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SINGULARITIES OF PEDAL CURVES PRODUCED

BY SINGULAR DUAL CURVE GERMS IN Sn

Abstract. For an n-dimensional spherical unit speed curve r and a given point P ,
we can define naturally the pedal curve of r relative to the pedal point P . When the dual
curve germs are singular, singularity types of pedal curves depend on singularity types of
the n-th curvature function germs and the locations of pedal points. In this paper, we
investigate sigularity types of pedal curves in such cases.

1. Introduction

Let I be an open interval such that 0 ∈ I and Sn be the n-dimensional
unit sphere in R

n+1 (n ≥ 2). A C∞ non-singular map r : I → Sn is said
to be a spherical unit speed curve if each of the following ui(s) (1 ≤ i ≤
n− 1) is inductively well-defined for any s ∈ I, where initial information are
u−1(s) ≡ 0, u0(s) = r(s), ‖u′

0(s)‖ ≡ 1 and κ0(s) ≡ 0.

ui(s) =
u
′

i−1(s) + κi−1(s)ui−2(s)

‖u′

i−1(s) + κi−1(s)ui−2(s)‖
(1 ≤ i ≤ n− 1),

κi(s) = ‖u′

i−1(s) + κi−1(s)ui−2(s)‖ (1 ≤ i ≤ n− 1).

The function κi : I → R is called the i-th curvature function of r. For a
spherical unit speed curve two vectors ui(s) and uj(s) (0 ≤ i, j ≤ n − 1,
i 6= j) are perpendicular ([17]). Thus we can define one more vector un(s)
uniquely so that {u0(s),u1(s), . . . ,un(s)} is an orthogonal moving frame
and det(u0(s), . . . ,un(s)) = 1 for any s ∈ I. The map un : I → Sn, which
is called the dual curve of r ([1], [21]), defines the n-th curvature function in
the following way, where the dot in the center is the scalar product.

κn(s) = u
′

n−1(s) · un(s).

We see that the dual curve un is non-singular at s if and only if κn(s) 6= 0
(see §2).
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For any i (−1 ≤ i ≤ n), we put

Si
ui(s)

= (Sn − {±un(s)}) ∩ 〈u−1(s), . . . ,ui(s)〉R ,

where 〈u−1(s), . . . ,ui(s)〉R means the vector subspace spanned by the vec-
tors u−1(s), . . . ,ui(s). Given a spherical unit speed curve r : I → Sn,
choosing a point P of Sn −{±un(s) | s ∈ I} gives the map which maps s ∈ I

to the unique nearest point in Sn−1
un−1(s) from P . Such a map, which is called

the pedal curve relative to the pedal point P for an n-dimensional unit speed
curve r, is denoted by pedr,P . Note that since all points in Sn−1

un−1(s) are the

nearest points from ±un(s) the pedal point P for the map-germ pedr,P at s
must be outside {±un(s)}.

In [17] we have shown the following.

Theorem 1. ([17]) Let r : I → Sn be an n-dimensional spherical unit

speed curve. Suppose that κn(0) 6= 0. Then the following hold.

1. The pedal point P is inside Sn
un(0) − Sn−2

un−2(0) if and only if the map-germ

pedr,P : (I, 0) → Sn is C∞ left equivalent to the map-germ given by

s 7→ (s, 0, . . . , 0).
2. For any i (2 ≤ i ≤ n), the pedal point P is inside Sn−i

un−i(0) − Sn−i−1
un−i−1(0)

if and only if the map-germ pedr,P : (I, 0) → Sn is C∞ left equivalent to

the map-germ given by the following:

s 7→ (si, si+1, . . . , s2i−1

︸ ︷︷ ︸
i elements

, 0, . . . , 0︸ ︷︷ ︸
(n−i) elements

).

Here, two map-germs f, g : (R, 0) → (Rn, 0) are said to be C∞ left

equivalent if there exists a germ of C∞ diffeomorphism ht : (Rn, 0) → (Rn, 0)
such that the identity g = ht ◦ f is satisfied.

The purpose of this paper is to investigate singularities of pedal curves
when κn(0) = 0. We say that the n-th curvature function κn has an Ak-type

singularity at 0 (0 ≤ k < ∞) if κn(0) = κ′n(0) = · · · = κ
(k)
n (0) = 0 and

κ
(k+1)
n (0) 6= 0.

