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Abstract: In this paper, newsvendor problems for innovative products are analyzed. Because 
the product is new, no relevant historical data is available for statistical demand analysis. Instead 
of using the probability distribution, the possibility distribution is utilized to characterize the 
uncertainty of the demand. We consider products whose life cycles are expected to be smaller 
than the procurement lead times. Determining optimal order quantities of such products is a 
typical one-shot decision problem for a retailer. Therefore, newsvendor models for innovative 
products are proposed based on the one-shot decision theory (OSDT). The main contributions of 
this research are as follows: the general solutions of active, passive, apprehensive and daring 
focus points and optimal alternatives are proposed and the existence theorem is established in 
the one-shot decision theory; a simple and effective approach for identifying the possibility 
distribution is developed; newsvendor models with four types of focus points are built; 
managerial insights into the behaviors of different types of retailers are gained by the theoretical 
analysis; the proposed models are scenario-based decision models which provide a fundamental 
alternative to analyze newsvendor problems for innovative products. 
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1. Introduction 
The newsvendor problem is a well-known inventory management problem. It has the 

following characteristics. Prior to the season, the seller must decide the quantity of the goods to 
purchase/produce. The procurement lead-time tends to be quite long relative to the selling 
season. As a result, there’s not enough opportunity to replenish inventory once the season has 
begun. Excess stock can only be salvaged at a loss once the season is over. The classical 
newsvendor problem is characterized by the fixed selling and wholesale prices and the uncertain 
demand of goods with a short life cycle, such as perishable items and fashion items. Its optimal 
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order quantity is solved by the critical fractile of the demand distribution. A considerable 
amount of research (Grubbstrom, 2010; Wang, 2010; Caliskan-Demirag et al., 2011; Chen, 
2011; Salinger and Ampudia, 2011; Xu et. al., 2011; Brito and de Almeida, 2012; Seifert et al., 
2012; Summerfield and Dror, 2012; Murray et al. , 2012; Wang et al., 2012; Wu et al., 2012; 
Kwon and Cheong, 2014) and bibliographies have appeared in the newsvendor literature, 
including those of Petruzzi and Dada (1999), Khouja (1999) and Qin et al. (2011). Many 
extensions of the classic newsvendor problem, such as different demand functions, different 
supplier pricing policies to coordinate the supply chain, different retailer risk profits, supplier 
capacity constraints and multi-product cases have been made. But almost all the extensions have 
been made in the probabilistic framework where the uncertainty of the demand and the supply is 
characterized by probability distributions, and the objective function is used to maximize the 
expected utility or the probability measure of achieving a target profit.  

Several researchers have analyzed newsvendor problems under a fuzzy environment. Petrovic 
et al. (1996) gave a fuzzy newsboy model where the overage cost, the shortage cost, and the 
demand were fuzzy numbers; and the optimal order quantity was obtained by the defuzzification 
of total costs. Ishii and Konno (1998) investigated the fuzzy newsboy problem in which the 
shortage cost was vague and expressed as a fuzzy number and an optimal order quantity was 
obtained by fuzzy maximal order. Kao and Hsu (2002) obtained the optimal order quantity to 
minimize the fuzzy cost by comparing the area of fuzzy numbers. Li et al. (2002) proposed two 
models, in one the demand was probabilistic while the costs were fuzzy and in the other the 
costs were deterministic but the demand was fuzzy; and the profit was maximized through 
ordering fuzzy numbers with respect to their total integral values. Xu and Zhai (2008) 
developed a newsvendor model with the fuzzy demand to examine the total profits of 
one-supplier and one-retailer supply chain in incorporative and cooperative situations. Dutta and 
Chakraborty (2010) modeled a two-item newsvendor problem with one-way substitution where 
the demand was a fuzzy number and the optimal order quantity was obtained by the 
interval-valued expectation method. Ryu and Yucesan (2010) built fuzzy newsvendor models to 
study three coordination policies: quantity discounts, profit sharing and buyback. Chen and Ho 
(2011) considered the incremental quantity discounts with the fuzzy demand and the optimal 
order quantity was determined by ranking fuzzy total costs. 
  We examine the newsvendor problem for the innovative product as defined by Fisher. 
According to Fisher (1997), products basically belong to either primarily functional category or 
innovative one. Functional products satisfy basic needs and have stable, predictable demand and 
long life cycles whereas innovative products have higher profit margins, intrinsically 
unpredictable demands and short life cycles. In addition, for such an innovative product, the 
procurement lead-time is usually longer than the selling season so that there is usually only one 
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opportunity to order goods before the season. For example, Sport Obermeyer, a major supplier 
of fashion skiwear, ships its products in September, but has to commit itself to products well 
before February (Fisher, 1997). However, the retailer season is only a few months long. Hence, 
the newsvendor problems for innovative products can be regarded as one-shot decision 
problems, which are typical for situations where a decision is made only once under uncertainty. 

Guo (2011) initially proposed the one-shot decision theory (OSDT) for one-shot decision 
problems. The one-shot decision theory provides a scenario-based choice instead of the 
lottery-based choices in the existing decision theories. As the applications, a duopoly market of 
a new product with a short life cycle and the private real estate investment were analyzed (Guo, 
2010a; Guo, 2010b; Guo et al., 2010). Recently, the research (Guo, 2014) clarified the 
fundamental differences between the one-shot decision theory and other decision theories under 
uncertainty and pointed out the instinct problems in other decision theories to show that the 
one-shot decision theory is necessary to solve one-shot decision problems and manifested the 
relationship between the one-shot decision theory and the probabilistic decision methods. Guo 
and Li (2014) proposed multistage one-shot decision making approaches and analyzed the 
optimal stopping problem. 
  Because the product is innovative, no relevant historical data is available to obtain the 
probability distribution of the demand. We use the possibility distribution to characterize the 
uncertainty of the demand which reflects experts’ judgment. Since the life cycle of the 
innovative product is shorter than the procurement lead-time, determining the optimal order 
quantity is a typical one-shot decision problem for the retailer. In this research, the one-shot 
decision theory (OSDT) based newsvendor models are proposed. In the proposed models, for 
each order quantity, the retailer chooses one demand amongst all possible demands while 
considering the satisfaction level caused by the occurrence of the demand and the possibility 
degree of the demand occurring. The selected demand is called the focus point of the order 
quantity. The optimal order quantity corresponds to the maximum satisfaction level of its focus 
point. We take into account four types of decision makers, i.e. active, passive, apprehensive and 
daring retailers who focus on the demand with a higher satisfaction and a higher possibility, the 
demand with a lower satisfaction and a higher possibility, the demand with a lower satisfaction 
and a lower possibility, the demand with a higher satisfaction and a lower possibility, 
respectively. The optimal order quantities for these four types of retailers are obtained and the 
theoretical analysis is made. 

The contributions of this research are as follows: Obtaining the possibility distribution always 
poses a fundamental problem for decision making without enough historical data. We propose 
an optimization method with the pairwise comparison to identify the possibility distribution to 
reflect the judgment of the expert. With an assumption that the possibility distribution and the 
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satisfaction function are quasi-concave, the general solutions of the focus points and the optimal 
alternatives are obtained and the existence theorem is established in the one-shot decision theory. 
The probabilistic newsvendor models seek the optimal order quantities to maximize the 
expected values or the probability measures. The fuzzy newsvendor models use the optimal 
order quantities to maximize the fuzzy profits. These two kinds of models take into account all 
demand values when determining the optimal order quantities. However, there is one and only 
one demand that will appear when the selling season comes. We build the newsvendor models 
with the one-shot decision theory which fit the one-shot feature of the retailer’s order decision. 
The managerial insights into the behaviors of different types of retailers are gained by the 
theoretical analysis. The proposed methods provide a fundamental alternative to analyze the 
newsvendor problems for innovative products. 

The remainder of the paper is organized as follows: In Section 2, the general solutions of the 
focus points and the optimal alternatives in the one-shot decision theory are proposed. In 
Section 3, newsvendor models for innovative products are developed based on the one-shot 
decision theory. In Section 4, the method for identifying the possibility distribution of the 
demand of an innovative product is proposed. In Section 5, the results of analysis of the 
proposed newsvendor models are given. In Section 6, a numerical example is used to 
demonstrate the proposed approach. Finally, the research conclusions are given in Section 7. 

2. General solutions in the one-shot decision theory (OSDT) 
According to the one-shot decision theory, a person makes a one-shot decision based on some 

particular scenario (state) which is the most appropriate one for him/her while considering the 
satisfaction level incurred by this scenario and its possibility degree. The one-shot decision 
process is separated into two steps. The first step is to seek an appropriate scenario from all 
possible states for each alternative. This scenario is called as the focus point of the alternative. 
The second step is to evaluate the alternatives by the satisfaction levels incurred by the focus 
points for obtaining the optimal alternative. Twelve kinds of focus points are proposed to 
characterize the different preferences of decision makers for selecting scenarios (Guo, 2011). In 
this paper, we consider only four types of focus points, that is, active, passive, apprehensive and 
daring focus points. 
2.1 Four types of focus points 

The set of a state x  is S . The degree to which a state x  is to occur in the future is 
characterized by a possibility distribution )(x , as defined below. 

