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Abstract
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1 Introduction

One way to describe the structure of partial cooperation in the context of cooperative games
is to specify sets of feasible coalitions with some appropriate properties. Algaba et al. (2000)
considered union stable structures as such sets. A union stable structure has the property that
the union of two intersecting feasible coalitions is also feasible, which can be interpreted as follows:
players who are common members of two feasible coalitions are able to act as intermediaries to
elicit cooperation among all the players in either of these coalitions, and so their union should
be a feasible unit of cooperation as well. As shown by Algaba et al. (2000), for a given set of
feasible coalitions, there exists a minimal union stable structure including the set. It consists
of feasible coalitions evoked by intermediaries as well as the original ones. Furthermore, such a
minimal union stable structure is unique. This implies that sets of feasible coalitions with the
same minimal union stable structure containing them form an equivalence class.

The union stable structures are essentially the domain of the Myerson value, as shown by
Algaba et al. (2001). The Myerson value introduced by Myerson (1977) is a solution for coopera-
tive games under the partial cooperation structures described by networks, i.e., sets of two-player
coalitions. Myerson (1980) and van den Nouweland et al. (1992) considered the partial coopera-
tion structures described by sets of coalitions (not necessarily two-player coalitions), and studied
the Myerson value for them. The Myerson value in the sense of Myerson (1980) and van den
Nouweland et al. (1992) assigns the same payoff vectors to all sets of coalitions belonging to the
same equivalence class represented by a minimal union stable structure, which implies that the
union stable structures are essentially the domain of the Myerson value. On the basis of this
observation, Algaba et al. (2001) introduced the Myerson value for union stable structures and
provided an axiomatization for it.

In this paper, we introduce complete coalition structures as sets of feasible coalitions. A
complete coalition structure has a property with the following interpretation: given a set of feasible
coalitions, if each pair of players in a group of players can work together in some feasible coalition
contained in the group, then the group itself becomes a feasible unit of cooperation. It can be
shown that any union stable structure is a complete coalition structure, but not every complete
coalition structure is a union stable structure. Thus, the complete coalition structures are a strictly
larger class than the union stable structures.

The study of complete coalition structures is motivated by our observation that the requirement
of union stable structures is too strong in some cases. Coming back to the above interpretation of
union stable structures, one may wish to describe a situation where the cost for the intermediaries
is too high to elicit cooperation because the two feasible coalitions contain a great number of
players with only a few common players. Also, it is interesting to consider a situation where only
limited communication channels are available because the distance or direction of communication
is restricted. For example, if players are located along a very long line and only adjacent players
can communicate, or if players are partially ordered (as in a hierarchical organization) and only
comparable players can communicate, then all the players may not be able to share the information
necessary for cooperation. Complete coalition structures can differentiate these situations, while
union stable structures cannot.

This paper proposes an extension of the Myerson value for complete coalition structures and
provides an axiomatization for it. The Myerson value for complete coalition structures coincides
with the Myerson value over the union stable structures, but it also assigns payoff vectors to those
complete coalition structures that are not union stable structures. Thus, it provides a method of
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more refined assignments of payoff vectors than the Myerson value for union stable structures.
The organization of the paper is as follows. Preliminary definitions and results are summarized

in Section 2. Complete coalition structures are introduced in Section 3. The main result is stated
in Section 4 and is proved in Section 5. Section 6 concludes.

2 Preliminaries

Let N = {1, . . . , n} be a set of players. A game v is a function from 2N to R with v(∅) = 0.
A nonempty subset S ∈ 2N is a coalition, and by convention, 2N is interpreted as the set of all
coalitions. The unanimity game on a coalition T is denoted by uT and defined as

uT (S) =

{
1 if T ⊆ S,

0 otherwise.

Each game v is uniquely represented as a linear combination of unanimity games (Shapley, 1953):

v =
∑

T∈2N

βT uT where βT =
∑
S⊆T

(−1)|T |−|S|v(S). (1)

The coefficient βT in (1) is called the dividend of a coalition T for the game v.
Let H ⊆ 2N be a set of coalitions. We write HS = {H ∈ H |H ⊆ S} and H−i = HN\{i} for

S ∈ 2N and i ∈ N , respectively. For a game v and a set of coalitions H, we consider another game
vH as defined below.

Definition 1 A game vH =
∑

T∈2N βH
T uT is the H-projected game of v if βH

T is determined
recursively by the following rule:

1. βH
{i} = v({i}) if {i} ∈ H and βH

{i} = 0 otherwise.

2. For T ∈ 2N with |T | ≥ 2, βH
T = v(T ) −

∑
S(T βH

S if T ∈ H and βH
T = 0 otherwise.

Note that the above rule is rewritten as vH(S) = v(S) for each S ∈ H and βH
T = 0 for each

T ̸∈ H. This implies the following lemma.

Lemma 1 The H-projected game vH =
∑

T∈2N βH
T uT is a unique game satisfying the following

conditions: vH(S) = v(S) for each S ∈ H and βH
T = 0 for each T ̸∈ H.

