Takashi Nishimura

SINGULARITIES OF PEDAL CURVES PRODUCED BY SINGULAR DUAL CURVE GERMS IN S^{n}

Abstract

For an n-dimensional spherical unit speed curve \mathbf{r} and a given point P, we can define naturally the pedal curve of \mathbf{r} relative to the pedal point P. When the dual curve germs are singular, singularity types of pedal curves depend on singularity types of the n-th curvature function germs and the locations of pedal points. In this paper, we investigate sigularity types of pedal curves in such cases.

1. Introduction

Let I be an open interval such that $0 \in I$ and S^{n} be the n-dimensional unit sphere in $\mathbf{R}^{n+1}(n \geq 2)$. A C^{∞} non-singular map $\mathbf{r}: I \rightarrow S^{n}$ is said to be a spherical unit speed curve if each of the following $\mathbf{u}_{i}(s) \quad(1 \leq i \leq$ $n-1$) is inductively well-defined for any $s \in I$, where initial information are $\mathbf{u}_{-1}(s) \equiv \mathbf{0}, \mathbf{u}_{0}(s)=\mathbf{r}(s),\left\|\mathbf{u}_{0}^{\prime}(s)\right\| \equiv 1$ and $\kappa_{0}(s) \equiv 0$.

$$
\begin{array}{ll}
\mathbf{u}_{i}(s)=\frac{\mathbf{u}_{i-1}^{\prime}(s)+\kappa_{i-1}(s) \mathbf{u}_{i-2}(s)}{\left\|\mathbf{u}_{i-1}^{\prime}(s)+\kappa_{i-1}(s) \mathbf{u}_{i-2}(s)\right\|} \quad(1 \leq i \leq n-1), \\
\kappa_{i}(s)=\left\|\mathbf{u}_{i-1}^{\prime}(s)+\kappa_{i-1}(s) \mathbf{u}_{i-2}(s)\right\| & (1 \leq i \leq n-1)
\end{array}
$$

The function $\kappa_{i}: I \rightarrow \mathbf{R}$ is called the i-th curvature function of \mathbf{r}. For a spherical unit speed curve two vectors $\mathbf{u}_{i}(s)$ and $\mathbf{u}_{j}(s)(0 \leq i, j \leq n-1$, $i \neq j)$ are perpendicular ([17]). Thus we can define one more vector $\mathbf{u}_{n}(s)$ uniquely so that $\left\{\mathbf{u}_{0}(s), \mathbf{u}_{1}(s), \ldots, \mathbf{u}_{n}(s)\right\}$ is an orthogonal moving frame and $\operatorname{det}\left(\mathbf{u}_{0}(s), \ldots, \mathbf{u}_{n}(s)\right)=1$ for any $s \in I$. The map $\mathbf{u}_{n}: I \rightarrow S^{n}$, which is called the dual curve of $\mathbf{r}([1],[21])$, defines the n-th curvature function in the following way, where the dot in the center is the scalar product.

$$
\kappa_{n}(s)=\mathbf{u}_{n-1}^{\prime}(s) \cdot \mathbf{u}_{n}(s)
$$

We see that the dual curve \mathbf{u}_{n} is non-singular at s if and only if $\kappa_{n}(s) \neq 0$ (see §2).

[^0]Key words and phrases: singularity, pedal curve, pedal point, dual curve.

For any $i \quad(-1 \leq i \leq n)$, we put

$$
S_{\mathbf{u}_{i}(s)}^{i}=\left(S^{n}-\left\{ \pm \mathbf{u}_{n}(s)\right\}\right) \cap\left\langle\mathbf{u}_{-1}(s), \ldots, \mathbf{u}_{i}(s)\right\rangle_{\mathbf{R}}
$$

where $\left\langle\mathbf{u}_{-1}(s), \ldots, \mathbf{u}_{i}(s)\right\rangle_{\mathbf{R}}$ means the vector subspace spanned by the vectors $\mathbf{u}_{-1}(s), \ldots, \mathbf{u}_{i}(s)$. Given a spherical unit speed curve $\mathbf{r}: I \rightarrow S^{n}$, choosing a point P of $S^{n}-\left\{ \pm \mathbf{u}_{n}(s) \mid s \in I\right\}$ gives the map which maps $s \in I$ to the unique nearest point in $S_{\mathbf{u}_{n-1}(s)}^{n-1}$ from P. Such a map, which is called the pedal curve relative to the pedal point P for an n-dimensional unit speed curve \mathbf{r}, is denoted by $p e d_{\mathbf{r}, P}$. Note that since all points in $S_{\mathbf{u}_{n-1}(s)}^{n-1}$ are the nearest points from $\pm \mathbf{u}_{n}(s)$ the pedal point P for the map-germ ped $d_{\mathbf{r}, P}$ at s must be outside $\left\{ \pm \mathbf{u}_{n}(s)\right\}$.

In [17] we have shown the following.
Theorem 1. ([17]) Let $\mathbf{r}: I \rightarrow S^{n}$ be an n-dimensional spherical unit speed curve. Suppose that $\kappa_{n}(0) \neq 0$. Then the following hold.

1. The pedal point P is inside $S_{\mathbf{u}_{n}(0)}^{n}-S_{\mathbf{u}_{n-2}(0)}^{n-2}$ if and only if the map-germ $\operatorname{ped}_{\mathbf{r}, P}:(I, 0) \rightarrow S^{n}$ is C^{∞} left equivalent to the map-germ given by $s \mapsto(s, 0, \ldots, 0)$.
2. For any $i(2 \leq i \leq n)$, the pedal point P is inside $S_{\mathbf{u}_{n-i}(0)}^{n-i}-S_{\mathbf{u}_{n-i-1}(0)}^{n-i-1}$ if and only if the map-germ ped $d_{\mathbf{r}, P}:(I, 0) \rightarrow S^{n}$ is C^{∞} left equivalent to the map-germ given by the following:

$$
s \mapsto(\underbrace{s^{i}, s^{i+1}, \ldots, s^{2 i-1}}_{\text {i elements }}, \underbrace{0, \ldots, 0}_{(n-i) \text { elements }})
$$

Here, two map-germs $f, g:(\mathbf{R}, 0) \rightarrow\left(\mathbf{R}^{n}, 0\right)$ are said to be C^{∞} left equivalent if there exists a germ of C^{∞} diffeomorphism $h_{t}:\left(\mathbf{R}^{n}, 0\right) \rightarrow\left(\mathbf{R}^{n}, 0\right)$ such that the identity $g=h_{t} \circ f$ is satisfied.

