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Abstract

This paper proposes the use of Bayesian potential games as models of informationally

decentralized organizations. Applying techniques in team decision problems by Radner (1962,

Ann. Math. Statist. 33, 857–881), this paper characterizes Bayesian Nash equilibria in terms

of Bayesian potentials and demonstrates by examples that Bayesian potentials are useful tools

in studying the efficient use of information in organizations.
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1 Introduction

In an organization, individuals typically differ in at least three important respects: they control
different actions; they base their decisions on different information; they have different goals.
Marshak and Radner (1972) argued that some interesting aspects of organizations mainly concern
differences of actions and information only and developed team theory (cf. Marshak, 1955; Radner,
1961; Radner, 1962). A team is a model of an organization in which individuals with a common
goal control different actions based upon different information. The common goal assumption is
a technical requirement which makes the model mathematically tractable. From the viewpoint of
game theory, a team is a Bayesian identical interest game where every player has the identical
payoff function. Marshak and Radner (1972) characterized an optimal decision function, which
is a Pareto efficient Bayesian Nash equilibrium, and studied the efficient use of information in
organizations.

Following Marshak and Radner (1972), many studies on organizations have taken the team
theoretical approach. Early works include Groves and Radner (1972) and Arrow and Radner
(1979). After more than a decade of limited use (when principal-agent theory played a dominant
role in economic theory of organizations), team theory has been experiencing a renewed interest.
Several authors have applied it to problems in economic theory of organizations that do not seem
to find a satisfactory answer within the principal-agent framework. Examples include Crémer
(1980, 1990, 1993), Arrow (1985), Aoki (1986, 1995), Itoh (1987), Geanakoplos and Milgrom
(1991), Bolton and Dewatripont (1994), Prat (1996, 2002), and Qian et al. (2000).1

In some cases, however, the common goal assumption of team theory seems too strong because
of the following reason: more information is always more favorable when individuals have a com-
mon goal, whereas more information can be less favorable when individuals have different goals as
demonstrated by Levine and Ponssard (1977), Bassan et al. (1997), and Morris and Shin (2002),
among others, in game theoretical frameworks.2 This suggests that the efficient use of information
in teams may not be so in organizations other than teams. It will be useful if we have a model of
an organization such that it is as mathematically tractable as a team and it does not require the
common goal assumption.

Motivated by the above observation, we propose the use of a Bayesian potential game (Mon-
derer and Shapley, 1996; van Heumen et al., 1996) as a model of an organization. That is, we
consider a model of an organization in which individuals with different goals control different
actions based upon different information such that it possesses a potential function. A game is a
potential game if there exists a potential function defined on the action space with the property
that the change in any player’s payoff function from switching between any two of his actions
(holding other players’ actions fixed) is equal to the change in the potential function (Monderer
and Shapley, 1996). In a potential game, the set of Nash equilibria is the same as that of an
identical interest game such that every player’s payoff function is identical to the potential func-
tion. A Bayesian game is said to be a Bayesian potential game if, for each state, a fictitious
game composed of a payoff function profile at the state is a potential game (van Heumen et al.,
1996). In a Bayesian potential game, the set of Bayesian Nash equilibria is the same as that of a
Bayesian identical interest game, or a team, such that every player’s payoff function is identical
to the potential function at every state.

1See also Radner (1992) and Van Zandt (1999).
2Neyman (1991), Gossner (2000), and Bassan et al. (2003) discussed sufficient conditions under which more

information is always more favorable.
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Once we have constructed a model of an organization using a Bayesian potential game, we
can characterize its Bayesian Nash equilibria using techniques of team theory because the set of
Bayesian Nash equilibria is the same as that of the team. Using the results of Radner (1962), we
argue that if a potential function is concave at every state, then any Bayesian Nash equilibrium
must be a Pareto efficient Bayesian Nash equilibrium of the team, and that if a potential function
is concave and quadratic at every state and private signals are normally distributed, then the
Bayesian Nash equilibrium is linear in private signals. In the latter case, we can obtain the
Bayesian Nash equilibrium in a closed form.

This argument applies to a larger class of Bayesian games, which we call Bayesian best-response
potential games. A Bayesian game is said to be a Bayesian best-response potential game if interim
best-response correspondences of the Bayesian game coincide with those of a Bayesian identical
interest game, or a team.3 In a Bayesian best-response potential game, the set of Bayesian Nash
equilibria is the same as that of the team, and thus we can use techniques of team theory. We show
that a class of Bayesian best-response potential games are strictly larger than that of (weighted)
Bayesian potential games.

We demonstrate by examples how our approach works in studying the efficient use of infor-
mation. The examples employ a parametrized class of two-player, symmetric, quadratic Bayesian
potential games with normally distributed private signals. First, we provide conditions for the
parameters under which most precise information is most favorable, and under which most pre-
cise information is least favorable. Next, we examine the result of Crémer (1990) comparing two
information structures in teams: shared knowledge and diversified knowledge.4 Shared knowledge
refers to an information structure in which every individual has the same information and diver-
sified knowledge refers to an information structure in which every individual has conditionally
independent information. Crémer (1990) showed that shared knowledge is better than diversified
knowledge if and only if a team exhibits strategic complementarity. We show that this is true
for organizations other than teams. Finally, we examine the result of Morris and Shin (2002)
considering welfare effects of public information in Bayesian coordination games with strategic
complementarity. They demonstrated that more private information always results in more effi-
ciency whereas more public information may result in less efficiency depending upon the accuracy
of private information. We show that this is true for a larger class of Bayesian games with a
slightly different setup.

Basar and Ho (1974) was the first to use the results of Radner (1962) for Bayesian games.
They considered two-player quadratic Bayesian games with normally distributed private signals,
which include Bayesian duopoly games with linear demand functions, and demonstrated that the
calculation of Bayesian Nash equilibria is reduced to that in teams. Following Basar and Ho
(1974), many papers on information sharing in Bayesian oligopoly games with linear demand
functions have took the same approach: see Clark (1983), Gal-Or (1985, 1986), Vives (1984,
1988), Raith (1996) among others. It is worth pointing out that Bayesian games studied in the
above papers form a special class of Bayesian potential games because oligopoly games with linear
demand functions are potential games as shown by Slade (1994). In contrast, this paper uses the
results of Radner (1962) for a larger class of Bayesian best-response potential games, generalizing
the approach taken by the above papers for broader purposes. A recent paper by Angeletos and
Pavan (2007) study the efficient use of information using continuum-of-player quadratic Bayesian

3A best-response potential game with complete information is introduced by Morris and Ui (2004).
4We adopt the terms “shared knowledge” and “diversified knowledge” from Prat (1996) who generalized the

result of Crémer (1990).