This lemma states that the H-projected game of v is in fact a projection in the following
sense. Let the space of all games be parametrized in such a way that the set of parameters of
v =

∑
T∈2N βT uT is {v(S)}S∈H∪{βT }T ̸∈H. The game vH is the orthogonal projection of v to the

subspace of games with βT = 0 for each T ̸∈ H.
The Shapley value of a game v is the payoff vector ϕ(v) ∈ RN given by the following formula

(Shapley, 1953):

ϕi(v) =
∑

S∈2N :i∈S

(|S| − 1)!(|N | − |S|)!
|N |!

(
v(S) − v(S\{i})

)
for each i ∈ N.

In particular, the Shapley value of uT is given by

ϕi(uT ) =

{
1/|T | if i ∈ T ,
0 otherwise.
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Since the Shapley value is linear in games, we have an alternative formula for the Shapley value
of v =

∑
T∈2N βT uT which is as follows:

ϕi(v) =
∑

T∈2N

βT ϕi(uT ) =
∑

T∈2N :i∈T

βT /|T |. (2)

For a game v, consider another game p satisfying∑
i∈S

(
p(S) − p(S\{i})

)
= v(S) (3)

for each S ∈ 2N . Hart and Mas-Colell (1989) showed that p exists uniquely and called it the
potential for v.1

Proposition 1 For a game v =
∑

T∈2N βT uT , there exists a unique game p satisfying (3), which
is given by

p =
∑

T∈2N

βT

|T |
uT .

Furthermore, the vector of the marginal contributions (p(N) − p(N\{i}))i∈N coincides with the
Shapley value of v; that is,

ϕi(v) = p(N) − p(N\{i}) for each i ∈ N.

3 Complete coalition structures

We regard H ⊆ 2N as a set of feasible coalitions that describes a partial cooperation structure. For
example, consider {{1, 2}, {2, 3}, {3, 1}}, where each pair of players in {1, 2, 3} can work together in
terms of some feasible coalition contained in {1, 2, 3}. In our concept of feasible coalitions defined
below, the coalition {1, 2, 3} is deemed to be also feasible, and {{1, 2}, {2, 3}, {3, 1}, {1, 2, 3}} is
the set of all feasible coalitions. We call such a set a complete coalition structure.

To provide a formal definition of a complete coalition structure, we introduce a concept of “H-
associated” relation in a coalition. Given a set of feasible coalitions H, we say that a pair of players
in a coalition S are H-associated in S if there exists a feasible coalition in HS containing the pair,
in terms of which they can communicate and cooperate with each other and work together.2

Definition 2 For H ⊆ 2N and S ∈ 2N , i, j ∈ S are H-associated in S provided there exists
H ∈ HS with i, j ∈ H.

We say that a coalition S is H-complete if any pair of players in S are H-associated in S; that
is, the “H-associated” relation in S is complete.

Definition 3 For H ⊆ 2N , S ∈ 2N is H-complete provided any i, j ∈ S are H-associated in S.

Given a set of feasible coalitions H, a H-complete coalition is deemed to be also feasible. We
define a complete coalition structure as a set of all feasible coalitions in this sense.

1Originally, Hart and Mas-Colell (1989) defined a potential as a real-valued function on the space of games. The

value assigned by the potential to the restriction of a game v to a coalition S corresponds to p(S) in this paper.
2In the literature, i, j ∈ S are said to be H-connected in S if there exist H1, . . . , Hm ∈ HS such that i ∈ H1,

j ∈ Hm, and Hk ∩ Hk+1 ̸= ∅ for k = 1, . . . , m − 1. Note that if i, j ∈ S are H-associated in S then they are

H-connected in S, but not vice versa.
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Definition 4 A set of coalitions H ⊆ 2N is a complete coalition structure provided it is the set of
all H-complete coalitions.

It is straightforward to see that {{1, 2}, {2, 3}, {3, 1}, {1, 2, 3}} is a complete coalition structure,
whereas {{1, 2}, {2, 3}, {3, 1}} is not.

The set of all H-complete coalitions contains H because each S ∈ H is a H-complete coalition.
As the next lemma shows, the set of all H-complete coalitions is the minimal complete coalition
structure containing H. For a proof, see Kajii et al. (2007) who introduced the concept of H-
completeness.3

Lemma 2 For H ⊆ 2N , the set of all H-complete coalitions is a complete coalition structure.

Let CCS denote the set of all complete coalition structures. The following property of CCS
is important in this paper.

Lemma 3 If H ∈ CCS, then HS ∈ CCS for each S ∈ 2N .

Proof. It is enough to show that H ∈ HS if and only if H is HS-complete. Each H ∈ HS is
HS-complete by definition. Let H ∈ 2N be HS-complete, which implies that H ⊆ S. Since every
HS-complete coalition is H-complete, we must have H ∈ H. Thus, H ∈ HS . �

There are some other feasible coalition structures which are complete coalition structures,
including union stable structures introduced by Algaba et al. (2000).

Definition 5 A set of coalitions H ⊆ 2N is a union stable structure provided S, T ∈ H with
S ∩ T ̸= ∅ implies S ∪ T ∈ H.

Let USS denote the set of all union stable structures. It is straightforward to check that if
H ∈ USS, then HS ∈ USS for each S ∈ 2N . The next lemma shows that every union stable
structure is a complete coalition structure.

Lemma 4 The set of all union stable structures USS is contained in CCS.