The purpose of this paper is to investigate singularities of pedal curves when $\kappa_{n}(0)=0$. We say that the n-th curvature function κ_{n} has an A_{k}-type singularity at $0(0 \leq k<\infty)$ if $\kappa_{n}(0)=\kappa_{n}^{\prime}(0)=\cdots=\kappa_{n}^{(k)}(0)=0$ and $\kappa_{n}^{(k+1)}(0) \neq 0$.

Theorem 2. Let $\mathbf{r}: I \rightarrow S^{n}$ be an n-dimensional spherical unit speed curve. Suppose that $P \in S_{\mathbf{u}_{n}(0)}^{n}-S_{\mathbf{u}_{n-1}(0)}^{n-1}$. Then the following holds.

1. If κ_{n} has an A_{k}-type singularity at $0(0 \leq k \leq n-2)$, then the map-germ ped $_{\mathbf{r}, P}:(I, 0) \rightarrow S^{n}$ is C^{∞} left equivalent to the map-germ given by

$$
s \mapsto(\underbrace{s^{k+2}, s^{k+3}, \ldots, s^{2 k+3}}_{(k+2) \text { elements }}, \underbrace{0, \ldots, 0}_{(n-k-2) \text { elements }})
$$

2. If κ_{n} has an A_{n-1}-type singularity at 0 , then the map-germ ped $\mathbf{r}_{\mathbf{r}} P$: $(I, 0) \rightarrow S^{n}$ is C^{∞} right-left equivalent to the map-germ given by

$$
s \mapsto\left(s^{n+1}, s^{n+2}, \ldots, s^{2 n}\right)
$$

Here, two map-germs $f, g:(\mathbf{R}, 0) \rightarrow\left(\mathbf{R}^{n}, 0\right)$ are said to be C^{∞} right-left equivalent if there exist germs of C^{∞} diffeomorphisms $h_{s}:(\mathbf{R}, 0) \rightarrow(\mathbf{R}, 0)$ and $h_{t}:\left(\mathbf{R}^{n}, 0\right) \rightarrow\left(\mathbf{R}^{n}, 0\right)$ such that the identity $g=h_{t} \circ f \circ h_{s}^{-1}$ is satisfied. In the case that $n=2$ Theorem 2 has been announced in [20]. In the case that $n \geq 3$ it seems to be almost impossible to obtain similar results when κ_{n} has an A_{n}-type singularity at 0 . We may observe its reason in the following way. It is possible to show that $p e d_{\mathbf{r}, P}$ is C^{∞} right-left equivalent to $\varphi(s)=\left(s^{n+2}, s^{n+3}+\varphi_{2}(s), \ldots, s^{2 n+1}+\varphi_{n}(s)\right)$ where $\varphi_{j}(s)=o\left(s^{2 n+1}\right)$. However, φ is not \mathcal{A}-simple since in the case that $n=3$ fencing curves due to Arnol'd ([2]) have the form of φ and for $n \geq 3$ the local multiplicity of φ is more than $\frac{n^{2}}{(n-1)}$ which is an upper bound for the local multiplicity of an \mathcal{A}-simple map-germ; and the codimension of $T \mathcal{A}(\varphi)$ in $T \mathcal{K}(\varphi)$ is positive (for the restriction on the local multiplicity of an \mathcal{A}-simple map-germ, see [18], [19]). Thus, there must exist strong restrictions on higher terms φ_{j} which can be truncated.

Next, we investigate singularity types of pedal curves when $P \in S_{\mathbf{u}_{n-1}(0)}^{n-1}$. We concentrate on the case that κ_{n} has an A_{0}-type singularity at 0 . Note that κ_{n} has an A_{0}-type singularity at 0 if and only if the function-germ $\kappa_{n}:(I, 0) \rightarrow(\mathbf{R}, 0)$ is non-singular, and the dual curve germ is an ordinary cusp in this case.

Theorem 3. Let $\mathbf{r}: I \rightarrow S^{n}$ be an n-dimensional spherical unit speed curve. Suppose that κ_{n} has an A_{0}-type singularity at 0 . Then the following hold.

1. The pedal point P is inside $S_{\mathbf{u}_{n}(0)}^{n}-S_{\mathbf{u}_{n-1}(0)}^{n-1}$ if and only if the map-germ $\operatorname{ped}_{\mathbf{r}, P}:(I, 0) \rightarrow S^{n}$ is C^{∞} left equivalent to the map-germ given by

$$
s \mapsto\left(s^{2}, s^{3}, 0, \ldots, 0\right)
$$

2. For any $i(1 \leq i \leq n-1)$, the pedal point P is inside $S_{\mathbf{u}_{n-i}(0)}^{n-i}-S_{\mathbf{u}_{n-i-1}(0)}^{n-i-1}$ if and only if the map-germ $\operatorname{ped}_{\mathbf{r}, P}:(I, 0) \rightarrow S^{n}$ is C^{∞} right-left equivalent to the map-germ given by

$$
s \mapsto(s^{i+1}, \underbrace{s^{i+3}, s^{i+4}, \ldots, s^{2 i+1}}_{(i-1) \text { elements }}, s^{2 i+3}, \underbrace{0, \ldots, 0}_{(n-i-1) \text { elements }}) .
$$

3. The pedal point P is inside $S_{\mathbf{u}_{0}(0)}^{0}-S_{\mathbf{u}_{-1}(0)}^{-1}$ if and only if the map-germ
ped $_{\mathbf{r}, P}:(I, 0) \rightarrow S^{n}$ is C^{∞} right-left equivalent to the map-germ given by

$$
s \mapsto(s^{n+1}, \underbrace{s^{n+3}, s^{n+4}, \ldots, s^{2 n+1}}_{(n-1) \text { elements }})
$$

In the case that $n=2$ the "only if" parts of Theorem 3 has been announced in [20]. Note that the first assertion of Theorem 2 yields only the "only if" part of the first assertion of Theorem 3. By obtaining a complete list of locations of pedal points inside $S_{\mathbf{u}_{n-1}(0)}^{n-1}$ and singularity types of pedal curves (assertions 2 and 3 of Theorem 3) we can obtain "if" part of the first assertion of Theorem 3.