4



potential games with normally distributed private signals. A finite-player version of their Bayesian
games also form a special class of Bayesian potential games we study.

Let us conclude this introduction with an outline of this paper. Section 2 reviews potential
games as a preparation for studying Bayesian potential games. Section 3 introduces Bayesian
potential games. Section 4 characterizes Bayesian Nash equilibria using the results of Radner
(1962). Section 5 demonstrates by examples how our approach works. Section 6 discusses the
extension to Bayesian best-response potential games.

2 Potential games

A game (with complete information) consists of a set of players N = {1, . . . , n}, a set of actions
Ai for i ∈ N , and a payoff function gi : A → R for i ∈ N where A =

∏
i∈N Ai. We write

A−i =
∏

j 6=i Aj . We simply denote a game by g = (gi)i∈N . In this paper, it will be assumed that
Ai ⊆ R is an interval for each i ∈ N . We regard a ∈ A as a column vector in Rn.

Potential games and weighted potential games are formally defined by Monderer and Shap-
ley (1996).

Definition 1 A game g is a weighted potential game if there exists a weighted potential function
f : A → R with a constant wi > 0 such that

gi(ai, a−i) − gi(a′
i, a−i) = wi

(
f(ai, a−i) − f(a′

i, a−i)
)

for all ai, a
′
i ∈ Ai, a−i ∈ A−i, and i ∈ N . If wi = 1 for all i ∈ N , g is called a potential game and

f is called a potential function.

For example, consider g such that

gi(a) =
v(a)
n

− ci(ai)

where v : A → R and ci : Ai → R for i ∈ N . We regard g as a simple model of a firm where v(a)
is a total value produced by the firm, v(a)/n is each player’s share of the value, and ci(ai) is a
private cost of player i choosing ai ∈ Ai. This game is a potential game with a potential function
f(a) = v(a)/n −

∑
i ci(ai) because

gi(ai, a−i) − gi(a′
i, a−i) = f(ai, a−i) − f(a′

i, a−i)

=
v(ai, a−i)

n
− v(a′

i, a−i)
n

− ci(ai) + ci(a′
i).

Hart and Moore (1990) considered a model of a firm which generalizes the above game where each
player’s share of the value is not necessarily equal and determined by the “Shapley value” rule.
As shown by Ui (2000), the model of Hart and Moore (1990) is also a potential game.

A weighted potential function f is a useful tool in finding Nash equilibria. To see this, observe
that ∫

(gi(ai, a−i) − gi(a′
i, a−i)) dλi(a−i) = wi

∫
(f(ai, a−i) − f(a′

i, a−i)) dλi(a−i)

for all ai, a
′
i ∈ Ai where λi is a probability measure on A−i. Thus,

arg max
ai∈Ai

∫
gi(ai, a−i)dλi(a−i) = arg max

ai∈Ai

∫
f(ai, a−i)dλi(a−i),

which implies the following lemma.
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Lemma 1 (Monderer and Shapley, 1996) For a weighted potential game g with a weighted
potential function f , let f be an identical interest game such that f = (fi)i∈N and fi = f for
all i ∈ N . Then, the set of Nash equilibria of g coincides with that of f . Especially, a potential
maximizer a∗ ∈ arg maxa∈A f(a) is a Nash equilibrium of g if it exists.

The following two lemmas contain necessary and sufficient conditions for potential games.

Lemma 2 (Monderer and Shapley, 1996) Suppose that gi is twice continuously differentiable
for each i ∈ N . A game g is a potential game if and only if

∂2gi

∂ai∂aj
=

∂2gj

∂ai∂aj

for all i, j ∈ N . Moreover, for an arbitrary fixed b ∈ A, a potential function is given by

f(a) =
∑
i∈N

∫ 1

0

∂gi

∂ai
(x(t))

dxi(t)
dt

dt

where x : [0, 1] → A is a piecewise continuously differentiable path in A that connects b to a, i.e.,
x(0) = a and x(1) = b.

Lemma 3 (Ui, 2000) For a subset of players S ⊆ N , let AS =
∏

i∈S Ai be a restricted action
space with a generic element aS = (ai)i∈S. A game g is a potential game if and only if there exists
a collection of functions {ΦS : AS → R}S∈2N such that

gi(a) =
∑

S⊆N, i∈S

ΦS(aS)

for all a ∈ A and i ∈ N . A potential function is given by

f(a) =
∑
S⊆N

ΦS(aS).

Consider a game with quadratic payoff functions such that

gi(a) = −qiia
2
i − 2

∑
j 6=i

qijaiaj + 2θiai + hi(a−i)

where qii, qij , and θi are constants and hi : A−i → R for i ∈ N . By Lemma 2, g is a potential
game if and only if

∂2gi

∂ai∂aj
= −2qij = −2qji =

∂2gj

∂ai∂aj
for all i 6= j.

Let us find a potential function using Lemma 3.5 For this purpose, we can assume hi(a−i) = 0
without loss of generality because, by the definition of potential games, if f is a potential function
of g then it is also a potential function of g′ with g′i(a) = gi(a) + h′

i(a−i) for any h′
i : A−i → R.

Assuming that qij = qji, let {ΦS}S∈2N be such that Φ{i,j}(a{i,j}) = −2qijaiaj , Φ{i}(ai) = −qiia
2
i +

2aiθi, and ΦS(aS) = 0 otherwise. Then,∑
S⊆N, i∈S

ΦS(aS) = −qiia
2
i − 2

∑
j 6=i

qijaiaj + 2θiai = gi(a)

and thus the potential function is

f(a) =
∑
S⊆N

ΦS(aS) =
∑

{i,j}⊆N

Φ{i,j}(a{i,j}) +
∑
i∈N

Φ{i}(ai) = −
∑
i,j

qijaiaj + 2
∑

i

θiai.