Definition 1. Given a function ]1,0[: S , if 1)(max x
Sx

, then )(x  is called a 

possibility distribution. 
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The easy way to distinguish possibility and probability is that there is no additivity 
requirement for possibility. 1)(x  means that it is normal that x  occurs but does not 
mean that x  is certain. 0)(x  means that it is abnormal that x  occurs but does not 

mean it absolutely does not appear. The possibility distribution is a less restricted framework 
than single probability measures and hence can be used for encoding poorly known subjective 
probability information. Moreover, the possibility distribution might be effective for 
representing the rough knowledge or judgment of human being when the information is not rich 
enough. The methods for identifying possibility distributions based on similarity, potential 
surprise and voting were proposed in the literature (Guo and Tanaka, 2003; Guo et al., 2010; 
Guo, 2011). 

The set of an alternative a  is A . The consequence resulting from the combination of an 
alternative a  and a state x  is referred to as a payoff, denoted as ),( axv . The set of a payoff 

is V . The satisfaction level of a decision maker for a payoff is expressed by a satisfaction 
function, as defined below. 
 
Definition 2. The function ]1,0[:Vu  is called a satisfaction function if it satisfies 

)()( 21 vuvu  for 21 vv . 
Because the payoff is a function of x  and a , we write the satisfaction function as ),( axu . 

Since one and only one state will come up for a one-shot decision problem, a decision maker 
should decide which state ought to be considered for making a one-shot decision. How to 
determine focus points (focused states) depends on his/her attitudes about possibility and 
satisfaction. For characterizing the focus points, we introduce the following operators. 

 

Definition 3. Given a vector ],,,[ 21 nbbb , ],,,min[ 21 nbbb  and ],,,max[ 21 nbbb  are 

defined as follows: 

],,,[],,,min[
,1,1,1

21
ni
i

ni
i

ni
in bbbbbb ,        (1) 

],,,[],,,max[
,1,1,1

21
ni
i

ni
i

ni
in bbbbbb .           (2) 

],,,min[ 21 nbbb  and ],,,max[ 21 nbbb  are the lower and upper bounds of 

],,,[ 21 nbbb , respectively. For example, ]3.0,3.0[]8.0,3.0min[ , and 

]8.0,8.0[]8.0,3.0max[ .  

In the following, we consider four types of focus points. 
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Active focus point: The state (scenario) with the higher possibility degree and the higher 
satisfaction level is obtained as 

)],(),(min[maxarg)(1 axuxax
Sx

.                       (3) 

)(1 ax  is called an active focus point of an alternative a . )],(),(min[maxarg axux
Sx

 

represents an element of S  which maximizes )],(),(min[ axux  with Sx . Because 

)],(),(min[ axux  represents the lower bound of the vector )],(),([ axux , maximizing 

)],(),(min[ axux ( )],(),(min[max axux
Sx

) will increase the possibility degree and the 

satisfaction level simultaneously. Therefore, )],(),(min[maxarg axux
Sx

 is for seeking the 

state that has the higher possibility degree and the higher satisfaction level.  
In order to facilitate understanding (3), let us give an example. For four states 

},,,{ 4321 xxxxS , we have 1.0)( 1x , 3.0)( 2x , 0.1)( 3x , 6.0)( 4x , 

6.0),( 1 axu , 2.0),( 2 axu , 3.0),( 3 axu  and 8.0),( 4 axu . )],(),([ axux , 

Sx  are four vectors: ]6.0,1.0[ , ]2.0,3.0[ , ]3.0,0.1[  and ]8.0,6.0[  represented by A, B, 
C and D, respectively (shown in Fig. 1.). )],(),(min[ axux  transfers A, B, C and D into A , 

B , C  and D , which are ]1.0,1.0[ , ]2.0,2.0[ , ]3.0,3.0[  and ]6.0,6.0[ , respectively. 

)],(),(min[max axux
Sx

 is ]6.0,6.0[])6.0,6.0[],3.0,3.0[],2.0,2.0[],1.0,1.0max([  which 

corresponds to D . Thus, )],(),(min[maxarg axux
Sx

  is 4x . It is obvious that 4x  have a 

higher possibility degree (0.6) and a higher satisfaction level (0.8). 
 

 

Fig.1 The explanation of the formula (3) 
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Passive focus point: The state (scenario) with the higher possibility degree and the lower 
satisfaction level is obtained as 

)],(),(1max[minarg)(2 axuxax
Sx

.            (4) 

)(2 ax  is called a passive focus point of an alternative a . 

Apprehensive focus point: The state (scenario) with the lower possibility degree and the lower 
satisfaction level is obtained as 

)],(),(max[minarg)(3 axuxax
Sx

.                (5) 

)(3 ax  is called an apprehensive focus point of an alternative a .  

 
Daring focus point: The state (scenario) with the lower possibility degree and the higher 
satisfaction level is obtained as 

)],(1),(max[minarg)(4 axuxax
Sx

.           (6) 

)(4 ax  is called a daring focus point of an alternative a . 

 
Comments: From (3)-(6), we know that no other )],(),([ axux  satisfies ))(()( 1 axx  
and )),((),( 1 aaxuaxu ; or ))(()( 2 axx  and )),((),( 2 aaxuaxu ; or 

))(()( 3 axx  and )),((),( 3 aaxuaxu ; or ))(()( 4 axx  and 

)),((),( 4 aaxuaxu . In other words, there is no state which has a higher possibility degree 

and a higher satisfaction degree than the active focus point; a higher possibility degree and a 
lower satisfaction level than the passive focus point; a lower possibility degree and a lower 
satisfaction level than the apprehensive focus point; a lower possibility degree and a higher 
satisfaction level than the daring focus point. 
  For one alternative, more than one state might exist as one type of focus point. We denote the 

sets of four types of focus points of an alternative a  as )(1 aX , )(2 aX , )(3 aX  and 

)(4 aX , respectively.  

In a one-shot decision problem, a decision maker contemplates that the focus points are the 
most appropriate scenarios for him/her. After determining the focus points of each alternative, 
the decision maker will make a decision only based on the focus points and chooses the optimal 
alternative which can bring about the highest satisfaction level once its focus point comes true. 
The four kinds of optimal alternatives are obtained as follows: 
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)),((maxmaxarg 1)()(1
11

aaxua
aXaxAa

,                  (7) 

)),((minmaxarg 2
)()(

2
22

aaxua
aXaxAa

,           (8) 

)),((minmaxarg 3)()(3
33

aaxua
aXaxAa

,           (9) 

)),((maxmaxarg 4)()(4
44

aaxua
aXaxAa

.          (10) 

In the case where multiple active focus points of an alternative a  exist, )),((max 1)()( 11

aaxu
aXax

 

is used to represent the highest satisfaction level amongst all active focus points of a . It 

reflects an optimistic attitude of a decision maker whereas )),((min 2)()( 22

aaxu
aXax

 describes a 

conservative attitude of a decision maker. 1a , 2a , 3a  and 4a  are called optimal active, 

passive, apprehensive and daring alternatives, respectively. Setting )( 111 axx , )( 222 axx , 

)( 333 axx  and )( 444 axx , 1x , 2x , 3x  and 4x  are called optimal active, passive, 

apprehensive and daring focus points, respectively. 
 

2.2 General solutions of focus points and optimal alternatives 
If S  and A  are nonempty finite sets, there are always solutions of (3)-(10). For the 

continuous cases, let us consider the solutions of (3)-(10) with the following conditions. 
Basic Assumptions: In the following parts, we suppose 

(1) The sets of states and alternatives are ],[ hlS  and ],[ hl aaA , respectively. 

(2) )(x  is a strictly quasi-concave continuous function (see the definition in the book 

(Madden, 1986)), ),( hlc , 1)(c , 0)(l  and 0)(h . 
(3) ),( axv  is continuous and strictly quasi-concave in x . 

Clearly, )(x  is strictly increasing within ],[ cl  and strictly decreasing within ],[ hc . 
),( axu  is continuous and strictly quasi-concave in x . a  ),( axu  attains its maximum at 

a unique state ),(maxarg)(ˆ
],[

axuax
hlx

 and is strictly increasing within )](ˆ,[ axl  for 

lax )(ˆ  and strictly decreasing within ]),(ˆ[ hax  for hax )(ˆ .  

We have the following theorems. 
Theorem 1. The active focus point of an alternative a , )(1 ax , is as follows: 
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(1) if ))(ˆ()),(ˆ( axaaxu , then )(ˆ)(1 axax ; 
(2) if ))(ˆ()),(ˆ( axaaxu  and cax )(ˆ , then )()(1 axax ol ; 
(3) if ))(ˆ()),(ˆ( axaaxu  and cax )(ˆ , then )()(1 axax ou . 

)(axol  and )(axou  are the horizontal coordinates of the intersections of ),( axu  and )(x  

within ]),(ˆ[ cax  and )](ˆ,[ axc , respectively. 