Theorem 2. Let r : I → Sn be an n-dimensional spherical unit speed

curve. Suppose that P ∈ Sn
un(0) − Sn−1

un−1(0). Then the following holds.

1. If κn has an Ak-type singularity at 0 (0 ≤ k ≤ n− 2), then the map-germ

pedr,P : (I, 0) → Sn is C∞ left equivalent to the map-germ given by

s 7→ (sk+2, sk+3, . . . , s2k+3

︸ ︷︷ ︸
(k+2) elements

, 0, . . . , 0︸ ︷︷ ︸
(n−k−2) elements

).
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2. If κn has an An−1-type singularity at 0, then the map-germ pedr,P :
(I, 0) → Sn is C∞ right-left equivalent to the map-germ given by

s 7→ (sn+1, sn+2, . . . , s2n).

Here, two map-germs f, g : (R, 0) → (Rn, 0) are said to be C∞ right-left

equivalent if there exist germs of C∞ diffeomorphisms hs : (R, 0) → (R, 0)
and ht : (Rn, 0) → (Rn, 0) such that the identity g = ht ◦f ◦h

−1
s is satisfied.

In the case that n = 2 Theorem 2 has been announced in [20]. In the
case that n ≥ 3 it seems to be almost impossible to obtain similar results
when κn has an An-type singularity at 0. We may observe its reason in the
following way. It is possible to show that pedr,P is C∞ right-left equivalent
to ϕ(s) = (sn+2, sn+3 + ϕ2(s), . . . , s

2n+1 + ϕn(s)) where ϕj(s) = o(s2n+1).
However, ϕ is not A-simple since in the case that n = 3 fencing curves due
to Arnol’d ([2]) have the form of ϕ and for n ≥ 3 the local multiplicity of

ϕ is more than n2

(n−1) which is an upper bound for the local multiplicity of

an A-simple map-germ; and the codimension of TA(ϕ) in TK(ϕ) is positive
(for the restriction on the local multiplicity of an A-simple map-germ, see
[18], [19]). Thus, there must exist strong restrictions on higher terms ϕj

which can be truncated.

Next, we investigate singularity types of pedal curves when P ∈ Sn−1
un−1(0)

.

We concentrate on the case that κn has an A0-type singularity at 0. Note
that κn has an A0-type singularity at 0 if and only if the function-germ
κn : (I, 0) → (R, 0) is non-singular, and the dual curve germ is an ordinary
cusp in this case.

Theorem 3. Let r : I → Sn be an n-dimensional spherical unit speed

curve. Suppose that κn has an A0-type singularity at 0. Then the following

hold.

1. The pedal point P is inside Sn
un(0) − Sn−1

un−1(0) if and only if the map-germ

pedr,P : (I, 0) → Sn is C∞ left equivalent to the map-germ given by

s 7→ (s2, s3, 0, . . . , 0).

2. For any i (1 ≤ i ≤ n−1), the pedal point P is inside Sn−i
un−i(0)−S

n−i−1
un−i−1(0) if

and only if the map-germ pedr,P : (I, 0) → Sn is C∞ right-left equivalent

to the map-germ given by

s 7→ (si+1, si+3, si+4, . . . , s2i+1

︸ ︷︷ ︸
(i−1) elements

, s2i+3, 0, . . . , 0︸ ︷︷ ︸
(n−i−1) elements

).

3. The pedal point P is inside S0
u0(0) − S−1

u−1(0) if and only if the map-germ
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pedr,P : (I, 0) → Sn is C∞ right-left equivalent to the map-germ given by

s 7→ (sn+1, sn+3, sn+4, . . . , s2n+1

︸ ︷︷ ︸
(n−1) elements

).

In the case that n = 2 the “only if" parts of Theorem 3 has been an-
nounced in [20]. Note that the first assertion of Theorem 2 yields only the
“only if" part of the first assertion of Theorem 3. By obtaining a complete
list of locations of pedal points inside Sn−1

un−1(0) and singularity types of pedal

curves (assertions 2 and 3 of Theorem 3) we can obtain “if" part of the first
assertion of Theorem 3.

In §2 we give several preparations to prove Theorems 2 and 3. Theorems
2 and 3 are proved in §3 and §4 respectively.

The author would like to express his sincere gratitude to the referee for
making valuable suggestions. He also wishes to thank S. Izumiya for sending
a useful hand-written note [10].

