
Correlated Quantal Responses and Equilibrium Selection∗

Takashi Ui†

Faculty of Economics
Yokohama National University

oui@ynu.ac.jp

February 2001

Revised, October 2004

Abstract

This paper considers incomplete information games with payoffs subject to cor-
related random disturbances. It explains the connection between the uniqueness of
quantal response equilibria, where large noise is required, and the uniqueness of equi-
libria in global games, where small noise is required.
JEL classifications: C72, D82.
Keywords: global game; quantal response equilibrium.

1 Introduction

This paper considers a class of incomplete information games with payoffs subject to
correlated random disturbances in order to give a unified view on the following two distinct
results on the uniqueness of equilibria.

One is the uniqueness of quantal response equilibria á la Mckelvey and Palfrey (1995).
They considered a model in which players make choices based on quantal response models
and defined a quantal response equilibrium. The model is equivalent to an incomplete
information game where the actual payoff structure is determined by payoffs of some
fixed game plus independent random terms and each player’s private signal is his own
payoffs. A quantal response equilibrium is a probability distribution of action profiles in
a Bayesian Nash equilibrium. Mckelvey and Palfrey (1995) showed that if the variance
of the independent random terms is large enough then a quantal response equilibrium is
unique.

The other is the uniqueness of equilibria in global games á la Carlsson and van Damme
(1993). A global game is an incomplete information game where the actual payoff structure
is determined by a random draw from a given class of games and each player makes an
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independent noisy observation of the selected game. Different from the game of Mckelvey
and Palfrey (1995), each player’s private signal is not his own payoffs, and these signals are
correlated. Carlsson and van Damme (1993) showed that if the variance of the independent
noises in the observation is small enough then a Bayesian Nash equilibrium is unique.

The former uniqueness comes from the large variance and the latter uniqueness comes
from the small variance. The natural question is how these different results are related.

Motivated by this question, we introduce correlations of quantal responses in the game
of Mckelvey and Palfrey (1995). That is, we consider an incomplete information game
where the actual payoff structure is determined by payoffs of some fixed 2 × 2 game
plus correlated random terms and each player’s private signal is his own payoffs. We
assume that private signals are jointly normally distributed, and parametrize the class of
incomplete information games in terms of the variances and the correlation coefficients.
Using the technique of normally distributed global games (Carlsson and van Damme, 1993;
Morris and Shin, 2002), we provide a sufficient condition for the uniqueness of Bayesian
Nash equilibria. The condition states that if the variance is larger than a threshold given
by a decreasing function of the correlation coefficient, then a Bayesian Nash equilibrium
is unique. Thus, for the equilibrium to be unique, the variance must be large if the
correlation is low, which corresponds to the uniqueness of quantal response equilibria, and
the correlation must be high if the variance is small, which corresponds to the uniqueness
of equilibria in global games.

One very natural reason for the correlations of quantal responses is that the random
terms consist of a common component and an idiosyncratic component. The special case
of our games with this interpretation was discussed in Carlsson and van Damme (1993,
Appendix B). They demonstrated how the global game analysis and Harsanyi’s purification
result (Harsanyi, 1973) could be understood as special cases of the same class of games:
a very small idiosyncratic component with a fixed common component induces the global
game analysis, and a very small idiosyncratic component with no common component
induces the purification result.

In contrast, this paper demonstrates how the two distinct uniqueness results can be
understood as special cases of the same class of games: the distinction is attributed to
the large variance with the low correlation and the high correlation with the small vari-
ance. Combining our result and Carlsson and van Damme (1993, Appendix B), we can
understand global games, quantal response equilibria, and purification within the same
framework. This issue is further elaborated by Morris and Shin (2005) in more general
setup.

This paper is organized as follows. Section 2 introduces the class of incomplete infor-
mation games. Section 3 provides the result. Section 4 compares our result and the global
games analysis.
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2 Model

Consider the following 2 × 2 symmetric game with the set of players N = {1, 2} and the
sets of actions A1 = A2 = {α, β}.