To summarize, we have the following lemma.
5We can also use Lemma 2. But it requires integrals. On the other hand, Lemma 3 requires combinatorial

consideration, which is sometimes simple.
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Lemma 4 A game g of the above form is a potential game if and only if qij = qji for all i, j ∈ N .
A potential function f is such that

f(a) = −a′Qa + 2θ′a

where Q = [qij ]n×n and θ = [θ1, . . . , θn]′.

If Q is a positive definite matrix, then a∗ = Q−1θ is the unique maximizer of f . In addition, it is
the unique equilibrium of g according to Neyman (1997), who showed that a potential maximizer
is a unique correlated equilibrium of a potential game if a potential function is continuously
differentiable and strictly concave. We will argue analogous results for Bayesian potential games.

3 Bayesian potential games

A Bayesian game consists of a set of players N = {1, . . . , n}, a set of actions Ai for i ∈ N , a
probability space (Ω,F , P ), a payoff function ui : A × Ω → R for i ∈ N , a measurable space
(Yi,Yi) with a measurable mapping ηi : Ω → Yi for i ∈ N . We write u = (ui)i∈N and η = (ηi)i∈N .
Because we will fix N , A, and (Ω,F , P ) throughout the paper, we simply denote a Bayesian game
by (u, η). We call η an information structure of (u, η). It will be assumed that, for each i ∈ N ,
Ai ⊆ R is an interval and ui((·, a−i), ω) : Ai → R is differentiable for all a−i ∈ A−i and ω ∈ Ω.

A strategy of player i ∈ N is a measurable mapping σi : Yi → Ai. Let Σi be the set of
strategies of player i ∈ N . We write Σ =

∏
i∈N Σi and Σ−i =

∏
j 6=i Σj . We sometimes omit ω

in writing ηi(ω). Thus, we write σi(ηi) = σi(ηi(ω)) for σi ∈ Σi, σ(η) = (σi(ηi(ω)))i∈N for σ ∈ Σ,
and σ−i(η−i) = (σj(ηj(ω)))j 6=i for σ−i ∈ Σ−i, all of which are regarded as random variables.

A strategy profile σ ∈ Σ is a Bayesian Nash equilibrium if, for a.e. yi ∈ Yi,

E [ui (σ(η), ω) | ηi(ω) = yi] ≥ E [ui ((ai, σ−i(η−i)), ω) | ηi(ω) = yi]

for all ai ∈ Ai and i ∈ N where E [ · | ηi(ω) = yi] is a conditional expectation operator given
ηi(ω) = yi. The first-order condition for a Bayesian Nash equilibrium is

∂

∂ai
E [ui ((ai, σ−i(η−i)), ω) | ηi(ω) = yi]

∣∣∣∣
ai=σi(yi)

= 0

for a.e. yi ∈ Yi and i ∈ N . Let Ui : Σ → R be the ex ante expected payoff function: Ui(σ) =
E [ui(σ(η), ω)]. A strategy profile σ ∈ Σ is a Bayesian Nash equilibrium if and only if Ui(σ) ≥
Ui(σ′

i, σ−i) for all σ′
i ∈ Σi and i ∈ N .

Bayesian potential games and weighted Bayesian potential games are introduced by van Heumen
et al. (1996).

Definition 2 A Bayesian game (u, η) is a weighted Bayesian potential game if there exists a
weighted Bayesian potential function v : A × Ω → R with a constant wi > 0 such that, for every
ω ∈ Ω,

ui((ai, a−i), ω) − ui((a′
i, a−i), ω) = wi

(
v((ai, a−i), ω) − v((a′

i, a−i), ω)
)

(1)

for all ai, a
′
i ∈ Ai, a−i ∈ A−i, and i ∈ N . If wi = 1 for all i ∈ N , (u, η) is called a Bayesian

potential game and v is called a Bayesian potential function.
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For a weighted Bayesian potential game (u, η) with a weighted Bayesian potential function v,
let (v, η) be a Bayesian identical interest game such that v = (vi)i∈N and vi = v for all i ∈ N .
Observe that, by (1), for all ai, a

′
i ∈ Ai, σ−i ∈ Σ−i, and yi ∈ Yi,

E [ui ((ai, σ−i(η−i)), ω) | ηi(ω) = yi] − E [ui ((a′
i, σ−i(η−i)), ω) | ηi(ω) = yi]

= wi

(
E [v ((ai, σ−i(η−i)), ω) | ηi(ω) = yi] − E [v ((a′

i, σ−i(η−i)), ω) | ηi(ω) = yi]
)
.

Thus, the first-order condition for a Bayesian Nash equilibrium in (u, η) and that in (v, η) are the
same, and so are the interim best responses:

arg max
ai∈Ai

E [ui ((ai, σ−i(η−i)), ω) | ηi(ω) = yi] = arg max
ai∈Ai

E [v ((ai, σ−i(η−i)), ω) | ηi(ω) = yi] .

Let V : Σ → R be such that V (σ) = E [v(σ(η), ω)]. Then, by (1),

Ui(σi, σ−i) − Ui(σ′
i, σ−i) = wi

(
V (σi, σ−i) − V (σ′

i, σ−i)
)

for all σi, σ
′
i ∈ Σi and σ−i ∈ Σ−i. Thus, V is a weighted potential function of (u, η) in the sense

of Definition 1. All of the above leads us to the following lemma.

Lemma 5 (van Heumen et al., 1996) The set of Bayesian Nash equilibria of (u, η) coincides
with that of (v, η). Especially, a potential maximizer σ∗ ∈ arg maxσ∈Σ V (σ) is a Bayesian Nash
equilibrium of (u, η) if it exists.

Consider a Bayesian game with quadratic payoff functions such that

ui(a, ω) = −qii(ω)a2
i − 2

∑
j 6=i

qij(ω)aiaj + 2θi(ω)ai + hi(a−i, ω)

where qij : Ω → R, θi : Ω → R, and hi : A−i × Ω → R for i, j ∈ N . The following lemma is a
straightforward consequence of Lemma 4.

Lemma 6 A Bayesian game (u, η) of the above form is a Bayesian potential game if and only if
qij(ω) = qji(ω) for all i, j ∈ N and ω ∈ Ω. A Bayesian potential function v is such that

v(a, ω) = −a′Q(ω)a + 2θ(ω)′a

where Q(ω) = [qij(ω)]n×n and θ(ω) = [θ1(ω), . . . , θn(ω)]′.

