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Abstract

One of the most important properties of a convex function is that a local opti-
mum is also a global optimum. This paper explores the discrete analogue of this
property. We consider arbitrary locality in a discrete space and the corresponding
local optimum of a function over the discrete space. We introduce the corresponding
notion of discrete convexity and show that the local optimum of a function satisfying
the discrete convexity is also a global optimum. The special cases include discretely-
convex, integrally-convex, M-convex, M\-convex, L-convex, and L\-convex functions.
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1 Introduction

The concept of convexity for sets and functions plays a central role in continuous opti-
mization. The importance of convexity relies on the fact that a local optimum of a convex
function is a global optimum. In the area of discrete optimization, on the other hand,
discrete analogues of convexity, or “discrete convexity” for short, have been considered.
There exist several different types of discrete convexity. Examples include “discretely-
convex functions” by Miller [5], “integrally-convex functions” by Favati and Tardella [3],
“M-convex functions” by Murota [7], “L-convex functions” by Murota [8], “M\-convex
functions” by Murota and Shioura [12], and “L\-convex functions” by Fujishige and
Murota [4]. While these functions also have the property that a local optimum is a
global optimum, the type of local optimum (i.e. the definition of locality) depends upon
the type of discrete convexity.

The purpose of this paper is to elucidate the relationship between discrete convexity
and local optimality by asking what type of discrete convexity is required by a given
type of local optimality. We consider arbitrary locality in a discrete space and the cor-
responding local optimum of a function over the discrete space. We then introduce the
corresponding notion of discrete convexity and show that a function satisfying the dis-
crete convexity has the property that the local optimum is a global optimum. Finally, we
argue that the special classes of functions satisfying discrete convexity include discretely-
convex, integrally-convex, M-convex, M\-convex, L-convex, and L\-convex functions.
Thus, we can understand the local optimality conditions for these functions in a unified
framework. We also argue that a sufficient condition for the uniqueness of Nash equilib-
rium in the class of strategic potential games [6] obtained by [14] can be seen as a special
case of our results.

2 Results

We denote by R the set of reals, and by Z the set of integers. Let n be a positive integer
and denote N = {1, . . . , n}. The characteristic vector of a subset S ⊆ N is denoted by
χS ∈ {0, 1}N :

χS(i) =

{
1 if i ∈ S,
0 otherwise.

We use the notation 0 = χ∅, 1 = χN , and χi = χ{i} for i ∈ N . For a vector x ∈ RN , let
‖x‖1 =

∑
i∈N |x(i)| be the `1-norm.
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A function f : RN → R∪ {+∞} is convex if λf(x) + (1− λ)f(y) ≥ f(λx + (1− λ)y)
for all x, y ∈ RN and λ ∈ (0, 1). If f is convex, then max{f(x), f(y)} > f(λx+(1−λ)y)
for all x, y ∈ RN with f(x) 6= f(y) and λ ∈ (0, 1). A function f satisfying this condition
is said to be semistrictly quasiconvex. Note that f is semistrictly quasiconvex if and only
if

max{f(x), f(y)} > min{f(x + ∆), f(y − ∆)}

for all x, y ∈ RN with f(x) 6= f(y) where ∆ = λ(y − x) and λ ∈ (0, 1). It is known that
a local minimum of a semistrictly quasiconvex function is also a global minimum.1 We
consider discrete analogues of convexity and semistrict quasiconvexity having a similar
property.

Fix D ⊆ {−1, 0, 1}N\{0} such that χi ∈ D for each i ∈ N and −d ∈ D for all
d ∈ D. For x ∈ ZN , we write D(x) = {z ∈ ZN : z = x + d, d ∈ D}, which is
interpreted as a neighborhood of x. Note that y ∈ D(x) if and only if x ∈ D(y). For
a function f : ZN → R ∪ {+∞}, we say that x ∈ ZN is a D-local minimum of f if
f(x) ≤ f(y) for all y ∈ D(x).

For x, y ∈ ZN , we write

R(x, y) = {z ∈ ZN : x ∧ y ≤ z ≤ x ∨ y}

where (x∧ y)(i) = min{x(i), y(i)} and (x∨ y)(i) = max{x(i), y(i)} for each i ∈ N . Note
that ‖x − z‖1 + ‖y − z‖1 = ‖x − y‖1 if and only if z ∈ R(x, y).

For a function f : ZN → R ∪ {+∞}, let domf = {x ∈ ZN : f(x) < +∞} be the
effective domain. We say that f : ZN → R ∪ {+∞} with domf 6= ∅ is D-convex if, for
any x, y ∈ ZN with x 6= y,

f(x) + f(y) ≥ min
x′∈D(x)∩R(x,y)

f(x′) + min
y′∈D(y)∩R(x,y)

f(y′). (1)

Note that the above inequality is trivially true when y ∈ D(x) and x ∈ D(y). We say
that f : ZN → R ∪ {+∞} with domf 6= ∅ is semistrictly quasi D-convex if, for any
x, y ∈ ZN with f(x) 6= f(y),

max{f(x), f(y)} > min
{

min
x′∈D(x)∩R(x,y)

f(x′), min
y′∈D(y)∩R(x,y)

f(y′)
}

. (2)

Note that the above inequality is trivially true when y ∈ D(x) and x ∈ D(y) with
f(x) 6= f(y). A D-convex function is semistrictly quasi D-convex.

