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Abstract
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1 Introduction

Consider a potential game (Monderer and Shapley, 1996) with a concave potential func-
tion where strategy sets are closed intervals of the real line. The first-order condition
for a Nash equilibrium coincides with that for a potential maximizer, and it guarantees
global optimality of the potential function. Thus, a strategy profile is a Nash equi-
librium if and only if it maximizes the potential function (cf. Radner, 1962; Neyman,
1997). Now restrict strategies to the integers and consider a restricted potential game.
In a naive sense, the restricted potential function can be seen as concave, but some Nash
equilibrium may not maximize it.

For example, consider a two-player potential game with u1(x1, x2) = u2(x1, x2) =
v(x1, x2) = −x2

1 − x2
2 + x1x2 + x1/3 + x2/2 where u1 and u2 are payoff functions, v is a

potential function, and the set of strategies is a closed interval [0, 1] for each player. It
can be readily shown that v is strictly concave, and that this game has a unique Nash
equilibrium (x1, x2) = (7/18, 4/9), which maximizes v over [0, 1] × [0, 1]. By restricting
strategies to {0, 1} for each player, we have the following game.

0 1
0 0, 0 −2/3,−2/3
1 −1/2,−1/2 −1/6,−1/6

The restricted game has two pure-strategy Nash equilibria (x1, x2) = (0, 0) and (x1, x2) =
(1, 1); the former maximizes v over {0, 1} × {0, 1} and the latter does not.

The above observation leads us to the following question: what is a discrete analogue
of concavity, or “discrete concavity” for short, appropriate for a potential game, which
guarantees that every Nash equilibrium maximizes a potential function? The purpose
of this paper is to give an answer to this question. In the area of discrete optimization,
several different types of discrete concavity have been proposed (Miller, 1971; Favati and
Tardella, 1990; Murota, 1996, 1998; Murota and Shioura, 1999; Fujishige and Murota,
2000). But they do not conform to our purpose.1

We introduce the notion of larger midpoint property (LMP) for a function defined on
a discrete space, which is analogous to midpoint concavity. We show that if a function
satisfies the LMP condition, then local optimality in a sense similar to that of a concave
function implies global optimality. If a potential function satisfies the LMP condition,
then a Nash equilibrium maximizes the potential function because a Nash equilibrium
is a local maximum. If a potential maximizer is unique, so is the Nash equilibrium.

1This does not imply that they are irrelevant in economics. Some discrete concavity notions are

useful. See Tamura (2004) for a survey.
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2 Discrete concavity

Let N = {1, . . . , n} be a finite set. A function f : RN → R satisfies midpoint concavity
if f((x + y)/2) ≥ (f(x) + f(y))/2 for x, y ∈ RN . We consider a similar property for a
function defined on a discrete space X ⊆ ZN where X =

∏
i∈N Xi, Xi = {xi ∈ Z : xi ≤

xi ≤ xi} ⊆ Z, and xi, xi ∈ Z ∪ {−∞, +∞}. Let ‖x‖ =
∑

i∈N |xi| be the `1-norm of a
vector x ∈ ZN .

We say that a function f : X → R satisfies the larger midpoint property (LMP) if,
for any x, y ∈ X with ‖x − y‖ = 2,

max
z∈X:‖x−z‖=‖y−z‖=1

f(z) ≥ tf(x) + (1 − t)f(y) (∃t ∈ (0, 1)). (1)

Note that, in defining LMP, we postulate that the midpoint of x, y ∈ X with ‖x−y‖ = 2
is z ∈ X satisfying ‖x − z‖ = ‖y − z‖ = 1.

For example, a separable concave function satisfies LMP. A separable concave func-
tion is defined as f : X → R of the form f(x) =

∑
i∈N fi(xi) where fi(xi) ≥ (fi(xi−1)+

fi(xi + 1))/2 for all xi 6= xi, xi. Let x, y ∈ X be such that ‖x − y‖ = 2. If |xi − yi| = 2
for some i ∈ N , then the definition immediately implies (1). If |xi − yi| = |xj − yj | = 1
for some i 6= j, then

max
z∈X:‖x−z‖=‖y−z‖=1

f(z) = max{fi(xi) + fj(yj), fi(yi) + fj(xj)} +
∑
k 6=i,j

fk(xk)

≥ fi(xi) + fj(xj) + fi(yi) + fj(yj)
2

+
∑
k 6=i,j

fk(xk) =
f(x) + f(y)

2
.