For example, if qii(ω) = α and qij(ω) = β for all i 6= j and ω ∈ Ω where α, β ∈ R are constants,
then (u, η) is a Bayesian potential game with a Bayesian potential function

v(a, ω) = −α
∑
i∈N

a2
i − β

∑
i,j∈N, i 6=j

aiaj + 2
∑
i∈N

θi(ω)ai.

A continuun-of-player version of this Bayesian potential game is studied by Angeletos and Pavan
(2007).6

6Angeletos and Pavan (2007) obtained a Bayesian Nash equilibrium without using the Bayesian potential func-

tion.
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4 Team decision problems revisited

Consider a Bayesian identical interest game (v, η) such that vi = v for all i ∈ N and a weighted
Bayesian potential game (u, η) with a weighted Bayesian potential function v. Let V (σ) =
E [v(σ(η), ω)]. Radner (1962) defined (v, η) to be a team, whose origin is the work of Marshak
(1955). Radner (1962) called a strategy profile a decision function of a team, a Bayesian Nash equi-
librium a person-by-person maximal decision function, a strategy profile satisfying the first-order
condition a stationary decision function, and a Pareto efficient Nash equilibrium a Bayes decision
function. Radner (1962) discussed conditions under which every stationary decision function is
Bayes. In our words, they are conditions under which a strategy profile satisfying the first-order
condition in (v, η), which is also that in (u, η), maximizes V . This observation leads us to the
following theorems, all of which are immediate consequences of those of Radner (1962).

According to Theorem 1 of Radner (1962), if a weighted Bayesian potential function v is
concave, then a strategy profile satisfying the first-order condition maximizes V . Thus, if the
maximizer of V is unique, it must be the unique Bayesian Nash equilibrium satisfying the first-
order condition. The theorem requires the assumption of local finiteness. We say that V is locally
finite at σ ∈ Σ if |V (σ)| < ∞ and, for any σ′ ∈ Σ with V (σ + σ′) < ∞, there exist k1, . . . , kn > 0
such that |V (σ1 +h1σ

′
1, . . . , σn +hnσ′

n)| < ∞ for all h1, . . . , hn with |h1| ≤ k1, . . . , |hn| ≤ kn where
σi + hiσ

′
i ∈ Σi is such that (σi + hiσ

′
i)(yi) = σi(yi) + hiσ

′
i(yi) for all yi ∈ Yi.

Theorem 1 Let (u, η) be a weighted Bayesian potential game with a weighted Bayesian potential
function v. Suppose that

• v(·, ω) : A → R is concave and differentiable for a.e. ω ∈ Ω,

• supσ′∈Σ V (σ′) < ∞.

If σ ∈ Σ satisfies the first-order condition for a Bayesian Nash equilibrium and V is locally finite
at σ, then σ maximizes V .

It is not easy to verify the local finiteness condition. Krainak et al. (1982) obtained an
extension of Theorem 1 of Radner (1962) with a condition which is easier to verify in some cases.
The following theorem is its translation to our setup with Bayesian potential games. As Krainak
et al. (1982) showed, the condition in Theorem 1 is sufficient for the condition in the following
theorem.

Theorem 2 Let (u, η) be a weighted Bayesian potential game with a weighted Bayesian potential
function v. Suppose that

• v(·, ω) : A → R is concave and differentiable for a.e. ω ∈ Ω,

• supσ′∈Σ V (σ′) < ∞.

If σ ∈ Σ satisfies the first-order condition for a Bayesian Nash equilibrium and, for every σ′ ∈ Σ
such that |V (σ′)| < ∞,

E

[
∂v(a, ω)

∂ai

∣∣∣∣
a=σ(η)

× (σ′
i(ηi) − σi(ηi))

]
exists for each i ∈ N , then σ maximizes V .
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For example, let (u, η) be a Bayesian potential game considered in Lemma 6 and define

r = inf
ω∈Ω

min
a∈A

a′Q(ω)a∑
i∈N qii(ω)a2

i

.

According to Theorem 4 of Radner (1962), if Q(ω) is positive definite and r > 0, then the condition
in Theorem 1 (and thus Theorem 2) is satisfied.

Theorem 3 Let (u, η) be a Bayesian potential game considered in Lemma 6. Let Ai = R for all
i ∈ N . Suppose that Q(ω) is positive definite for a.e. ω ∈ Ω and r > 0. If σ ∈ Σ satisfies the
first-order condition for a Bayesian Nash equilibrium, then σ maximizes V .

Clearly, if Q(ω) is a constant positive definite matrix, we must have r > 0. Furthermore,
according to Theorem 5 of Radner (1962), the Bayesian Nash equilibrium is unique and linear in
private signals.

Theorem 4 Suppose that Q(ω) = Q for all ω ∈ Ω where Q is a constant positive definite ma-
trix. Suppose that η1, . . . , ηn are vector-valued, and that η1(ω), . . . , ηn(ω) and θ1(ω), . . . , θn(ω)
are jointly normally distributed. If σ ∈ Σ satisfies the first-order condition for a Bayesian Nash
equilibrium, then it is the unique maximizer of V . It solves the system of equations∑

j∈N

qijE[σj(ηj) | ηi(ω) = yi] = E[θi | ηi(ω) = yi] (2)

for all yi ∈ Yi and i ∈ N and σi is a linear function of ηi.

By the above theorem, we can obtain a Bayesian Nash equilibrium in a closed form. Let Cij

be the covariance matrix of ηi and ηj . Assume that ηi has mean zero. Let Gi be the covariance
matrix of ηi and θi. In summary,

Cov[ηi, ηj ] = Cij , E[ηi] = 0, Cov[ηi, θi] = Gi.

Then, by the property of multivariate normal distributions,7

E[θi | ηi(ω) = yi] = E[θi] + G′
iC

−1
ii yi, E[ηj | ηi(ω) = yi] = CjiC

−1
ii yi.

Let σ be a Bayesian Nash equilibrium such that

σi(ηi) = b′iηi + ci (3)

for each i ∈ N . Plugging this into (2), we have∑
j

qij(b′jCjiC
−1
ii yi + cj) = E[θi] + G′

iC
−1
ii yi

for all yi ∈ Yi and i ∈ N . Thus, a vector bi and a constant ci are determined by the system of
linear equations ∑

j

qijb
′
jCjiC

−1
ii = G′

iC
−1
ii and

∑
j

qijcj = E[θi] for i ∈ N.