The following proposition is the main result of this paper.
1See Avriel et al. [2] for more accounts on quasiconvexity.
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Proposition 1 Suppose that f : ZN → R∪{+∞} is semistrictly quasi D-convex. Then,
x ∈ ZN is a D-local minimum of f if and only if it is a global minimum of f , i.e.,

f(x) ≤ f(y) for all y ∈ D(x) ⇔ f(x) ≤ f(y) for all y ∈ ZN .

Proof. The “if” part is obvious and we show the “only if” part by induction. Let
x ∈ ZN be a D-local minimum of f . Then, f(x) ≤ f(y) for all y ∈ ZN with ‖x− y‖1 = 1
because x ± χi ∈ D(x) for each i ∈ N . Suppose that f(x) ≤ f(y) for all y ∈ ZN with
‖x − y‖1 ≤ k where k ≥ 1. Let y ∈ ZN be such that ‖x − y‖1 = k + 1. We show that
f(x) ≤ f(y). Seeking a contradiction, suppose that f(y) < f(x). Since x is a D-local
minimum, f(x) ≤ minx′∈D(x)∩R(x,y) f(x′). Since f is semistrictly quasi D-convex,

f(x) = max{f(x), f(y)}

> min
{

min
x′∈D(x)∩R(x,y)

f(x′), min
y′∈D(y)∩R(x,y)

f(y′)
}

= min
y′∈D(y)∩R(x,y)

f(y′).

Note that ‖x−y′‖1 < ‖x−y‖1 = k+1 for all y′ ∈ D(y)∩R(x, y). Thus, by the induction
hypothesis, f(x) ≤ miny′∈D(y)∩R(x,y) f(y′), a contradiction.

The following proposition, which we will use later, provides a sufficient condition for
semistrict quasi D-convexity in terms of a local condition, where one point is in the local
area of another if neighborhoods of the two points have a non-empty intersection.

Proposition 2 Suppose that, for any x, y ∈ ZN with y 6∈ D(x), x 6∈ D(y), and D(x) ∩
D(y) ∩R(x, y) 6= ∅,

min
z∈D(x)∩D(y)∩R(x,y)

f(z)

{
< max{f(x), f(y)} if f(x) 6= f(y),
≤ f(x) = f(y) otherwise.

(3)

Then, f is semistrictly quasi D-convex.

Proof. For x, y ∈ ZN with y ∈ D(x), x ∈ D(y), and f(x) 6= f(y), (2) is trivially
true. For x, y ∈ ZN with y 6∈ D(x), x 6∈ D(y), and f(x) 6= f(y), construct a sequence
{xk ∈ R(x, y)}m

k=0 such that x0 = x and xm = y by the following steps: set xk+1 ∈
D(xk) ∩R(xk, y) for k = 0, . . . ,m − 1 such that

• xk+1 ∈ arg min
z∈D(xk)∩R(xk,y)

f(z),

• ‖xk+1 − xk‖1 ≥ ‖x′ − xk‖1 for all x′ ∈ arg min
z∈D(xk)∩R(xk,y)

f(z).
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Since xk ± χi ∈ D(xk) for all i ∈ N and xk 6∈ D(xk), we have ‖x0 − y‖1 > ‖x1 − y‖1 >

· · · > ‖xm−1−y‖1 > ‖xm−y‖1 = 0. Thus, this sequence is well defined. By construction,
x0(i) ≤ x1(i) ≤ · · · ≤ xm(i) if x(i) ≤ y(i) and x0(i) ≥ x1(i) ≥ · · · ≥ xm(i) if x(i) ≥ y(i).
This implies that xk+1 ∈ R(xk, xk+2) ⊆ R(xk, y) for all k ≤ m − 2. We also have
xk+1 ∈ D(xk+2) because ±(xk+1 − xk+2) ∈ D. Therefore,

f(xk+1) = min
z∈D(xk)∩R(xk,y)

f(z) = min
z∈D(xk)∩D(xk+2)∩R(xk,xk+2)

f(z).

By (3), if xk+2 6∈ D(xk) then

f(xk+1)

{
< max{f(xk), f(xk+2)} if f(xk) 6= f(xk+2),
≤ f(xk) = f(xk+2) otherwise.

