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I. INTRODUCTION  

Seasonal fluctuations of production have been intensively explored. Previous studies 

have found important interactions between seasonality and business cycles by focusing 

on the critical role of capacity constraint. For example, to explain their finding of a 

positive correlation between seasonal and cyclical variations, Beaulieu et al. (1992) 

suggested the truncation of high season output by the capacity constraint. Based on the 

intuition that firms tend to allocate larger fraction of annual production to off-peak 

season as capacity is more severely constrained, Cecchetti et al. (1997) compared 

seasonal fluctuations during a boom with those during a recession.  

      Seasonal variations, however, should not be ignored in other economic variables 

as well. Among important variables, the productivity exhibits large seasonal variability. 

It is implausible to attribute the strong seasonality in productivity to non-seasonal 

technology shocks. Braun and Evans (1998) showed that a single seasonal demand peak 

due to Christmas is sufficient, under labor hoarding and increasing returns, to explain 

the whole seasonal variations in U.S. Solow residuals. No previous work, as far as the 

author knows, however, has considered the capacity constraint in analyzing seasonal 

productivity fluctuations. 

       This paper examines the effect of capacity constraint on seasonal productivity 

variations. The biding capacity constraint due to the seasonal demand peak is likely to 

reduce the productivity in high season and thus to attenuate seasonal variations of 

productivity. This paper attempts to quantitatively evaluate this effect on productivity 

fluctuations, by applying the instrumental variables method proposed by Miron and 

Beaulieu (1996). Since the capacity utilization rate varies considerably from plant to 

plant even within the same industry, this paper exploits plant-level data.1 To preview 
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the results, our estimates show that the productivity becomes low in demand-peak 

season particularly at plants with capacity highly utilized, although the effect of 

capacity constraint on productivity fluctuations is found markedly minor compared with 

the substantial role of seasonal demand variations. 

      The rest of the paper is organized as follows. Section II explains methods for 

estimating productivity. Section III describes our plant-level data and reports empirical 

results. Section IV concludes. 

 

II. ESTIMATION METHODS 

This section describes our estimation methods. First, consider the standard 

framework used in the productivity analysis as follows. Taking logarithm and totally 

differentiating the production function for plant i at time t, we obtain 

ititit dzdy εβ +=                                              (1) 

,where y, z, ε and β are output, input, Solow residuals, and elasticity, respectively.2 

Since errors are in general correlated with inputs, the equation (1) cannot be estimated 

by OLS. As Miron and Beaulieu (1996) proposed, however, seasonal dummy variables 

can be served as valid instrument variables (IV) because they are likely to be 

uncorrelated with errors but correlated with inputs under the usual assumption that 

technology shifts are non-seasonal while demand varies seasonally. Let label Sβ̂  the 

IV estimate of elasticity from regression of (1) using all the monthly dummies as the 

only instruments.  

      Second, to obtain the non-seasonal elasticity estimate NSβ̂ , this paper estimates 

the following OLS regression (2) with monthly dummies DUMj (j=1,2,…,12) 
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additionally included in the regression.3 

      εγβ ++= ∑
j

jj
NS DUMdzdy                                   (2) 

Seasonal output is likely to be more elastic than non-seasonal output, for example, 

under labor hoarding because firms tend to avoid costly labor adjustment facing 

seasonal fluctuations, which are usually transitory and anticipated ( SNS ββ ˆˆ < ).4 

Finally, to assess the effect of capacity constraint, we must reexamine whether 

the assumption of errors uncorrelated with seasonality holds in all months. Consider the 

illustrative case where the cost function is inverted-L shaped, as in Beaulieu et al. 

(1992). If the capacity constraint is binding in high season, the technology in the 

capacity-constrained months can be interpreted as different from that in normal months 

because of its low marginal labor productivity. Thus, the orthogonality condition fails in 

those demand-peak months since technology shifts in this case are induced seasonally. 

