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Abstract

This paper considers an exchange economy under uncertainty with asymmetric
information. Uncertainty is represented by multiple priors and posteriors of agents
who have either Bewley’s incomplete preferences or Gilboa-Schmeidler’s maximin
expected utility preferences. The main results characterize interim efficient alloca-
tions under uncertainty; that is, they provide conditions on the sets of posteriors,
thus implicitly on the way how agents update the sets of priors, for non-existence of
a trade which makes all agents better off at any realization of private information.
For agents with the incomplete preferences, the condition is necessary and sufficient,
but for agents with the maximin expected utility preferences, the condition is suffi-
cient only. A couple of necessary conditions for the latter case are provided.
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1 Introduction

This paper considers an exchange economy under uncertainty with asymmetric informa-
tion. There are a finite number of states and in each state there is a single good. There
are a finite number of agents and each agent has private information about the states.
We model uncertainty by so-called multiple priors; that is, for each agent, uncertainty
is represented by sets of priors and sets of posteriors. The good is evaluated by concave
utility index functions, from which agents derive either Bewley’s [4] incomplete pref-
erences (BI-preferences for short) or Gilboa-Schmeidler’s [12] maximin expected utility
preferences (MEU-preferences for short).

Prior sets induce preferences in the ex ante stage (before the receipt of private infor-
mation) and posterior sets induce preferences in the interim stage (after the receipt of
private information). An allocation is ex ante efficient if there is no feasible trade which
makes all agents better off in the ex ante sage. Bewley [3] and Rigotti and Shannon [23]
characterized ex ante efficient allocations by prior sets for agents with BI-preferences,
and Billot et al. [2] characterized ex ante efficient allocations similarly for agents with
MEU-preferences under no aggregate uncertainty.1 An allocation is interim efficient if
there is no feasible trade which makes all agents better off in the interim sage for any
realization of private information. No attempt has been made to obtain a counterpart
for interim efficient allocations as far as we are aware of.

The purpose of this paper is to provide characterizations of interim efficient allo-
cations by posterior sets for agents with BI-preferences and MEU-preferences. The key
concept in our characterizations is the compatible prior set of an agent, which is defined
as the collection of all the probability distributions such that, for each piece of private
information of the agent, the conditional probability distributions are in the correspond-
ing posterior set of the agent. The compatible prior set of an agent coincides with the
convex hull of all posteriors of the agent. The main results show the following: for agents
with BI-preferences, an allocation is interim efficient if and only if it is ex ante efficient
for agents possessing their compatible prior sets as their own prior sets; and for agents
with MEU-preferences, an allocation is interim efficient if the same condition holds, but
not vice versa. Thus, ex ante efficiency with respect to the compatible prior sets is nec-
essary and sufficient for interim efficiency for the former case, but it is sufficient only for

1Rigotti et al. [24] generalized this result.
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the latter case. To obtain a sharper result for the latter case, we restrict our attention
to a limited class of allocations and provide a couple of necessary conditions for interim
efficiency.

In the standard Bayesian models, Morris [21] and Feinberg [11] provided a character-
ization of interim efficient allocations,2 which is closely related to the agreement theorem
of Aumann [1]. The agreement theorem in this context asserts that if agents with linear
utility index functions have a common prior, then an allocation is interim efficient. The
result of Morris [21] and Feinberg [11] implies the converse: if an allocation is interim
efficient for agents with linear utility index functions, then there is a prior which induces
all the agents’ posteriors; that is, it appears as if they share a fictitious common prior.
Our results have the corresponding implication when utility index functions are linear;
that is, for agents with BI-preferences, an allocation is interim efficient if and only if
the compatible prior sets of all agents have a non-empty intersection, whose element is
interpreted as a fictitious common prior.

Characterizations of interim efficient allocations are important in the context of the
no trade theorem [20]: it asserts that any ex ante efficient allocation is interim efficient,
as interpreted by Holmström and Myerson [17], and thus purely speculative trade is
impossible. A simple and intuitive explanation for the no trade theorem is that agents in
the standard Bayesian models are dynamically consistent. We show that an analogous
but not identical explanation can be given for the multiple priors models, as follows.
By combining the characterization of ex ante efficient allocations and that of interim
efficient allocations, we can obtain a necessary and sufficient condition for any ex ante
efficient allocation to be interim efficient for agents with BI-preferences.3 Using this
condition, we show that if agents with BI-preferences derive posterior sets from prior sets
by prior-by-prior Bayesian updating, then the no trade theorem holds. We also argue
that agents with BI-preferences are dynamically consistent indeed. On the other hand,
for agents with MEU-preferences, the no trade theorem does not hold because agents
are not dynamically consistent. Epstein and Schneider [9] and Wakai [27] identified a
sufficient condition for agents to be dynamically consistent by introducing rectangular
prior sets. The compatible prior sets in this paper turn out to be rectangular prior

2See also Samet [26] and Ng [22].
3On the no trade theorem in more general non-expected utility models, see Dow et al. [7], Ma [19],

and Halevy [15].
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sets, which explains why ex ante efficiency with respect to the compatible prior sets is
sufficient for interim efficiency.

The organization of this paper is as follows. Section 2 sets up the model. Section 3
reports the characterization of interim efficient allocations for agents with BI-preferences,
and Section 4 reports that for agents with MEU-preferences. Section 5 discusses issues of
dynamic consistency, the agreement theorem, and conditional preferences in the multiple
priors models.

2 Setup

In this section, we set up the model of an exchange economy under uncertainty with
asymmetric information. There is a finite set of sates Ω = {1, . . . , n}.4 Let ∆(Ω) be
the set of all probability distributions over Ω, and let P ( 2∆(Ω) be the collection of
all non-empty, convex, and closed subsets of ∆(Ω). For p ∈ ∆(Ω) and z ∈ RΩ, let
Ep[z] =

∑
ω∈Ω p(ω)z(ω) be the expected value of a random variable z with respect to p.