This is reduced to the following form:∑
j

qijCijbj = Gi and
∑

j

qijcj = E[θi] for i ∈ N. (4)

7Let X = (X1, X2) be a random vector whose distribution is multivariate normal. Let µi = EXi and Cij =

Cov(Xi, Xj) for i, j = 1, 2. Then, E[X2|X1] = µ2 + C21C−1
11 (X1 − µ1).
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5 Information structures and efficiency

In order to study the relationship between information structures and efficiency, we propose the
following steps of analysis. For the first step, construct a model of an organization using a Bayesian
potential game, which is not only less restrictive than using a team but also not uncommon as
discussed in Section 2. For the second step, consider information structures η and η′, and obtain
the corresponding Bayesian Nash equilibria using the results in the previous section. For the third
step, compute the sum of ex ante expected payoffs of all the players for each information structure
and compare them. If the sum for η is greater than that for η′, then we conclude that η is better
than η′.

For example, consider a two-player, symmetric, quadratic Bayesian potential game:

u1(a, ω) = −a2
1 + 2ρa1a2 + 2θ1(ω)a1 − αa2

2 + 2βθ2(ω)a2 + f1(ω),

u2(a, ω) = −a2
2 + 2ρa1a2 + 2θ2(ω)a2 − αa2

1 + 2βθ1(ω)a1 + f2(ω)

where θ1, θ2, η1, and η2 are jointly normally distributed and |ρ| < 1. Note that if α = β = 1 then
players have the same payoff functions (except the term fi(ω)) and it is a team. By Lemma 6,
(u, η) has a Bayesian potential function

v(a, ω) = −
[

a1 a2

] [
1 −ρ

−ρ 1

][
a1

a2

]
+ 2

[
θ1(ω) θ2(ω)

] [
a1

a2

]
= −a2

1 − a2
2 + 2ρa1a2 + 2θ1(ω)a1 + 2θ2(ω)a2.

Note that v(·, ω) : A → R is concave because |ρ| < 1. The following games conform to the above
formulation (with suitable normalization).

• A model of a firm studied by Crémer (1990) has the following payoff functions

u1(a, ω) = u2(a, ω) = θ0(ω)(a1 + a2) −
B(a1 + a2)2 + C(a1 − a2)2

2

where B,C > 0 are constants. Note that, for i = 1, 2,

∂2ui(a, ω)
∂a1∂a2

= C − B.

Thus, if C > B then the game exhibits strategic complementarity and if B > C then it
exhibits strategic substitutability.

• A model of Cournot duopoly with a linear demand function has the following payoff functions

u1(a, ω) = (θ0(ω) − a1 − a2)a1 − c1(θ)a1,

u2(a, ω) = (θ0(ω) − a1 − a2)a2 − c2(θ)a2

where θ0(ω) is a parameter for the demand structure and ci(θ) is a marginal cost for firm
i = 1, 2.

• A two-player version of a coordination game studied by Morris and Shin (2002) has the
following payoff functions8

u1(a, ω) = −λ(a1 − a2)2 − (1 − λ)(a1 − θ0(ω))2,

u2(a, ω) = −λ(a1 − a2)2 − (1 − λ)(a2 − θ0(ω))2

8Morris and Shin (2002) assumed a continuum of players. This game will be discussed in the next section again.
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where 0 ≤ λ ≤ 1 is a constant. In this game, player i’s best response is his expected value of
a weighted average of the opponent’s action σj(ηj) and the unknown parameter θ0(ω), i.e.,
E[λσj(ηj) + (1 − λ)θ0(ω) | ηi(ω) = yi] for all yi ∈ Yi.

Using Theorem 4, we shall obtain a Bayesian Nash equilibrium in a closed form. For the
parameters of the joint normal distribution of (θ1, θ2, η1, η2), we assume E[θ1] = E[θ2] = E[η1] =
E[η2] = 0 and the following symmetric covariance structure:

C11 = C22 = C, C12 = C21 = D, Cov(η1, θ1) = Cov(η2, θ2) = G.

Plugging the above into (4), solving it for bi and ci, and plugging bi and ci into (3), we have the
unique Bayesian Nash equilibrium

σ∗
i (ηi) = G′ (C − ρD)−1

ηi (5)

for i = 1, 2. We evaluate welfare in terms of the sum of ex ante expected payoffs:

W (σ∗) =E [u1(σ∗(η), ω)] + E [u2(σ∗(η), ω)]

= − (1 + α)Eσ2
1 − (1 + α)Eσ2

2 + 4ρEσ1σ2

+ 2(1 + β)Eθ1σ1 + 2(1 + β)Eθ2σ2 + Ef1 + Ef2

= − 2(1 + α)G′(C − ρD)−1C(C − ρD)−1G + 4ρG′(C − ρD)−1D(C − ρD)−1G

+ 4(1 + β)G′(C − ρD)−1G + Ef1 + Ef2

=2(1 − α)G′(C − ρD)−1C(C − ρD)−1G + 4βG′(C − ρD)−1G + f (6)

where f = Ef1 + Ef2. Note that, in general, a Bayesian Nash equilibrium σ∗ does not maximize
W unless both players have the same payoff functions or independent payoff functions.

We study comparative statics on W (σ∗) with respect to information structures. To do so, we
consider a more specific information structure given by

θ1 = θ2 = θ, η1 = θ + ε0 + ε1, η2 = θ + ε0 + ε2

where θ, ε0, ε1, and ε2 are independently and normally distributed with

E[θ] = E[ε0] = E[ε1] = E[ε2] = 0,

Var[θ] = ξ, Var[ε0] = φ, Var[ε1] = Var[ε2] = ψ.

Then, C = ξ +φ+ψ, D = ξ +φ, and G = ξ. We will fix ξ > 0 throughout and regard (φ, ψ) ∈ R2
+

as a parameter for an information structure (η1, η2). Note that if (φ, ψ) = (0, 0) then θ is common
knowledge. Plugging the above into (5) and (6), we have

σ∗
i (ηi) =

ξ

(1 − ρ)(ξ + φ) + ψ
ηi for i = 1, 2,

W (σ∗) = F (φ, ψ) =
2(1 − α)(ξ + φ + ψ)ξ2

((1 − ρ)(ξ + φ) + ψ)2
+

4βξ2

(1 − ρ)(ξ + φ) + ψ
+ f.