In $\S 2$ we give several preparations to prove Theorems 2 and 3. Theorems 2 and 3 are proved in $\S 3$ and $\S 4$ respectively.

The author would like to express his sincere gratitude to the referee for making valuable suggestions. He also wishes to thank S. Izumiya for sending a useful hand-written note [10].

2. Preliminaries

We put

$$
U(s)=\left(\mathbf{u}_{0}(s)^{t}, \mathbf{u}_{1}(s)^{t}, \ldots, \mathbf{u}_{n}(s)^{t}\right)
$$

where $\mathbf{u}_{i}(s)^{t}$ means the transposed vector of $\mathbf{u}_{i}(s)$. We further put

$$
K(s)=\left(\begin{array}{ccccccc}
0 & \kappa_{1}(s) & 0 & \cdots & 0 & 0 & 0 \\
-\kappa_{1}(s) & 0 & \kappa_{2}(s) & \ddots & 0 & 0 & 0 \\
0 & -\kappa_{2}(s) & 0 & \ddots & 0 & 0 & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \ddots & 0 & \kappa_{n-1}(s) & 0 \\
0 & 0 & 0 & \ddots & -\kappa_{n-1}(s) & 0 & \kappa_{n}(s) \\
0 & 0 & 0 & \cdots & 0 & -\kappa_{n}(s) & 0
\end{array}\right) .
$$

Then, the following Serret Frenet type formula holds.
LEMMA 2.1. ([17])

$$
\frac{d}{d s} U(s)^{t}=K(s) U(s)^{t}
$$

By Lemma 2.1 we see that the dual curve \mathbf{u}_{n} is non-singular at 0 if and only if $\kappa_{n}(0) \neq 0$. By using Lemma 2.1 again and again we obtain the following:
LEMMA 2.2. Suppose that κ_{n} has an A_{k} type singularity at $0(k \leq n-1)$. Then, for any $i(0 \leq i \leq n-1)$ properties $\mathbf{u}_{i}(0) \cdot \mathbf{u}_{n}^{(\ell)}(0)=0(0 \leq \ell \leq n-i+k)$ and $\mathbf{u}_{i}(0) \cdot \mathbf{u}_{n}^{(n-i+k+1)}(0) \neq 0$ hold.

Lemma 2.3. ([17]) The pedal curve of \mathbf{r} relative to the pedal point P is given by the following expression:

$$
\operatorname{ped}_{\mathbf{r}, P}(s)=\frac{1}{\sqrt{1-\left(P \cdot \mathbf{u}_{n}(s)\right)^{2}}}\left(P-\left(P \cdot \mathbf{u}_{n}(s)\right) \mathbf{u}_{n}(s)\right) .
$$

Let Ψ_{P} be the C^{∞} map from $S^{n}-\{ \pm P\}$ to S^{n} given by

$$
\Psi_{P}(\mathbf{x})=\frac{1}{\sqrt{1-(P \cdot \mathbf{x})^{2}}}(P-(P \cdot \mathbf{x}) \mathbf{x}) .
$$

We see that the image $\Psi_{P}\left(S^{n}-\{ \pm P\}\right)$ is inside the open hemisphere centered at P. Let this open hemisphere be denoted by X_{P} and set $B_{P}=\pi\left(S^{n}-\right.$ $\{ \pm P\})$, where $\pi: S^{n} \rightarrow P^{n}(\mathbf{R})$ is the canonical projection. Since $\Psi_{P}(\mathbf{x})=$ $\Psi_{P}(-\mathbf{x})$, the map Ψ_{P} canonically induces the map $\widetilde{\Psi}_{P}: B_{P} \rightarrow X_{P}$. Then, Lemma 2.3 shows that $\operatorname{ped}_{\mathbf{r}, P}$ is factored into three maps in the following way:

$$
\operatorname{ped}_{\mathbf{r}, P}(s)=\widetilde{\Psi}_{P} \circ \pi \circ \mathbf{u}_{n}(s) .
$$

Let $p: B \rightarrow \mathbf{R}^{n}$ be the blow up centered at the origin.
Lemma 2.4. ([17]) Let P be a point of S^{n}. Then, there exist C^{∞} diffeomorphisms $h_{1}: B_{P} \rightarrow B$ and $h_{2}: X_{P} \rightarrow \mathbf{R}^{n}$ such that the equality $h_{2} \circ \widetilde{\Psi}_{P}=p \circ h_{1}$ holds and the set $\left\{[\mathbf{x}] \in B_{P} \mid \mathbf{x} \cdot P=0, \mathbf{x} \in S^{n}\right\}$ is mapped to the exceptional set of p by h_{1}.

Next, we prepare several notions and notations of Mather theory ([11], [12], [13], [14], [15], [16]) which are already common in singularity theory of differentiable mappings. An excellent survey article on Mather theory is [23] which we recommend to the readers.

For any positive integer r let \mathcal{E}_{r} be the \mathbf{R}-algebra of all C^{∞} functiongerms at the origin of \mathbf{R}^{r} with usual operations, and let m_{r} be the unique maximal ideal of \mathcal{E}_{r}.