Proof. Let H ∈ USS. We show that H ∈ CCS. Since each S ∈ H is H-complete by definition,
it is enough to show that if S ∈ 2N is H-complete then S ∈ H. Without loss of generality, let
S = {1, . . . , k}. If k = 1 and any i, j ∈ S are H-associated in S, then there exists H ∈ HS

with 1 ∈ H, which implies that S = H ∈ H. Suppose that k ≥ 2. For each i ∈ S\{k}, there
exists Hi ∈ HS with i, i + 1 ∈ Hi. Since Hi ∩ Hi+1 ̸= ∅ and H is a union stable structure,
S =

∪k−1
i=1 Hi ∈ H. �

To illustrate the difference between complete coalition structures and union stable structures,
let S1, S2 ( N be such that |S1| ≥ 2, |S2| ≥ 2, S1 ∪ S2 ( N , and S1 ∩ S2 = {n}. Consider
H1 = {S1, S2, N} and H2 = {S1, S2, S1 ∪ S2, N}. Then, we have H1,H2 ∈ CCS, H1 ̸∈ USS, and
H2 ∈ USS. Note that S1 ∪ S2 is feasible in H2, but not in H1. To consider in what situations
S1 ∪ S2 is not feasible, let H1 be an initially given set of feasible coalitions. If player n, who is
a sole player in S1 ∩ S2, can act as an intermediary, then S1 ∪ S2 is also feasible, and thus the
resulting set of feasible coalitions is H2. However, if player n cannot do so, then the resulting set

3Kajii et al. (2007) use H-completeness in their study of the Choquet integral. Another application of H-

completeness is found in Kajii et al. (2008).
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of feasible coalitions is H1. This might be the case when |S1| and |S2| are very large and the cost
for player n to act as an intermediary is very high.

Note that if H is closed in a union operation (i.e. S∪T ∈ H for any S, T ∈ H) then H is a union
stable structure and thus it is a complete coalition structure. For example, antimatroids (Algaba
et al., 2004) and the feasible coalition structures derived from permission structures (Gilles and
Owen, 1999; Gilles et al., 1992) or precedence constraints (Faigle and Kern, 1992) are closed in a
union operation. Therefore, these are all complete coalition structures.4

Other examples of complete coalition structures can be derived from a preorder ≼ on N,5

which are different from the feasible coalition structures derived from permission structures or
precedence constraints.6 The next two general lemmas show that a set of intervals is a complete
coalition structure even if it is not closed in a union operation.

Lemma 5 Let ≼ be a preorder on N . If H ⊆ {{k : k ≼ i} : i ∈ N}, then H ∈ CCS.

Proof. We write i ∼ j if i ≼ j and j ≼ i, and i ≺ j if i ≼ j but not j ≼ i. The binary relation ≺ is
irreflexive by construction, and transitive since ≼ is transitive. Note that any S ∈ 2N has i ∈ S

such that there is no j ∈ S with ī ≺ j since S is a finite set. We call such i a maximal element of
S following the corresponding concept on a partially ordered set.

Let S be a H-complete coalition with a maximal element i. By H-completeness, for any j ∈ S,
there exists m ∈ S such that i, j ∈ {k : k ≼ m} ∈ HS . By the property of i, m ∼ i must follow.
Hence, {k : k ≼ i} = {k : k ≼ m} ∈ HS contains each j ∈ S. Since {k : k ≼ i} ⊆ S, we have
S = {k : k ≼ i} ∈ H. �

For example, let ≼ be such that 1 ≼ 2, 2 ≼ 4, 1 ≼ 3, and 3 ≼ 4. By the above lemma, H1 =
{{1, 2}, {1, 3}, {1, 2, 3, 4}} is a complete coalition structure, which is not a union stable structure.
The minimal union stable structure containing H1 is H2 = {{1, 2}, {1, 3}, {1, 2, 3}, {1, 2, 3, 4}}.
The difference is that {1, 2, 3} is feasible in H2, but not in H1. To interpret this, imagine that
≼ describes the possible direction of information flow between players: players i and j can share
the same information if i ≼ j. Assume that a coalition is feasible if every player in the coalition
can share the same information; that is, it is of the form {k : k ≼ i}. Then, {1, 2, 3} is not of this
form and thus is not feasible.

Lemma 6 Let ≼ be a preorder on N . If H ⊆ {{k : i ≼ k ≼ j} : i, j ∈ N}, then H ∈ CCS.

Proof. Let ∼ and ≺ be the binary relations as in the proof of Lemma 5. Let S be a H-complete
coalition with a maximal element i and a minimal element i. By H-completeness, for any j ∈ S,
there exist m,m ∈ S such that i, j ∈ {k : m ≼ k ≼ m} ∈ HS , and there exist m,m ∈ S such
that i, j ∈ {k : m ≼ k ≼ m} ∈ HS . By the property of i and i, m ∼ i and m ∼ i must
follow. This implies that i ≼ j ≼ i for all j ∈ S. On the other hand, there exist m′, m′ ∈ S

such that i, i ∈ {k : m′ ≼ k ≼ m′} ∈ HS by H-completeness. Since m′ ∼ i, m′ ∼ i, and
{k : i ≼ k ≼ i} = {k : m′ ≼ k ≼ m′} ⊆ S, we must have S = {k : i ≼ k ≼ i} ∈ H. �

For example, let ≼ be such that i ≼ j if i ≤ j. For n ≥ 3, consider H1 = {N}∪{{k, k+1}}n−1
k=1 ,