Thus, f satisfies LMP.
The following lemma restates the LMP condition.

Lemma 1 A function f : X → R satisfies LMP if and only if, for any x, y ∈ X with
‖x − y‖ = 2,

max
z∈X:‖x−z‖=‖y−z‖=1

f(z)

{
> min{f(x), f(y)} if f(x) 6= f(y),
≥ f(x) = f(y) otherwise.

(2)

Proof. If f(x) = f(y) then f(x) = f(y) = tf(x) + (1 − t)f(y) and thus (1) and (2) are
equivalent. Suppose that f(x) > f(y). If (1) is true, then tf(x) + (1− t)f(y) > f(y) for
all t ∈ (0, 1) and thus (2) is true. If (2) is true, then we can choose sufficiently small t > 0
such that tf(x) + (1− t)f(y) is sufficiently close to f(y) and thus (1) is true. Therefore,
(1) and (2) are equivalent.
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If f : X → R satisfies LMP, then local optimality implies global optimality.2

Proposition 1 Suppose that f : X → R satisfies LMP. Then, f(x) ≥ f(y) for all y ∈ X

with ‖x − y‖ ≤ 1 if and only if f(x) ≥ f(y) for all y ∈ X.

Proof. The “if” part is obvious and we show the “only if” part. Let x ∈ X satisfy
f(x) ≥ f(y) for all y ∈ X with ‖x − y‖ ≤ 1. For y ∈ X with d ≡ ‖x − y‖ ≥ 2,
construct a sequence {xk ∈ X}d

k=0 such that x0 = x and xd = y by the following steps:
for 0 ≤ k ≤ d − 1, choose

xk+1 ∈ arg max
‖xk−z‖=1, ‖y−z‖=d−k−1

f(z).

Note that ‖xk − xk+l‖ = l for all 0 ≤ k ≤ d and 0 ≤ l ≤ d − k.
Let z ∈ X be such that ‖xk − z‖ = ‖xk+2 − z‖ = 1. Then d − k = ‖xk − y‖ =

‖xk−z+z−y‖ ≤ ‖xk−z‖+‖z−y‖ = 1+‖z−y‖ and ‖z−y‖ = ‖z−xk+2 +xk+2−y‖ ≤
‖z − xk+2‖ + ‖xk+2 − y‖ = d − k − 1. Thus, ‖z − y‖ = d − k − 1. This implies that

f(xk+1) = max
‖xk−z‖=1, ‖y−z‖=d−k−1

f(z) ≥ max
‖xk−z‖=‖xk+2−z‖=1

f(z).

Since f satisfies LMP, it must be true that, for 0 ≤ k ≤ d − 2,

f(xk+1)

{
> min{f(xk), f(xk+2)} if f(xk) 6= f(xk+2),
≥ f(xk) = f(xk+2) otherwise

by Lemma 1. Using the above property, we show that f(xk) ≥ f(xk+1) for all 0 ≤ k ≤
d−1. Since ‖x−x1‖ = 1, f(x) = f(x0) ≥ f(x1). Suppose that f(xk) ≥ f(xk+1) for some
0 ≤ k ≤ d−2. If f(xk) 6= f(xk+2), then f(xk+1) > min{f(xk), f(xk+2)} = f(xk+2) since
f(xk) ≥ f(xk+1). If f(xk) = f(xk+2), then f(xk+1) ≥ f(xk) = f(xk+2). By induction,
f(x) = f(x0) ≥ f(x1) ≥ · · · ≥ f(xd−1) ≥ f(xd) = f(y).

