topic on the agenda of

both financial economists and macroeconomists, albeit for different reasons. There-

fore, they all have attempted to build good and tractable models of the yield curve,

yet unusually large gap is apparent between the yield curve model developed by fi-

nancial economists and the model developed by macroeconomists. Thus, combining

these two lines of research seems fruitful, in that there are potential gains both ways.

Recently, a number of papers take a step toward bridging this gap by formulating

and estimating a yield curve model that integrates macroeconomic and financial fac-

tors. However, these literatures focus only one-way yields-to-macro or macro-to-yields

links, so the interactions between macroeconomic and term-structure dynamics have

also been left unexplored.

In order to redress these shortcomings, Diebold et al. [2006] constructs a dynamic

term structure model entirely based on macroeconomic factors, which allows for an

explicit feedback from the yield curve to macroeconomic outcomes. Therefore, we

employ Diebold’s framewok for analyzing the potential bidirectional feedback from

the yield curve to the economy and back again.

Whereas, Diebold et al. [2006] estimates many parameters by numerical optimiza-

tion and examine the interactions between the macroeconomy and the yield curve

based on Likelihood Ratio and Wald methods. This approach needs high numerical

task. The Lagrange Multiplier procedure is regarded as the most suitable for that

situation because, unlike Likelihood Ratio and Wald procedure, it does not require

the estimation of the alternative. Therefore, in Chapter 4, we attempt to ease this

difficulty, by proposing formal test of macro and yield curve inteactions based on the

framework of Chapter 2.

From the result of specification testing, we find evidence of macroeconomic effects

on the future yield curve and evidence of yield curve effects on future macroeconomic

development. Hence, the result indicates that the bidirectional causality between

them is still present.
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