2. Preliminaries

We put
U(s) = (u0(s)

t,u1(s)
t, . . . ,un(s)t),

where ui(s)
t means the transposed vector of ui(s). We further put

K(s) =




0 κ1(s) 0 · · · 0 0 0

−κ1(s) 0 κ2(s)
. . . 0 0 0

0 −κ2(s) 0
. . . 0 0 0

...
. . .

. . .
. . .

. . .
. . .

...

0 0 0
. . . 0 κn−1(s) 0

0 0 0
. . . −κn−1(s) 0 κn(s)

0 0 0 · · · 0 −κn(s) 0




.

Then, the following Serret Frenet type formula holds.

Lemma 2.1. ([17])
d

ds
U(s)t = K(s)U(s)t.

By Lemma 2.1 we see that the dual curve un is non-singular at 0 if and
only if κn(0) 6= 0. By using Lemma 2.1 again and again we obtain the
following:

Lemma 2.2. Suppose that κn has an Ak type singularity at 0 (k ≤ n− 1).

Then, for any i (0 ≤ i ≤ n−1) properties ui(0)·u
(ℓ)
n (0) = 0 (0 ≤ ℓ ≤ n−i+k)

and ui(0) · u
(n−i+k+1)
n (0) 6= 0 hold.
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Lemma 2.3. ([17]) The pedal curve of r relative to the pedal point P is

given by the following expression:

pedr,P (s) =
1√

1 − (P · un(s))2
(P − (P · un(s))un(s)).

Let ΨP be the C∞ map from Sn − {±P} to Sn given by

ΨP (x) =
1√

1 − (P · x)2
(P − (P · x)x).

We see that the image ΨP (Sn−{±P}) is inside the open hemisphere centered
at P . Let this open hemisphere be denoted by XP and set BP = π(Sn −
{±P}), where π : Sn → Pn(R) is the canonical projection. Since ΨP (x) =

ΨP (−x), the map ΨP canonically induces the map Ψ̃P : BP → XP . Then,
Lemma 2.3 shows that pedr,P is factored into three maps in the following
way:

pedr,P (s) = Ψ̃P ◦ π ◦ un(s).

Let p : B → R
n be the blow up centered at the origin.

Lemma 2.4. ([17]) Let P be a point of Sn. Then, there exist C∞ dif-

feomorphisms h1 : BP → B and h2 : XP → R
n such that the equality

h2 ◦ Ψ̃P = p ◦ h1 holds and the set {[x] ∈ BP | x · P = 0, x ∈ Sn} is mapped

to the exceptional set of p by h1.

Next, we prepare several notions and notations of Mather theory ([11],
[12], [13], [14], [15], [16]) which are already common in singularity theory of
differentiable mappings. An excellent survey article on Mather theory is [23]
which we recommend to the readers.

For any positive integer r let Er be the R-algebra of all C∞ function-
germs at the origin of R

r with usual operations, and let mr be the unique
maximal ideal of Er.

For any positive integers p, q given a C∞ map-germ f : (Rp, 0) → (Rq, 0),
we let θ(f) be the Ep-module of vector fields along f . We may identify θ(f)
with Eq

p . For any positive integer r we put θ(r) = θ(id.Rr), where id.Rr is
the identity map-germ of R

r at the origin. An element of mℓ
pθ(f) is a vector

field along f such that the Taylor polynomial up to (ℓ − 1)-th degree of it
at the origin is zero. The map f∗ : Eq → Ep is defined by f∗(u) = u ◦ f .
Two homomorphisms tf (tf is an Ep-homomorphism) and ωf (ωf is an
Eq-homomorphism via f∗) are defined in the following way:

tf : θ(p) → θ(f), tf(a) = df ◦ a,

ωf : θ(q) → θ(f), ωf(b) = b ◦ f,
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where df is the differential of f . We put

TL(f) = ωf(mqθ(q)), TC(f) = f∗mqθ(f),

TA(f) = tf(mpθ(p)) + ωf(mqθ(q)), TK(f) = tf(mpθ(p)) + f∗mqθ(f).

The Taylor polynomial up to r-th degree at the origin of f is called r jet of

f at the origin and is denoted by jrf(0).