We first compare welfare under common knowledge of θ and that under other information
structures.

Proposition 1 If α ≤ 1 and β ≥ 0, then F (0, 0) ≥ F (φ, ψ). If α ≥ 1 and β ≤ 0, then F (0, 0) ≤
F (φ, ψ). If α = 1 and β = 0, then F (0, 0) = F (φ, ψ).
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Proof. Remember that |ρ| < 1 is assumed. Rewrite

F (φ, ψ) =
2(1 − α)(ξ + φ + ψ)ξ2

(1 − ρ)2 (ξ + φ + ψ/(1 − ρ))2
+

4βξ2

(1 − ρ)(ξ + φ + ψ/(1 − ρ))
+ f

= A
ξ + x

(ξ + y)2
+ B

1
ξ + y

+ f

where A = 2(1−α)ξ2

(1−ρ)2 , B = 4βξ2

1−ρ , x = φ + ψ ≥ 0, and y = φ + ψ/(1 − ρ) ≥ 0. Then,

F (φ, ψ) − F (0, 0) =A

(
ξ + x

(ξ + y)2
− 1

ξ

)
+ B

(
1

ξ + y
− 1

ξ

)
= − A

(2y − x)ξ + y2

ξ(ξ + y)2
− B

y

ξ(ξ + y)
.

Note that 2y − x = φ + (1 + ρ)ψ/(1− ρ) ≥ 0. Since A is a positive constant times 1− α and B is
a positive constant times β, this proposition is true.

This proposition asserts that common knowledge of θ results in the highest efficiency if α ≤ 1
and β ≥ 0, whereas it results in the lowest efficiency if α ≥ 1 and β ≤ 0. It should be noted that
F (0, 0) ≥ F (φ, ψ) does not imply that F (φ, ψ) is decreasing in (φ, ψ) as we will see in Proposition
3.

Crémer (1990) compared two information structures in a team: shared knowledge and di-
versified knowledge. Shared knowledge is an information structure (φ, ψ) = (c, 0) where players
have the same information. Diversified knowledge is an information structure (φ, ψ) = (0, c) where
players have conditionally independent information. Crémer (1990) showed that shared knowledge
is better than diversified knowledge in a team if and only if a team exhibits strategic complemen-
tarity, i.e., ρ ≥ 0.9 We obtain the same conclusion if α ≤ 1 and β ≥ 0, but the opposite conclusion
if α ≥ 1 and β ≤ 0.

Proposition 2 Let c > 0 and (α, β) 6= (1, 0). Suppose that α ≤ 1 and β ≥ 0. Then, F (c, 0) ≥
F (0, c) if and only if ρ ≥ 0. Suppose that α ≥ 1 and β ≤ 0. Then, F (c, 0) ≥ F (0, c) if and only if
ρ ≤ 0.

Proof. By calculation, we have

F (c, 0) − F (0, c) =
2(1 − α)(ξ + c)ξ2

((1 − ρ)(ξ + c))2
+

4βξ2

(1 − ρ)(ξ + c)

− 2(1 − α)(ξ + c)ξ2

((1 − ρ)ξ + c)2
− 4βξ2

(1 − ρ)ξ + c

=2(1 − α)(ξ + c)ξ2 ((1 − ρ)ξ + c)2 − ((1 − ρ)(ξ + c))2

((1 − ρ)(ξ + c))2 ((1 − ρ)ξ + c)2

+ 4βξ2 ((1 − ρ)ξ + c) − ((1 − ρ)(ξ + c))
((1 − ρ)(ξ + c)) ((1 − ρ)ξ + c)

.

Note that (1 − ρ)ξ + c ≥ (1 − ρ)(ξ + c) if and only if ρ ≥ 0. Thus, if 1 − α ≥ 0 and β ≥ 0,
F (c, 0) − F (0, c) ≥ 0 if and only if ρ ≥ 0, and if 1 − α ≤ 0 and β ≤ 0, F (c, 0) − F (0, c) ≤ 0 if and
only if ρ ≤ 0.

9Prat (1996) obtained the same result for teams dropping the assumptions of quadratic payoffs and normally

distributed signals.
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Note that if the game is a team, then α = β = 1, satisfying the former assumption α ≤ 1 and
β ≥ 0, which is the result of Crémer (1990).

Morris and Shin (2002) studied information structures where private signals consist of public
information and private information. They showed that more private information always increase
efficiency, whereas more public information may decrease efficiency. We have a similar claim in
our setup when α ≤ 1 and β ≥ 0.

Proposition 3 Let (α, β) 6= (1, 0). Suppose that α ≤ 1 and β ≥ 0. Then,

∂

∂ψ
F (φ, ψ) ≤ 0 and

∂

∂φ
F (φ, ψ) ≤ 0 ⇔ (1 − α)(2ρ − 1) − 2β(1 − ρ)

(1 − ρ) ((1 − α) + 2β(1 − ρ))
≤ ξ + φ

ψ
.

Suppose that α ≥ 1 and β ≤ 0. Then,

∂

∂ψ
F (φ, ψ) ≥ 0 and

∂

∂φ
F (φ, ψ) ≥ 0 ⇔ (1 − α)(2ρ − 1) − 2β(1 − ρ)

(1 − ρ) ((1 − α) + 2β(1 − ρ))
≤ ξ + φ

ψ
.

Proof. Immediate from the following calculation:

∂

∂ψ
F (φ, ψ) = −2(1 − α)ξ2 (1 + ρ)(ξ + φ) + ψ

((1 − ρ)(ξ + φ) + ψ)3
− 4βξ2

((1 − ρ)(ξ + φ) + ψ)2
,

∂

∂φ
F (φ, ψ) =

2ξ2

((1 − ρ)(ξ + φ) + ψ)3
× [−((1 − α)(1 − ρ) + 2β(1 − ρ)2)(ξ + φ)

+((1 − α)(2ρ − 1) − 2β(1 − ρ))ψ].

Increase in the variance of public noise φ corresponds to decrease in the accuracy of public
information, and increase in the variance of private noise ψ corresponds to decrease in the accuracy
of private information. Given this interpretation, the claim of the above proposition when α ≤ 1
and β ≥ 0 is similar to that of Morris and Shin (2002).