Proof.  
(1) We have 

)]),(ˆ(),),(ˆ([)],(),,([max)],(),(min[max
],[],[

aaxuaaxuaxuaxuaxux
hlxhlx

.          (11) 

)],(),(min[ axux  attains its maximum )]),(ˆ(),),(ˆ([ aaxuaaxu  if and only if )(ˆ axx . It 

means )(ˆ)(1 axax . 
(2)  First, let us consider the cases satisfying cax )(ˆ . Since )),(ˆ())(ˆ( aaxuax  and 

1)(),( cacu  and ),( axu  is strictly decreasing and )(x  is strictly increasing within 

]),(ˆ[ cax , ),( axu  and )(x  have a unique intersection within )),(ˆ[ cax . The horizontal 

coordinate of this intersection is denoted as )(axol . ))(,[ axlx ol , )(x  is strictly 

increasing so that 
))](()),(([)](),([)],(),(min[ axaxxxaxux olol .        (12) 

]),(( haxx ol , ),( axu  is a strictly decreasing function of x  so that 

)]),((),),(([)],(),,([)],(),(min[ aaxuaaxuaxuaxuaxux olol .       (13) 

Recalling )),(())(( aaxuax olol , we have 

)()],(),(min[(maxarg)(
],[

1 axaxuxax ol
hlx

.         (14) 

We can directly check that (14) also holds for cax )(ˆ . 

(3) Similarly, we have )()(1 axax ou . )(axou  is the horizontal coordinate of the unique 

intersection of ),( axu  and )(x  within )](ˆ,[ axc .                               □ 

 
Theorem 2. The passive focus point of an alternative a , )(2 ax , is as follows: 

(1) if  ))(ˆ(1)),(ˆ( axaaxu , then ),(minarg)(
)}(),({

2 axuax
axaxx pupl

; 

(2) if ))(ˆ(1)),(ˆ( axaaxu  and cax )(ˆ , then )()(2 axax pl ; 
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(3) if ))(ˆ(1)),(ˆ( axaaxu  and cax )(ˆ , then  )()(2 axax pu . 

)(axpl  and )(axpu  are the horizontal coordinates of the intersections of ),( axu  and 

)(1 x  within )]),(ˆmin(,[ caxl  and ]),),(ˆ[max( hcax , respectively. 

Proof.  
(1) First, let us consider the cases satisfying lax )(ˆ , hax )(ˆ  and 

))(ˆ(1)),(ˆ( axaaxu . Since 1)(1),( lalu  and ))(ˆ(1)),(ˆ( axaaxu  and 
0)(1),( cacu  and ),( axu  is strictly increasing continuous in x and )(1 x  is 

strictly decreasing continuous within )]),(ˆmin(,[ caxl , ),( axu  and )(1 x  have a unique 
intersection within ))),(ˆmin(,( caxl . Similarly, it is easy to know that they have a unique 
intersection within )),),(ˆ(max( hcax . The horizontal coordinates of these two intersections are 

)(axpl  and )(axpu , respectively. ))(,[ axlx pl , )(1 x  is strictly decreasing so that 

))]((1)),((1[)](1),(1[)],(),(1max[ axaxxxaxux plpl .        (15) 

)]),(ˆmin(),(( caxaxx pl , ),( axu  is a strictly increasing function of x  so that 

)]),((),),(([)],(),,([)],(),(1max[ aaxuaaxuaxuaxuaxux plpl .            (16) 

Recalling )),(())((1 aaxuax plpl , we have 

)()],(),(1max[minarg
)]),(ˆmin(,[

axaxux pl
caxlx

.                                  (17) 

Similarly, we have  

)()],(),(1max[minarg
]),),(ˆ[max(

axaxux pu
hcaxx

.                                  (18) 

If cax )(ˆ , the interval )]),(ˆmax(),),(ˆ[min( caxcax  becomes )](ˆ,[ axc . Since ),( axu  is 

strictly increasing within )](ˆ),([ axaxpl , we have 

)],(),,([min)],(),(1max[min
)](ˆ,[)](ˆ,[

axuaxuaxux
axcxaxcx

 

)],(),,([ acuacu )]),((),),(([ aaxuaaxu plpl .                              (19) 

Similarly, if cax )(ˆ , the interval )]),(ˆmax(),),(ˆ[min( caxcax  becomes ]),(ˆ[ cax . Since
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),( axu  is strictly decreasing within )](),(ˆ[ axax pu , we have 

)]),((),),(([)],(),(1max[min
]),(ˆ[

aaxuaaxuaxux pupucaxx
.                     (20) 

From (17) to (20), we know 

),(minarg)],(),(1max[minarg)(
)}(),({],[

2 axuaxuxax
axaxxhlx pupl

.                   (21) 

It is easy to check that (21) also holds for the case ))(ˆ(1)),(ˆ( axaaxu  or lax )(ˆ  or 
hax )(ˆ . 

Likewise, we can prove Theorem 2(2) and 2(3).                 □ 
Corollary 3. Suppose ))(ˆ(1)),(ˆ( axaaxu . The passive focus point )(2 ax  is as follows: 

(1) if cax )(ˆ  and )](ˆ,(0 axcx  )(1),( 00 xaxu  holds, then 

)(),(minarg)(
)}(),({

2 axaxuax pl
axaxx pupl

; 

(2) if cax )(ˆ  and )),(ˆ[0 caxx  )(1),( 00 xaxu  holds, then 

)(),(minarg)(
)}(),({

2 axaxuax pu
axaxx pupl

. 

Proof.  

(1) Since )(1 x  is strictly increasing within ],[ hc  and haxxc pu )(0 , 

)(1))((1 0xaxpu  holds. Since ),( axu  is strictly increasing within )](ˆ,[ axlx  and 

)(ˆ)( 0 axxcaxl pl , )),((),( 0 aaxuaxu pl  holds. Therefore, we have 

)),((),()(1))((1)),(( 00 aaxuaxuxaxaaxu plpupu .        (22) 
From Theorem 2(1), we know )()(2 axax pl .  

(2) Likewise, we can prove Corollary 3(2).                             □ 
 
Lemma 4.  

(1) Aaa 21,  )),(()),(( 2211 aaxuaaxu plpl  holds if and only if )()( 21 axax plpl  

holds; and )),(()),(( 2211 aaxuaaxu plpl  holds if and only if )()( 21 axax plpl  holds. 
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(2) Aaa 21,  )),(()),(( 2211 aaxuaaxu pupu  holds if and only if )()( 21 axax pupu  

holds; and )),(()),(( 2211 aaxuaaxu pupu  holds if an only if )()( 21 axax pupu  holds. 

 
Corollary 5.  
(1) Assume that ))(ˆ(1)),(ˆ( iii axaaxu  or ))(ˆ(1)),(ˆ( iii axaaxu  with cax i )(ˆ , 

2,1i . If ),(),( 21 axuaxu  holds for any ))](ˆ),(ˆmin(,[ 21 axaxlx , then 

)),(()),(( 2211 aaxuaaxu plpl  holds; and if ),(),( 21 axuaxu  holds for any 

))](ˆ),(ˆmin(,[ 21 axaxlx , then )),(()),(( 2211 aaxuaaxu plpl  holds.   

(2) Assume that ))(ˆ(1)),(ˆ( iii axaaxu  or ))(ˆ(1)),(ˆ( iii axaaxu  with cax i )(ˆ , 

2,1i . If ),(),( 21 axuaxu  holds for any ])),(ˆ),(ˆ[max( 21 haxaxx , then 

)),(()),(( 2211 aaxuaaxu pupu  holds; and if ),(),( 21 axuaxu  holds for any 

])),(ˆ),(ˆ[max( 21 haxaxx , then )),(()),(( 2211 aaxuaaxu pupu  holds. 

 
Lemma 6. The apprehensive focus point of an alternative a , )(3 ax , is as follows: 

),(minarg)(
},{

3 axuax
hlx

.            (23) 

Proof. ),( axu  is a strictly quasi-concave function in x  so that 

)],(),,([)],(),,([)],(),,([min)],(),(max[min
],[],[

ahuahualualuaxuaxuaxux
hlxhlx

, (24) 

where the equality holds if and only if ),(minarg
},{

axux
hlx

 because 0)()( hl . 

Therefore, (23) holds.                                                        □ 
 
Lemma 7. The daring focus point of an alternative a , )(4 ax , is as follows: 
(1) if ))(ˆ()),(ˆ(1 axaaxu , then )(ˆ)(4 axax ; 

(2) if ))(ˆ()),(ˆ(1 axaaxu , then ),(maxarg)(
)}(),({

4 axuax
axaxx dudl

.                                           

)(axdl  and )(axdu  are the horizontal coordinates of the intersections of ),(1 axu  and 

)(x  within )]),(ˆmin(,[ caxl  and ]),),(ˆ[max( hcax , respectively. 
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Proof. (1) We have 

)],(1),,(1[min)],(1),(max[min
],[],[

axuaxuaxux
hlxhlx

 

)]),(ˆ(1),),(ˆ(1[ aaxuaaxu ,                       (25) 

where the equation holds if and only if )(ˆ axx . That is, )(ˆ)(4 axax . 

(2) Referring to the proof of Theorem 2(1), we have 

  ),(maxarg)],(1),(max[minarg)(
)}(),({],[

4 axuaxuxax
axaxxhlx dudl

.                   (26) 

                        □ 
Theorem 8. If there is an closed interval ],[ hl aaG  and Ga  )(axol  exists, then 

)(axol , ))(( axol , )),(( aaxu ol  are uniformly continuous within G . )(axou , ))(( axou , 

)),(( aaxu ou , )(axpl , ))(( ax pl , )),(( aaxu pl , )(axpu , ))(( ax pu , )),(( aaxu pu , 

)(axdl , ))(( axdl , )),(( aaxu dl , )(axdu , ))(( axdu  and )),(( aaxu du  are also 

uniformly continuous within their corresponding closed intervals, respectively. 