We write EP [z] = minp∈P Ep[z] for P ∈ P, which is the minimum expected value of z

where the minimum is taken over P . Note that the minimum exists because each P ∈ P is
compact. For a function f : R → R and z ∈ RΩ, we write Ep[f(z)] =

∑
ω∈Ω p(ω)f(z(ω))

for p ∈ ∆(Ω) and EP [f(z)] = minp∈P Ep[f(z)] for P ∈ P with some abuse of notation.
There is a finite set of agents I = {1, . . . , I}. Agent i ∈ I has an information partition

Πi ( 2Ω of Ω with a generic element πi ∈ Πi. We write πi(ω) ∈ Πi for the partition
element containing ω ∈ Ω; agent i observes πi(ω) as private information when the true
state is ω. Agent i has a set of priors Pi ∈ P, which represents his prior beliefs, and
a set of posteriors Φi(πi) ∈ P for each πi ∈ Πi, which represents his posterior beliefs
after observing πi. We write Φi = {Φi(πi)}πi∈Πi for the collection of all posteriors of
agent i.5 For Pi, we assume that there is no πi ∈ Πi such that p(πi) = 0 for all p ∈ Pi,
by which conditional probability distributions will be well defined. For Φi, we assume
that p(πi) = 1 for each p ∈ Φi(πi) and πi ∈ Πi.6

There is a single good in the economy, and agent i ∈ I has a concave, strictly in-

4We use a finite set of states to avoid topological and measure theoretic complications.
5Examples of Pi and Φi are found in Section 3.
6It might be natural to assume some relationship between Pi and Φi by some updating rule, but we

assume nothing a priori.
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creasing, and continuously differentiable7 utility index function ui : R+ → R, which to-
gether with Pi and Φi induces Bewley’s incomplete preferences [4] or Gilboa-Schmeidler’s
maximin expected utility preferences [12]. Let xi, x

′
i ∈ RΩ

+ be contingent consumption
bundles. Bewley’s incomplete preferences (BI-preferences for short) are determined as
follows: in the ex ante stage, agent i prefers xi to x′

i if and only if Ep[ui(xi)] > Ep[ui(x′
i)]

for each p ∈ Pi, or equivalently, EPi [ui(xi)−ui(x′
i)] > 0; in the interim stage, agent i with

private information πi ∈ Πi prefers xi to x′
i if and only if Ep[ui(xi)] > Ep[ui(x′

i)] for each
p ∈ Φi(πi), or equivalently, EΦi(πi)[ui(xi) − ui(x′

i)] > 0. Gilboa-Schmeidler’s maximin
expected utility preferences (MEU-preferences for short) are determined as follows: in
the ex ante stage, agent i prefers xi to x′

i if and only if EPi [ui(xi)] > EPi [ui(x′
i)]; in the

interim stage, agent i with private information πi ∈ Πi prefers xi to x′
i if and only if

EΦi(πi)[ui(xi)] > EΦi(πi)[ui(x′
i)].

An allocation is x = (x1, . . . , xI) ∈ RΩ×I
+ where xi ∈ RΩ

+ is a contingent consumption
bundle of agent i ∈ I. To avoid cumbersome boundary arguments, we restrict our
attention to an interior allocation x ∈ RΩ×I

++ in the following analysis. We call t =
(t1, . . . , tI) ∈ RΩ×I a feasible trade at an allocation x if

∑
i∈I ti = 0 and x + t is also an

allocation.8 We say that an allocation x is ex ante efficient if there is no feasible trade
t at x such that, in the ex ante stage, agent i prefers xi + ti to xi for each i ∈ I. We
say that an allocation x is interim efficient if there is no feasible trade t at x such that,
in the interim stage, agent i with any private information πi ∈ Πi prefers xi + ti to xi

for each i ∈ I. Note that these concepts of efficiency are defined for both BI-preferences
and MEU-preferences.

3 Efficiency with BI-preferences

In this section, we assume that all agents have BI-preferences. We first review the
characterization of ex ante efficient allocations due to Bewley [3] and Rigotti and Shannon
[23].

7A similar analysis can be done with continuity only; by concavity, ui has the right derivative every-

where, and replace u′
i with the right derivative.

8Alternatively, one could start with fixed total endowments e and define a feasible allocation x to

satisfy
P

i∈I xi = e.
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For each i ∈ I, xi ∈ RΩ
++, and P ∈ P, let

Ξi(P, xi) =

{(
p(ω)u′

i(xi(ω))∑
ω′∈Ω p(ω′)u′

i(xi(ω′))

)
ω∈Ω

: p ∈ P

}
, (1)

which is the set of marginal-utility weighted priors at the bundle xi. If ui(·) is linear or
xi(·) is constant, then u′

i(xi(·)) is constant, and thus Ξi(P, xi) = P .
Bewley [3] and Rigotti and Shannon [23] have established the following result.

Proposition 1 Assume that all agents have BI-preferences. An interior allocation x ∈
RΩ×I

++ is ex ante efficient if and only if∩
i∈I

Ξi(Pi, xi) ̸= ∅. (2)

To appreciate Proposition 1, recall that the fundamental theorems of welfare eco-
nomics assert that efficiency is equivalent to the existence of a common supporting vector
of agents’ upper contour sets. It can be shown that Ξi(Pi, xi) is the set of all normalized
supporting vectors of the upper contour set {ti ∈ RΩ : EPi [ui(xi + ti) − ui(xi)] > 0}.
Thus, (2) is equivalent to the existence of a common supporting vector. In this sense,
Proposition 1 is essentially the fundamental theorems of welfare economics.9

We use Proposition 1 to characterize interim efficient allocations. The key concept
in our characterization is a special set of probability distributions over Ω derived from
Φi, which is defined as follows. For each i ∈ I, p ∈ ∆(Ω) is said to be a Φi-compatible
prior if p(·|πi) ∈ Φi(πi) for each πi ∈ Πi with p(πi) > 0 where p(·|πi) is the conditional
probability distribution of p given πi, i.e., p(E|πi) = p(E ∩ πi)/p(πi) for each E ∈ 2Ω.
Let P ∗

i be the collection of all Φi-compatible priors, which is our key concept. We refer
to P ∗

i as the Φi-compatible prior set.
Note that p ∈ P ∗

i if and only if there exists q ∈ ∆(Ω) and r(·|πi) ∈ Φi(πi) for each
πi ∈ Πi such that p =

∑
πi∈Πi

q(πi)r(·|πi). Thus, we can write

P ∗
i =

∪
q∈∆(Ω)

∑
πi∈Πi

q(πi)Φi(πi), (3)

where
∑

πi∈Πi
q(πi)Φi(πi) =

{∑
πi∈Πi

q(πi)r(·|πi) : r(·|πi) ∈ Φi(πi)
}
. In addition, P ∗

i is
equal to the convex hull of

∪
πi∈Πi

Φi(πi), i.e.,

P ∗
i = co

( ∪
πi∈Πi

Φi(πi)
)
, (4)

9This point has also been discussed by Dana [5, 6] and Rigotti et al. [24] among others.
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by (3) and the following result in convex analysis.10

Lemma 1 Let {Ck}m
k=1 be a collection of non-empty convex sets in Rn. Then,

∪
P

k λk=1, λk≥0

( m∑
k=1

λkCk

)
= co

( m∪
k=1

Ck

)
.