α β
α x, x v, u
β u, v y, y

We assume that x − u > 0 and y − v > 0 and thus (α, α) and (β, β) are pure-action
Nash equilibria. Players’ payoff functions are denoted by g1 and g2. The actual payoffs
are subject to random disturbances, ε1 = (ε1(α), ε1(β)) and ε2 = (ε2(α), ε2(β)), of which
distributions are known to all the players. When εi is realized, player i’s payoffs are given
by gi(ai, aj) + εi(ai) for ai ∈ Ai and aj ∈ Aj with i 6= j. Mckelvey and Palfrey (1995)
regarded gi(ai, aj) + εi(ai) as a quantal choice model of player i, assuming that ε1 and
ε2 are independent, whereas we allow correlations. The realized payoffs are given by the
following table.

α β
α x + ε1(α), x + ε2(α) v + ε1(α), u + ε2(β)
β u + ε1(β), v + ε2(α) y + ε1(β), y + ε2(β)

Player i’s private signal is his own payoffs, or equivalently, εi. We regard this setup as an
incomplete information game.

A strategy of player i is a mapping σi : R2 → ∆(Ai). Given σi and the private signal
εi, player i chooses a mixed action σi(εi) ∈ ∆(Ai). We write σi(ai|εi) for the probability of
choosing ai ∈ Ai. We write Σi for the set of strategies of player i, and write Σ = Σ1 ×Σ2.

Let E[ · |εi] be a conditional expectation operator given εi. Then E[σj(aj |εj)|εi] is
player i’s conditional expectation of the probability for the opponent player j to choose
action aj given σj . A strategy profile σ ∈ Σ is a Bayesian Nash equilibrium if, for every
player i, σi(ai|εi) > 0 only if∑

aj∈Aj

gi(ai, aj)E[σj(aj |εj)|εi] + εi(ai) ≥
∑

aj∈Aj

gi(a′i, aj)E[σj(aj |εj)|εi] + εi(a′i)

for all a′i ∈ Ai.
Let σ be a Bayesian Nash equilibrium. Suppose that ε1 and ε2 are independent. Con-

sider a probability distribution of action profiles, µ ∈ ∆(A), generated by σ: µ(a) =
E[σ1(a1|ε1) × σ2(a2|ε2)]. Mckelvey and Palfrey (1995) called µ a quantal response equi-
librium.1 They showed that, under a specific distributional assumption, if the variance of
εi is large enough, then a quantal response equilibrium is unique.

1The definition here is equivalent to the original definition in Mckelvey and Palfrey (1995) which did
not use the incomplete information game framework.
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Theorem 1 Suppose that εi(ai) is independently and identically distributed according to
a log Weibul distribution for all ai ∈ Ai and i ∈ N : the probability density function
of (ε1, ε2) is p(ε1, ε2) =

∏
i∈N

∏
ai∈Ai

β exp(−βεi(ai)) exp(− exp(βεi(ai))). If β is small
enough, i.e., the variance is large enough, then a quantal response equilibrium is unique.

In this paper, we assume that private signals are jointly normally distributed with the
following symmetric structure: for i 6= j,

• every component has mean zero: E(εi(α)) = E(εi(β)) = 0,

• every component has the same variance: Var(εi(α)) = Var(εi(β)) = ρ2,

• components of the same player are independent: Cov(εi(α), εi(β)) = 0,

• components of the different players are correlated:

Cov(εi(α), εj(α)) = Cov(εi(β), εj(β)) = φρ2, Cov(εi(α), εj(β)) = ψρ2.

The parameter φ is a correlation coefficient of εi(α) and εj(α) and that of εi(β) and εj(β).
The parameter ψ is a correlation coefficient of εi(α) and εj(β). We assume that |φ| < 1,
|ψ| < 1, |φ + ψ| < 1, and |φ − ψ| < 1 for the multivariate normal distribution to be well
defined. The tuple (ρ, φ, ψ) parametrizes the information structure of the game.

3 Result

The following theorem provides a sufficient condition for the uniqueness of Bayesian Nash
equilibria.

Theorem 2 If

γ(ρ, φ, ψ) ≡ 1
ρ

√
1 − (φ − ψ)
1 + (φ + ψ)

<
2
√

π

x − u + y − v
(1)

then every Bayesian Nash equilibrium σ is such that σi(α|εi) = 1 if εi(α)− εi(β) > r∗ and
σi(α|εi) = 0 if εi(α) − εi(β) < r∗ for i ∈ {1, 2} where r∗ solves

Φ
(

γ(ρ, φ, ψ)r√
2

)
=

r + x − u

x − u + y − v

and Φ is a cumulative probability distribution function of a standard normal distribution.