Two map-germs f, g : (Rp, 0) → (Rq, 0) are said to be A-equivalent (resp.
L-equivalent) if there exist germs of C∞ diffeomorphisms hs : (Rp, 0) →
(Rp, 0) and ht : (Rq, 0) → (Rq, 0) (resp. a germ of C∞ diffeomorphism
ht : (Rq, 0) → (Rq, 0)) such that g = ht ◦ f ◦ h−1

s (resp. g = ht ◦ f). A C∞

map-germ f : (Rp, 0) → (Rq, 0) is said to be r-A-determined (resp. r-L-
determined) if f is A-equivalent (resp. L-equivalent) to any C∞ map-germ
g with jrf(0) = jrg(0), and is said to be finitely A-determined (resp. finitely

L-determined) if f is r-A-determined (resp. r-L-determined) by a certain r.

3. Proof of Theorem 2

By composing suitable rotations of Sn to r if necessary, from the first
we may assume that u0(0) = (0, . . . , 0, 1), u1(0) = (0, . . . , 0, 1, 0), . . . ,

un−1(0) = (0, 1, 0, . . . , 0) and un(0) = ((−1)α, 0, . . . , 0) where α = (n−1)n
2 .

Suppose that κn has an Ak-type singularity at 0 (0 ≤ k ≤ n− 1). Then, by
Lemma 2.2, we see that the lowest degree of non-zero terms of uin (1 ≤ i ≤ n)
is i + k + 1 for the component function germ uin of the dual curve germ
un = (u0n, . . . , unn) : (I, 0) → Sn.

The assumption that P is a point of Sn
un(0) − Sn−1

un−1(0) implies that the

scalar product un(0) · P is not zero. Therefore, by Lemma 2.4 the germ of

Ψ̃P : (Pn(R), π ◦ u(0)) → Sn is a germ of C∞ diffeomorphism. It is clear
that the canonical projection π : Sn → Pn(R) is a local C∞ diffeomorphism.
Thus, in the case of Theorem 2, the map-germ pedr,P : (I, 0) → Sn is C∞

left equivalent to the map-germ (u1n, . . . , unn) : (I, 0) → R
n given by

s 7→ (sk+2 + ϕ1(s), s
k+3 + ϕ2(s), . . . , s

k+n+1 + ϕn(s)),

where ϕj(s) = o(sk+n+1) (1 ≤ j ≤ n).

Proof of the assertion 1 of Theorem 2. From the arguments above,
the map-germ pedr,P is C∞ left equivalent to ψ(s) = (sk+2 + ψ1(s), s

k+3 +
ψ2(s), . . . , s

k+n+1 + ψn(s)) where ψj(s) = o(sk+n+1).
Put f(s) = sk+2 and apply the Malgrange preparation theorem (for

instance, see [6], [7], [9], [23]) to mk+2
1 E1 and f . Then we see that for any

function-germ g ∈ mk+2
1 E1 there exists a certain C∞ function-germ ψ such

that

g(s) = ψ(sk+2, . . . , s2k+3).
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Note that 2k + 3 ≤ k + n + 1 in the case of the assertion 1 of Theorem 2.
Thus, for our map-germ pedr,P : (I, 0) → (Sn, pedr,P (0)) there exists a germ
of C∞ diffeomorphism ht : (Sn, pedr,P (0)) → (Rn, 0) such that

ht ◦ pedr,P (s) = (sk+2, sk+3, . . . , s2k+3

︸ ︷︷ ︸
(k+2) elements

, 0, . . . , 0︸ ︷︷ ︸
(n−k−2) elements

).

Note that in the case of the assertion 1 of Theorem 2 the following equal-
ities hold:

TK(pedr,P ) = TC(pedr,P ) = TA(pedr,P ) = TL(pedr,P ).

Proof of the assertion 2 of Theorem 2. It sufficies to show that

f(s) = (sn+1, . . . , s2n)

is 2n-A-determined.
Since n+1 and n+2 are relatively prime, we see that gcd(n+1, . . . , 2n)

= 1, where gcd means the greatest common divisor. Thus, the map fC(z) =
(zn+1, . . . , z2n) (z ∈ C), which is the complexification of f , is injective.
From this and the fact that fC has an isolated singularity at the origin,
by the geometric characterization of finite determinacy due to Mather and
Gaffney (see §2 of [23]) we see that f is finitely L-determined. Hence, in
order to show that f is 2n-A-determined it is sufficient to show that

m2n+1
1 θ(f + h) ⊂ TA(f + h)

for any C∞ map-germ h : (I, 0) → R
n such that j2nh(0) = 0 by Mather’s

lemma (Corollary 3.2 of [14], see also §4 of [23]).
Let h : (I, 0) → R

n be a C∞ map-germ such that j2nh(0) = 0. Then,
we see easily that the following holds.

f∗mnE1 = (f + h)∗mnE1 + f∗m2
nE1.