H2 = H1 ∪{{k, k +1, k +2}}n−2
k=1 , and Hm = Hm−1 ∪{{k, . . . , k +m}}n−m

k=1 for 2 ≤ m ≤ n− 2. By
the above lemma, Hm ∈ CCS for 1 ≤ m ≤ n − 2. On the other hand, Hm ̸∈ USS for m ̸= n − 2

4We thank the referee for suggesting this discussion.
5A binary relation is a preorder if it is reflexive and transitive.
6Both a permission structure and a precedence constraint are interpreted as a preorder.
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and Hn−2 ∈ USS. In Hn−2, any coalition of the form {k, . . . , k + l} is feasible. In Hm with
m ̸= n − 2, a coalition of the form {k, . . . , k + l} is feasible if l ≤ m. This can be interpreted as
follows. Let H1 be an initially given set of feasible coalitions and imagine that n is very large. In
Hn−2, {1, . . . , n−1} is feasible, where player 1 and player n−1 can communicate with each other
through n − 2 intermediaries, who must pass on information accurately. On the other hand, in
Hm, it is enough for m − 1 intermediaries to pass on information accurately. Therefore, in some
cases with very large n, it is natural to assume that Hm is the set of feasible coalitions for some
m ̸= n − 2, rather than Hn−2.

4 The Myerson value for complete coalition structures

Given a game v, we consider allocation rules on complete coalition structures. An allocation rule
on complete coalition structures is a mapping f : CCS → RN such that if i ̸∈ S for each S ∈ H
then fi(H) = 0. We propose the following allocation rule.

Definition 6 The Myerson value for complete coalition structures is a mapping f : CCS → RN

given by f(H) = ϕ(vH) for each H ∈ CCS where vH is the H-projected game of v.

This is an allocation rule on complete coalition structures because if i ̸∈ S for each S ∈ H
then i is a null player in vH and thus fi(H) = ϕi(vH) = 0. This allocation rule restricted to union
stable structures coincides with the Myerson value for union stable structures studied by Algaba
et al. (2001). To see this, for H ∈ USS, define

C(H) ≡ {T ∈ H |T is maximal in H},

which is a partition of
∪

T∈H T . For a game v and a union stable structure H, a game rH is the
H-restricted game of v if

rH(S) =
∑

T∈C(HS)

v(T ) for each S ∈ 2N . (4)

Note that HS is also a union stable structure. An allocation rule f : USS → RN is the Myerson
value for union stable structures if f(H) = ϕ(rH) for each H ∈ USS. Since rH coincides with vH

as the next lemma shows, the restriction of the Myerson value for complete coalition structures
to USS coincides with that for union stable structures.

Lemma 7 For a game v and a union stable structure H, the H-restricted game of v is the H-
projected game of v, i.e., rH = vH.

Proof. Since C(HS) ⊆ HS ⊆ H for S ∈ 2N , rH(S) =
∑

T∈C(HS) v(T ) =
∑

T∈C(HS) vH(T ) by
Lemma 1. Since each T ∈ C(HS) is a maximal element of HS , if S′ ⊆ S and S′ ̸⊆ T for each
T ∈ C(HS), then we must have S′ ̸∈ HS and thus S′ ̸∈ H. Since βH

S′ = 0 for each S′ ̸∈ H, we have
vH(S) =

∑
T⊆S βH

T =
∑

T∈C(HS)

∑
R⊆T βH

R =
∑

T∈C(HS) vH(T ). Therefore, vH(S) = rH(S). �

We characterize the Myerson value for complete coalition structures in terms of the following
axioms for allocation rules on complete coalition structures.7

7Algaba et al. (2001) provide an axiomatization for the Myerson value for union stable structures. Their set of

axioms is similar to that of the original Myerson value (Myerson, 1977), which consists of fairness and component

efficiency. Thus, the set of axioms of Algaba et al. (2001) is different from ours.
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Feasible coalition efficiency (FE) For each H ∈ CCS, if S ∈ H and HS = H, then∑
i∈S

fi(H) = v(S).

Balanced contribution (BC) For each H ∈ CCS and i, j ∈ N ,

fi(H) − fi(H−j) = fj(H) − fj(H−i).

No contribution by unassociated players (NC) For each H ∈ CCS, if i, j ∈ N are not
H-associated in N , then

fi(H) − fi(H−j) = 0.

Fairness (FA) For each H ∈ CCS, if i, j ∈ H ∈ H and H\{H} ∈ CCS, then

fi(H) − fi(H\{H}) = fj(H) − fj(H\{H}).

FE states that if S is feasible and all players outside S stand alone, then the members of
S allocate to themselves the total wealth v(S) available to them.8 BC states that player j’s
contribution to i equals i’s contribution to j. NC states that player j’s contribution to i equals
zero if i and j are not H-associated in N . FA states that if a feasible coalition is removed and
the resulting set remains to be a complete coalition structure, then the changes of payoffs are the
same for all players in the feasible coalition. Myerson (1977, 1980) introduces FA and BC and
shows that BC implies FA in his formulation. The reader may wonder if the presumption in FA in
our formulation may be vacuous in some cases, but the next lemma shows that it is not the case.

Lemma 8 For H ∈ CCS, let i, j ∈ N with i ̸= j be H-associated in N . Then, there exists H ∈ H
such that i, j ∈ H and H\{H} ∈ CCS.