In the area of discrete optimization, several types of discrete concavity have been
proposed, which do not imply LMP and are not implied by LMP. Functions satisfying
discrete concavity have the property that local optimality implies global optimality. But

2Note that a global optimum in this proposition is not necessarily unique. Even if we replace a weak

inequality in (1) with a strict one, a global optimum may not be unique. For example, let n = 1 and

X1 = {0, 1, 2}. Then, f : X → R with f(0) = 0, f(1) = 1, and f(2) = 1 satisfies (1) with a strict

inequality but a global optimum is not unique.
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the meaning of local optimality is different from that in Proposition 1 and thus x ∈ X

may not maximize f even if f(x) ≥ f(y) for all y ∈ X with ‖x − y‖ ≤ 1.3

Miller (1971) was a forerunner to study discrete concavity. For x ∈ RN , let N(x) =
{z ∈ ZN : bxc ≤ z ≤ dxe} where bxc denotes the vector obtained by rounding down and
dxe by rounding up the components of x to the nearest integers. Miller (1971) called
f : X → R a discretely-concave function if, for any x, y ∈ X, it holds that

max
z∈N(tx+(1−t)y)

f(z) ≥ tf(x) + (1 − t)f(y) (∀t ∈ [0, 1]). (3)

Miller (1971) showed that if f(x) ≥ f(x + d) for all d ∈ {−1, 0, 1}N , then a discretely-
concave function f achieves its maximum at x. Favati and Tardella (1990) introduced
integrally-concave functions and showed that the same local optimality condition guar-
antees global optimality of integrally-concave functions because these functions form a
special class of discretely-concave functions.

A discretely-concave function does not necessarily satisfy LMP. For example, it can
be readily checked that the restricted potential function v : {0, 1}×{0, 1} → R discussed
in the introduction is a discretely-concave function, while max{v(0, 1), v(1, 0)} = −1/2
and min{v(0, 0), v(1, 1)} = −1/6, which violates (2) for x = (0, 0) and y = (1, 1). Also, a
function satisfying LMP is not necessarily a discretely-concave function. For example, let
N = {1, 2}, X1 = {0, 1, 2}, and X2 = {0, 1}. Define f : X → R such that f(0, 0) = 10,
f(0, 1) = 2, f(1, 0) = 2, f(1, 1) = 1, f(2, 0) = 1, and f(2, 1) = 0. It can be readily
checked that f satisfies LMP, while maxz∈N(0.5(0,0)+0.5(2,1)) f(z) = 2 and 0.5f(0, 0) +
0.5f(2, 1) = 5, which violates (3) for x = (0, 0) and y = (2, 1).

Recently, Murota (1998) advocates “discrete convex analysis,” where L-convex func-
tions (Murota, 1998) and M-convex functions (Murota, 1996) play central roles. L\-
concave functions and M\-concave functions,4 introduced respectively by Fujishige and
Murota (2000) and Murota and Shioura (1999), are variants of L-concave functions and
M-concave functions. The following results are shown in these papers. If f(x) ≥ f(x±d)
for all d ∈ {0, 1}N , then an L-concave or L\-concave function f achieves its maximum
at x. If f(x) ≥ f(x + d) for all d ∈ {ek − el : k, l ∈ N} ∪ {±ek : k ∈ N} where
ek = (ek

i )i∈N ∈ X is such that ei
i = 1 and ek

i = 0 for k 6= i, then an M-concave or
M\-concave function f achieves its maximum at x.5

3Corollary 2.2 of Altman et al. (2000) states that if f(x) ≥ f(y) for all y ∈ X with ‖x− y‖ ≤ 1, then

a multimodular function f achieves its maximum at x. However, Murota (2005) finds a counterexample

against it and provides a correct local optimality condition.
4M\-concavity is found to be very useful in studying economies with indivisible goods. See Danilov

et al. (2001).
5The local optimality conditions for L-concave and M-concave functions can be relaxed.
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Note that these local optimality conditions are different from that in Proposition 1.
It can also be readily shown that any of these types of discrete concavity do not imply
LMP and are not implied by LMP. For the relationship among various types of discrete
concavity, see Murota and Shioura (2001) and Murota (2003). See also Ui (2006) who
provides a unified framework to understand the relationship between various types of
discrete concavity and local optimality.