Thus, by Nakayama’s lemma (for instance, see [6], [7], [9], [23]) we see that

f∗mnE1 = (f + h)∗mnE1,

and therefore both sets are equal to mn+1
1 E1. Consider generators of the

following quotient vector space:

(f + h)∗mnθ(f + h)

(f + h)∗m2
nθ(f + h)

.

Since we see easily that

s2n+1 ∂

∂Xℓ

∈ TA(f + h) + (f + h)∗m2
nθ(f + h) (1 ≤ ℓ ≤ n)

where (X1, . . . , Xn) ∈ R
n, we have that

(f + h)∗mnθ(f + h) ⊂ TA(f + h) + (f + h)∗m2
nθ(f + h).
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Apply the Malgrange preparation theorem to (f +h)∗mnθ(f +h) and f +h.
Then, we have the following desired inclusion:

m2n+1
1 θ(f + h) ⊂ mn+1

1 θ(f + h) = (f + h)∗mnθ(f + h) ⊂ TA(f + h).

Note that in the case of the assertion 2 of Theorem 2 the following equal-
ities hold but the equality for TL(pedr,P ) does not hold:

TK(pedr,P ) = TC(pedr,P ) = TA(pedr,P ).

4. Proof of Theorem 3

Since {Sn
un(0) − Sn−1

un−1(0)
, Sn−1

un−1(0)
− Sn−2

un−2(0)
, . . . , S0

u0(0) − S−1
u−1(0)

} gives

a stratification of Sn − {±un(0)}, the “if" parts of the assertions 1–3 of
Theorem 3 follow from the corresponding “only if" parts. Moreover, since
the “only if” part of the first assertion of Theorem 3 is contained in the
assertion 1 of Theorem 2, we just need to show the “only if” parts of the
assertions 2 and 3 of Theorem 3.

By composing suitable rotations of Sn to r if necessary, we may as-
sume that u0(0) = (0, . . . , 0, 1), u1(0) = (0, . . . , 0, 1, 0), . . . , un−1(0) =

(0, 1, 0, . . . , 0) and un(0) = ((−1)α, 0, . . . , 0), where α = (n−1)n
2 . Since κn

has an A0-type singularity at 0, by Lemma 2.2 we see that the lowest degree
of non-zero terms of uin (1 ≤ i ≤ n) is i+1 for the component function-germ
uin (1 ≤ i ≤ n) of the map-germ un = (u0n, u1n, . . . , unn) : (I, 0) → Sn.
Thus, the map-germ (u1n, u2n, . . . , unn) : (I, 0) → (Rn, 0) has the following
form:

s 7→ (s2 + ϕ1(s), s
3 + ϕ2(s), . . . , s

n+1 + ϕn(s)),

where ϕj(s) = o(sj+1) (1 ≤ j ≤ n).

Proof of the “only if” part of the assertion 2 in Theorem 3. In the
case of the assertion 2 of Theorem 3, by Lemmas 2.3 and 2.4 the map-germ
pedr,P : (I, 0) → Sn is C∞ left equivalent to

s 7→ (α1(s), . . . , αn(s)),

where the function-germ αj can be written as

αj(s) =





si+j+2 + ψj(s) (1 ≤ j ≤ i− 1),

si+1 + ψj(s) (j = i),

si+j+2 + ψj(s) (i+ 1 ≤ j ≤ n),

where ψj(s) = o(si+j+2) (1 ≤ j ≤ n, j 6= i) and ψi(s) = o(si+1).

Lemma 4.1. (Theorem 3.3 of [8]) Let f : (R, 0) → R be a C∞ function-

germ. Suppose that f(0) = f ′(0) = · · · = f (i)(0) = 0 and f (i+1)(0) 6= 0.
Then there exists a germ of C∞ diffeomorphism h : (R, 0) → (R, 0) such
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that f(h(s)) = ±si+1, where we have + or − according as f (i+1)(0) is > 0
or < 0.