Proof. By definition, i, j ∈ N are H-associated in N if and only if the set {S ∈ H | {i, j} ⊆ S}
is nonempty. Let H ∈ {S ∈ H | {i, j} ⊆ S} be a minimal element of the set in the set inclusion
order; that is, there does not exist S′ ∈ {S ∈ H | {i, j} ⊆ S} with S′ ( H. We show that
H\{H} ∈ CCS. Seeking a contradiction, suppose that H\{H} ̸∈ CCS. Then, there exists a
H\{H}-complete coalition H ′ with H ′ ̸∈ H\{H}. By the definition of H-completeness, every
H\{H}-complete coalition is H-complete and thus H ′ is an element of H since H ∈ CCS. Thus,
H ′ ∈ H\(H\{H}), which implies that H ′ = H. Therefore, H is H\{H}-complete. On the other
hand, since H is a minimal element of {S ∈ H | {i, j} ⊆ S}, there does not exist S′ ∈ (H\{H})H

with i, j ∈ S′, which implies that H is not H\{H}-complete, a contradiction. �

We are ready to state our main result, which characterizes the Myerson value for complete
coalition structures in terms of FE, NC, and either FA or BC. We prove it in the next section.

Proposition 2 The following four statements about an allocation rule f : CCS → RN on com-
plete coalition structures are equivalent.

(i) f is the Myerson value for complete coalition structures.

(ii) f satisfies FE, NC, and FA.

8Amer and Carreras (1995) consider a different type of feasibility requirement.
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(iii) f satisfies FE, NC, and BC.

(iv) f(H) is the vector of the marginal contributions of a game pH satisfying the following two
conditions:

• If S ∈ H, then ∑
i∈S

(
pH(S) − pH(S\{i})

)
= v(S). (5)

• If S ̸∈ H and i, j ∈ S are not H-associated in S, then

pH(S) − pH(S\{i}) = pH(S\{j}) − pH(S\{i, j}). (6)

That is, fi(H) = pH(N) − pH(N\{i}) for each i ∈ N and H ∈ CCS.

Notice the resemblance between pH in (iv) and the potential for v. The latter satisfies (3) for
each S ∈ 2N , whereas the former satisfies (3) for each S ∈ H, which is condition (5). Condition
(6) requires that the marginal contribution of player i to pH(S) be determined by players who are
H-associated with i in S. Note that if H = 2N , then (5) is identical to (3), and (6) holds trivially
because any pair of players are H-associated in any coalition containing them. Thus in this case,
pH coincides with the potential for v by Proposition 1. As will be shown in Lemma 15 in the
next section, pH turns out to be the potential for vH, which will explain why the allocation rule
is uniquely determined.

The following numerical examples illustrate the difference between the Myerson value for com-
plete coalition structures and that for union stable structures.

Example 1 For n ≥ 4, let S1, S2 ( N be such that |S1| ≥ 2, |S2| ≥ 2, S1 ∪ S2 = {2, . . . , n} and
S1 ∩ S2 = {n}. Consider H1 = {{1}, S1, S2, N} and H2 = {{1}, S1, S2, S1 ∪ S2, N}. Note that
H1,H2 ∈ CCS, H1 ̸∈ USS, and H2 ∈ USS. Define a game v by

v = u{1} + u{2,...,n} + uN .

Then, we have vH
1

= u{1} + 2uN and vH2
= v. Thus, by (2), the payoff vectors of the Myerson

value for complete coalition structures are as follows.

player 1 player i ∈ {2, . . . , n}
f(H1) 1+2/n 2/n
f(H2) 1+1/n 1/(n-1)+1/n

Since H1 ̸∈ USS, the Myerson value for union stable structures does not determine payoff vectors
for H1, and since H2 is the minimal union stable structure containing H1, the Myerson value
in the sense of Myerson (1980) and van den Nouweland et al. (1992) assigns the same payoff
vector f(H2) = ϕ(rH

2
) to H1. The Myerson value for complete coalition structures provides one

possible way to assign different payoff vectors to H1 and H2. Observe that f1(H1) > f1(H2) and
fi(H1) < fi(H2) for i ∈ S1 ∪ S2 = {2, . . . , n}. This can be interpreted as follows. An unfeasible
coalition S1 ∪S2 in H1 is feasible in H2, and the bargaining power of S1 ∪S2 is larger in H2 than
in H1, resulting in a larger payoff to player i ∈ S1 ∪ S2 and a smaller payoff to player 1.
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Example 2 For n = 5, consider

H1 = {{1}, {2, 3}, {3, 4}, {4, 5}, N},

H2 = {{1}, {2, 3}, {3, 4}, {4, 5}, {2, 3, 4}, {3, 4, 5}, N},

H3 = {{1}, {2, 3}, {3, 4}, {4, 5}, {2, 3, 4}, {3, 4, 5}, {2, 3, 4, 5}, N}.

Note that H1,H2,H3 ∈ CCS, H1,H2 ̸∈ USS, and H3 ∈ USS. Define a game v by

v = u{1} + u{2,3,4} + u{3,4,5} + u{2,3,4,5} + uN .