“A simple remedy is to pare the list of instruments to those months where the 

orthogonality condition is likely to hold.” (Miron and Beaulieu (1996) p.56)5 Let 

denote S
Cβ̂  the IV estimate from the following (3), where monthly dummies except the 

dummy for the highest capacity utilization month, h, are used as instruments for inputs.6  

      εδβ ++= h
S
c DUMdzdy                                   (3) 

The seasonal output elasticity from which the seasonal component of output in the peak 

month is eliminated must be larger than the usual seasonal elasticity ( S
C

S ββ ˆˆ < ). The 

comparison of the two IV estimates ( S
C

S ββ ˆ,ˆ ) enables us to infer the effect of capacity 

constraint on seasonal productivity variations. 
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III. DATA AND EMPIRICAL RESULTS 

As an example of production with strong seasonality, this paper chooses the production 

of air conditioners in Japan. The monthly data of physical unit output and capacity are 

derived from Current Survey of Production (Seisan Dotai Tokei in Japanese).7 As 

evident from Table 1, the seasonal variation is much larger than non-seasonal variation 

in this industry.8 The large cross-section standard deviation suggests that plants are 

considerably heterogeneous in terms of productivity as well as of capacity utilization.9  

Table 2 presents principal regression results.10 The noteworthy findings are as 

follows. First, the result in the “AGGREGATE” row confirms the previous finding by 

Miron and Beaulieu (1996) that the seasonal variation in output is highly elastic to the 

seasonal variation in labor input at the industry level. The seasonal variation is nearly 

three times as large as non-seasonal variation.11 The strong contrast between seasonal 

and non-seasonal variability appears consistent with the labor hoarding.12 

     Second, as reported in the “PLANT” rows in Table 2, the results from 21 

individual plants overwhelmingly demonstrate that the industry-level finding of 

seasonal elasticity larger than non-seasonal elasticity is not the artifact of aggregation.13 

Hence, consistent with the existing evidence from U.S. plant-level data reported by 

Baily et al. (2001), previously observed variability of aggregate productivity is a 

within-plant phenomenon rather than a reflection of composition reallocations across 

plants.14  

     Finally, as the SS
C ββ ˆ/ˆ column shows, in 16 out of 21 plants, the seasonal output 

is noticeably more elastic with respect to seasonal labor input in normal eleven months, 

compared with that in the highest capacity utilization month.15 The output elasticity β 

is estimated to be higher by around six percent (average of estimates for individual 
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plants) to nine percent (aggregate estimate) if we merely exclude the only one 

capacity-constrained month from the instruments. Consequently, the effect of capacity 

constraint should be viewed as rather sizable, although it is modest compared with the 

enormous contrast between seasonal variations and non-seasonal variations.  

Besides, Table 3 shows that this effect of the extreme month on productivity is 

evident particularly at those plants whose capacity utilization rate is distinctively high 

(0.459>0.308). Thus, the inter-plant comparison of average capacity utilization levels 

provides evidence that our regression results are consistent with the capacity constraint 

interpretation. 

Therefore, our finding is in line with the previous results from Beaulieu et al. 

(1992) and Cecchetti et al. (1997) in confirming the significant effect of capacity 

constraint on seasonal variability, but is also consistent with the conclusion by Braun 

and Evans (1998) in discovering that seasonal demand variations play a dominant role 

in productivity fluctuations. 

 

IV. CONCLUDING REMARKS 

The effect of capacity constraint on plant-level productivity variations has been 

investigated. This paper has found that the capacity constraint affects productivity 

although its effect is minor compared with that of seasonal demand variations. Since the 

effect of capacity constraint depends on the degree to which capacity can be adjusted, 

tasks remained for future works include the comparison of industries facing different 

adjustment costs of capacity. 
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Table 1. Summary Statistics 
  

Output 
 

Productivity 
Capacity 

Utilization 
AGGREGATE 

Average 
 

667,825 
 

2.047 
 

0.614 
S.D. (seasonal) 181,556 0.419 0.169 

     (non-seasonal) 108,631 0.276 0.098 
PLANT-LEVEL 

Average 
 

32,318 
 

2.450 
 

0.413 
S.D. (cross-section) 31,899 2.194 0.139 

Note: “AGGREGATE” corresponds to the sum over all plants in our sample. “S.D. (seasonal)” is 

defined as standard deviation among each month’s average ( X XM
Y
M

Y

≡
=
∑1

8 1988

1995

, where M and Y 

denote month (M=1,…,12) and the calendar year (Y=1988,…,1995).), while “S.D. (non-seasonal)” 

is standard deviation among each year’s average ( X XY Y
M

M

≡
=
∑1

12 1

12

). “S.D. (cross-section)” is the 

standard deviation among each plant’s average.  
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Table 2. Comparison of estimates 
 NSβ̂  Sβ̂  S