Proof. Gaa 21, , for simplicity we assume )()( 21 axax olol . Since )),(( 2 aaxu ol  is a 

continuous function of a  within ],[ hl aa , )),(( 2 aaxu ol  is a uniformly continuous function. 

That is, 0 , 0  such that || 21 aa  implies  

|)),(()),((| 2212 aaxuaaxu olol .          (27) 

)()()(ˆ 211 axaxax olol  leads to )),(()),(( 1211 aaxuaaxu olol so that we have 

)),(()),(()),(()),(( 22122211 aaxuaaxuaaxuaaxu olololol .       (28) 

Recalling caxax olol )()( 21 , we have 

0))(())(()),(()),(( 212211 axaxaaxuaaxu olololol .       (29) 

Therefore,  

|)),(()),((||))(())((| 221121 aaxuaaxuaxax olololol  

|)),(()),((| 2212 aaxuaaxu olol .                (30) 
We know that ))(( axol , )),(( aaxu ol  are uniformly continuous functions within G  so 

that )(axol  is uniformly continuous within G . Likewise, we have the same conclusions for 

)(axou , ))(( axou , )),(( aaxu ou , )(ax pl , ))(( ax pl , )),(( aaxu pl , )(ax pu ,
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))(( ax pu , )),(( aaxu pu , )(axdl , ))(( axdl , )),(( aaxu dl , )(axdu , ))(( axdu  and 

)),(( aaxu du .              □ 

 

Lemma 9.  

(1) )),(),(min(max)),((
],[1 axuxaaxu

hlx
, 

(2) )),(),(1max(min)),((
],[2 axuxaaxu

hlx
, 

(3) )),(),(max(min)),((
],[3 axuxaaxu

hlx
, 

(4) )),(),(1min(max)),((
],[4 axuxaaxu

hlx
.         

 
Theorem 10 (Existence Theorem). If the basic assumptions (1), (2) and (3) hold, then 1a , 2a , 

3a , 4a , )( 11 ax , )( 22 ax , )( 33 ax  and )( 44 ax  always exist and they satisfy the following 

relations: 

(1) )),(),(min(maxmax)),((
],[],[111 axuxaaxu

hlxaaa hl

, 

(2) )),(),(1max(minmax)),((
],[],[222 axuxaaxu

hlxaaa hl

, 

(3) )),(),(max(minmax)),((
],[],[333 axuxaaxu

hlxaaa hl

, 

(4) )),(),(1min(maxmax)),((
],[],[

*
4

*
44 axuxaaxu

hlxaaa hl

. 

Proof. Set )),(),(min(),( axuxaxg . Since ),( axu  is continuous on ],[],[ hl aahl
and )(x  is continuous on ],[ hl , ),( axg  is continuous on ],[],[ hl aahl . Using Berge 

maximum theorem and Lemma 9(1), we know )),(),(min(max)),((
],[1 axuxaaxu

hlx
 is 

continuous so that 1a  and )( 11 ax  exist and satisfy Theorem 10(1). Likewise, we can prove 
Theorem 10(1), 10(2), 10(3) and 10(4).            □ 
 
Lemma 11.  

(1) )),(max),(min(max)),((
],[],[111 axuxaaxu

hl aaahlx
, 
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(2) )),(max),(1min(max)),((
],[],[444 axuxaaxu

hl aaahlx
. 

Proof. From Theorem 10(1), we have 

)),(),(min(maxmax)),((
],[],[111 axuxaaxu

hlxaaa hl

 

)),(max),(min(max)),(),(min(maxmax
],[],[],[],[

axuxaxux
hlhl aaahlxaaahlx

.                (31) 

From Theorem 10(4), we have 

  )),(),(1min(maxmax)),((
],[],[

*
4

*
44 axuxaaxu

hlxaaa hl

 

             )),(max),(1min(max
],[],[

axux
hl aaahlx

.                         (32) 

□ 
  Let us consider ),( axv  is quasi-convex continuous in x  and quasi-concave continuous in 

a  so that ),( axu  is quasi-convex continuous in x  and quasi-concave continuous in a . We 

have the following theorem. 

 
Theorem 12. If ),( axu  is quasi-convex continuous in x  and quasi-concave continuous in 

a , then we have 

)),(max),(1max(min)),(),(1max(minmax
],[],[],[],[

axuxaxux
hlhl aaahlxhlxaaa

.            (33) 

Proof. Since )(x  is strictly quasi-concave, )(1 x  is strictly quasi-convex. For any 1x  
and 2x , we have 

))(1),(1max())1((1 2121 xxxx , )1,0( .       (34) 

),( axu  is quasi-convex in x  so that for any 1x ,  we have 
)),(),,(max(),)1(( 2121 axuaxuaxxu , )1,0( .        (35) 

Setting )),(),(1max(),( axuxaxf  and considering (34) and (35), we have 

)),)1((),)1((1max(),)1(( 212121 axxuxxaxxf  

))),(),,(max()),(1),(1max(max( 2121 axuaxuxx  

))),(),(1max()),,(),(1max(max( 2211 axuxaxux  

)),(),,(max( 21 axfaxf ,           (36) 
which means ),( axf  is quasi-convex in x . ),( axu  is a quasi-concave function of a , that 

is, 
)),(),,(min())1(,( 2121 axuaxuaaxu , )1,0( .        (37) 

Considering (37), we have    
)))1(,(),(1max())1(,( 2121 aaxuxaaxf  

2x



16 
 

))),(),,(min(),(1max( 21 axuaxux  

))),(),(1max()),,(),(1min(max( 21 axuxaxux  

)),(),,(min( 21 axfaxf ,           (38) 
which means ),( axf  is quasi-concave in a . Since ),( axu  and )(x  are continuous, 

),( axf  is a continuous function. According to Sion’s minimax theorem (Sion, 1958), we have 

)),(),(1max(maxmin)),(),(1max(minmax
],[],[],[],[

axuxaxux
hlhl aaahlxhlxaaa

 

)),(max),(1max(min
],[],[

axux
hl aaahlx

.          (39) 

□ 
Theorem 13. 

(1) If ),(max
],[

axu
hl aaa

 is strictly increasing, then the unique optimal active focus point 1x  

satisfies ),(max)(
],[

axux
hl aaa

, ),( hcx  and ),(maxarg *
1

],[

*
1 axua

hl aaa
. 

(2) If ),(max
],[

axu
hl aaa

 is strictly increasing and 1),(max
],[

ahu
hl aaa

, then the unique optimal 

daring focus point is hx4  and ),(maxarg *
4

],[

*
4 axua

hl aaa
. 

(3) If ),(max
],[

axu
hl aaa

 is strictly decreasing, then the unique optimal active focus point 1x  

satisfies ),(max)(
],[

axux
hl aaa

, ),( clx  and ),(maxarg *
1

],[

*
1 axua

hl aaa
. 

(4) If ),(max axu
a

 is strictly decreasing and 1),(max alu
a

, then the unique optimal daring 

focus point is lx4  and ),(maxarg *
4

],[

*
4 axua

hl aaa
. 

Proof.  

(1) It follows from Berge maximum theorem that ),(max
],[

axu
hl aaa

 is continuous because 

),( axu  is continuous. Since 1)(),(max
],[

cacu
hl aaa

 and 0)(),(max
],[

hahu
hl aaa

 and 

),(max
],[

axu
hl aaa

 is strictly increasing continuous and )(x  is strictly decreasing continuous 

within ],[ hc , )(x  and ),(max
],[

axu
hl aaa

 have a unique intersection within ),( hc . Denote 
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the horizontal coordinate of the intersection as 0x . Since ),(max
],[

axu
hl aaa

 is strictly increasing 

within ],[ hl , ),[ 0xlx , we have 

),(max),(max)),(max),(min( 0],[],[],[
axuaxuaxux

hlhlhl aaaaaaaaa
.        (40) 

Meanwhile, ],( 0 hxx , we know 

)()()),(max),(min( 0],[
xxaxux

hl aaa
.          (41) 

Since ),(max)( 0],[0 axux
hl aaa

, 0xx  satisfies )),(max),(min(max
],[],[

axux
hl aaahlx

. 

Considering Lemma 11(1), we know 1x  satisfies ),(max)(
],[

axux
hl aaa

, ),( hcx  and 

),(maxarg *
1

],[

*
1 axua

hl aaa
.  

(2) Since ),(max
],[

axu
hl aaa

 is strictly increasing within ],[ hl , hx  we have 

1),(max),(max
],[],[

ahuaxu
hlhl aaaaaa

. Meanwhile, 1)(1 h  holds. Considering Lemma 11(2), 

we know hx4  and ),(maxarg
],[

*
4 ahua

hl aaa
. 