Then, we have vH1
= u{1} + 4uN , vH

2
= u{1} + u{2,3,4} + u{3,4,5} + 2uN , and vH3

= v. Thus, by
(2), the payoff vectors of the Myerson value for complete coalition structures are as follows.

player 1 player i ∈ {2, 5} player i ∈ {3, 4}
f(H1) 9/5 4/5 4/5
f(H2) 7/5 11/15 16/15
f(H3) 6/5 47/60 67/60

Observe that f1(H1) > f1(H2) > f1(H3) and
∑

i̸=1 fi(H1) <
∑

i̸=1 fi(H2) <
∑

i̸=1 fi(H3). When
more coalitions to which player 1 does not belong are feasible, player 1 has smaller bargaining
power, which results in a smaller payoff to player 1.

When we apply the Myerson value for complete coalition structures for a given partial coop-
eration structure, it is important to carefully identify a set of feasible coalitions H describing the
partial cooperation structure. To address this issue, let H denote the minimal union stable struc-
ture containing H ∈ CCS,9 and assume that we require

∑
i∈S fi(H) = v(S) for each S ∈ C(H),10

which is not always true in the Myerson value for complete coalition structures. This requirement
implies that, for each S ∈ C(H), the total wealth v(S) is available to the members of S; that is,
each S ∈ C(H) is feasible. Thus, when we require

∑
i∈S fi(H) = v(S) for each S ∈ C(H), we

must choose H satisfying C(H) ⊆ H to be logically consistent in the analysis. If this is the case,
we indeed have

∑
i∈S fi(H) = v(S) for each S ∈ C(H) as the following lemma shows.

Lemma 9 Let f : CCS → RN be the Myerson value for complete coalition structures. If H ∈
CCS and C(H) ⊆ H, then

∑
i∈S fi(H) = v(S) for each S ∈ C(H).

Proof. Suppose that C(H) ⊆ H. Then, for each S ∈ C(H), it holds that S ∈ HS = (HS)S . Thus,∑
i∈S fi(HS) = v(S) by FE. Since i ∈ S and j ̸∈ S are not associated in N , fi(HS) = fi(H) by

NC, and thus
∑

i∈S fi(H) = v(S) for each S ∈ C(H). �

5 The proof

This section provides the proof of Proposition 2. It proceeds in the following order: (i) ⇒ (ii) ⇒
(iii) ⇒ (iv) ⇔ (i).

9As shown by Algaba et al. (2000), H is constructed by the following procedure: by setting H(0) = H, H(k) =

{S ∪ T |S, T ∈ H(k−1), S ∩ T ̸= ∅} for k ≥ 1, we obtain H = H(k) where k is the smallest integer with H(k) =

H(k+1).
10This requirement is called component efficiency, and the Myerson value for union stable structures satisfies it

(Myerson, 1977; Algaba et al., 2001).
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5.1 (i) ⇒ (ii)

The following lemma plays an important role.

Lemma 10 Let vH =
∑

T∈2N βH
T uT and vHS =

∑
T∈2N βHS

T uT for H ⊆ 2N and S ∈ 2N . Then,
βH

T = βHS

T for each T ⊆ S.

Proof. By the construction of βH
T , {βH

T }T⊆S is determined by {v(R)}R∈HS
, and so is {βHS

T }T⊆S .
Furthermore, the recursive procedure is the same for both {βH

T }T⊆S and {βHS

T }T⊆S . Therefore,
βH

T = βHS

T for each T ⊆ S. �

We are ready to establish (i) ⇒ (ii).

Lemma 11 Let f : CCS → RN be the Myerson value for complete coalition structures. Then, f

satisfies FE, NC, and FA.

Proof. Let vH =
∑

T∈2N βH
T uT be the H-projected game of v. For S ∈ H ∈ CCS, suppose that

HS = H. Then, by the definition of vH, βH
T = 0 for each T ̸⊆ S. Thus,

fi(H) = ϕi(vH) =
∑

T∈2N :i∈T

βH
T /|T | =

∑
T∈2S :i∈T

βH
T /|T |.

Accordingly, ∑
i∈S

fi(H) =
∑
i∈S

∑
T∈2S :i∈T

βH
T /|T | =

∑
T∈2S

βH
T = vH(S) = v(S)

since S ∈ H, which implies FE.
For H ∈ CCS, suppose that i, j ∈ N are not H-associated in N . Then, for T ⊆ N with

i, j ∈ T , it holds that T ̸∈ H and T ̸∈ H−j , which implies βH
T = β

H−j

T = 0. On the other hand, by
Lemma 10, βH

T = β
H−j

T for each T ⊆ N \ {j}. Therefore, βH
T = β

H−j

T whenever i ∈ T , and thus

fi(H) = ϕi(vH) =
∑

T∈2N :i∈T

βH
T /|T | =

∑
T∈2N :i∈T

β
H−j

T /|T | = ϕi(vH−j ) = fi(H−j),

which implies NC.
For H ∈ CCS, suppose that i, j ∈ H ∈ H and H\{H} ∈ CCS. Then,

fi(H) − fj(H) =
∑

T∈2N :i∈T

βH
T /|T | −

∑
T∈2N :j∈T

βH
T /|T |

=
∑

T∈2N\{j}:i∈T

βH
T /|T | −

∑
T∈2N\{i}:j∈T

βH
T /|T |, (7)

fi(H \ {H}) − fj(H \ {H}) =
∑

T∈2N :i∈T

β
H\{H}
T /|T | −

∑
T∈2N :j∈T

β
H\{H}
T /|T |

=
∑

T∈2N\{j}:i∈T

β
H\{H}
T /|T | −

∑
T∈2N\{i}:j∈T

β
H\{H}
T /|T |. (8)