Therefore, P ∗
i is non-empty, convex, and closed, i.e., P ∗

i ∈ P, since Φi(πi) is non-
empty, convex, and closed for each πi ∈ Πi. The expression (4) results in the following
lemma.

Lemma 2 For any z ∈ RΩ, it holds that EP ∗
i
[z] = minπi∈Πi EΦi(πi)[z].

Proof. By (4), EP ∗
i
[z] = minp∈P ∗

i
Ep[z] = minp∈co(

S

πi∈Πi
Φi(πi)) Ep[z]. Since the minimum

minp∈co(
S

πi∈Πi
Φi(πi)) Ep[z] is attained at an extreme point of co(

∪
πi∈Πi

Φi(πi)),

min
p∈co(

S

πi∈Πi
Φi(πi))

Ep[z] = min
p∈

S

πi∈Πi
Φi(πi)

Ep[z] = min
πi∈Πi

min
p∈Φi(πi)

Ep[z] = min
πi∈Πi

EΦi(πi)[z].

By Lemma 2, a characterization of interim efficient allocations can be reduced to that
of ex ante efficient allocations with respect to a set of priors P ∗

i , which is “fictitious” in
the sense that P ∗

i may be different from the “true” set of priors Pi. This leads us to the
following main result of this paper.

Proposition 2 Assume that all agents have BI-preferences. An interior allocation x ∈
RΩ×I

++ is interim efficient if and only if∩
i∈I

Ξi(P ∗
i , xi) ̸= ∅. (5)

Proof. By Proposition 1, (5) holds if and only if there is no feasible trade t at x such that
EP ∗

i
[ui(xi+ti)−ui(xi)] > 0 for each i ∈ I. Setting z = (ui(xi(ω)+ti(ω))−ui(xi(ω)))ω∈Ω ∈

RΩ in Lemma 2, we see that this is true if and only if there is no feasible trade t at x

such that EΦi(πi)[ui(xi + ti) − ui(xi)] > 0 for each πi ∈ Πi and i ∈ I. Therefore, (5)
holds if and only if x is interim efficient.

10See Theorem 3.3 of Rockafellar [25], for example.
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For example, suppose that ui is linear for each i ∈ I. Then, Ξi(P ∗
i , xi) = P ∗

i for each
xi ∈ RΩ

++ and i ∈ I, and thus the condition (5) is reduced to
∩

i∈I P ∗
i ̸= ∅. Especially,

when Φi(πi) is a singleton for each πi ∈ Πi,
∩

i∈I P ∗
i ̸= ∅ is equivalent to the existence

of a fictitious common prior p ∈ ∆(Ω) such that Φi(πi) = {p(·|πi)} for each πi ∈ Πi

with p(πi) > 0 and i ∈ I. In this case, Proposition 2 says that the existence of a
fictitious common prior is necessary and sufficient for interim efficiency, which is the
result obtained by Morris [21] and Feinberg [11].

We use Proposition 1 and Proposition 2 to study the possibility of purely speculative
trade. Recall that interim efficiency of an allocation implies non-existence of a trade to
which all agents agree in the interim stage under any realization of private information.
Thus, if any ex ante efficient allocation is interim efficient, speculative trade is impossible.
In the standard Bayesian models, any ex ante efficient allocation is automatically interim
efficient as shown by Milgrom and Stokey [20], which we refer to as the no trade theorem
in this paper. The following result provides a necessary and sufficient condition for the
no trade theorem to hold in our model. Since we do not assume any updating rule yet,
the condition is stated in terms of the relationship between P1, . . . , PI and Φ1, . . . , ΦI .
We omit a proof because it is a direct consequence of Proposition 1 and Proposition 2.

Corollary 3 Assume that all agents have BI-preferences. The following two conditions
are equivalent: (i) any ex ante efficient allocation x ∈ RΩ×I

++ is interim efficient; (ii) for
x ∈ RΩ×I

++ ,
∩

i∈I Ξi(Pi, xi) ̸= ∅ implies
∩

i∈I Ξi(P ∗
i , xi) ̸= ∅.

Since P ∗
i is derived from Φi, the condition (ii) above is a requirement for the relation-

ship between P1, . . . , PI and Φ1, . . . , ΦI . Thus, it is interesting to ask if the condition
(ii) is satisfied for a given updating rule of multiple priors, which induces Φi from Pi.
Note that, in the standard Bayesian models, the condition (ii) is always true. We study
this question for two popular updating rules of multiple priors in the remainder of this
section.11

One updating rule of multiple priors is the full Bayesian updating rule. We say that
Φi is the full Bayesian updating (FB-updating for short) of Pi if

Φi(πi) = cl{p(·|πi) : p ∈ Pi with p(πi) > 0} for each πi ∈ Πi,

11See Gilboa and Schmeidler [13] for the study of updating rules, for example.
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where cl P denotes the closure of P ⊆ ∆(Ω). The FB-updating is the collection of all
conditional probability distributions of the priors in Pi. It can be checked that Φi(πi) is
a non-empty,12 convex, and closed subset of ∆(Ω) and thus Φi(πi) ∈ P. Observe that
Φi is the FB-updating of the Φi-compatible prior set P ∗

i . Furthermore, P ∗
i is maximal

in the following sense.

Lemma 3 If Φi is the FB-updating of Pi, then Pi ⊆ P ∗
i .

Proof. Recall that P ∗
i consists of all probability distributions over Ω of the form p =∑

πi∈Πi
q(πi)r(·|πi) where q ∈ ∆(Ω) and r(·|πi) ∈ Φi(πi). If Φi is the FB-updating of Pi,

then, for any p ∈ Pi, p =
∑

πi∈Πi
p(πi)r(·|πi) with r(·|πi) ∈ Φi(πi) and r(·|πi) = p(·|πi) if

p(πi) > 0. This implies that p ∈ P ∗
i and thus Pi ⊆ P ∗

i .

Corollary 3 and Lemma 3 implies that any ex ante efficient allocation is interim
efficient if all agents adopt the FB-updating.

Proposition 4 Assume that all agents have BI-preferences and that Φi is the FB-
updating of Pi for each i ∈ I. Then, any ex ante efficient allocation x ∈ RΩ×I

++ is
interim efficient.

Proof. By Lemma 3, Pi ⊆ P ∗
i for each i ∈ I. This implies that Ξi(Pi, xi) ⊆ Ξi(P ∗

i , xi)
for each xi ∈ RΩ

++. Thus, if
∩

i∈I Ξi(Pi, xi) ̸= ∅, then
∩

i∈I Ξi(P ∗
i , xi) ̸= ∅. Therefore, by

Corollary 3, any ex ante efficient allocation is interim efficient.