The theorem asserts that player’s behavior is the same in all Bayesian Nash equilibria
almost surely, except when εi(α) − εi(β) = r∗. In this sense, the equilibrium is unique.
Note that, if γ(ρ, φ, ψ) ' 0, then Φ

(
γ(ρ,φ,ψ)r√

2

)
' 1/2, and thus r∗ ' (y − v + u − x)/2.

To understand what (1) implies, consider a simple case with ψ = 0, x = 2, y = 1,
u = v = 0. Equation (1) is reduced to ρ2 > (1 − φ)/(1 + φ) × 9/(4π). The right-hand
side is a decreasing function of φ, and its graph is in Figure 1. For the equilibrium to be
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Figure 1: ρ2 = (1 − φ)/(1 + φ) × 9/(4π)

unique, the variance ρ2 must be large if the correlation φ is low. This corresponds to the
uniqueness of quantal response equilibria. Note that if ρ2 > 9/4π then the equilibrium is
unique for any 0 ≤ φ < 1. Also, for the equilibrium to be unique, the correlation φ must
be high if the variance ρ2 is small. This corresponds to the uniqueness of equilibria in
global games.

To prove the theorem, we use the iterated deletion of dominated strategies, following
Carlsson and van Damme (1993). We briefly see the intuition of how it proceeds.

If εi(α) − εi(β) > max{u − x, y − v}, then player i’s rational choice is α because α

dominates β. This is the first round of the iterated deletion. In the remaining rounds, we
have to show that player i’s rational choice is α as far as εi(α) − εi(β) > r∗.

Suppose that εi(α)−εi(β) ' max{u−x, y−v}. Since max{u−x, y−v} ≥ (u−x+y−
v)/2, α risk-dominates β. Thus, if player i believes that the probability of the opponent
to choose α is close to or more than 1/2, then player i’s rational choice is α, and thus we
have another round of the iterated deletion. This is true through two effects: the large
variance effect and the high correlation effect.

If the variance ρ2 is very large, player i believes that, with probability close to 1/2,
the difference of the opponent’s signal εj(α)−εj(β) is positive and very large (> max{u−
x, y − v}), and α dominates β for the opponent player. This implies that the probability
of the opponent to choose α is close to 1/2.

If the correlation φ is very high, player i believes that εj(α)− εj(β) is centered around
εi(α)− εi(β) ' max{u−x, y− v}, and thus with probability close to 1/2, εj(α)− εj(β) >

max{u − x, y − v}. This implies that the probability of the opponent to choose α is close
to 1/2.

Repeating the similar argument, we can complete the iterated deletion of dominated
strategies and obtain Theorem 2. The formal proof is in the appendix.
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4 Discussion

As we have seen in the previous section, if the variance is large enough, then an equilibrium
is unique for any non-negative correlation. In contrast, it is not the case in global games.
We discuss this issue by considering a global game with parameters similar to our setup.

Suppose that payoffs are randomly determined and each player makes an independent
noisy observation. The random payoffs are given by the following table where ξ(α) and
ξ(β) are i.i.d. normal random variables with mean zero.

α β
α x + ξ(α), x + ξ(α) v + ξ(α), u + ξ(β)
β u + ξ(β), v + ξ(α) y + ξ(β), y + ξ(β)

Each player knows the constants x, y, u, and v, but does not directly observe his own
payoffs, which is different from our setup. Player i’s private signal is an independent
noisy observation of the above random payoffs, or equivalently, εi = (εi(α), εi(β)) =
(ξ(α) + ηi(α), ξ(β) + ηi(β)) where ηi(α) and ηi(β) are i.i.d. normal random variables with
mean zero.

Carlsson and van Damme (1993) called the above setup a global game and obtained a
sufficient condition for the uniqueness in terms of the variances of ξ and ηi: if the variance
of ηi is small enough compared to that of ξ, then a Bayesian Nash equilibrium is unique.
Alternatively, we study the global game in terms of the variance and the correlation of
the private signals ε1 and ε2. That is, we parametrize the probability distribution of the
private signals in terms of ρ, φ > 0 such that ρ2 = Var(εi(ai)) = Var(ξ(ai))+Var(ηi(ai)) for
ai ∈ Ai and φ = Cov(εi(ai), εj(aj))/ρ2 = Var(ξ(ai))/ρ2 for ai = aj and i 6= j. Note that
Cov(εi(α), εi(β)) = Cov(εi(α), εj(β)) = 0. Given ρ and φ, the probability distribution
of the private signals is the same as that in our setup with ψ = 0. By the standard
calculation of multivariate normal distributions, we have E[ξ(ai)|εi] = φεi(ai) for ai ∈ Ai,
and the interim expected payoffs for each player are given by the following table.