Since H−j = (H \ {H})−j , if T ⊆ N \ {j} then β
H\{H}
T = β

(H\{H})−j

T = β
H−j

T = βH
T by Lemma

10. Similarly, if T ⊆ N \ {i} then β
H\{H}
T = βH

T . Therefore, by (7) and (8), we have

fi(H) − fj(H) = fi(H \ {H}) − fj(H \ {H}),

which implies FA. �
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5.2 (ii) ⇒ (iii)

As the next result shows, FA and NC together imply BC. Thus, if an allocation rule satisfies FE,
NC, and FA, then it satisfies FE, NC, and BC, establishing (ii) ⇒ (iii).

Lemma 12 If an allocation rule f : CCS → RN satisfies FA and NC, then it satisfies BC.

Proof. Suppose that i, j ∈ N with i ̸= j are not H-associated in N . Then, NC implies that
fi(H) − fi(H−j) = fj(H) − fj(H−i) = 0.

Suppose that i, j ∈ N with i ̸= j are H-associated in N , which is true if and only if {S ∈
H | {i, j} ⊆ S} ̸= ∅. We first show that

fi(H) − fi(H\{S ∈ H | {i, j} ⊆ S}) = fj(H) − fj(H\{S ∈ H | {i, j} ⊆ S}). (9)

By Lemma 8, there exists H1 ∈ H with i, j ∈ H1 and H\{H1} ∈ CCS. By FA, fi(H) −
fi(H\{H1}) = fj(H) − fj(H\{H1}). This is (9) if {S ∈ H | {i, j} ⊆ S} = {H1}. Otherwise, i and
j are H\{H1}-associated in N . Then, by the same argument, there exists H2 ∈ H with i, j ∈ H2,
H\{H1,H2} ∈ CCS, and fi(H\{H1})−fi(H\{H1,H2}) = fj(H\{H1})−fj(H\{H1,H2}), which
implies that fi(H) − fi(H\{H1,H2}) = fj(H) − fj(H\{H1, H2}). This is (9) if {S ∈ H | {i, j} ⊆
S} = {H1,H2}. Otherwise, i and j are H\{H1,H2}-associated in N . Repeating this, we obtain (9)
when {S ∈ H | {i, j} ⊆ S} = {H1, . . . , Hk}. Note that i and j are not H\{H1, . . . , Hk}-associated
in N since H\{H1, . . . , Hk} = {S ∈ H | {i, j} ̸⊆ S}. Thus, NC implies that

fi(H\{H1, . . . ,Hk}) = fi((H\{H1, . . . ,Hk})−j) = fi(H−j), (10)

where the latter equality holds because (H\{H1, . . . , Hk})−j = {S ∈ H | {i, j} ̸⊆ S and j ̸∈ S} =
{S ∈ H | j ̸∈ S} = H−j . Similarly, it follows that fj(H\{H1, . . . ,Hk}) = fj(H−i). By plugging
this and (10) into (9), we have established BC. �

5.3 (iii) ⇒ (iv)

As noted by Hart and Mas-Colell (1989), BC is a finite difference analogue of the Frobenius
integrability condition, i.e., the symmetry of the cross partial derivatives, which suggests that the
solution admits a potential. In fact, BC assures the existence of a “potential” in the following
sense.11

Lemma 13 If an allocation rule f : CCS → RN satisfies BC, then, for each H ∈ CCS, there
exists a game pH such that fi(HS) = pH(S) − pH(S\{i}) for each i ∈ S and S ∈ 2N .

Proof. Note that HS ∈ CCS by Lemma 3. Define a game pH by the following rule: for each
S = {i1, . . . , ik} ∈ 2N with i1 < · · · < ik, pH(S) =

∑k
l=1 fil

(H{i1,...,il}). By construction, if
i = max S, then fi(HS) = pH(S) − pH(S\{i}).

We show by induction that fi(HS) = pH(S)−pH(S\{i}) for each i ∈ S and S ∈ 2N . If |S| = 1
and S = {i}, then fi(H{i}) = pH({i})−pH(∅). Suppose as an induction hypothesis that fi(HS) =

11Consider a vector-valued mapping F : Rn → Rn. In vector analysis, a function f : Rn → R is said to be a

potential of F if F = (∂f/∂xi)
n
i=1.
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pH(S) − pH(S\{i}) for each i ∈ S and S ∈ 2N with |S| ≤ k < n. Let S = {i1, . . . , ik+1} ∈ 2N

with i1 < · · · < ik+1. For every i ∈ S, by applying BC (with HS instead of H), we have

fi(HS) = fik+1(HS) − fik+1((HS)−i) + fi((HS)−ik+1)

= fik+1(HS) − fik+1(HS\{i}) + fi(HS\{ik+1}). (11)

By the construction of pH,

fik+1(HS) = pH(S) − pH(S\{ik+1}). (12)

By the induction hypothesis,

fik+1(HS\{i}) = pH(S\{i}) − pH(S\{i, ik+1}), (13)

fi(HS\{ik+1}) = pH(S\{ik+1}) − pH(S\{i, ik+1}). (14)

Plugging (12), (13), and (14) into (11), we have fi(HS) = pH(S) − pH(S\{i}). �

A “potential” in Lemma 13 is shown to satisfy (5) and (6) if an allocation rule satisfies FE
and NC in addition.