Especially, suppose that ui is linear and that Φi is the FB-updating of Pi for each
i ∈ I. If agents’ prior sets are common, i.e., Pi = Pj for all i, j ∈ I, then any interior
allocation is interim efficient by Proposition 1 and Proposition 4. The converse is not
necessarily true. In the next example, though there is no common prior set P such that
Φi is the FB-updating of P for each i ∈ I, any interior allocation is interim efficient.
This is in a sharp contrast with the standard Bayesian models where Φi(πi) is a singleton
for each πi and i, where

∩
i∈I P ∗

i ̸= ∅ implies the existence of p ∈ ∆(Ω) such that Φi is
the FB-updating of {p} for each i ∈ I.

12Recall that, by the assumption on Pi, maxp∈Pi p(πi) > 0 for each πi ∈ Πi.
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Example 1 Let Ω = {1, 2, 3, 4} and I = {1, 2}. For agent 1, let Π1 = {{1, 2}, {3, 4}},
P1 = {p ∈ ∆(Ω) : p(1) = p(3) = 1/6, p(2) ≥ 1/6, p(4) ≥ 1/6}, Φ1({1, 2}) = {p ∈ ∆(Ω) :
p(1)+p(2) = 1, 1/4 ≤ p(1) ≤ 1/2}, and Φ1({3, 4}) = {p ∈ ∆(Ω) : p(3)+p(4) = 1, 1/4 ≤
p(3) ≤ 1/2}. For agent 2, let Π2 = {Ω} and P2 = Φ2(Ω) = {(1/8, 3/8, 1/8, 3/8)}. It
can be checked that Φi is the FB-updating of Pi for each i. Note that P ∗

1 = {(αq, α(1−
q), (1 − α)r, (1 − α)(1 − r)) ∈ ∆(Ω) : q, r ∈ [1/4, 1/2], α ∈ [0, 1]} and P ∗

2 = Φ2(Ω) =
{(1/8, 3/8, 1/8, 3/8)}. Let ui be linear for each i. Then, by Proposition 2, any interior
allocation is interim efficient because P ∗

1 ∩ P ∗
2 = P ∗

2 ̸= ∅. On the other hand, by
Proposition 1, no interior allocation is ex ante efficient because P1 ∩ P2 = ∅. Moreover,
in this example, there is no common prior set P ∈ P such that Φi is the FB-updating of
P for each i. In fact, if Φ1 is the FB-updating of P , then P cannot be a singleton, and
if Φ2 is the FB-updating of P , then P = Φ2(Ω), which is a singleton. Thus, P cannot
be a common prior set which induces both Φ1 and Φ2.

Another updating rule of multiple priors is the maximum likelihood updating rule.
We say that Φi is the maximum likelihood updating (ML-updating for short) of Pi if

Φi(πi) = cl{p(·|πi) : p ∈ arg max
p′∈Pi

p′(πi)} for each πi ∈ Πi.

The ML-updating is the collection of all conditional probability distributions of the
priors in Pi that maximize the likelihood of the observed private information. As the
next example of the ML-updating shows, an ex ante efficient allocation is not necessarily
interim efficient even if agents have a common prior set, which is different from the result
for the FB-updating.

Example 2 Let Ω, I, and Πi be those given in Example 1 for each i ∈ I. Let P1 = P2 =
{p ∈ ∆(Ω) : p(1) = p(3) = 1/6, p(2) ≥ 1/6, p(4) ≥ 1/6}, Φ1({1, 2}) = {(1/4, 3/4, 0, 0)},
Φ1({3, 4}) = {(0, 0, 1/4, 3/4)}, and Φ2(Ω) = P2. It can be checked that Φi is the ML-
updating of Pi for each i. Note that P ∗

1 = {(α/4, 3α/4, (1−α)/4, 3(1−α)/4) : α ∈ [0, 1]}
and P ∗

2 = P2. Let ui be linear for each i. By Proposition 1, any interior allocation is
ex ante efficient since P1 = P2, and by Proposition 2, no interior allocation is interim
efficient since P ∗

1 ∩ P ∗
2 = ∅.
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4 Efficiency with MEU-preferences

In this section, we assume that all agents have MEU-preferences. We first review and
generalize the characterization of ex ante efficient allocations due to Billot et al. [2].

For a set of priors Pi ∈ P and a contingent consumption bundle xi ∈ RΩ
+ of agent

i ∈ I, we call p ∈ Pi an active prior of agent i in Pi at xi if p minimizes Ep[ui(xi)] over
Pi, i.e., Ep[ui(xi)] = EPi [ui(xi)]. Let Pi(xi) be the collection of all active priors of agent
i in Pi at xi; that is,

Pi(xi) = arg min
p∈Pi

Ep[ui(xi)].

Since Ep[ui(xi)] is linear in p ∈ Pi and Pi ∈ P is non-empty, convex, and closed, Pi(xi)
is also non-empty, convex, and closed, i.e., Pi(xi) ∈ P. Note that if xi(·) is constant,
then Ep[ui(xi)] is also constant over p ∈ ∆(Ω) and thus Pi(xi) = Pi.

The following proposition characterizes ex ante efficient allocations.

Proposition 5 Assume that all agents have MEU-preferences. An interior allocation
x ∈ RΩ×I

++ is ex ante efficient if and only if∩
i∈I

Ξi(Pi(xi), xi) ̸= ∅. (6)

As Proposition 1 is essentially the fundamental theorems of welfare economics, so is
Proposition 5 where Ξi(Pi(xi), xi) is the set of all normalized supporting vectors of the
upper contour set {ti ∈ RΩ : EPi [ui(xi + ti)] > EPi [ui(xi)]}. Billot et al. [2] showed
a special case13 of Proposition 5 in which an interior allocation x ∈ RΩ×I

++ has the full
insurance property, i.e., xi(·) is constant for each i ∈ I. In this case, every prior is
active, by which the condition (6) is reduced to

∩
i∈I Ξi(Pi(xi), xi) =

∩
i∈I Ξi(Pi, xi) =∩

i∈I Pi ̸= ∅, which is the condition Billot et al. [2] found. In the context of asset pricing
models with a representative agent (with MEU-preferences), it is well known that active
priors determine the supporting vectors [8, 10]. Proposition 5 is a natural consequence
of this, and can be readily proved. We give a sketch of a proof in the appendix.

Let P ∗
i (xi) = arg minp∈P ∗

i
Ep[ui(xi)] denote the sets of all active Φi-compatible priors.