Likewise, we can prove Theorem 13(3) and 13(4).           □ 
 
3. Newsvendor models with the one-shot decision theory 

Consider a retailer who sells an innovative product. The retailer orders q units before the 
season at the unit wholesale price W. When the demand x is observed, the retailer sells units 
(limited by the supply q  and the demand x ) at the exogenous unit revenue R with WR . 
Any excess product can be salvaged at the unit salvage price 0oS  with oSW . If there is 
a shortage, the unit opportunity cost is 0uS . The profit function of the retailer is as follows: 

);()(
;)(

),(
qxSqWR

WqSxqRx
qxr

u

o  
qx
qx

.                                   (42) 

The plausible information of the demand x is represented by a possibility distribution )(xD , 

that is, 

]1,0[],[: ulD dd .                                                    (43) 
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)(xD  satisfies ),( ulc ddd , 1)( cD d , 0)( lD d  and 0)( uD d . )(xD  is 

strictly quasi-concave continuous; ld  and ud  are the lower and upper bounds of the demand, 

respectively; cd  is the most possible amount of the demand. The smaller the possibility degree 

of the demand x is, the more surprising the occurrence of x is. It should be noted that 

0)( lD d  and 0)( uD d  mean that if ld  or ud  happens it will be most surprising. 

However, they do not mean that ld  and ud  are impossible. The approach for identifying the 

possibility distribution of the innovative product demand will be given in Section 4. 

  Because the demand is inside the interval ],[ ul dd , a reasonable order quantity should also 

lie in this region. The highest profit of retailer is  

uu dWRr )( ,                                                         (44) 

that is, the retailer orders the most udq  and the demand is the largest ud . The lowest 

profit is })(,)(min{ WdSddRdWdSddRdr lululuolull . It is determined by 

the minimum of two cases: in the first case, the retailer orders the most but the demand is the 

lowest: WdSddRd uolul )( ; in the second case, the retailer orders the lowest but the 

demand is the highest: WdSddRd lulul )( . We assume uo SSW , which leads to  

WdSddRdr uolull )( .                                              (45) 

The satisfaction function of the retailer is the following strictly increasing function of the 
profit r , 

]1,0[],[: ul rru ,                                (46) 

where 0)( lru  and 1)( uru . 

(46) is a general form of the satisfaction function of the retailer where the satisfaction degree of 
the lowest profit is 0 and the satisfaction degree of the highest profit is 1. The satisfaction 
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function is written as )),(( qxru in the following parts. 

 
Proposition 14. 
(1) )),(( qxru  is strictly increasing continuous in x  when xq  and strictly decreasing 
continuous in x  when xq .  
(2) )),(( qxru  is strictly increasing continuous in q  when qx  and strictly decreasing 
continuous in q  when qx .  

(3) )),(()),((max xxruqxru
q

 is strictly increasing continuous. 

Since the life cycle of the innovative product is generally shorter than the procurement 
lead-time, the retailer has only one chance to determine the order quantity and one and only 
demand will occur. It is reasonable that the retailer needs to contemplate which demand ought to 
be taken into account before ordering products. The retailer chooses one demand (focus point) 
amongst all possible ones while considering the possibility degree to which the demand will 
appear in the future and the satisfaction level that the demand can bring about for an order 
quantity. We consider four types of focus points introduced in Section 2 as follows: 

 
Active focus point of an order quantity: The active focus point of an order quantity q , 

denoted as )(1 qx , is 

))],((),(min[maxarg)(
],[

1 qxruxqx D
ddx ul

.                               (47) 

)(1 qx  is a demand that has a higher possibility degree and a higher satisfaction level for an 
order quantity q . 

 
Passive focus point of an order quantity: The passive focus point of an order quantity q , 

denoted as )(2 qx , is 

))],((),(1max[minarg)(
],[

2 qxruxqx D
ddx ul

.                                  (48) 

)(2 qx  is a demand that has a higher possibility degree and a lower satisfaction level for an 
order quantity q . 

 
Apprehensive focus point of an order quantity: The apprehensive focus point of an order 

quantity q , denoted as )(3 qx , is 

))],((),(max[minarg)(
],[

3 qxruxqx
ul ddx

.                                      (49) 
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)(3 qx  is a demand with a lower possibility degree and a lower satisfaction level for an order 

quantity q . 

 
Daring focus point of an order quantity: The daring focus point of an order quantity q , 

denoted as )(4 qx , is 

))],((1),(max[minarg)(
],[

4 qxruxqx
ul ddx

.                                   (50) 

)(4 qx  is a demand with a lower possibility degree and a higher satisfaction level for an order 
quantity q . 

  For one order quantity, more than one demand might exist as one type of focus point. We 

denote the sets of four types of focus points of an order quantity q  as )(1 qX , )(2 qX , )(3 qX

and )(4 qX , respectively.  

In the newsvendor problem, the retailer contemplates that the focus point is the most 
appropriate scenarios (demand) for each order quantity and chooses one order quantity which 
can bring about the best consequence (highest satisfaction level) with the assumption that only 
focus points come true. The optimal order quantities are obtained as follows: 

))),(((maxmaxarg 1
)()(],[

1
11

qqxruq
qXqxddq ul

,                                        (51) 

))),(((minmaxarg 2
)()(],[

2
22

qqxruq
qXqxddq ul

,                                        (52) 

))),(((minmaxarg 3
)()(],[

3
33

qqxruq
qXqxddq ul

,                                        (53) 

))),(((maxmaxarg 4
)()(],[

4
44

qqxruq
qXqxddq ul

.                                        (54) 

1q , 2q , 3q  and 4q  are called optimal active, passive, apprehensive and daring order 

quantities, respectively. )( 11 qx , )( 22 qx , )( 33 qx  and )( 44 qx  are optimal active, passive, 

apprehensive and daring demands, respectively. The retailer who takes into account the active, 
passive, apprehensive or daring focus point is called active, passive, apprehensive or daring 
retailer, respectively.  
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Comments: The differences between the newsvendor model with the subjective expected utility 
theory (Newsvendor-SEU) and the newsvendor model with the one-shot decision theory 
(Newsvendor-OSDT) is shown below. 
1. In Newsvendor-SEU, there are two steps as follows:  
Step 1: Evaluating each order quantity by the weighted average of the utilities of all payoffs 
brought about by all possible demands; 
Step2: Selecting the order quantity with the maximum average. 
In Newsvendor-OSDT, there are two steps as follows: 
Step 1: Seeking an appropriate demand (focus point) for each order quantity; 
Step 2: Choosing the order quantity with the maximum satisfaction level of the focus point 
(selected demand). 
2. In Newsvendor-SEU, a utility function is associated with risky situations. If a person is a risk 
averter, the utility function is concave; if a person is a risk taker, the utility function is convex; if 
a person is risk neutral, the utility function is linear. In Newsvendor-OSDT, the satisfaction 
function has no relationship with risk situations. It represents the relative position of the payoff. 
Which type of focus point is used for making a decision reflects the attitude of a decision maker 
about uncertainty. 
3. Newsvendor-SEU uses the subjective probability to characterize uncertainty whereas 
Newsvendor-OSDT utilizes the possibility distribution. 
4. Newsvendor-SEU and Newsvendor-OSDT explain why some order quantity is optimal in 
different ways. In Newsvendor-SEU an order quantity is evaluated based on the average; that is, 
if the optimal order quantity is chosen every time then the total utility almost surely attains the 
maximum in the sense of the strong law of large numbers. However, Newsvendor-OSDT gives a 
clear answer to why some order quantity is optimal when only one decision chance is left to a 
retailer. 

Let us further clarify the relationship between Newsvendor-OSDT and other existing 
newsvendor models with probabilities. Newsvendor-OSDT is mainly utilized in the situation 
where the decision for an order quantity is experienced only once and the probability 
distribution is unavailable due to lack of enough information. However, it can play an 
indispensable role of a bridge in linking decision under ignorance and decision with 
probabilities (shown in Fig. 2). For the first time to sell a new product, a retailer has to make an 
order under ignorance because the decision situation is completely new for him/her and 
therefore he/she has no ability to tell the difference between each possible demand. After the 
first order is made based on maximin or maximax or minmax regret or Hurwicz criterion, he/she 
has some knowledge about demand so that it is possible to construct an initial possibility 
distribution of demand. He/she can make a one-shot decision and repeat such a one-shot 
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decision with the updated possibility distributions. As time progresses, the information improves. 
The possibility distribution will switch into a probability distribution when the data is rich 
enough. The switching criterion is the hypothesis test for the probability distribution. After that 
newsvendor models based on probability distributions are utilized. Hence, we can say 
Newsvendor-OSDT is the necessary complement to the newsvendor literature. 

 

Fig. 2. The relationship amongst three kinds of newsvendor models  
Following the idea of Fisher (1997), the innovative products are featured by the unpredictable 

demand. In such situations, without the use of statistical methods, judgmental forecasting 
methods; such as, jury of executive opinion and Delphi method are widely used in practice. 
Such methods take advantage of experts’ judgment. In the following section, we propose an 
approach for obtaining the possibility distribution of the demand. The obtained possibility 
distribution reflects the expert’s knowledge on the demand of the innovative product. 
 