For any positive integers p, q given a C^{∞} map-germ $f:\left(\mathbf{R}^{p}, 0\right) \rightarrow\left(\mathbf{R}^{q}, 0\right)$, we let $\theta(f)$ be the \mathcal{E}_{p}-module of vector fields along f. We may identify $\theta(f)$ with \mathcal{E}_{p}^{q}. For any positive integer r we put $\theta(r)=\theta\left(i d \cdot \mathbf{R}^{r}\right)$, where $i d \cdot \mathbf{R}^{r}$ is the identity map-germ of \mathbf{R}^{r} at the origin. An element of $m_{p}^{\ell} \theta(f)$ is a vector field along f such that the Taylor polynomial up to $(\ell-1)$-th degree of it at the origin is zero. The map $f^{*}: \mathcal{E}_{q} \rightarrow \mathcal{E}_{p}$ is defined by $f^{*}(u)=u \circ f$. Two homomorphisms $t f$ ($t f$ is an \mathcal{E}_{p}-homomorphism) and ωf (ωf is an \mathcal{E}_{q}-homomorphism via f^{*}) are defined in the following way:

$$
\begin{aligned}
t f: \theta(p) & \rightarrow \theta(f), \quad t f(a) \\
\omega f: \theta(q) & \rightarrow \theta(f), \quad \omega f(b)=b \circ f,
\end{aligned}
$$

where $d f$ is the differential of f. We put

$$
\begin{aligned}
T \mathcal{L}(f)=\omega f\left(m_{q} \theta(q)\right), & T \mathcal{C}(f)=f^{*} m_{q} \theta(f) \\
T \mathcal{A}(f)=t f\left(m_{p} \theta(p)\right)+\omega f\left(m_{q} \theta(q)\right), & T \mathcal{K}(f)=t f\left(m_{p} \theta(p)\right)+f^{*} m_{q} \theta(f)
\end{aligned}
$$

The Taylor polynomial up to r-th degree at the origin of f is called r jet of f at the origin and is denoted by $j^{r} f(0)$.

Two map-germs $f, g:\left(\mathbf{R}^{p}, 0\right) \rightarrow\left(\mathbf{R}^{q}, 0\right)$ are said to be \mathcal{A}-equivalent (resp. \mathcal{L}-equivalent) if there exist germs of C^{∞} diffeomorphisms $h_{s}:\left(\mathbf{R}^{p}, 0\right) \rightarrow$ $\left(\mathbf{R}^{p}, 0\right)$ and $h_{t}:\left(\mathbf{R}^{q}, 0\right) \rightarrow\left(\mathbf{R}^{q}, 0\right)$ (resp. a germ of C^{∞} diffeomorphism $\left.h_{t}:\left(\mathbf{R}^{q}, 0\right) \rightarrow\left(\mathbf{R}^{q}, 0\right)\right)$ such that $g=h_{t} \circ f \circ h_{s}^{-1}\left(\right.$ resp. $\left.g=h_{t} \circ f\right)$. A C^{∞} map-germ $f:\left(\mathbf{R}^{p}, 0\right) \rightarrow\left(\mathbf{R}^{q}, 0\right)$ is said to be r - \mathcal{A}-determined (resp. r - \mathcal{L} determined) if f is \mathcal{A}-equivalent (resp. \mathcal{L}-equivalent) to any C^{∞} map-germ g with $j^{r} f(0)=j^{r} g(0)$, and is said to be finitely \mathcal{A}-determined (resp. finitely \mathcal{L}-determined) if f is r - \mathcal{A}-determined (resp. r - \mathcal{L}-determined) by a certain r.

3. Proof of Theorem 2

By composing suitable rotations of S^{n} to \mathbf{r} if necessary, from the first we may assume that $\mathbf{u}_{0}(0)=(0, \ldots, 0,1), \mathbf{u}_{1}(0)=(0, \ldots, 0,1,0), \ldots$, $\mathbf{u}_{n-1}(0)=(0,1,0, \ldots, 0)$ and $\mathbf{u}_{n}(0)=\left((-1)^{\alpha}, 0, \ldots, 0\right)$ where $\alpha=\frac{(n-1) n}{2}$. Suppose that κ_{n} has an \mathcal{A}_{k}-type singularity at $0(0 \leq k \leq n-1)$. Then, by Lemma 2.2, we see that the lowest degree of non-zero terms of $u_{i n}(1 \leq i \leq n)$ is $i+k+1$ for the component function germ $u_{i n}$ of the dual curve germ $\mathbf{u}_{n}=\left(u_{0 n}, \ldots, u_{n n}\right):(I, 0) \rightarrow S^{n}$.

The assumption that P is a point of $S_{\mathbf{u}_{n}(0)}^{n}-S_{\mathbf{u}_{n-1}(0)}^{n-1}$ implies that the scalar product $\mathbf{u}_{n}(0) \cdot P$ is not zero. Therefore, by Lemma 2.4 the germ of $\widetilde{\Psi}_{P}:\left(P^{n}(\mathbf{R}), \pi \circ \mathbf{u}(0)\right) \rightarrow S^{n}$ is a germ of C^{∞} diffeomorphism. It is clear that the canonical projection $\pi: S^{n} \rightarrow P^{n}(\mathbf{R})$ is a local C^{∞} diffeomorphism. Thus, in the case of Theorem 2, the map-germ $\operatorname{ped}_{\mathbf{r}, P}:(I, 0) \rightarrow S^{n}$ is C^{∞} left equivalent to the map-germ $\left(u_{1 n}, \ldots, u_{n n}\right):(I, 0) \rightarrow \mathbf{R}^{n}$ given by

$$
s \mapsto\left(s^{k+2}+\varphi_{1}(s), s^{k+3}+\varphi_{2}(s), \ldots, s^{k+n+1}+\varphi_{n}(s)\right),
$$

where $\varphi_{j}(s)=o\left(s^{k+n+1}\right)(1 \leq j \leq n)$.
Proof of the assertion 1 of Theorem 2. From the arguments above, the map-germ ped $_{\mathbf{r}, P}$ is C^{∞} left equivalent to $\psi(s)=\left(s^{k+2}+\psi_{1}(s), s^{k+3}+\right.$ $\left.\psi_{2}(s), \ldots, s^{k+n+1}+\psi_{n}(s)\right)$ where $\psi_{j}(s)=o\left(s^{k+n+1}\right)$.