Cβ̂  NSS ββ ˆ/ˆ  SS
C ββ ˆ/ˆ  

Aggregate 0.742 
(0.216) 

2.071 
(0.157) 

2.254 
(0.166) 2.791 

 
1.088 

Average 0.692 2.274 2.409 3.286 1.059 
Plant No.1 4.656 

(0.676) 
4.083 

(0.773) 
4.548 

(0.875) 0.877 1.114 
2 2.536 

(1.398) 
1.684 

(0.740) 
1.812 

(0.776) 0.664 1.076 
3 1.732 

(1.364) 
2.176 

(1.360) 
2.167 

(1.385) 1.256 0.996 
4 1.518 

(0.129) 
1.372 

(0.143) 
1.473 

(0.163) 0.904 1.074 
5 1.246 

(0.358) 
1.011 

(0.171) 
1.025 

(0.177) 0.812 1.014 
6 1.082 

(0.363) 
1.627 

(0.302) 
1.495 

(0.356) 1.503 0.919 
7 0.947 

(0.192) 
0.863 

(0.251) 
0.945 

(0.267) 0.911 1.095 
8 0.788 

(0.376) 
1.221 

(0.184) 
1.199 

(0.199) 1.550 0.982 
9 0.749 

(0.164) 
1.664 

(0.284) 
1.806 

(0.316) 2.222 1.085 
10 0.638 

(0.149) 
0.676 

(0.227) 
0.688 

(0.401) 1.061 1.017 
11 0.567 

(0.100) 
0.657 

(0.194) 
0.747 

(0.242) 1.158 1.137 
12 0.562 

(0.123) 
1.126 

(0.157) 
1.292 

(0.186) 2.002 1.148 
13 0.497 

(0.168) 
1.480 

(0.148) 
1.572 

(0.156) 2.980 1.062 
14 0.406 

(0.077) 
1.106 

(0.128) 
1.170 

(0.148) 2.728 1.057 
15 0.395 

(0.338) 
2.135 

(0.473) 
1.995 

(0.533) 5.408 0.934 
16 0.262 

(0.147) 
1.732 

(0.249) 
1.750 

(0.261) 6.611 1.010 
17 0.140 

(0.111) 
0.886 

(0.233) 
1.081 

(0.303) 6.309 1.220 
18 0.021 

(0.047) 
1.004 

(0.264) 
0.993 

(0.263) 48.637 0.990 
19 -0.030 

(0.117) 
1.550 

(0.449) 
2.832 

(0.938) -51.673 1.827 
20 -0.441 

(0.260) 
0.576 

(0.209) 
0.642 

(0.198) -1.304 1.116 
21 -3.735 

(2.276) 
19.134 
(6.687) 

19.350 
(6.866) -5.124 1.011 

Note: Estimated standard errors for β are in parentheses. “Average” is unweighted average of all 
plants. Plants are renumbered in the descending order of average capacity utilization.  
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Table 3. Average capacity utilization rates of plants 
 

1ˆ
ˆ

>S

S
C

β
β  1ˆ

ˆ
≤S

S
C

β
β  

1ˆ
ˆ

>NS

S

β
β  

 
0.45924 

 
0.30844 

1ˆ
ˆ

≤NS

S

β
β  

 
0.33229 

 
-------- 

Note: The figures are unweighted averages of each plant’s average capacity utilization. The four 
plants with negative elasticity estimates or with outlier value (No.18-21 in Table 2) are excluded 
from calculation. 
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Notes 
                                                  