4. Approaches for identifying the possibility distribution of the innovative product demand 
Consider a retailer who sells an innovative product where no historical data is available for 

statistical demand analysis. An approach for identifying the possibility distribution of the 
demand of an innovative product is proposed as follows: 
Step 1: Consider an initial reference range of the possible demand, i.e. ],[ HL . Divide ],[ HL  
into n  subsections and denote them as nSSS ,,, 21  from left to right. The number and 

lengths of subsections depend on the knowledge of an expert. The lengths of these subsections 
are not required to be equal. 
Step 2: Ask an expert to make a comparison between each pair of subsections about where the 

demand is expected to fall. The answer is denoted as ija  based on the following meaning: 

1) 1ija : iS  and jS  are equally likely to contain the demand; 

2) 3ija : iS  is fairly likely to contain the demand than jS ; 

3) 5ija : iS  is a little more likely to contain the demand than jS ; 
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4) 7ija : iS  is much more likely to contain the demand than jS ; 

5) 9ija : iS  is most likely to contain the demand than jS ; 

and the other numbers 2, 4, 6 and 8 are used for the supplementary. It is reasonable to assume 

that jiij aa /1 . Then we obtain a comparison matrix as follows: 

1/1/1

1/1
1

21

212

112

nn

n

n

aa

aa
aa

A .                         (55) 

Step 3: Obtain the eigenvector ],,,[ 21 onoo
t

o vvvp  of the matrix A with the largest 

eigenvalue max , and normalize it as follows:  

],,,[/),,,max(/ 2121 nok
t

oonoo
t

o
t vvvvpvvvpp ,        (56) 

where the kth entry of op  is assumed to be maximum. 

Step 4: Choose the middle point of each subsection as its representative. Assume that the 

coordinate of the representative of the subsection iS  is im . It is reasonable to set the 

possibility degree of im  as iv . Denote the possibility distribution with the parameter vector 

θ  as ),( θx . The following optimization problem is used to seek the parameter vector θ  to 

make ),( θix  approach to iv  from the upper direction as much as possible.  

i
ix ),(min θ

θ                                                         (57)
 

s.t. ii vx ),( θ , ni ,,1 . 

Suppose ),( θx  is a triangular function, denoted as trlc ccx ),,( , i.e. 

rc

rcc

clc

lc

rc

lc
trlc

cxx
cxxx
xxcx

cxx

cxx
cxx

ccxx

,

,0
,/)(1
,/)(1

,0

),,(),( θ ,        (58) 

where the parameter vector θ  is t
rlc ccx ],,[ , which is needed to be identified. cx , lc  and 
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rc  are the center, the left and right spreads, respectively. Obviously, kc mx . From (57), we 

obtain 

i

ik

kil v
mmc

1
max

1,,1
,            (59) 

i

ki

nkir v
mmc

1
max

,,1
.            (60) 

The range ],[ HL  is called the revised range of the possible demand where lk cmL  
and rk cmH . 

In the identification approach, the pairwise comparison is used for obtaining the possibility 
degrees of some discrete values of the demand. In fact, pairwise comparisons are commonly 
used in the analytic hierarchy process (AHP) (Saaty, 1980) for multiple criteria decision making 
(MCDM) problems with the common knowledge that eliciting indirect preference is less 

demanding of cognitive effort. In AHP, ija  represents the degree to which the criteria i  is 

more important than the criteria j ; and in this research, ija  represents the degree to which the 

subsection i  is more possible to contain the demand than the subsection i . In AHP, the 
eigenvector with the largest eigenvalue is used to reflect the weights of decision criteria. Using 
the similar idea, the normalized eigenvector with the largest eigenvalue is used to present the 
possibility degrees to which the demand is contained by the subsections. Recently, Guo and 
Tanaka (2010) proposed a method for estimating interval probabilities based on pairwise 
comparisons of the likelihoods of events. The point-valued pairwise comparison is included by 
the ratio of the estimated interval probabilities. The interval probabilities are obtained by linear 
programming problems. As its extension, Guo and Wang (2012) considered the interval-valued 
comparison and proposed an approach to identify the dual interval probabilities. 
 

5. Analysis results of OSDT based newsvendor models 
In this section the plausible demand information is characterized by the possibility 

distribution )(xD  shown in (43) and identified by the proposed method in Section 4. Let us 

think about how to obtain the optimal active, passive, apprehensive and daring order quantities. 

Lemma 15. The optimal active order quantity 1q  is the solution of the following equation: 

)()),(( xxxru D , ),( uc ddx .                            (61) 

The optimal active demand, i.e. )( 11 qx  is 1q . 



25 
 

Proof. The proof follows directly from Theorem 13 (1) and Proposition 14(3).            □ 
Interestingly, Lemma 15 indicates that the focus point (selected demand) of the active 

retailer’s optimal order quantity is the optimal order quantity itself. It means that the active 
retailer has confidence that he/she can sell all the products that he/she has optimally ordered. 

Lemma 16. The optimal passive order quantity 2q  is the solution of the following equation: 

))),((())),((( qqdruqqdru pupl ,                                           (62) 

equivalently, 

  ))(())(( qdqd puDplD ,           (63) 

where )(qd pl  and )(qd pu  are the horizontal coordinates of the intersections of )),(( qxru  

and )(1 xD  within )],min(,[ cl dqd  and ]),,[max( uc ddq , respectively. The optimal 

passive demand, i.e. )( 22 qx  are )( 2qd pl  and )( 2qd pu . 

Proof. It follows from Proposition 14(3) that )),(( xxru  is strictly increasing continuous 

within ],[ ul dd . )(1 xD  is strictly decreasing continuous within ],[ cl dd  and strictly 

increasing continuous within ],[ uc dd . Since 1)(1)),(( lDll dddru  and  

0)(1)),(( cDcc dddru  and 1)(1)),(( uDuu dddru , there is a unique 
intersection of )),(( xxru  and )(1 xD  within ),( cl dd , the horizontal coordinate of this 

intersection is denoted as *
pld ; and there is at least one intersection within ],( uc dd , the 

minimum horizontal coordinate of these intersections is denoted as pud . In what follows, we 

consider three cases of q, i.e. ],[ *
pll ddq , ],[ *

upu ddq  and ],[ **
pupl ddq .  

Case 1: ],[ *
pll ddq . That is, )(1)),(( qqqru D  and cdq . It follows from Theorem 

2(3) that the passive focus point of ],[ *
pll ddq  is )()(2 qdqx pu . From Proposition 14(2) 

and Corollary 5(2), we have  
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  ))),((())),(((max))),(((max **

],[
2

],[
plplpupu

ddqddq
dddruqqdruqqxru

pllpll

.         (64) 

Case 2:  ],[ upu ddq . For the case )(1)),(( qqqru D , Theorem 2(2) shows that the 

passive focus point is )()(2 qdqx pl . In the case )(1)),(( qqqru D , since 

)(1)),(()),(( puDpupupu dddruqdru  and ))(1()),(()( xqxruxF D  is a 

continuous function, ],[0 qdx pu  0))(1()),(()( 000 xqxruxF D  holds. From 

Corollary 3(1), we know that the passive focus point is )()(2 qdqx pl . Therefore, 

],[ upu ddq , the passive focus point is )()(2 qdqx pl . From Proposition 14(2) and 

Corollary 5(1), we have  

  ))),((())),((())),(((max **
2

],[
pupuplpl

ddq
dddruqqdruqqxru

upu

.               (65) 

Case 3: ],[ **
pupl ddq . That is, )(1)),(( qqqru D . It follows from Theorem 2(1) that  

  )))),((()),),(((min())),((( 2 qqdruqqdruqqxru pupl .        (66) 

From Theorem 8, we know that ))),((( qqdru pl  and ))),((( qqdru pu  are uniformly 

continuous in ],[ **
pupl ddq . Considering ))),((())),((()( qqdruqqdruqF pupl , it 

follows from Proposition 14(2) and Corollary 5 that )(qF  is strictly decreasing within 

],[ **
pupl dd . For pldq  and pudq , we have 

0))),((())),((()( *
plplpuplplplpl dddrudddrudF ,         (67) 

0))),((())),((()( *
pupupupupuplpu dddrudddrudF .         (68) 

Therefore, there is a unique ),(~ **
pupl ddq  satisfying ))~),~((())~),~((( qqdruqqdru pupl . 

Theorem 2(1) shows 
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  )}~(),~({)~(2 qdqdqx pupl .                               (69) 

Let us consider the case qq ~ . From Proposition 14(2), we know ))~,(()),(( qxruqxru  
for ]~,[ qdx l ; and ))~,(()),(( qxruqxru  for ],[ udqx . From Corollary 5, we have  

))~),~((())),((( qqdruqqdru plpl  ,          (70) 

))~),~((())),((( qqdruqqdru pupu .                                          (71) 

From Theorem 2(1), we have 

  ))~),~((())),(((max 22
],~[ *

qqxruqqxru
pudqq

.                                    (72) 

Likewise, we have 

  ))~),~((())),(((max 22
]~,[ *

qqxruqqxru
qdq pl

.                                    (73) 

From (64), (65), (72) and (73), we know qqqxruq
ul ddq

~))),(((maxarg 2
],[

2 , which means that 

(62) and (63) hold. (69) means that the optimal passive demand, i.e. )( 22 qx  are )( 2qd pl  and 

)( 2qd pu .                                                                   □ 

Lemma 16 implies that the passive retailer chooses the optimal order quantity which makes 
its two focus points (selected demands) have the same possibility degrees and the same 
satisfaction levels. 

Lemma 17. The optimal apprehensive order quantity 3q  is the solution of 

)),(()),(( qdruqdru ul ,                               (74) 

that is, 

uo

uulo

SSR
dSdSRq )(

3 .                               (75) 

The optimal apprehensive demand, i.e. )( 33 qx  are ld  and ud . 