6 Bayesian best-response potential games

An analysis of a weighted Bayesian potential game is reduced to team decision problems. This is
owing to the fact that the equilibrium set coincides with that of a team. Conversely, it is worth
asking what class of Bayesian games have the same equilibrium set as that of a team.

For games with complete information, Morris and Ui (2004) studied such a class of games. A
game g is said to be best-response equivalent to g′ if, for each i ∈ N ,

arg max
ai∈Ai

∫
gi(ai, a−i)dλi(a−i) = arg max

ai∈Ai

∫
g′i(ai, a−i)dλi(a−i)

for any probability measure λi on A−i such that the integrals exist. Morris and Ui (2004) consid-
ered a game which is best-response equivalent to an identical interest game, and called the game
a best-response potential game. They showed that if v is concave then a class of best-response
potential games are strictly larger than that of weighted potential games.

We introduce the “Bayesian” version of best-response potential games. We say that (u, η) is
best-response equivalent to (u′, η) if, for each i ∈ N ,

arg max
ai∈Ai

E[ui((ai, σ−i(η−i)), ω) | ηi(ω) = yi] = arg max
ai∈Ai

E[u′
i((ai, σ−i(η−i)), ω) | ηi(ω) = yi]
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for all σ−i ∈ Σ−i and yi ∈ Yi such that the interim expected payoffs exist. We consider a Bayesian
game which is best-response equivalent to a Bayesian identical interest game, and call the game
a Bayesian best-response potential game. A weighted Bayesian potential game is a Bayesian
best-response potential game as we have seen in Section 3. By the definition of Bayesian Nash
equilibria, the equilibrium set of a Bayesian best-response potential game coincides with that of
the Bayesian identical interest game.

Definition 3 A Bayesian game (u, η) is a Bayesian best-response potential game and a function
v : A × Ω → R is a Bayesian best-response potential function if (u, η) is best-response equivalent
to a Bayesian identical interest game (v, η) such that v = (vi)i∈N and vi = v for all i ∈ N .

Lemma 7 For a Bayesian best-response potential game (u, η) with a Bayesian best-response po-
tential function v, let (v, η) be a Bayesian identical interest game such that v = (vi)i∈N and vi = v

for all i ∈ N . Then, the set of Bayesian Nash equilibria of (u, η) coincides with that of (v, η).

The above lemma implies that the results in Section 4 hold even if “weighted Bayesian po-
tential” is replaced by “Bayesian best-response potential.” Thus, we are interested in Bayesian
best-response potential games with concave Bayesian best-response potential functions. The fol-
lowing theorem characterizes such a class of Bayesian best-response potential games.

Theorem 5 Let (u, η) be a Bayesian game. Let v : A×Ω → R be continuously differentiable and
concave with respect to a ∈ A. Suppose that, for each i ∈ N , there exists a function wi : Ai×Yi →
R++ such that

∂ui(a, ω)
∂ai

= wi(ai, ηi(ω))
∂v(a, ω)

∂ai
(7)

for all a ∈ A and ω ∈ Ω. Suppose further that supai∈(α,β), yi∈Yi
wi(ai, yi) exists for any interval

(α, β) ⊆ Ai. Then, (u, η) is a Bayesian best-response potential game with a Bayesian best-response
potential function v.

Before proving the theorem, let us discuss a simple but useful application to robustness of
equilibrium sets. Let (u, η) be a Bayesian potential game with a Bayesian potential function v

that is continuously differentiable and concave with respect to a ∈ A. Let (u′, η) be another
Bayesian game such that

u′
i(a, ω) = wi(ηi(ω))ui(a, ω) (8)

for all a ∈ A, ω ∈ Ω, and i ∈ N where wi : Yi → R++ is a ηi-measurable random variable
taking a strictly positive value. By Theorem 5, (u′, η) is a Bayesian best-response potential game
with a Bayesian best-response potential function v. Thus, by Lemma 7, the set of Bayesian Nash
equilibria of (u′, η) coincides with that of (u, η). In other words, the set of Bayesian Nash equilibria
of (u, η) is robust to random disturbances of payoff functions of the form (8).

To prove the theorem, we use the following lemma.

Lemma 8 For each σ−i ∈ Σ−i and yi ∈ Yi such that the interim expected payoffs exist,

∂

∂ai
E[v((ai, σ−i(η−i)), ω) | ηi(ω) = yi] = E[

∂

∂ai
v((ai, σ−i(η−i)), ω) | ηi(ω) = yi], (9)

∂

∂ai
E[ui((ai, σ−i(η−i)), ω) | ηi(ω) = yi] = E[

∂

∂ai
ui((ai, σ−i(η−i)), ω) | ηi(ω) = yi]. (10)
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Proof. Since v(a, ω) is concave in a ∈ A, v((x + d, σ−i(η−i)), ω)− v((x, σ−i(η−i)), ω) is concave in
d, and thus [v((x+d, σ−i(η−i)), ω)−v((x, σ−i(η−i)), ω)]/d increases to ∂v(a, ω)/∂ai|a=(x, σ−i(η−i))

as d → +0. Thus, by the monotone convergence theorem, we must have (9). The concavity of v

also implies that ∂v(a, ω)/∂ai is decreasing in ai ∈ Ai. Thus, for any α, β, x ∈ Ai with α < x < β,
(7) implies that ∣∣∣∣∣ ∂ui(a, ω)

∂ai

∣∣∣∣
ai=x

∣∣∣∣∣ ≤ w̄i

(∣∣∣∣∣ ∂v(a, ω)
∂ai

∣∣∣∣
ai=α

∣∣∣∣∣ +

∣∣∣∣∣ ∂v(a, ω)
∂ai

∣∣∣∣
ai=β

∣∣∣∣∣
)

where w̄i = supai∈(α,β), yi∈Yi
wi(ai, yi). Note that, for each x ∈ (α, β) and d ∈ (0, β − x), there

exists γ ∈ [x, x + d] ⊆ (α, β) by the mean-value theorem such that

ui((x + d, a−i), ω) − ui((x, a−i), ω)
d

=
∂ui(a, ω)

∂ai

∣∣∣∣
ai=γ

.

Thus, ∣∣∣∣ui((x + d, σ−i(η−i)), ω) − ui((x, σ−i(η−i)), ω)
d

∣∣∣∣
≤ w̄i

(∣∣∣∣∣ ∂v(a, ω)
∂ai

∣∣∣∣
a=(α, σ−i(η−i))

∣∣∣∣∣ +

∣∣∣∣∣ ∂v(a, ω)
∂ai

∣∣∣∣
a=(β, σ−i(η−i))

∣∣∣∣∣
)

.