By replacing Pi(xi) with P ∗
i (xi) in (6), we obtain the following characterization of interim

efficient allocations.

13The state space of Billot et al. [2] is a general measurable space.
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Proposition 6 Assume that all agents have MEU-preferences. An interior allocation
x ∈ RΩ×I

++ is interim efficient if ∩
i∈I

Ξi(P ∗
i (xi), xi) ̸= ∅. (7)

If an interior allocation x ∈ RΩ×I
++ is interim efficient and the interim expected utility

EΦi(πi)[ui(xi)] is constant over πi ∈ Πi for each i ∈ I, then (7) holds.

We give a proof of this proposition later. The reader may wonder if the condition
(7) is also necessary for interim efficiency in general. But it is not the case. In fact, in
some cases, an allocation is interim efficient even if (7) is not true, as shown in the next
proposition. We say that an allocation x ∈ RΩ×I

+ has the full insurance property in the
interim stage if, for each πi ∈ Πi and each i ∈ I, the restriction of xi(·) to πi is constant.
Clearly, if x has the full insurance property, then it has it in the interim stage, but not
vice versa.

Proposition 7 Assume that all agents have MEU-preferences. Let an interior allocation
x ∈ RΩ×I

++ have the full insurance property in the interim stage. Then, x is interim
efficient if and only if ∩

i∈I
Ξi(P ∗

i , xi) ̸= ∅. (8)

A proof is supplied later in this section. Note that, since P ∗
i (xi) ( P ∗

i generically,
(8) is strictly weaker than (7). This shows that the condition (7) is not necessary for
interim efficiency.

To understand the role of the assumptions on allocations in Proposition 6 and Propo-
sition 7, consider the following example.

Example 3 Let Ω, I, and Πi be those given in Example 1 for each i ∈ I. Let P1 and Φ1

be those given in Example 1 and set P2 = Φ2(Ω) = P1. Note that Φi is the FB-updating
of Pi for each i ∈ I. Let ui(c) = c for each c ∈ R+ and i ∈ I.

Suppose that x1 = (1, 3, 1, 3) and x2 = (3, 1, 3, 1). Note that EΦ1({1,2})[u1(x1)] =
EΦ1({3,4})[u1(x1)] = 2 and thus EΦi(πi)[ui(xi)] is constant over πi ∈ Πi for each i ∈ I. We
have P1(x1) = P1, P2(x2) = P2, P ∗

1 (x1) = {(α/2, α/2, (1−α)/2, (1−α)/2) ∈ ∆(Ω) : α ∈
[0, 1]}, and P ∗

2 (x2) = P2(x2) = P2. Thus, P1(x1) ∩ P2(x2) ̸= ∅ and P ∗
1 (x1) ∩ P ∗

2 (x2) = ∅.

12



By Proposition 5, x is ex ante efficient, and by Proposition 6, x is not interim efficient.
Thus, the no trade theorem fails under the FB-updating.

Suppose that x1 = (1, 1, 3, 3) and x2 = (1, 1, 1, 1). Note that x has the full insurance
property in the interim stage. We have P1(x1) = {(1/6, 1/2, 1/6, 1/6)}, P2(x2) = P2,
P ∗

1 (x1) = {(q, 1 − q, 0, 0) : q ∈ [1/4, 1/2]}, and P ∗
2 (x2) = P2(x2) = P2. Thus, P1(x1) ∩

P2(x2) ̸= ∅, P ∗
1 (x1) ∩ P ∗

2 (x2) = ∅, and P ∗
1 ∩ P ∗

2 ̸= ∅. By Proposition 5, x is ex ante
efficient, and by Proposition 7, x is interim efficient. So this is an instance where (8) is
strictly weaker than (7).

We can use Proposition 6 and Proposition 7 to study the possibility of speculative
trade for agents with MEU-preferences analogously to the case of BI-preferences. The
following corollaries are the counter parts of Corollary 3 in the previous section. We
omit proofs because they are direct consequences of Proposition 5, Proposition 6, and
Proposition 7.

Corollary 8 Assume that all agents have MEU-preferences. Let an interior allocation
x ∈ RΩ×I

++ be such that the interim expected utility EΦi(πi)[ui(xi)] is constant over πi ∈ Πi

for each i ∈ I. The following two conditions are equivalent: (i) if x is ex ante efficient,
then it is interim efficient; (ii) if

∩
i∈I Ξi(Pi(xi), xi) ̸= ∅, then

∩
i∈I Ξi(P ∗

i (xi), xi) ̸= ∅.

Corollary 9 Assume that all agents have MEU-preferences. Let an interior allocation
x ∈ RΩ×I

++ have the full insurance property in the interim stage. The following two
conditions are equivalent: (i) if x is ex ante efficient, then it is interim efficient; (ii) if∩

i∈I Ξi(Pi(xi), xi) ̸= ∅, then
∩

i∈I Ξi(P ∗
i , xi) ̸= ∅.

Interestingly enough, it turns out that the FB-updating satisfies the condition (ii)
in Corollary 9. Consequently, we have the following result, which is a counterpart of
Proposition 4.

Proposition 10 Assume that all agents have MEU-preferences and that Φi is the FB-
updating of Pi for each i ∈ I. Let an interior allocation x ∈ RΩ×I

++ have the full insurance
property in the interim stage. If x is ex ante efficient, then it is interim efficient.

Proof. Since Pi is the FB-updating of Φi, Pi(xi) ⊆ Pi ⊆ P ∗
i by Lemma 3. Thus,∩

i∈I Ξi(Pi(xi), xi) ⊆
∩

i∈I Ξi(P ∗
i , xi), which implies (ii) in Corollary 9.

13



In the remainder of this section, we prove Proposition 6 and Proposition 7. We first
prove Proposition 6 using the following lemma.

Lemma 4 For any z, z′ ∈ RΩ, if EΦi(πi)[z] > EΦi(πi)[z
′] for each πi ∈ Πi, then EP ∗

i
[z] >

EP ∗
i
[z′]. Suppose that EΦi(πi)[z

′] is constant over πi ∈ Πi. Then, EΦi(πi)[z] > EΦi(πi)[z
′]

for each πi ∈ Πi if and only if EP ∗
i
[z] > EP ∗

i
[z′].

Proof. By Lemma 2, EP ∗
i
[z] = minπi∈Πi EΦi(πi)[z] and EP ∗

i
[z′] = minπi∈Πi EΦi(πi)[z

′].
This implies that if EΦi(πi)[z] > EΦi(πi)[z

′] for each πi ∈ Πi, then EP ∗
i
[z] > EP ∗

i
[z′].