3 An application to potential games

A game consists of a set of players N = {1, . . . , n}, a set of strategies Xi for i ∈ N , and
a payoff function ui : X → R for i ∈ N . Simply denote a game by u = (ui)i∈N . We
write X−i =

∏
j 6=i Xj and x−i = (xj)j 6=i ∈ X−i. A strategy profile x ∈ X is a Nash

equilibrium of u if ui(xi, x−i) ≥ ui(x′
i, x−i) for all x′

i ∈ Xi and i ∈ N .
Monderer and Shapley (1996) introduced potential games and ordinal potential games.

A game u is a potential game with a potential function v : X → R provided ui(xi, x−i)−
ui(x′

i, x−i) = v(xi, x−i) − v(x′
i, x−i) for all xi, x

′
i ∈ Xi, x−i ∈ X−i, and i ∈ N . A game

u is an ordinal potential game with an ordinal potential function v : X → R provided
ui(xi, x−i) − ui(x′

i, x−i) > 0 if and only if v(xi, x−i) − v(x′
i, x−i) > 0 for all xi, x

′
i ∈ Xi,

x−i ∈ X−i, and i ∈ N . Clearly, a potential game is an ordinal potential game. It
is straightforward to check that an ordinal potential game u with an ordinal potential
function v satisfies

arg max
xi∈Xi

ui(xi, x−i) = arg max
xi∈Xi

v(xi, x−i) for all x−i ∈ X−i and i ∈ N . (4)

Voorneveld (2000) calls a game u a best-response potential game with a best-response
potential function v : X → R if u and v satisfies (4). The condition (4) implies the
following lemma (Monderer and Shapley, 1996; Voorneveld, 2000).

Lemma 2 Let u be a best-response potential game with a best-response potential function
v. If x ∈ X maximizes v, then it is a Nash equilibrium.

The converse of the above lemma is not necessarily true. The LMP condition provides
a sufficient condition for any Nash equilibrium to be a best-response potential maximizer,
which is an immediate consequence of Proposition 1.

Proposition 2 Let u be a best-response potential game with a best-response potential
function v. Suppose that v satisfies LMP. Then, x ∈ X maximizes v if and only if it is
a Nash equilibrium.
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Proof. The “only if” part is true by Lemma 2. We show the “if” part. Let x ∈ X be a
Nash equilibrium. Then xi ∈ arg maxx′

i∈Xi
ui(x′

i, x−i) for all i ∈ N , which together with
(4) implies that xi ∈ arg maxx′

i∈Xi
v(x′

i, x−i) for all i ∈ N . For y ∈ X with ‖x − y‖ = 1,
there exists i ∈ N such that y = (yi, x−i) and thus v(x) ≥ v(yi, x−i) = v(y). By
Proposition 1, v(x) ≥ v(y) for all y ∈ X.

Remark 1 A similar claim does not hold if u is a pseudo-potential game introduced by
Dubey et al. (2006).6 A game u is a pseudo-potential game with a pseudo-potential func-
tion v : X → R provided arg maxxi∈Xi ui(xi, x−i) ⊇ arg maxxi∈Xi v(xi, x−i) for all x−i ∈
X−i and i ∈ N . Different from a best-response potential game, a pseudo-potential game
allows the existence of a Nash equilibrium x ∈ X such that xi 6∈ arg maxx′

i∈Xi
v(x′

i, x−i)
for some i ∈ N . Such a Nash equilibrium does not maximize v even if v satisfies LMP.
Thus, the LMP condition does not provide a sufficient condition for any Nash equilibrium
to be a pseudo-potential maximizer.

Remark 2 Consider a potential game with a concave and continuously differentiable
potential function where strategy sets are closed intervals of the real line. Neyman (1997)
showed that a correlated equilibrium of this game is a mixture of potential maximizers.
This result is a consequence of both concavity and differentiability of a potential function.
It is an open question whether a similar claim is true in the discrete case.
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