Note that we can truncate the term of degree 2i+2 in ψj by subtracting
α2

i since 2i + 2 = 2(i + 1). Thus, by using Lemma 4.1 and coordinate
transformations of R

n, we see that the map-germ pedr,P : (I, 0) → Sn is
C∞ right-left equivalent to the map-germ s 7→ (β1(s), . . . , βn(s)), where the
function-germ βj can be written as

βj(s) =

{
si+j+2 + ψ̃j(s) (j 6= i),

si+1 (j = i),

where ψ̃j(s) is o(si+n+2). Note that 2i + 3 ≤ i + n + 2 since i ≤ n − 1.
Thus, in order to finish the proof of the “only if” part of the assertion 2 in
Theorem 3, it is enough to show that

f(s) = ((si+3, si+4, . . . , s2i+1

︸ ︷︷ ︸
(i−1) elements

, si+1, s2i+3, 0, . . . , 0︸ ︷︷ ︸
(n−i−1) elements

)

is (2i+ 3)-L-determined.
Since i+ 1 and 2i+ 3 are relatively prime, we have that

gcd(i+ 3, i+ 4, . . . , 2i+ 1︸ ︷︷ ︸
(i−1) elements

, i+ 1, 2i+ 3) = 1.

Thus, f is finitely L-determined by the geometric characterization of finite
determinacy due to Mather and Gaffney. Therefore, in order to show that f
is (2i+ 3)-L-determined it is sufficient to show that

m2i+4
1 θ(f + h) ⊂ TL(f + h)

for any C∞ map-germ h : (I, 0) → R
n such that j2i+3h(0) = 0 by Mather’s

lemma.
Let a1, . . . , ap be positive integers such that gcd(a1, . . . , ap) = 1. Then,

it is well-known that there exists the smallest integer K(a1, . . . , ap) such
that the linear equation

∑p
j=1 ajxj = b has a non-negative integer solution

(x1, . . . , xp) ∈ Z
p
+ for any integer b ≥ K(a1, . . . , ap) (see, for instance, the

comment of the problem 1999-8 in [5]. For more details on the number
K(a1, . . . , ap), see [2], [3], [4], [5]). From the view point of singularity theory
of differentiable mappings the integer K(a1, . . . , ap) is the smallest integer d
such that the inclusion md

1θ(g) ⊂ TL(g) is satisfied for g(s) = (sa1 , . . . , sap).
Suppose that K(i+ 3, i+ 4, . . . , 2i+ 1︸ ︷︷ ︸

(i−1) elements

, i+ 1, 2i+ 3) = i+ 3. Then, since

2i+ 4 ≥ i+ 3, by this supposition we have that

m2i+4
1 θ(f + h) ⊂ TL(f + h) +m

2(2i+4)
1 θ(f + h).
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Thus, by the Malgrange preparation theorem we have the following desired
inclusion:

m2i+4
1 θ(f + h) ⊂ TL(f + h).

Therefore, in order to finish the proof of the “only if" part of the assertion 2
in Theorem 3, it is enough to show the following lemma:

Lemma 4.2. K(i+ 3, i+ 4, . . . , 2i+ 1︸ ︷︷ ︸
(i−1) elements

, i+ 1, 2i+ 3) = i+ 3.

Proof of Lemma 4.2. In the case that i = 1 Lemma 4.2 holds by the
Sylvester duality ([22], see also the comment of the problem 1999-8 in [5]).
Thus, in the following we assume that i ≥ 2.

It is clear that there does not exist non-negative integers k1, . . . , ki+1 such
that i+ 2 = k1(i+ 3) + k2(i+ 4) + · · ·+ ki−1(2i+ 1) + ki(i+ 1) + ki+1(2i+
3). Thus, it sufficies to show that mi+3

1 θ(f) ⊂ TL(f), which is equivalent

to mi+3
1 θ(f) ⊂ TL(f) + m

2(i+3)
1 θ(f) by an application of the Malgrange

preparation theorem similar as in the proof of the assertion 1 of Theorem 2.

We have that 2i + 2 = 2(i + 1), 2i + 4 = (i + 3) + (i + 1) and 2i + 5
is 3(i + 1) if i = 2 and (i + 4) + (i + 1) if i ≥ 3. Therefore, the inclusion

mi+3
1 θ(f) ⊂ TL(f) +m

2(i+3)
1 θ(f) holds.