Let z′ ∈ RΩ satisfy EΦi(πi)[z
′] = c ∈ R for each πi ∈ Πi. Note that EP ∗

i
[z′] =

minπi∈Πi EΦi(πi)[z
′] = c. Suppose that EΦi(π′

i)
[z] ≤ c for some π′

i ∈ Πi. Then, EP ∗
i
[z] =

minπi∈Πi EΦi(πi)[z] ≤ EΦi(π′
i)
[z] ≤ c = EP ∗

i
[z′]. To summarize, if EΦi(π′

i)
[z] ≤ EΦi(π′

i)
[z′]

for some π′
i ∈ Πi then EP ∗

i
[z] ≤ EP ∗

i
[z′]. This implies that if EP ∗

i
[z] > EP ∗

i
[z′] then

EΦi(πi)[z] > EΦi(πi)[z
′] for each πi ∈ Πi.

Proof of Proposition 6. Assume that (7) holds. Seeking a contradiction, suppose that x

is not interim efficient. Then, there exists a feasible trade t at x such that EΦi(πi)[ui(xi +
ti)] > EΦi(πi)[ui(xi)] for each πi ∈ Πi and i ∈ I. By Lemma 4, this implies that
EP ∗

i
[ui(xi + ti)] > EP ∗

i
[ui(xi)] for each i ∈ I. On the other hand, Proposition 5 implies

that if (7) is true, then there is no feasible trade t at x such that EP ∗
i
[ui(xi + ti)] >

EP ∗
i
[ui(xi)] for each i ∈ I, a contradiction. Thus, the first half of the proposition is

established.
To establish the second half, assume that x is interim efficient and EΦi(πi)[ui(xi)] is

constant over πi ∈ Πi for each i ∈ I. It is enough to show that there is no feasible trade
t at x such that EP ∗

i
[ui(xi + ti)] > EP ∗

i
[ui(xi)] for each i ∈ I because if this is true then

(7) holds by Proposition 5. Seeking a contradiction, suppose otherwise and let t be a
feasible trade at x such that EP ∗

i
[ui(xi + ti)] > EP ∗

i
[ui(xi)] for each i ∈ I. Then, by

Lemma 4, EΦi(πi)[ui(xi + ti)] > EΦi(πi)[ui(xi)] for each πi ∈ Πi, which contradicts to the
interim efficiency of x. Thus, the second half of the proposition is established.

In the proof of Proposition 7, the following lemma is essential.

Lemma 5 Let xi, x
′
i ∈ RΩ

+ be contingent consumption bundles of agent i ∈ I. Fix
πi ∈ Πi and suppose that the restriction of xi(·) to πi is constant. Then, in the interim
stage when agent i’s private information is πi, agent i with MEU-preferences prefers x′

i
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to xi if and only if agent i with BI-preferences prefers x′
i to xi; that is, EΦi(πi)[ui(x′

i)]−
EΦi(πi)[ui(xi)] > 0 if and only if EΦi(πi)[ui(x′

i) − ui(xi)] > 0.

Proof. Let xi(ω) = c for each ω ∈ πi. Then,

EΦi(πi)[ui(x′
i)] − EΦi(πi)[ui(xi)]

= EΦi(πi)[ui(x′
i)] − ui(c) = EΦi(πi)[ui(x′

i) − ui(c)] = EΦi(πi)[ui(x′
i) − ui(xi)].

Therefore, EΦi(πi)[ui(x′
i)]−EΦi(πi)[ui(xi)] > 0 if and only if EΦi(πi)[ui(x′

i)−ui(xi)] > 0.

Proof of Proposition 7. Let an interior allocation x ∈ RΩ×I
++ have the full insurance

property in the interim stage. By Lemma 5, for a feasible trade t at x, EΦi(πi)[ui(xi +
ti)] − EΦi(πi)[ui(xi)] > 0 if and only if EΦi(πi)[ui(xi + ti) − ui(xi)] > 0 for each πi ∈ Πi

and i ∈ I. This implies that x is interim efficient with MEU-preferences if and only if it
is interim efficient with BI-preferences. Therefore, by Proposition 2, x is interim efficient
with MEU-preferences if and only if (8) holds.

5 Discussions

5.1 Dynamic consistency

Proposition 4 have established the no trade theorem in the multiple priors models with
BI-preferences and FB-updating. As is well known, the no trade theorem in the standard
Bayesian models is a consequence of dynamic consistency of agents’ behavior. Thus, it
is natural to ask whether Proposition 4 can be understood as a consequence of some
kind of dynamic consistency. In this subsection, we provide an affirmative answer to this
question.

Let xi, x
′
i ∈ RΩ

+ be contingent consumption bundles. We define dynamic consistency
as follows. Agent i ∈ I is said to be dynamically consistent if agent i prefers xi to x′

i

in the ex ante stage whenever agent i with every private information πi ∈ Πi prefers xi

to x′
i in the interim stage. If every agent is dynamically consistent, then any ex ante

efficient allocation is interim efficient.14 The following lemma shows that agents with
BI-preferences and FB-updating is dynamically consistent.

14If an allocation x is not interim efficient, there exists another allocation x′ such that every player

with every private information prefers x′
i to xi in the interim stage. If agents are dynamically consistent,

then every player prefers x′
i to xi in the ex ante stage, implying that x is not ex ante efficient.
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Lemma 6 Assume that agent i ∈ I has BI-preferences and that Φi is the FB-updating
of Pi. Then, agent i is dynamically consistent.

Proof. Suppose that agent i with each πi ∈ Πi prefers xi to x′
i in the interim stage. Then,

EΦi(πi)[ui(xi)− ui(x′
i)] > 0 for each πi ∈ Πi. Since Φi is the FB-updating of Pi, for each

p ∈ Pi and πi ∈ Πi with p(πi) > 0,∑
ω∈πi

(
ui(xi(ω)) − ui(x′

i(ω))
)
p(ω|πi) ≥ EΦi(πi)[ui(xi) − ui(x′

i)] > 0.

This implies that

EPi [ui(xi) − ui(x′
i)] = min

p∈Pi

∑
ω∈Ω

(
ui(xi(ω)) − ui(x′

i(ω))
)
p(ω)

= min
p∈Pi

∑
πi∈Πi:p(πi)>0

(∑
ω∈πi

(
ui(xi(ω)) − ui(x′

i(ω))
)
p(ω|πi)

)
p(πi) > 0.

Therefore, agent i prefers xi to x′
i in the ex ante stage.