α β
α x + φε1(α), x + φε2(α) v + φε1(α), u + φε2(β)
β u + φε1(β), v + φε2(α) y + φε1(β), y + φε2(β)

Let us obtain a sufficient condition for the uniqueness in terms of ρ and φ. While
we can obtain the condition by rewriting the result reported in Morris and Shin (2002),
Theorem 2 also leads us to the condition. We take the latter approach, which will help
us to understand the driving force of the differences and similarities between our result
and the global game analysis. First, observe that the global game has the same set of
Bayesian Nash equilibria as that of an incomplete information game such that player i’s
private signal is εi and the actual payoffs for each player are given by the above table.
Second, observe that the set of Bayesian Nash equilibria is unchanged even if we multiply
all payoffs by a constant 1/φ, which induces an incomplete information game such that
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Figure 2: ρ2 = (1 − φ)/(φ2(1 + φ)) × 9/(4π)

player i’s private signal is εi and the actual payoffs for each player are given by the following
table.

α β
α x/φ + ε1(α), x/φ + ε2(α) v/φ + ε1(α), u/φ + ε2(β)
β u/φ + ε1(β), v/φ + ε2(α) y/φ + ε1(β), y/φ + ε2(β)

Third, apply Theorem 2 to this game and translate it for the global game taking account
of the equivalence of the equilibrium sets. Then, we conclude that the global game has a
unique Bayesian Nash equilibrium if

1
φρ

√
1 − φ

1 + φ
<

2
√

π

x − u + y − v
. (2)

To understand what (2) implies, consider a simple case with x = 2, y = 1, u = v = 0 as
before. Equation (2) is reduced to ρ2 > (1 − φ)/(φ2(1 + φ)) × 9/(4π), and its graph is in
Figure 2. Compare Figure 1 and Figure 2. They are similar in the sense that the infimum
of the variance necessary for the uniqueness is decreasing in φ. But there is an obvious
distinction. The infimum in the global game is larger because (1 − φ)/(φ2(1 + φ)) >

(1 − φ)/(1 + φ), and it goes to infinity as φ goes to zero. This implies that the very low
correlation leads to the failure of uniqueness even if the variance is very large.

Appendix

Proof of Theorem 2. For i 6= j, let Fi(σj , εi) be the difference of an expected payoff of
player i with εi taking α and that of the same player taking β when the other player j’s
strategy is σj ∈ Σj :

Fi(σj , εi) =
∑

aj∈Aj

gi(α, aj)E[σj(aj |εj)|εi] + εi(α) −
∑

aj∈Aj

gi(β, aj)E[σj(aj |εj)|εi] − εi(β).
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Note that if σj(α|εj) ≥ σ′
j(α|εj) for all εj then Fi(σj , εi) ≥ Fi(σ′

j , εi) for all εi.
Let δr

j ∈ Σj be a switching strategy such that δr
j (α|εj) = 1 if εj(α) − εj(β) ≥ r and

δr
j (α|εj) = 0 if εj(α) − εj(β) < r. Then,

Fi(δr
j , εi) = −(x − u + y − v) Pr [εj(α) − εj(β) < r | εi] + x − u + εi(α) − εi(β).

By the standard calculation of multivariate normal distributions, we obtain

Pr [εj(α) − εj(β) < r | εi] = Φ

(
r − (φ − ψ)(εi(α) − εi(β))

ρ
√

2(1 − (φ − ψ)2)

)

where Φ is a cumulative probability distribution function of a standard normal distribu-
tion. Writing ri = εi(α) − εi(β), we have

Fi(δr
j , εi) = −(x − u + y − v)Φ

(
r − (φ − ψ)ri

ρ
√

2(1 − (φ − ψ)2)

)
+ x − u + ri.