Put $f(s)=s^{k+2}$ and apply the Malgrange preparation theorem (for instance, see [6], [7], [9], [23]) to $m_{1}^{k+2} \mathcal{E}_{1}$ and f. Then we see that for any function-germ $g \in m_{1}^{k+2} \mathcal{E}_{1}$ there exists a certain C^{∞} function-germ ψ such that

$$
g(s)=\psi\left(s^{k+2}, \ldots, s^{2 k+3}\right)
$$

Note that $2 k+3 \leq k+n+1$ in the case of the assertion 1 of Theorem 2 . Thus, for our map-germ $\operatorname{ped}_{\mathbf{r}, P}:(I, 0) \rightarrow\left(S^{n}, \operatorname{ped}_{\mathbf{r}, P}(0)\right)$ there exists a germ of C^{∞} diffeomorphism $h_{t}:\left(S^{n}, \operatorname{ped}_{\mathbf{r}, P}(0)\right) \rightarrow\left(\mathbf{R}^{n}, 0\right)$ such that

$$
h_{t} \circ \operatorname{ped}_{\mathbf{r}, P}(s)=(\underbrace{s^{k+2}, s^{k+3}, \ldots, s^{2 k+3}}_{(k+2) \text { elements }}, \underbrace{0, \ldots, 0}_{(n-k-2) \text { elements }}) .
$$

Note that in the case of the assertion 1 of Theorem 2 the following equalities hold:

$$
T \mathcal{K}\left(\operatorname{ped}_{\mathbf{r}, P}\right)=T \mathcal{C}\left(\operatorname{ped}_{\mathbf{r}, P}\right)=T \mathcal{A}\left(\operatorname{ped}_{\mathbf{r}, P}\right)=T \mathcal{L}\left(\operatorname{ped}_{\mathbf{r}, P}\right) .
$$

Proof of the assertion 2 of Theorem 2. It sufficies to show that

$$
f(s)=\left(s^{n+1}, \ldots, s^{2 n}\right)
$$

is $2 n$ - \mathcal{A}-determined.
Since $n+1$ and $n+2$ are relatively prime, we see that $\operatorname{gcd}(n+1, \ldots, 2 n)$ $=1$, where gcd means the greatest common divisor. Thus, the map $f_{\mathbf{C}}(z)=$ $\left(z^{n+1}, \ldots, z^{2 n}\right) \quad(z \in \mathbf{C})$, which is the complexification of f, is injective. From this and the fact that $f_{\mathbf{C}}$ has an isolated singularity at the origin, by the geometric characterization of finite determinacy due to Mather and Gaffney (see $\S 2$ of [23]) we see that f is finitely \mathcal{L}-determined. Hence, in order to show that f is $2 n$ - \mathcal{A}-determined it is sufficient to show that

$$
m_{1}^{2 n+1} \theta(f+h) \subset T \mathcal{A}(f+h)
$$

for any C^{∞} map-germ $h:(I, 0) \rightarrow \mathbf{R}^{n}$ such that $j^{2 n} h(0)=0$ by Mather's lemma (Corollary 3.2 of [14], see also $\S 4$ of [23]).

Let $h:(I, 0) \rightarrow \mathbf{R}^{n}$ be a C^{∞} map-germ such that $j^{2 n} h(0)=0$. Then, we see easily that the following holds.

$$
f^{*} m_{n} \mathcal{E}_{1}=(f+h)^{*} m_{n} \mathcal{E}_{1}+f^{*} m_{n}^{2} \mathcal{E}_{1} .
$$

Thus, by Nakayama's lemma (for instance, see [6], [7], [9], [23]) we see that

$$
f^{*} m_{n} \mathcal{E}_{1}=(f+h)^{*} m_{n} \mathcal{E}_{1},
$$

and therefore both sets are equal to $m_{1}^{n+1} \mathcal{E}_{1}$. Consider generators of the following quotient vector space:

$$
\frac{(f+h)^{*} m_{n} \theta(f+h)}{(f+h)^{*} m_{n}^{2} \theta(f+h)}
$$

Since we see easily that

$$
s^{2 n+1} \frac{\partial}{\partial X_{\ell}} \in T \mathcal{A}(f+h)+(f+h)^{*} m_{n}^{2} \theta(f+h) \quad(1 \leq \ell \leq n)
$$

where $\left(X_{1}, \ldots, X_{n}\right) \in \mathbf{R}^{n}$, we have that

$$
(f+h)^{*} m_{n} \theta(f+h) \subset T \mathcal{A}(f+h)+(f+h)^{*} m_{n}^{2} \theta(f+h) .
$$

Apply the Malgrange preparation theorem to $(f+h)^{*} m_{n} \theta(f+h)$ and $f+h$. Then, we have the following desired inclusion:
$m_{1}^{2 n+1} \theta(f+h) \subset m_{1}^{n+1} \theta(f+h)=(f+h)^{*} m_{n} \theta(f+h) \subset T \mathcal{A}(f+h)$.
Note that in the case of the assertion 2 of Theorem 2 the following equalities hold but the equality for $T \mathcal{L}\left(\right.$ ped $\left._{\mathbf{r}, P}\right)$ does not hold:

$$
T \mathcal{K}\left(\operatorname{ped}_{\mathbf{r}, P}\right)=T \mathcal{C}\left(\text { ped }_{\mathbf{r}, P}\right)=T \mathcal{A}\left(\text { ped }_{\mathbf{r}, P}\right) .
$$

4. Proof of Theorem 3

Since $\left\{S_{\mathbf{u}_{n}(0)}^{n}-S_{\mathbf{u}_{n-1}(0)}^{n-1}, S_{\mathbf{u}_{n-1}(0)}^{n-1}-S_{\mathbf{u}_{n-2}(0)}^{n-2}, \ldots, S_{\mathbf{u}_{0}(0)}^{0}-S_{\mathbf{u}_{-1}(0)}^{-1}\right\}$ gives a stratification of $S^{n}-\left\{ \pm \mathbf{u}_{n}(0)\right\}$, the "if" parts of the assertions 1-3 of Theorem 3 follow from the corresponding "only if" parts. Moreover, since the "only if" part of the first assertion of Theorem 3 is contained in the assertion 1 of Theorem 2, we just need to show the "only if" parts of the assertions 2 and 3 of Theorem 3.