Proof of the “only if” part of the assertion 3 in Theorem 3. In the
case of the assertion 3 of Theorem 3, by Lemmas 2.3 and 2.4 the map-germ
pedr,P : (I, 0) → S2 is C∞ left equivalent to the following:

s 7→ (sn+3 + ψ1(s), s
n+4 + ψ2(s), . . . , s

2n+1 + ψn−1(s)︸ ︷︷ ︸
(n−1) elements

, sn+1 + ψn(s)),

where ψj(s) = o(sn+j+2) (1 ≤ j ≤ n − 1) and ψn(s) = o(sn+1). By using
Lemma 4.1 and coordinate transformations of R

n, we see that the map-germ
pedr,P : (I, 0) → Sn is C∞ right-left equivalent to the following:

s 7→ (sn+3 + ψ̃1(s), s
n+4 + ψ̃2(s), . . . , s

2n+1 + ψ̃n−1(s)︸ ︷︷ ︸
(n−1) elements

, sn+1),

where ψ̃j(s) = o(s2n+1) (1 ≤ j ≤ n − 1). Thus, in order to finish the proof
of the “only if" part of the assertion 3 in Theorem 3, it sufficies to show that

f(s) = (sn+3, sn+4, . . . , s2n+1

︸ ︷︷ ︸
(n−1) elements

, sn+1)

is (2n+ 1)-A-determined.
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Since n+ 1 and 2n+ 1 are relatively prime, we have that

gcd(n+ 3, n+ 4, . . . , 2n+ 1︸ ︷︷ ︸
(n−1) elements

, n+ 1) = 1.

Thus, f is finitely L-determined by the geometric characterization of finite
determinacy due to Mather and Gaffney. Therefore, in order to show that f
is (2n+ 1)-A-determined it is sufficient to show that

m2n+2
1 θ(f + h) ⊂ TA(f + h)

for any C∞ map-germ h : (I, 0) → R
n such that j2n+1h(0) = 0 by Mather’s

lemma.
For any C∞ map-germ h : (I, 0) → R

n such that j2n+1h(0) = 0, the
following holds clearly.

f∗mnE1 = (f + h)∗mnE1 + f∗m2
nE1.

Thus, by Nakayama’s lemma we see that

f∗mnE1 = (f + h)∗mnE1

and therefore both sets are equal to mn+1
1 E1.

Suppose that K(n+ 3, n+ 4, . . . , 2n+ 1︸ ︷︷ ︸
(n−1) elements

, n+ 1) = 2n+ 4. Then, by this

supposition and the fact that 2n+ 2 = 2(n+ 1) we have that

sj ∂

∂Xℓ

∈ TL(f+h)+(f+h)∗m3
nθ(f+h) (2n+2 ≤ j, j 6= 2n+3, 1 ≤ ℓ ≤ n).

Furthermore, for s2n+3 we have that

s2n+3 ∂

∂Xℓ

∈ TA(f + h) + (f + h)∗m3
nθ(f + h) (1 ≤ ℓ ≤ n).

Thus, we have that

(f + h)∗m2
nθ(f + h) ⊂ TA(f + h) + (f + h)∗m3

nθ(f + h).

Hence, by the Malgrange preparation theorem we have the following desired
inclusion:

m2n+2
1 θ(f + h) = (f + h)∗m2

nθ(f + h) ⊂ TA(f + h).

Therefore, in order to finish the proof of the “only if" part of the assertion 3
in Theorem 3, it is enough to show the following lemma:

Lemma 4.3. K(n+ 3, n+ 4, . . . , 2n+ 1︸ ︷︷ ︸
(n−1) elements

, n+ 1) = 2n+ 4.

Proof of Lemma 4.3. It is easy to see that there does not exist non-
negative integers k1, . . . , kn such that 2n+ 3 = k1(n+ 3) + k2(n+ 4) + · · ·+
kn−1(2n+1)+kn(n+1). Thus, it sufficies to show that m2n+4

1 θ(f) ⊂ TL(f),
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which is equivalent to m2n+4
1 θ(f) ⊂ TL(f) +m4n+8

1 θ(f) by the Malgrange
preparation theorem.

We have that 2n+j = (n+j−1)+(n+1) (4 ≤ j ≤ n+2), 2n+(n+3) =
3(n+1), 2n+j = (j−1)+(2n+1) (n+4 ≤ j ≤ 2n+2), 2n+(2n+3) = (2n+
1)+2(n+1), 2n+(2n+4) = 4(n+1), 2n+(2n+5) = (n+3)+(2n+1)+(n+1),
2n+ (2n+ 6) = (n+ 3) + 3(n+ 1) and 2n+ (2n+ 7) = 2(n+ 3) + (2n+ 1).
Therefore, the inclusion m2n+4

1 θ(f) ⊂ TL(f) +m4n+8
1 θ(f) holds.
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