Let G(r, ri) = Fi(δr
j , εi). Then, G(r, ri) is strictly decreasing in r, strictly increasing in ri,

and G(r, r) is strictly increasing in r because

∂

∂r
G(r, ri) = − x − u + y − v

ρ
√

2(1 − (φ − ψ)2)
1√
2π

exp

−1
2

(
r − (φ − ψ)ri

ρ
√

2(1 − (φ − ψ)2)

)2
 < 0,

∂

∂ri
G(r, ri) =

(x − u + y − v)(φ − ψ)
ρ
√

2(1 − (φ − ψ)2)
1√
2π

exp

−1
2

(
r − (φ − ψ)ri

ρ
√

2(1 − (φ − ψ)2)

)2
 + 1 > 0,

d

dr
G(r, r) =

∂

∂r
G(r, ri)

∣∣∣∣
ri=r

+
∂

∂ri
G(r, ri)

∣∣∣∣
ri=r

= −

(
(x − u + y − v)(1 − (φ − ψ))

2
√

πρ
√

1 − (φ − ψ)2

)
exp

−1
2

(
r − (φ − ψ)r

ρ
√

2(1 − (φ − ψ)2)

)2
 + 1

≥ −(x − u + y − v)
2
√

πρ

√
1 − (φ − ψ)
1 + (φ + ψ)

+ 1 > 0

where the last inequality is due to the assumption of (1). Let r∗ be such that G(r∗, r∗) = 0.
Note that r∗ is unique and it is the same as r∗ in the statement of the theorem.

For s ∈ R, consider a subset of Σi such that

Σi(s) = {σi ∈ Σi |σi(α|εi) = 1 if εi(α) − εi(β) > s},

Σi(s) = {σi ∈ Σi |σi(α|εi) = 0 if εi(α) − εi(β) < s}.

Let s1 = y − v. If εi(α) − εi(β) > s1 then Fi(σj , εi) > 0 for all σj ∈ Σj . This implies
that any σi 6∈ Σi(s1) is strictly dominated by some σ′

1 ∈ Σi(s1). Let s1 = −(x − u). If
εi(α) − εi(β) < s1 then Fi(σj , εi) < 0 for all σj ∈ Σj . This implies that any σi 6∈ Σi(s1)
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is strictly dominated by some σ′
1 ∈ Σi(s

1). By the first round of deletion, we obtain
Σ1

i = Σi(s1) ∩ Σi(s1) for i ∈ N .
Let s2 be such that G(s1, s2) = 0. Note that s2 < s1 because G(s1, s1) > 0. Thus,

if εi(α) − εi(β) > s2 and σj ∈ Σ1
j ⊆ Σj(s1) then Fi(σj , εi) ≥ Fi(δs1

j , εi) = G(s1, εi(α) −
εi(β)) > G(s1, s2) = 0. Thus, any σi 6∈ Σi(s2) is strictly dominated by some σ′

i ∈ Σi(s2)
against any σj ∈ Σ1

j . Symmetrically, let s2 be such that G(s1, s2) = 0. Note that
s2 > s1 because G(s1, s1) < 0. Thus, if εi(α) − εi(β) < s2 and σj ∈ Σ1

j ⊆ Σj(s1) then

Fi(σj , εi) ≤ Fi(δ
s1

j , εi) = G(s1, εi(α) − εi(β)) < G(s1, s2) = 0. Thus, any σi 6∈ Σi(s
2) is

strictly dominated by some σ′
i ∈ Σi(s

2) against any σj ∈ Σ1
j . By the second round of

deletion, we obtain Σ2
i = Σi(s2) ∩ Σi(s2) for i ∈ N .

We repeat this procedure: construct a decreasing sequence {sk}∞k=1 and an increasing
sequence {sk}∞k=1 such that G(sk, sk+1) = G(sk, sk+1) = 0, and define Σk

i = Σi(sk)∩Σi(sk).
We obtain Σk

i by the k-th round of deletion. Since limk→∞ sk = limk→∞ sk = r∗, we have

Σ∗
i ≡

∞∩
k=1

Σk
i = Σi(r∗) ∩ Σi(r

∗)

= {σi ∈ Σi |σi(α|εi) = 1 if εi(α) − εi(β) > r∗, σi(α|εi) = 0 if εi(α) − εi(β) < r∗}.

Any Bayesian Nash equilibrium must be in Σ∗ = Σ∗
1 × Σ∗

2, which completes the proof.
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