By composing suitable rotations of S^{n} to \mathbf{r} if necessary, we may assume that $\mathbf{u}_{0}(0)=(0, \ldots, 0,1), \mathbf{u}_{1}(0)=(0, \ldots, 0,1,0), \ldots, \mathbf{u}_{n-1}(0)=$ $(0,1,0, \ldots, 0)$ and $\mathbf{u}_{n}(0)=\left((-1)^{\alpha}, 0, \ldots, 0\right)$, where $\alpha=\frac{(n-1) n}{2}$. Since κ_{n} has an A_{0}-type singularity at 0 , by Lemma 2.2 we see that the lowest degree of non-zero terms of $u_{i n}(1 \leq i \leq n)$ is $i+1$ for the component function-germ $u_{i n}(1 \leq i \leq n)$ of the map-germ $\mathbf{u}_{n}=\left(u_{0 n}, u_{1 n}, \ldots, u_{n n}\right):(I, 0) \rightarrow S^{n}$. Thus, the map-germ $\left(u_{1 n}, u_{2 n}, \ldots, u_{n n}\right):(I, 0) \rightarrow\left(\mathbf{R}^{n}, 0\right)$ has the following form:

$$
s \mapsto\left(s^{2}+\varphi_{1}(s), s^{3}+\varphi_{2}(s), \ldots, s^{n+1}+\varphi_{n}(s)\right),
$$

where $\varphi_{j}(s)=o\left(s^{j+1}\right)(1 \leq j \leq n)$.
Proof of the "only if" part of the assertion 2 in Theorem 3. In the case of the assertion 2 of Theorem 3, by Lemmas 2.3 and 2.4 the map-germ $\operatorname{ped}_{\mathbf{r}, P}:(I, 0) \rightarrow S^{n}$ is C^{∞} left equivalent to

$$
s \mapsto\left(\alpha_{1}(s), \ldots, \alpha_{n}(s)\right),
$$

where the function-germ α_{j} can be written as

$$
\alpha_{j}(s)= \begin{cases}s^{i+j+2}+\psi_{j}(s) & (1 \leq j \leq i-1), \\ s^{i+1}+\psi_{j}(s) & (j=i), \\ s^{i+j+2}+\psi_{j}(s) & (i+1 \leq j \leq n),\end{cases}
$$

where $\psi_{j}(s)=o\left(s^{i+j+2}\right)(1 \leq j \leq n, j \neq i)$ and $\psi_{i}(s)=o\left(s^{i+1}\right)$.
Lemma 4.1. (Theorem 3.3 of [8]) Let $f:(\mathbf{R}, 0) \rightarrow \mathbf{R}$ be a C^{∞} functiongerm. Suppose that $f(0)=f^{\prime}(0)=\cdots=f^{(i)}(0)=0$ and $f^{(i+1)}(0) \neq 0$. Then there exists a germ of C^{∞} diffeomorphism $h:(\mathbf{R}, 0) \rightarrow(\mathbf{R}, 0)$ such
that $f(h(s))= \pm s^{i+1}$, where we have + or - according as $f^{(i+1)}(0)$ is >0 or <0.

Note that we can truncate the term of degree $2 i+2$ in ψ_{j} by subtracting α_{i}^{2} since $2 i+2=2(i+1)$. Thus, by using Lemma 4.1 and coordinate transformations of \mathbf{R}^{n}, we see that the map-germ $\operatorname{ped}_{\mathbf{r}, P}:(I, 0) \rightarrow S^{n}$ is C^{∞} right-left equivalent to the map-germ $s \mapsto\left(\beta_{1}(s), \ldots, \beta_{n}(s)\right)$, where the function-germ β_{j} can be written as

$$
\beta_{j}(s)= \begin{cases}s^{i+j+2}+\widetilde{\psi}_{j}(s) & (j \neq i) \\ s^{i+1} & (j=i)\end{cases}
$$

where $\widetilde{\psi}_{j}(s)$ is $o\left(s^{i+n+2}\right)$. Note that $2 i+3 \leq i+n+2$ since $i \leq n-1$. Thus, in order to finish the proof of the "only if" part of the assertion 2 in Theorem 3, it is enough to show that

$$
f(s)=(\underbrace{\left(s^{i+3}, s^{i+4}, \ldots, s^{2 i+1}\right.}_{(i-1) \text { elements }}, s^{i+1}, s^{2 i+3}, \underbrace{0, \ldots, 0}_{(n-i-1) \text { elements }})
$$

is $(2 i+3)$ - \mathcal{L}-determined.
Since $i+1$ and $2 i+3$ are relatively prime, we have that

$$
\operatorname{gcd}(\underbrace{i+3, i+4, \ldots, 2 i+1}_{(i-1) \text { elements }}, i+1,2 i+3)=1 \text {. }
$$

Thus, f is finitely \mathcal{L}-determined by the geometric characterization of finite determinacy due to Mather and Gaffney. Therefore, in order to show that f is $(2 i+3)$ - \mathcal{L}-determined it is sufficient to show that

$$
m_{1}^{2 i+4} \theta(f+h) \subset T \mathcal{L}(f+h)
$$

for any C^{∞} map-germ $h:(I, 0) \rightarrow \mathbf{R}^{n}$ such that $j^{2 i+3} h(0)=0$ by Mather's lemma.

Let a_{1}, \ldots, a_{p} be positive integers such that $\operatorname{gcd}\left(a_{1}, \ldots, a_{p}\right)=1$. Then, it is well-known that there exists the smallest integer $K\left(a_{1}, \ldots, a_{p}\right)$ such that the linear equation $\sum_{j=1}^{p} a_{j} x_{j}=b$ has a non-negative integer solution $\left(x_{1}, \ldots, x_{p}\right) \in \mathbf{Z}_{+}^{p}$ for any integer $b \geq K\left(a_{1}, \ldots, a_{p}\right)$ (see, for instance, the comment of the problem 1999-8 in [5]. For more details on the number $K\left(a_{1}, \ldots, a_{p}\right)$, see [2], [3], [4], [5]). From the view point of singularity theory of differentiable mappings the integer $K\left(a_{1}, \ldots, a_{p}\right)$ is the smallest integer d such that the inclusion $m_{1}^{d} \theta(g) \subset T \mathcal{L}(g)$ is satisfied for $g(s)=\left(s^{a_{1}}, \ldots, s^{a_{p}}\right)$.