Lemma 14 Let an allocation rule f : CCS → RN satisfy FE and NC. For H ∈ CCS, suppose
that there exists a game pH such that fi(HS) = pH(S) − pH(S\{i}) for each i ∈ S and S ∈ 2N .
Then, pH satisfies (5) and (6).

Proof. For H ∈ CCS, suppose that S ∈ H. By FE,
∑

i∈S fi(HS) =
∑

i∈S

(
pH(S)− pH(S\{i})

)
=

v(S). Therefore, pH satisfies (5).
For H ∈ CCS, suppose that S ̸∈ H and that i, j ∈ S are not H-associated in S. It is clear that

i and j are not HS-associated in N . Thus, by NC, pH(S)− pH(S\{i}) = fi(HS) = fi((HS)−j) =
fi(HS\{j}) = pH(S\{j}) − pH(S\{i, j}). Therefore, pH satisfies (6). �

By Lemma 13 and Lemma 14, if an allocation rule f : CCS → R satisfies FE, NC, and BC, then
there exists a game pH satisfying (5) and (6) such that fi(H) = fi(HN ) = pH(N) − pH(N\{i}),
which establishes (iii) ⇒ (iv).

5.4 (iv) ⇔ (i)

We shall show below that a game pH which satisfies the conditions in (iv) must be the potential
for vH. This suffices to establish (iv) ⇔ (i) by Proposition 1.

Lemma 15 Suppose that H ∈ CCS. Then, there exists a unique game pH satisfying (5) and (6).
The game pH coincides with the potential for vH.

Proof. We first show that the potential for vH does satisfy (5) and (6). Let pH be the poten-
tial for vH =

∑
T∈2N βH

T uT . Then by Proposition 1, pH =
∑

T∈2N (βH
T /|T |)uT . Observe that∑

i∈S

(
pH(S) − pH(S\{i})

)
= vH(S) = v(S) if S ∈ H, where the first equality holds because pH

is the potential for vH, and the second equality holds by Lemma 1. This is condition (5). Next,
observe that, since βH

T = 0 for each T ̸∈ H,

pH(S) − pH(S\{i}) =
∑

T∈HS

βH
T /|T | −

∑
T∈HS\{i}

βH
T /|T |

=
∑

T∈HS :i∈T

βH
T /|T |, (15)
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and similarly,

pH(S\{j}) − pH(S\{i, j}) =
∑

T∈HS\{j}:i∈T

βH
T /|T | (16)

for i, j ∈ S. Now suppose that S ̸∈ H and i, j ∈ S are not H-associated in S. Then, there is no
T ∈ HS such that i, j ∈ T . This implies that {T ∈ HS | i ∈ T} = {T ∈ HS\{j} | i ∈ T} and thus
pH(S) − pH(S\{i}) = pH(S\{j}) − pH(S\{i, j}) by (15) and (16). This is condition (6).

To complete the proof, we show that a game pH satisfying (5) and (6) is unique, by constructing
pH recursively such that in the k-th step we determine the unique value of pH(S) with |S| = k

from pH(S′) with |S′| ≤ k − 1. Start with pH(∅) = 0 since pH is a game. Consider the k-th step
with k ≥ 1 and pick any S with |S| = k. Suppose that S ∈ H. Then, (5) is rewritten as

pH(S) = |S|−1

(
v(S) +

∑
i∈S

pH(S\{i})

)
.

Since pH(S\{i}) on the right hand side is uniquely calculated for each i ∈ N in the previous step,
so is pH(S) on the left hand side. Suppose that S ̸∈ H. Then, there exist i, j ∈ S that are not
H-associated in S since H ∈ CCS. So, by (6),

pH(S) = pH(S\{i}) + pH(S\{j}) − pH(S\{i, j}). (17)

Since the terms on the right hand side are uniquely calculated in the earlier steps, so is pH(S) on
the left hand side. Note that pH(S) in (17) does not depend upon the choice of i and j because
(17) holds for any i, j ∈ S that are not H-associated in S. By the procedure above, we can
uniquely determine pH recursively, which establishes the uniqueness. �

6 Concluding remarks

This paper has introduced complete coalition structures as sets of feasible coalitions and proposed
the Myerson value for complete coalition structures as an allocation rule. It shows that an alloca-
tion rule is the Myerson value for complete coalition structures if and only if it satisfies FE, NC,
and FA.

As concluding remarks, we point out other possible applications of complete coalition struc-
tures. The position value (Meesen, 1988; Borm et al., 1992) and the Hamiache value (Hamiache,
1999) are allocation rules on networks. Algaba et al. (2000) and Bilbao and López (2006) study the
extensions of the position value and the Hamiache value to union stable structures, respectively.12

Therefore, it would be interesting to study the extensions of these allocation rules to complete
coalition structures.
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Algaba, E., Bilbao, J. M., Borm, P., López, J. J., 2000. The position value for union stable
structures. Math. Meth. Oper. Res. 52, 221–236.
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