On the other hand, agents with MEU-preferences are not necessarily dynamically
consistent. Epstein and Schneider [9] and Wakai [27] identified a class of priors and
posteriors with which agents are dynamically consistent. A set of priors Pi ∈ P is said
to be a Φi-rectangular prior set15 if

Pi =
∪

p∈Pi

∑
πi∈Πi

p(πi)Φi(πi). (9)

Note that if Pi is a Φi-rectangular prior set, then Φi must be the FB-updating of Pi, but
not vice versa; that is, if Φi is the FB-updating of Pi then

Pi ⊆
∪

p∈Pi

∑
πi∈Πi

p(πi)Φi(πi)

holds where this set inclusion may be strict in general. As shown by Epstein and Schnei-
der [9] and Wakai [27], agents with MEU-preferences and rectangular prior sets are
dynamically consistent. Based upon this, Wakai [27] showed the following result.

15We adopt this term from Epstein and Schneider [9].
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Proposition 11 Assume that all agents have MEU-preferences and that Pi is a Φi-
rectangular prior set for each i ∈ I. Then, any ex ante efficient allocation x ∈ RΩ×I

++ is
interim efficient.

Proposition 11 explains the first part of Proposition 6 because P ∗
i is a Φi-rectangular

prior set. The following result is immediate from (3) and (9).

Lemma 7 The Φi-compatible prior set P ∗
i is a Φi-rectangular prior set such that Pi ⊆

P ∗
i for any Φi-rectangular prior set Pi. That is, P ∗

i is the largest Φi-rectangular prior
set.

Suppose that Pi = P ∗
i for each i ∈ I. If an interior allocation x ∈ RΩ×I

++ satisfies (7),
then x is ex ante efficient by Proposition 5. Thus, dynamic consistency implies that it
is also interim efficient, which corresponds to the first part of Proposition 6.

5.2 Conditional preferences

Up to this point, it has been assumed that posterior beliefs induce interim preferences.
But there is a direct way to derive interim preferences from ex ante preferences without
using posterior beliefs, which we refer to as conditional preferences. When general prefer-
ences are considered (that is, beliefs are not necessarily specified separately), conditional
preferences are regarded as a natural candidate for interim preferences. In this subsec-
tion, we briefly discuss an implication of our results for the “conditional preferences”
approach.

Let ex ante preferences of agent i ∈ I be given, which may be any preferences. For
two contingent consumption bundles xi, x

′
i ∈ RΩ

+ and an event E ∈ 2Ω, let xiEx′
i ∈

RΩ
+ be the contingent consumption bundle defined by xiEx′

i(ω) = xi(ω) if ω ∈ E and
xiEx′

i(ω) = x′
i(ω) otherwise. That is, agent i having xiEx′

i consumes xi on E and x′
i

on Ω\E. We say that agent i conditionally prefers xi to x′
i on πi if agent i prefers

xiπix
′
i to x′

i in the ex ante stage. Define interim preferences by the following rule: in
the interim stage, agent i with private information πi ∈ Πi prefers xi to x′

i if and only
if agent i conditionally prefers xi to x′

i on πi. We call this type of induced interim
preferences conditional preferences. We say that an allocation is conditionally efficient
if it is interim efficient with the understanding that interim preferences of all agents are
conditional preferences.
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By construction, conditional preferences are uniquely determined from ex ante pref-
erences. On the other hand, given a set of priors, there is a variety of ways of specifying a
set of posteriors in our setup. Thus in general, interim preferences induced by posterior
beliefs do not necessarily coincide with conditional preferences. But in some cases, they
do. An important example is an agent with BI-preferences and the FB-updating.

Lemma 8 Assume that agent i ∈ I has BI-preferences and that Φi is the FB-updating
of Pi. For xi, x

′
i ∈ RΩ

+ and πi ∈ Πi, if agent i conditionally prefers xi to x′
i on πi, then

agent i with private information πi prefers xi to x′
i in the interim stage. If p(πi) > 0 for

each p ∈ Pi and agent i with private information πi prefers xi to x′
i in the interim stage,

then agent i conditionally prefers xi to x′
i on πi.

Proof. By definition, agent i conditionally prefers xi to x′
i on πi if and only if

EPi [ui(xiπix
′
i) − ui(x′

i)] = min
p∈Pi

∑
ω∈Ω

p(ω)
(
ui(xiπix

′
i(ω)) − ui(x′

i(ω))
)

= min
p∈Pi

∑
ω∈πi

p(ω)
(
ui(xi(ω)) − ui(x′

i(ω))
)

= min
p∈Pi

p(πi)
∑
ω∈πi

p(ω|πi)
(
ui(xi(ω)) − ui(x′

i(ω))
)

> 0.

Since Φi is the FB-updating of Pi, the above inequality implies EΦi(πi)[ui(xi)−ui(x′
i)] > 0.

Conversely, if p(πi) > 0 for each p ∈ Pi, then EΦi(πi)[ui(xi) − ui(x′
i)] > 0 implies the

above inequality.

Using Lemma 8, we can translate our results for agents with BI-preferences and the
FB-updating into those for agents with conditional BI-preferences. To see this, assume
that all agents have BI-preferences and adopt the FB-updating. By Lemma 8, any
interim efficient allocation is conditionally efficient. Thus, by Proposition 4, any ex ante
efficient allocation is conditionally efficient.

Ma [19] and Halevy [15] considered general complete ex ante preferences and studied
under what condition any ex ante efficient allocation is conditionally efficient. A suf-
ficient condition given by Ma [19] and Halevy [15] is essentially the same as the weak
decomposability axiom introduced by Grant et al. [14]. As shown by Grant et al. [14],
weak decomposability is equivalent to dynamic consistency in the sense defined in the
previous subsection with the understanding that interim preferences are replaced with
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conditional preferences. This implies that, if all agents have weakly decomposable ex
ante preferences, then any ex ante efficient allocation is conditionally efficient, which is
essentially the “no trade theorem” of Ma [19] and Halevy [15]. Although these works
assume complete preferences, careful reading reveals that the completeness assumption
is not essential in their arguments. In fact, one can show that ex ante BI-preferences
are weakly decomposable, which is consistent with the above discussion on conditional
efficiency with ex ante BI-preferences.

5.3 The agreement theorem

Proposition 2 is related to the agreement theorem of Aumann [1] because the agreement
theorem suggests that the existence of a common prior is sufficient for interim efficiency
in the standard Bayesian models. In fact, as a corollary of Proposition 2, we can obtain
a multiple priors version of the agreement theorem.