Suppose that $K(\underbrace{i+3, i+4, \ldots, 2 i+1}_{(i-1) \text { elements }}, i+1,2 i+3)=i+3$. Then, since $2 i+4 \geq i+3$, by this supposition we have that

$$
m_{1}^{2 i+4} \theta(f+h) \subset T \mathcal{L}(f+h)+m_{1}^{2(2 i+4)} \theta(f+h)
$$

Thus, by the Malgrange preparation theorem we have the following desired inclusion:

$$
m_{1}^{2 i+4} \theta(f+h) \subset T \mathcal{L}(f+h) .
$$

Therefore, in order to finish the proof of the "only if" part of the assertion 2 in Theorem 3, it is enough to show the following lemma:

Lemma 4.2. $K(\underbrace{i+3, i+4, \ldots, 2 i+1}_{(i-1) \text { elements }}, i+1,2 i+3)=i+3$.
Proof of Lemma 4.2. In the case that $i=1$ Lemma 4.2 holds by the Sylvester duality ([22], see also the comment of the problem 1999-8 in [5]). Thus, in the following we assume that $i \geq 2$.

It is clear that there does not exist non-negative integers k_{1}, \ldots, k_{i+1} such that $i+2=k_{1}(i+3)+k_{2}(i+4)+\cdots+k_{i-1}(2 i+1)+k_{i}(i+1)+k_{i+1}(2 i+$ 3). Thus, it sufficies to show that $m_{1}^{i+3} \theta(f) \subset T \mathcal{L}(f)$, which is equivalent to $m_{1}^{i+3} \theta(f) \subset T \mathcal{L}(f)+m_{1}^{2(i+3)} \theta(f)$ by an application of the Malgrange preparation theorem similar as in the proof of the assertion 1 of Theorem 2.

We have that $2 i+2=2(i+1), 2 i+4=(i+3)+(i+1)$ and $2 i+5$ is $3(i+1)$ if $i=2$ and $(i+4)+(i+1)$ if $i \geq 3$. Therefore, the inclusion $m_{1}^{i+3} \theta(f) \subset T \mathcal{L}(f)+m_{1}^{2(i+3)} \theta(f)$ holds.

Proof of the "only if" part of the assertion 3 in Theorem 3. In the case of the assertion 3 of Theorem 3, by Lemmas 2.3 and 2.4 the map-germ $p e d_{\mathbf{r}, P}:(I, 0) \rightarrow S^{2}$ is C^{∞} left equivalent to the following:

$$
s \mapsto(\underbrace{s^{n+3}+\psi_{1}(s), s^{n+4}+\psi_{2}(s), \ldots, s^{2 n+1}+\psi_{n-1}(s)}_{(n-1) \text { elements }}, s^{n+1}+\psi_{n}(s)),
$$

where $\psi_{j}(s)=o\left(s^{n+j+2}\right)(1 \leq j \leq n-1)$ and $\psi_{n}(s)=o\left(s^{n+1}\right)$. By using Lemma 4.1 and coordinate transformations of \mathbf{R}^{n}, we see that the map-germ ped $_{\mathbf{r}, P}:(I, 0) \rightarrow S^{n}$ is C^{∞} right-left equivalent to the following:

$$
s \mapsto(\underbrace{s^{n+3}+\widetilde{\psi}_{1}(s), s^{n+4}+\widetilde{\psi}_{2}(s), \ldots, s^{2 n+1}+\widetilde{\psi}_{n-1}(s)}_{(n-1) \text { elements }}, s^{n+1}),
$$

where $\widetilde{\psi}_{j}(s)=o\left(s^{2 n+1}\right)(1 \leq j \leq n-1)$. Thus, in order to finish the proof of the "only if" part of the assertion 3 in Theorem 3, it sufficies to show that

$$
f(s)=(\underbrace{s^{n+3}, s^{n+4}, \ldots, s^{2 n+1}}_{(n-1) \text { elements }}, s^{n+1})
$$

is $(2 n+1)$ - \mathcal{A}-determined.

Since $n+1$ and $2 n+1$ are relatively prime, we have that

$$
\operatorname{gcd}(\underbrace{n+3, n+4, \ldots, 2 n+1}_{(n-1) \text { elements }}, n+1)=1 .
$$

Thus, f is finitely \mathcal{L}-determined by the geometric characterization of finite determinacy due to Mather and Gaffney. Therefore, in order to show that f is $(2 n+1)$ - \mathcal{A}-determined it is sufficient to show that

$$
m_{1}^{2 n+2} \theta(f+h) \subset T \mathcal{A}(f+h)
$$

for any C^{∞} map-germ $h:(I, 0) \rightarrow \mathbf{R}^{n}$ such that $j^{2 n+1} h(0)=0$ by Mather's lemma.

For any C^{∞} map-germ $h:(I, 0) \rightarrow \mathbf{R}^{n}$ such that $j^{2 n+1} h(0)=0$, the following holds clearly.

$$
f^{*} m_{n} \mathcal{E}_{1}=(f+h)^{*} m_{n} \mathcal{E}_{1}+f^{*} m_{n}^{2} \mathcal{E}_{1} .
$$

Thus, by Nakayama's lemma we see that

$$
f^{*} m_{n} \mathcal{E}_{1}=(f+h)^{*} m_{n} \mathcal{E}_{1}
$$

and therefore both sets are equal to $m_{1}^{n+1} \mathcal{E}_{1}$.
Suppose that $K(\underbrace{n+3, n+4, \ldots, 2 n+1}_{(n-1) \text { elements }}, n+1)=2 n+4$. Then, by this supposition and the fact that $2 n+2=2(n+1)$ we have that $s^{j} \frac{\partial}{\partial X_{\ell}} \in T \mathcal{L}(f+h)+(f+h)^{*} m_{n}^{3} \theta(f+h) \quad(2 n+2 \leq j, j \neq 2 n+3,1 \leq \ell \leq n)$. Furthermore, for $s^{2 n+3}$ we have that

$$
s^{2 n+3} \frac{\partial}{\partial X_{\ell}} \in T \mathcal{A}(f+h)+(f+h)^{*} m_{n}^{3} \theta(f+h) \quad(1 \leq \ell \leq n) .
$$