Proof: It follows from Lemma 6 that ],[ ul ddq  we have 

  ))),(()),,((min())),((( 3 qdruqdruqqxru ul ,         (76) 

which leads to 

  ))),(()),,((min(maxarg))),(((maxarg
],[

3
],[

3 qdruqdruqqxruq ul
ddqddq ulul

.       (77) 
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Suppose q~  is the solution of )),(()),(( qdruqdru ul , that is, 

))~,(())~,(( qdruqdru ul .           (78)                                               

Proposition 14(2) shows if qq ~  then )),(()),(( qdruqdru ul  and if qq ~  then 

)),(()),(( qdruqdru ul  so that we have 

))),(()),,((min(max
],[

qdruqdru ulddq ul

 

))),(()),,((min(max))),(()),,((min(max
],~[]~,[

qdruqdruqdruqdru uldqqulqdq ul

))~,(())~,(()),((max)),((max
],~[]~,[

qdruqdruqdruqdru luldqquqdq ul

.       (79) 

Therefore, *
3q  is q~ , which is the solution of (74). (74) leads to (75) with considering (42). 

(23) implies that )( 33 qx  are ld  and ud .                                        □ 

Lemma 17 shows that the apprehensive retailer takes into account two extreme demands (the 
highest and the lowest demand) and chooses the optimal order quantity which makes the 
satisfaction levels of the highest demand and the lowest demand equal. 

 
Lemma 18. The optimal daring order quantity is 

udq4 .                                                                (80) 

The optimal daring demand, i.e. )( 44 qx  is ud . 

Proof. The proof follows directly from Theorem 13(2) and Proposition 14(3).             □ 
According to Lemma 18, for the daring retailer, the highest demand is his/her optimal order 

quantity and he/she believes all ordered products can be sold. 
  It is helpful to discuss the relationships amongst the four types of optimal order quantities and 
focus points and how the four types of optimal order quantities and focus points change with the 
parameters. We have the following lemmas. 

 
Lemma 19. 

(1) The optimal daring order quantity 4q  is always larger than any other type of optimal order 

quantity.  
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(2) Supposing the possibility distribution )(xD  is symmetric, we have 

uulpupl dqxddqdqd 2)(2)()( 1122 ,                                 (81) 

321 qqq .                                                            (82) 

Proof.  

(1) It is straightforward that 4q  is always larger than any other type of optimal order quantity. 

(2) From Lemma 16 and the monotonicity of )),(( qxru , we have 

)),(()),(( 2222 qqdrqqdr pupl ,           (83) 

which is equal to 

))(()())(()( 2222222 qqdSqWRWqqdqSqRd puuplopl .              (84) 

From (84), we obtain 

uo

puuplo

SSR
qdSqdSR

q
)(

)()()( *
2

*
2*

2 .           (85)                                                                      

Hence, 

uo

oupuuplouo

uo

puuplo
ou SSR

dqdSqddSR
SSR

qdSqdSR
dqq

)(
))(())()((

)(
)()()( 2222

21 ,(86) 

where **
1 oudq  is the horizontal coordinate of the intersection of )),(( xxru  and )(xD  

within ),( uc dd  (See Lemma 15). From (63), we have  

))(())(( 22 qdqd pupl .                                                 (87) 

If )(xD is symmetric, (87) implies 

0)()( 22 qdddqd puulpl .                          (88) 

(88) is equal to 

uouculpupl dddddqdqd 222)()( 22 ,                             (89) 

which proves (81). From (89), we have 

oupuplou dqdqdd )()( 22 .           (90) 
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Obviously, 0)( 2qdd plou  holds. Recalling 

0uo SSR ,             (91) 

from (86) we know 
021 qq .             (92) 

By using (85) and (75), we have 

uo

uulo

uo

puuplo

SSR
dSdSR

SSR
qdSqdSR

qq
)(

)(
)(

)()()( 22
32  

uo

puuulplo

SSR
qddSdqdSR

)(
))(())()(( 22 .             (93) 

By using (88) and (91), we know  

032 qq .             (94) 

(92) and (94) means (82).                                                      □ 
 
Lemma 20. Set the satisfaction function as the following linear function 

lu

l

rr
rqxrqxru ),()),(( .                                (95) 

The optimal active order 1q  and the optimal active demand )( 11 qx  are decreasing in the unit 

wholesale price W , increasing in the unit revenue R  and the unit salvage price oS . The unit 
opportunity cost uS  has no effect on them. 

Proof. Since uu dWRWr )()(  and WdSddRdWr uolull )()( , by using (95) we 

have 

qx
qx

if
if

SRdd
SqxSddWqdRdq

SRdd
SqxddWqdRdx

WrWr
WrqxWrqxWru

olu

uoluul

olu

oluul

lu

l

;
;

))((
)()()()(

))((
)()()(

)()(
)(),,()),,((

. (96) 
Therefore, 

))((
)()()()),,((

olu

oluul

SRdd
SddWxdRdxxxWru .       (97) 

Differentiating (97) with respect to W , we have 

0
))((

)()),,((

olu

u

SRdd
xd

dW
xxWrdu

,           (98) 
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which means 21 WW  )),,(()),,(( 21 xxWruxxWru  holds so that we have 

  )))(),(,(()))(),(,(( 1111211111 WqWqWruWqWqWru ,        (99) 

where )( 11 Wq  is the optimal active order quantity with the wholesale price 1W . According to 

Lemma 15, )))(),(,(())(( 1111111 WqWqWruWqD  holds so that we have 
  )))(),(,(())(( 1111211 WqWqWruWqD .          (100) 
Recalling 1)()),,(( 2 cDcc dddWru , due to the monotonicity of )(xD  and 

)),,(( 2 xxWru  within )](,[ 11 Wqdc , there is one and only one intersection of )(xD  and 

)),,(( 2 xxWru  within )](,[ 11 Wqdc . Its horizontal coordinate is )( 21 Wq  and we have 

)()( 2111 WqWq . Therefore, the optimal active order 1q  and the active focus point )( 11 qx  

are decreasing in W .  

Similarly, we can prove the optimal active order 1q  and the optimal active demand )( 11 qx  

are increasing in R  and oS . Since there is not uS  in (97), uS  has no effect on the optimal 

active order quantity and the optimal active demand.                    □ 
Lemma 20 is intuitively obvious if we know that an active retailer believes he/she can sell 

what he/her optimally orders (shown in Lemma 15).  

Let us think about the optimal passive order 2q . If the unit opportunity cost price uS  

increases, )),(( qxru  will remain the same for qx  but decrease for qx . Considering 

Proposition 14(2) and Lemma 16, we have the following proposition. 

 
Proposition 21. The optimal passive order quantity 2q  increases in the unit opportunity cost 

uS . 

Proposition 21 shows that the passive retailer offsets the loss caused by the increase of the 
unit opportunity cost by increasing the order quantity. 

For the optimal apprehensive order 3q , let us consider (75). Obviously, we have 

0
)(

)(
2

3

ou

ulu

o SSR
Sdd

dS
dq

,           (101) 

0
)(

))((
2

3

ou

olu

u SSR
SRdd

dS
dq

,          (102) 
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0
)(

)(
2

3

ou

ulu

SSR
Sdd

dR
dq

,                                               (103) 

03

dW
dq

,                                    (104) 

which can be concluded as the following proposition. 

Proposition 22.  The optimal apprehensive order quantity 3q  increases in the unit salvage 

price oS  and the unit opportunity cost uS , decreases in the unit revenue R . The unit 

wholesale price W  has no effect on 3q .  

Proposition 22 points out that for an apprehensive retailer, he/she orders less at the higher unit 
revenue and the unit wholesale price has no effect on the optimal order quantity. Interestingly, 
other researchers (Wang and Webster, 2009; Wang et al., 2009) have arrived at similar results in 
“risk-averse” and “loss-averse” newsvendor models. However, such results were regarded as the 
limitations of the expected utility theory (EUT) by themselves. Our model can explain these 
results as follows: 

As shown in Lemma 17, the apprehensive retailer worries about two extreme demands, i.e. 
the smallest demand ld  and the largest demand ud  and seeks an optimal order quantity to 

make the satisfaction levels of these two demands equal. (42) shows that for the same order 
quantity, the increase of the unit revenue will increase the satisfaction level of ud  more than 

ld . To offset this effect, the retailer will decrease the order quantity.  

For examining the result related to W , let us begin with the optimal apprehensive order 

quantity 3q . When the unit wholesale price becomes lower and the order quantity remains the 

same, the payoff at the demand ud  is exactly the same as the one at the demand ld . On the 

other hand, from Proposition 14(2) we know that if the order quantity increases, the satisfaction 
level of the demand ld  will become worse; and if the order quantity decreases, the satisfaction 
level of the demand ud  will become worse. Therefore, the optimal apprehensive order quantity 

remains 3q . 

 
Definition 4. )(xD  is said to be more informed than )(xD  if and only if x  

)()( xx DD  holds.  

 
Lemma 23. Suppose )(xD  is more informed than )(xD . The optimal active order 

quantities based on possibility distributions )(xD  and )(xD  are denoted as 1
oq  and 2

oq , 
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respectively; the optimal passive order quantities based on possibility distributions )(xD  and 

)(xD  are denoted as 1
pq  and 2

pq , respectively; the optimal apprehensive order quantities 

based on possibility distributions )(xD  and )(xD  are denoted as 1
aq  and 2

aq , 

respectively; the optimal daring order quantities based on possibility distributions )(xD  and 

)(xD  are denoted as 1
dq  and 2

dq , respectively. We have 

(1) 21
oo qq ; 

(2) 21
aa qq , 21

dd qq ; 

(3) if possibility distributions )(xD  and )(xD  are symmetric, then 21
pp qq . 