1 The microdata are valuable in this context. For example, Tomiura (2002) examined industry-level 
findings of Cecchetti et al. (1997) by the plant-level data. The terms “plant” and “establishment” are 
used interchangeably in this paper. 
2 The error term is assumed to satisfy standard properties. The production function is assumed to 
take the Cobb-Douglas form, without loss of generality. 
3 As noted by Miron and Beaulieu (1996), this specification (2) corresponds to regressing 
non-seasonal component of output on non-seasonal component of input, while (1) produces the 
same coefficient estimates as regressing seasonal component of output on seasonal component of 
input but with correct standard errors. 
4 On the other hand, under the increasing returns, we have no reason to believe that seasonal and 
non-seasonal elasticity estimates to differ. Related with the distinction between anticipated and 
unanticipated changes, Baily et al. (2001) analyzed the impact of long-term expectations on labor 
productivity at the plant-level. 
5 Miron and Beaulieu (1996) proposed the exclusion of extreme months in this context, but this 
paper is the first attempt to empirically apply this method. 
6 The third estimate from (3) corresponds to seasonal output elasticity from which seasonal 
component in the extreme month is removed. The excluded month varies depending on the plant. 
Although having the highest level of capacity utilization rate in the year does not mean that the 
capacity of the plant is constrained in that month, our approach is a reasonable one because we 
cannot directly observe whether the capacity constraint of each plant is binding or not. 
7 The classification code is No.2180 in the Refrigerating Machines (No.18). The confidentiality 
requirement imposed by the Statistics Law prohibits us from releasing data of individual plant. 
Anyone can, however, have access to the same microdata as long as the person obtains individual 
permission from the government in advance. The production quantity in this paper is defined as the 
number of outside units of air conditioners. Compared with deflated value data, the physical unit 
quantity data is preferable since we explicitly discuss capacity constraint. The sample period is from 
January 1988 to December 1995, to facilitate comparison with Tomiura (2002). 
8 “Seasonal” and “Non-seasonal” in Table 1 are not the orthogonal decomposition of all variations. 
9 “AGGREGATE” is the sum over all 21 plants in our sample. Excluded from the original 
government data are six plants operated for less than two years because they are not suitable for 
seasonality analysis. The labor input data is derived from “actual total number of personnel worked 
during the month” in terms of man-days. Since Current Survey of Production collects no data on 
working hours and since no employment statistics contain data on production quantity and capacity, 
this series is the most suited one for our purpose. This choice does not affect our comparison of IV 
with OLS estimates. The capacity utilization rate is the ratio of production quantity over production 
capacity, both measured in physical units. 
10 The right-hand side variable in the regressions is the labor input because monthly data on capital 
is available in no statistics. However, many previous studies, including Bernanke and Parkinson 
(1991), have confirmed that omitting capital does not essentially alter the results. Since no related 
data are available in the same statistics, we do not control for variations in labor effort intensity and 
in material input use. All the variables are in the first-differenced logarithm form.  
11 The magnitude of our estimated elasticity is also in a comparable range with those by Miron and 
Beaulieu (1996) from U.S. industries. Their estimates are 0.689 for seasonal and 1.736 for 
non-seasonal. Among industries examined by them, the estimates from electric machinery, which 
must include the air conditioner, are also relatively similar to those in this paper, as the seasonal 
elasticity is 3.600 and the non-seasonal elasticity is 0.372.  
12 Since some elasticity estimates exceed one, the increasing returns seem to play a non-negligible 
role probably in combination with labor hoarding. Besides, since we do not control for it due to data 
limitation, variable intensity of labor efforts and of intermediate input uses may also matter. We 
should not interpret our results as discriminating among alternative hypotheses. 
13 Even if we exclude those plants with zero output during low season, the seasonal elasticity is 
higher than non-seasonal elasticity in 13 out of 15 plants. The conclusion is still robust even if we 
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exclude plants with statistically insignificant elasticity estimates. 
14 Since we use physical unit quantity data, we can also reject the hypothesis that observed 
productivity patterns are driven by varying markups. 
15 The capacity utilization rate in Table 3 is standardized so that the maximal value during the 
sample period is one. Even if all plants are included or average capacity is calculated in the highest 
month, the conclusion is robust. The cross-section regression of elasticity ratio on capacity 
utilization rate also confirms this regularity. 