Corollary 12 Suppose that
∩

i∈I P ∗
i ̸= ∅. Fix an event E ∈ 2Ω. If, for each i ∈ I,

p
i
≡ minp∈Φi(πi) p(E) and pi ≡ maxp∈Φi(πi) p(E) are constant over all πi ∈ Πi, then

p
i
≤ pj for all i, j ∈ I.

Proof. Suppose on the contrary that pj < p
i
for some i, j ∈ I with i ̸= j. We can choose

ci, cj ∈ R++ such that pj < cj < ci < p
i
. Let δE ∈ RΩ be the indicator function of

E ∈ 2Ω, i.e., δE(ω) = 1 if ω ∈ E and δE(ω) = 0 otherwise. Note that p
i
= EΦi(πi)[δE ]

and pj = −EΦj(πj)[−δE ] for each πi ∈ Πi and πj ∈ Πj . Let a trade t = (t1, . . . , tI) ∈ RΩ×I

be such that ti = δE − ci + (ci − cj)/I, tj = cj − δE + (ci − cj)/I, and tk = (ci − cj)/I

for k ̸= i, j. Note that
∑

k∈I tk = 0 and EΦk(πk)[tk] > 0 for each πk ∈ Πk and k ∈ I.
Now consider agents with linear utility index functions uk(c) = c for each c ∈ R+ and
k ∈ I. Then, for any interior allocation x ∈ RΩ×I

++ at which t is a feasible trade,
EΦk(πk)[uk(xk + tk)] ≥ EΦk(πk)[xk]+EΦk(πk)[tk] > EΦk(πk)[xk] = EΦk(πk)[uk(xk)] for each
πk ∈ Πk and k ∈ I, which implies that x is not interim efficient. This contradicts to∩

k∈I P ∗
k ̸= ∅ by Proposition 2.

Note that if Φi(πi) is a singleton for each πi ∈ Πi and i ∈ I, then p
i
= pi. In this case,

Corollary 12 says that if
∩

i∈I P ∗
i ̸= ∅ and all agents’ posterior probabilities of E ∈ 2Ω

are constant over all ω ∈ Ω, then they must coincide, which is the agreement theorem of
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Aumann [1].16

Appendix: proof of Proposition 5

We use the fundamental theorems of welfare economics of the following form.

Lemma A Let Ui : RΩ
+ → R be a continuous, strictly increasing, concave utility func-

tion. Let x ∈ RΩ×I
++ be an interior allocation. There is no feasible trade t ∈ RΩ×I at x

such that Ui(xi + ti) > Ui(xi) for each i ∈ I if and only if there exists a price vector
q ∈ RΩ with q ̸= 0 such that, for each i ∈ I, q · (x′

i − xi) ≥ 0 for all x′
i ∈ RΩ

+ with
Ui(x′

i) ≥ Ui(xi).

We start with checking that a price vector q is parallel to a supergradient of Ui. For
a concave function f : Rn → R, a vector s ∈ Rn is a supergradient of f at x ∈ Rn if

f(y) ≤ f(x) + s · (y − x) for all y ∈ Rn.

If f is differentiable at x, then a supergradient is nothing but the gradient. The su-
perdifferential of f at x, denoted by ∂f(x), is the collection of all supergradients at
x:

∂f(x) = {s ∈ Rn : f(y) ≤ f(x) + s · (y − x) for all y ∈ Rn}.

By the next lemma, a price vector is parallel to a supergradient of a utility function (see
Theorem 1.3.5 of Lesson D in Hiriart-Urruty and Lemaréchal [16]).

Lemma B Let f : Rn → R be a concave function and suppose 0 ̸∈ ∂f(x). Then,
q · (y − x) ≥ 0 for all y ∈ Rn with f(y) ≥ f(x) if and only if q = λs for some λ ≥ 0 and
s ∈ ∂f(x).

Let Ui : RΩ
+ → R be such that Ui(xi) = EPi(ui(xi)) for each xi ∈ RΩ

+ and i ∈ I. It is
straightforward to check that Ui is continuous, strictly increasing, and concave. Thus,
by Lemma A and Lemma B, an interior allocation x ∈ RΩ×I

++ is ex ante efficient if and

16Kajii and Ui [18] considered a special case of Corollary 12 assuming that posteriors are the FB-

updating of priors.
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only if ∩
i∈I

{q ∈ RΩ : q · (x′
i − xi) ≥ 0 for all x′

i ∈ RΩ
+ with Ui(x′

i) ≥ Ui(xi)}

=
∩
i∈I

{q ∈ RΩ : q = λs for s ∈ ∂Ui(xi), λ ≥ 0} ̸= {0}.

The above turns out to be equivalent to (6). To see this, we evaluate ∂Ui(xi) using the
following lemma (see Theorem 4.4.2 of Lesson D in Hiriart-Urruty and Lemaréchal [16]).

Lemma C Let J be a compact set in some metric space, and {fj}j∈J be a collection of
concave functions from Rn to R such that functions j 7→ fj(x) are lower semi-continuous
(in the metric space topology) for each x ∈ Rn. Define a function f : Rn → R such that

f(x) = inf
j∈J

fj(x),

and let J(x) = {j ∈ J : fj(x) = f(x)}. Assume that f(x) > −∞ for all x ∈ Rn. Then,
∂f(x) is a convex hull of

∪
j∈J(x) ∂fj(x), i.e.,

∂f(x) = co
( ∪

j∈J(x)

∂fj(x)
)
.

By Lemma C,

∂Ui(xi) = ∂EPi(xi)

= ∂
(

min
p∈Pi

∑
ω∈Ω

p(ω)ui(xi(ω))
)

= co
( ∪

p∈Pi(xi)

∂
( ∑

ω∈Ω

p(ω)ui(xi(ω))
))

= co
( ∪

p∈Pi(xi)

{(p(ω)u′
i(xi(ω)))ω∈Ω}

)
= {(p(ω)u′

i(xi(ω)))ω∈Ω : p ∈ Pi(xi)},

where the last equality holds since Pi(xi) is convex. Therefore, an interior allocation
x ∈ RΩ×I

++ is ex ante efficient if and only if∩
i∈I

{q ∈ RΩ : q = λs for s ∈ ∂Ui(xi), λ ≥ 0}

=
∩
i∈I

{λ(p(ω)u′
i(xi(ω)))ω∈Ω ∈ RΩ : p ∈ Pi(xi), λ ≥ 0} ̸= {0}.
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This is true if and only if

∩
i∈I

{(
p(ω)u′

i(xi(ω))∑
ω′∈Ω p(ω′)u′

i(xi(ω′))

)
ω∈Ω

: p ∈ Pi(xi)

}
̸= ∅,

which is (6).
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