Proof. 
(1) The horizontal coordinate of the intersection of )),(( xxru  and )(xD  within ),( uc dd  

is denoted as 1*
oud . From Lemma 15 and Definition 4, we know 

)()),(()( 111*1
ouDouououD dddrud . Due to the monotonicity of )(xD  and )),(( xxru  

and 1)()),(( cDcc dddru , there is one and only one intersection of )(xD  and  

)),(( xxru  within ],( 1*
ouc dd . Its horizontal coordinate is denoted as 2*

oud . We have 2*1*
ouou dd , 

that is, 21
oo qq . 

(2) It follows directly from Lemmas 17 and 18 that 21
aa qq  and 21

dd qq . 

(3) The horizontal coordinates of the intersections of )),(( qxru  and )(1 xD  within 

)],min(,[ cl dqd  and ]),,[max( uc ddq  are denoted as )(qd pl  and )(qd pu , respectively. The 

horizontal coordinates of the intersections of )),(( qxru  and )(1 xD  within 

)],min(,[ cl dqd  and ]),,[max( uc ddq  are denoted as )(qd pl  and )(qd pu , respectively. 

Lemma 16 shows  

))),((())),((( 1111
pppupppl qqdruqqdru ,                                    (105) 



34 
 

  ))),((())),((( 2222
pppupppl qqdruqqdru .         (106) 

Due to the symmetry of )(xD , (106) implies 

cppupplc dqdqdd )()( 22 .                           (107) 

From Lemma 16 and Definition 4, we know 

)(1)),(( 111
pDpp qqqru ,                (108) 

  )(1)(1)),(( 2222
pDpDpp qqqqru .        (109) 

Suppose 21
pp qq . Considering Proposition 14(2), )),(()),(( 21

pp qxruqxru  holds for any 

],[ 2
pqlx . Considering (108) and using Corollary 5(1), we have 

))),((())),((( 2211
ppplpppl qqdruqqdru .                                    (110) 

Likewise, )),(()),(( 21
pp qxruqxru  holds for any ],[ 1 hqx p . Considering (109) and using 

Corollary 5(2), we have 

))),((())),((( 2211
pppupppu qqdruqqdru .                                   (111) 

(105), (110) and (111) imply 

))),((())),((( 2222
pppupppl qqdruqqdru .                                   (112) 

Due to the symmetry of )(xD , (112) means 

cppupplc dqdqdd )()( 22 .                         (113) 

(107) and (113) mean  

)()()()( 2222
ppuppupplppl qdqdqdqd .                      (114) 

Since )()( xx DD , considering Lemma 16 it is easy to know 

0)()( 22
ppuppu qdqd .                                                  (115) 

From (42), we have 
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))),()(()((

)),((
2222

22

ppplpplppl

pppl

qqdqdqdr

qqdr
                  

))()()(()),(( 2222
pplpplopppl qdqdSRqqdr .        (116) 

Similarly, we have 

))),()(()((

)),((
2222

22

pppuppuppu

pppu

qqdqdqdr

qqdr
 

))()(()),(( 2222
ppuppuupppu qdqdSqqdr .        (117) 

From (46), (106), (114)-(117) and uo SSR , we know 

))),((())),((( 2222
pppupppl qqdruqqdru , which conflicts with (112). As a result, 21

pp qq . 

            □ 
Lemma 23 shows that the increase of the uncertainty of the demand can make an active 

retailer order more and make a passive retailer order less but does not have any effect on the 
apprehensive and daring retailers. 
 

6. Numerical Example 

A fashion store, located in Yokohama, Japan, is planning to order a new design fashion 
sportswear. The unit wholesale price W , the unit revenue R , the unit salvage price oS  and 
the unit opportunity cost uS  are 7, 10, 1 and 4 (thousand JPY), respectively. The initial range 
of the possible demand is ]800,300[ . Let us consider how many goods the retailer should 
order. 

Due to the new style there is no historical data available for statistical demand analysis. 
However, it is useful to consult some expert to make a judgment on the demand. Based on the 
knowledge of the expert, the initial reference range is divided into five subsections--- )400,300[ , 

)500,400[ , )600,500[ , )700,600[  and ]800,700[ . The expert makes a pairwise 
comparison of the possibilities of different subsections and gives a pairwise comparison matrix 
as follows: 

12/14/111
21123
41135
12/13/112
13/15/12/11

A .                                       (118) 
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The largest eigenvalue of the matrix A is 07.5max , its normalized eigenvector is
tp ]29.0,73.0,00.1,35.0,22.0[ . The coordinates of the middle points of subsections from left 

to right is 350, 450, 550, 650 and 750; and their possibility degrees are set as 0.22, 0.35, 1.00, 
0.73, and 0.29, respectively. Supposing the possibility distribution of the demand is a triangular 
function and using (59) and (60) with 550cx , we obtain 

920,0
920550,49.21070.2

550294,15.11091.3
294,0

)(
3

3

x
xx

xx
x

x
 .                          (119) 

The revised range of the possible demand is ]920,294[ , that is, 294ld  and  920ud . 

By using (42), the profit function is 

qxxq
qxqx

qxr
,47
,69

),( .                                             (120) 

The highest profit is 2760)( uu dWRr  (thousand JPY) and the lowest profit is 

2874)( WdSddRdr uolull  (thousand JPY). The satisfaction function is set as 

lu

l

rr
rqxrqxru ),()),((

 

qxxq
qxqx

,101.5107.0102.1
,101.5101.1106.1

133

133

,                (121) 

where 920,294 qx . By using (61), (62), (75) and (80), we obtain 6191q , 5292q , 

4873q  and 9204q . Clearly, we have 4123 qqqq  which shows that the order 

quantity of the apprehensive retailer is less than the one of the passive retailer; the order 
quantity of the passive retailer is less than the one of the active retailer; the order quantity of the 
active retailer is less than the one of the daring retailer. Such results are quite in agreement with 
the situations encountered in the real business world. 
 

7. Conclusions 
This research analyzes the newsvendor problems for innovative products. Following the same 

idea of Fisher (1997), the innovative products are featured by the unpredictable demand and 
short life cycles. For characterizing the uncertainty of the demand, the possibility distribution is 
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used and a simple and effective method for identifying the possibility distribution is proposed. 
The obtained possibility distribution reflects the expert’s knowledge on the demand of the 
innovative product. 

Due to the shorter life cycle than the procurement lead-time, determining the order quantity is 
a typical one-shot decision problem. Instead of using the subjective expected utility theory 
(SEU), we utilize the one-shot decision theory (OSDT) to analyze the newsvendor problems. 
The proposed models are scenario-based decision models; they are fundamentally different from 
the newsvendor models with SEU which are lottery-based models. 
  In this paper, the general solutions of active, passive, apprehensive and daring focus points 
and optimal alternatives are proposed and the existence theorem is established in the one-shot 
decision theory.  

Newsvendor models with four types of focus points are developed for four types of retailers; 
i.e., the active retailer, the passive retailer, the apprehensive retailer and the daring retailer. The 
active retailer takes into account a demand with a higher satisfaction and a higher possibility; 
the passive retailer focuses on a demand with a lower satisfaction and a higher possibility; the 
apprehensive retailer thinks over a demand with a lower satisfaction and a lower possibility; the 
daring retailer considers a demand with a higher satisfaction and a lower possibility. The 
optimal order quantities for these four types of retailers are obtained and we have the following 
conclusions: 
(1) The focus point of the active retailer’s optimal order quantity is the optimal order quantity 
itself. It means that the active retailer has confidence that he/she can sell all the products that 
he/she has optimally ordered. 
(2) The passive retailer chooses the optimal order quantity which makes its two focus points 
have the same possibility degrees and the same satisfaction levels. 
(3) The apprehensive retailer takes into account two extreme demands (the highest and the 
lowest demand) and chooses the optimal order quantity which makes the satisfaction levels of 
the highest demand and the lowest demand equal. 
(4) For the daring retailer, the highest demand is his/her optimal order quantity and he/she 
believes all ordered products can be sold. 
(5) The optimal daring order quantity is always larger than any other type of optimal order 
quantity. If the possibility distribution is symmetric, the optimal active order quantity is larger 
than the optimal passive one; the optimal passive order quantity is larger than the optimal 
apprehensive one. 
(6) Setting the satisfaction function as a linear function, the optimal active order quantity and its 
focus point are decreasing in the unit wholesale price, increasing in the unit revenue and the unit 
salvage price. The unit opportunity cost has no effect on them. 
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(7) The passive retailer offsets the loss caused by the increase of the unit opportunity cost by 
increasing the order quantity. 
(8) The optimal apprehensive order quantity increases in the unit salvage price and the unit 
opportunity cost, decreases in the unit revenue. The unit wholesale price has no effect on it.  
(9) The increase of the uncertainty of the demand can make an active retailer order more and 
make a passive retailer order less but does not have any effect on the apprehensive and daring 
retailers. 

The above results provide managerial insights into the behaviors of different types of retailers. 
The research on newsvendor problems for innovative products with OSDT is at an early stage. 
This research provides a theoretical base for the further researches. As a direct extension of this 
study, supply chain coordination problems for innovative products will be studied. 
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