Thus, we have that

$$
(f+h)^{*} m_{n}^{2} \theta(f+h) \subset T \mathcal{A}(f+h)+(f+h)^{*} m_{n}^{3} \theta(f+h) .
$$

Hence, by the Malgrange preparation theorem we have the following desired inclusion:

$$
m_{1}^{2 n+2} \theta(f+h)=(f+h)^{*} m_{n}^{2} \theta(f+h) \subset T \mathcal{A}(f+h) .
$$

Therefore, in order to finish the proof of the "only if" part of the assertion 3 in Theorem 3, it is enough to show the following lemma:
Lemma 4.3. $K(\underbrace{n+3, n+4, \ldots, 2 n+1}_{(n-1) \text { elements }}, n+1)=2 n+4$.
Proof of Lemma 4.3. It is easy to see that there does not exist nonnegative integers k_{1}, \ldots, k_{n} such that $2 n+3=k_{1}(n+3)+k_{2}(n+4)+\cdots+$ $k_{n-1}(2 n+1)+k_{n}(n+1)$. Thus, it sufficies to show that $m_{1}^{2 n+4} \theta(f) \subset T \mathcal{L}(f)$,
which is equivalent to $m_{1}^{2 n+4} \theta(f) \subset T \mathcal{L}(f)+m_{1}^{4 n+8} \theta(f)$ by the Malgrange preparation theorem.

We have that $2 n+j=(n+j-1)+(n+1)(4 \leq j \leq n+2), 2 n+(n+3)=$ $3(n+1), 2 n+j=(j-1)+(2 n+1)(n+4 \leq j \leq 2 n+2), 2 n+(2 n+3)=(2 n+$ 1) $+2(n+1), 2 n+(2 n+4)=4(n+1), 2 n+(2 n+5)=(n+3)+(2 n+1)+(n+1)$, $2 n+(2 n+6)=(n+3)+3(n+1)$ and $2 n+(2 n+7)=2(n+3)+(2 n+1)$. Therefore, the inclusion $m_{1}^{2 n+4} \theta(f) \subset T \mathcal{L}(f)+m_{1}^{4 n+8} \theta(f)$ holds.

References

[1] V. I. Arnol'd, The geometry of spherical curves and the algebra of quaternions, Russian Math. Surveys 50 (1995), 1-68.
[2] V. I. Arnol'd, Simple singularities of curves, Proc. Steklov Inst. Math. 226 (1999), 20-28.
[3] V. I. Arnol'd, Weak asymptotics for the number of solutions of Diophantine problems, Functional Anal. Appl. 33 (1999), 292-293.
[4] V. I. Arnol'd, Frequent representations, Moscow Math. J. 3 (2003), 14.
[5] V. I. Arnol'd, Arnold's Problems, Springer-Verlag Phasis, Berlin, Moscow, 2005.
[6] V. I. Arnol'd, S. M. Gusein-Zade, A. N. Varchenko, Singularities of Differentiable Maps I, Monographs in Mathematics 82, Birkhäuser, Boston Basel Stuttgart, 1985.
[7] TH. Bröcker, L. C. Lander, Differentiable germs and catastrophes, London Mathematical Society Lecture Note Series 17, Cambridge University Press, Cambridge, 1975.
[8] J. W. Bruce, P. J. Giblin, Curves and Singularities (second edition), Cambridge University Press, Cambridge, 1992.
[9] M. Golubitsky, V. Guillemin, Stable Mappings and their Singularities, Graduate Texts in Mathematics no. 14, Springer-Verlag, Berlin, 1974.
[10] S. Izumiya, Hand-written note on spherical regular curves, 2000.
[11] J. Mather, Stability of C^{∞} mappings, I, The division theorem, Ann. of Math. 87 (1968), 89-104.
[12] J. Mather, Stability of C^{∞} mappings, II, Infinitesimal stability implies stability, Ann. of Math. 89 (1969), 259-291.
[13] J. Mather, Stability of C^{∞} mappings, III. Finitely determined map-germs, Publ. Math. I. H. E. S. 35 (1969), 127-156.
[14] J. Mather, Stability of C^{∞} mappings, IV, Classification of stable map-germs by Ralgebras, Publ. Math. I. H. E. S. 37 (1970), 223-248.
[15] J. Mather, Stability of C^{∞}-mappings V. Transversality, Adv. Math. 4 (1970), 301336.
[16] J. Mather, Stability of C^{∞}-mappings VI. The nice dimensions, Lecture Notes in Mathematics 192, C. T. C. Wall (eds.), Springer-Verlag, 1971, 207-253.
[17] T. Nishimura, Normal forms for singularities of pedal curves produced by non-singular dual curve germs in S^{n}, Geom. Dedicata 133 (2008), 59-66.
[18] T. Nishimura, A method to investigate $T \mathcal{A}(f), T \mathcal{L}(f)$ and its applications, RIMS Kôkyûroku 1610 (2008), 84-99.
[19] T. Nishimura, \mathcal{A}-simple multi-germs and \mathcal{L}-simple multi germs, Yokohama Math. J. 55 (2010), 93-104.
[20] T. Nishimura, K. Kitagawa, Classification of singularities of pedal curves in S^{2}, The Natural Sciences, Journal of the Faculty of Education and Human Sciences, Yokohama National University 10 (2008), 39-55 (available from http://hdl.handle.net/ 10131/4067).
[21] I. R. Porteous, Geometric Differentiation (second edition), Cambridge University Press, Cambridge, 2001.
[22] J. J. Sylvester, Mathematical questions with their solutions, Education Times 41 (1884), 21.
[23] C. T. C. Wall, Finite determinacy of smooth map-germs, Bull. London Math. Soc. 13 (1981), 481-539.

DEPARTMENT OF MATHEMATICS
FACULTY OF EDUCATION AND HUMAN SCIENCES
YOKOHAMA NATIONAL UNIVERSITY
YOKOHAMA 240-8501, JAPAN
E-mail: takashi@edhs.ynu.ac.jp

Received June 29, 2008.

[^0]: 2000 Mathematics Subject Classification: 57R45, 58C25, 53A40, 53A04.