Since the right-hand side is integrable with respect to E[ · | ηi(ω) = yi], by the dominated conver-
gence theorem, we must have (10).

Proof of Theorem 5. By (7), (9), and (10),

∂

∂ai
E[ui((ai, σ−i(η−i)), ω) | ηi(ω) = yi] = wi(ai, yi)

∂

∂ai
E[v((ai, σ−i(η−i)), ω) | ηi(ω) = yi].

This implies that

sign
(

∂

∂ai
E[ui((ai, σ−i(η−i)), ω) | ηi(ω) = yi]

)
= sign

(
∂

∂ai
E[v((ai, σ−i(η−i)), ω) | ηi(ω) = yi]

)
. (11)

By the concavity of v, ∂v(a, ω)/∂ai is decreasing in ai, and thus the both sides of (9) are decreasing
in ai. Accordingly,

a∗
i ∈ arg max

ai∈Ai

E[v((ai, σ−i(η−i)), ω) | ηi(ω) = yi]

if and only if (11) is 0 or plus for all ai < a∗
i and 0 or minus for all ai > a∗

i . This is true if and
only if

a∗
i ∈ arg max

ai∈Ai

E[ui((ai, σ−i(η−i)), ω) | ηi(ω) = yi],

which completes the proof.

The next corollary applies Theorem 5 to a quadratic Bayesian potential game considered in
Lemma 6.

Corollary 6 Let (u, η) be a Bayesian game. Let v : A × Ω → R be such that

v(a, ω) = −a′Q(ω)a + 2θ(ω)′a
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where Q(ω) = [qij(ω)]n×n is a positive definite matrix and θ(ω) = [θ1(ω), . . . , θn(ω)]′ is a column
vector for all ω ∈ Ω. Suppose that, for each i ∈ N , there exists a function fi : Ai × Yi → R such
that fi(·, yi) : Ai → R is continuously differentiable and strictly increasing for each yi ∈ Yi and

ui(a, ω) = fi(ai, ηi(ω))

−2
∑
j∈N

qij(ω)aj + 2θi(ω)

 + 2qii(ω)
∫ ai

0

fi(x, ηi(ω))dx + hi(a−i, ω)

for all a ∈ A and ω ∈ Ω. Then, (u, η) is a Bayesian best-response potential game with a Bayesian
best-response potential function v. Especially, if fi(ai, ai) = ai, then (u, η) is a quadratic Bayesian
potential game given in Lemma 6.

Proof. Let wi(ai, ηi(ω)) = ∂fi(ai, ηi(ω))/∂ai > 0. Then, Theorem 5 establishes the corollary.

As an example, we consider a finite-player version of a coordination game studied by Morris
and Shin (2002), which induces strategic behavior in the spirit of the “beauty contest” example
of Keynes (1936). Assume that n ≥ 3. The payoff function is given by

ui(a, ω) = −(1 − λ)(ai − θ0(ω))2 − λ(Li − L̄) (12)

where 0 < λ < 1 and

Li =
1
n

∑
i∈N

(aj − ai)2, L̄ =
1
n

∑
i∈N

Li.

Then, we can calculate the following:

∂ui(a, ω)
∂ai

= −2c

(
ai −

(
ρ

∑
j 6=i aj

n − 1
− (1 − ρ)θ0(ω)

))
(13)

where
ρ =

(n − 1)(n − 2)
n2 − (3n − 2)λ

λ, c = 1 − 3n − 2
n2

λ.

Note that ρ → λ and c → 1 as n → ∞, which corresponds to the infinite-player case. By the
first-order condition given by (13), we can find that player i’s best response is a weighted sum of
the conditional expectation of the opponents’ actions

∑
j 6=i σj(ηj)/(n− 1) and that of θ0(ω), i.e.,

ρ

∑
j 6=i E[σj(ηj) | ηi(ω) = yi]

n − 1
+ (1 − ρ)E[θ0(ω) | ηi(ω) = yi] (14)

for all yi ∈ Yi. This represents the spirit of the “beauty contest” example, and Angeletos and
Pavan(2007) call this game a beauty contest game. In this game, Morris and Shin (2002) studied
information structures where private signals consist of public information and private informa-
tion, and showed that more private information always increase efficiency, whereas more public
information may decrease efficiency.

Following Morris and Shin (2002), the payoff function of the form (12) is widely discussed.
However, it is an open question to provide a proper microfoundation. On the other hand, the
essence of Morris and Shin (2002) lies in the best response of the form (14), not in the specific
payoff function of the form (12). Thus, it is interesting and important to ask what class of Bayesian
games have the best response of the form (13). Corollary 6 provides an answer to this question.

To see this, observe that, by Lemma 6, the above game is a weighted Bayesian potential game
with a weighted Bayesian potential function

v(a) = − 1
1 − ρ

∑
i∈N

a2
i +

ρ

(n − 1)(1 − ρ)

∑
i,j∈N, i 6=j

aiaj + 2

(∑
i∈N

ai

)
θ0(ω).
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Note that ∂v/∂ai is equal to the left-hand side of (13) divided by c(1 − ρ). Now, consider the
following payoff function.

u′
i(a, ω) =fi(ai, ηi(ω))

 −2
1 − ρ

ai +
2ρ

(n − 1)(1 − ρ)

∑
j 6=i

aj + 2θ0(ω)


+

2
1 − ρ

∫ ai

0

fi(x, ηi(ω))dx + hi(a−i, ω)

where fi(·, yi) : Ai → R is a continuously differentiable, strictly increasing function for each i ∈ N

and yi ∈ Yi. Then, by Corollary 6, (u′, η) is a Bayesian best-response potential game with a
Bayesian best-response potential function v, and player i’s best response is a weighted average of
the conditional expectation of

∑
j 6=i σj(ηj)/(n − 1) and that of θ0(ω). It can be shown that the

game studied by Morris and Shin (2002) is a special case with

fi(ai, yi) = c(1 − ρ)ai,

hi(a−i, ω) = −(1 − λ)θ0(ω)2 +
λ

n2

(n + 1)
∑
j 6=i

a2
j − 2

∑
j 6=i

aj

2
 .
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