(4)

If xk+2 ∈ D(xk) (and thus xk+2 ∈ D(xk) ∩ R(xk, y)), we must have f(xk+1) < f(xk+2).
To see this, recall that ‖xk+1−xk‖1 ≥ ‖x′−xk‖1 for all x′ ∈ arg minz∈D(xk)∩R(xk,y) f(z).
Since ‖xk+1 − xk‖1 < ‖xk+1 − xk‖1 + ‖xk+2 − xk+1‖1 = ‖xk+2 − xk‖1, it must be true
that xk+2 6∈ arg minz∈D(xk)∩R(xk,y) f(z) and thus f(xk+1) < f(xk+2). Therefore, to
summarize, (4) is true for all k.

The condition (4) implies that if f(xk) < f(xk+1) then f(xk+1) < f(xk+2), which
further implies f(xk+2) < f(xk+3). Therefore, if f(xk) < f(xk+1) then f(xl) < f(xl+1)
for all l ≥ k. Symmetrically, if f(xk) < f(xk−1) then f(xl) < f(xl−1) for all l ≤ k. Using
this property, we show that (2) is true.

If f(x0) < f(xm), there exists k ≤ m − 1 such that f(xk) < f(xk+1). By the above
argument, we must have f(xm−1) < f(xm). Therefore,

max{f(x), f(y)} = max{f(x0), f(xm)}
= f(xm) > f(xm−1)

≥ min{f(x1), f(xm−1)}

= min
{

min
x′∈D(x0)∩D(x2)∩R(x0,x2)

f(x′), min
y′∈D(xm−2)∩D(xm)∩R(xm−2,xm)

f(y′)
}

≥ min
{

min
x′∈D(x)∩R(x,y)

f(x′), min
y′∈D(y)∩R(x,y)

f(y′)
}

,

which implies (2). Similarly, we can also show that if f(xm) < f(x0) then (2) is true.
Therefore, f is semistrictly quasi D-convex.

Note that the condition in this proposition is not necessary for semistrict quasi D-
convexity. For example, let f : Z3 → R ∪ {+∞} be such that domf = {0, 1}3 and, for
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each x ∈ domf ,

f(x) =

{
1 if x = (0, 0, 0), (1, 1, 0), (0, 0, 1),
0 otherwise.

A function f is semistrictly quasi D-convex with D = {±χ1,±χ2,±χ3} ∪ {±(χ1 + χ2)}
but does not satisfy (3) for x = (0, 0, 0) and y = (1, 1, 1).

3 Examples

3.1 Coordinatewise locality and Nash equilibrium

Let DC = {±χi : i ∈ N}. If f is semistrictly quasi DC-convex, then Proposition 1 implies
that2

f(x) ≤ f(x ± χi) for all i ∈ N ⇔ f(x) ≤ f(y) for all y ∈ ZN . (5)

For example, suppose that, for any x, y ∈ ZN with ‖x − y‖1 = 2,

min
z:‖x−z‖1=‖y−z‖1=1

f(z)

{
< max{f(x), f(y)} if f(x) 6= f(y),
≤ f(x) = f(y) otherwise.

(6)

Then, by Proposition 2, f is semistrictly quasi DC-convex and thus (5) is true. It is easy
to check that a separable convex function satisfies the above condition and thus it is
semistrictly quasi DC-convex. Note that a semistrictly quasi DC-convex function is not
necessarily separable convex.

The above argument has an application to game theory. A game consists of a set
of players N = {1, . . . , n}, a set of strategies Xi = Z for i ∈ N , and a payoff function
gi : X → R ∪ {−∞} for i ∈ N where X =

∏
i∈N Xi = ZN . Simply denote a game

by g = (gi)i∈N . We write X−i =
∏

j 6=i Xj and x−i = (xj)j 6=i ∈ X−i, and denote
(x1, . . . , xi−1, x

′
i, xi+1, . . . , xn) ∈ X by (x′

i, x−i). A strategy profile x ∈ X is a Nash
equilibrium of g if gi(xi, x−i) ≥ gi(x′

i, x−i) for all x′
i ∈ Xi and i ∈ N .

A game g is a potential game [6] if there exists a potential function p : X → R∪{−∞}
satisfying gi(xi, x−i) − gi(x′

i, x−i) = p(xi, x−i) − p(x′
i, x−i) for all xi, x

′
i ∈ Xi, x−i ∈ X−i,

and i ∈ N . If x ∈ X maximizes a potential function p, then p(xi, x−i) ≥ p(x′
i, x−i) for

all x′
i ∈ Xi and i ∈ N , which is equivalent to gi(xi, x−i) ≥ gi(x′

i, x−i) for all x′
i ∈ Xi and

i ∈ N . This implies that if x ∈ X maximizes p, then it is a Nash equilibrium. Note that

2Altman et al. [1, Corollary 2.2] states that if f is multimodular then (5) is true. Murota [11], however,

finds a counterexample against it and provides a correct local optimality condition.
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every Nash equilibrium does not necessarily maximize p. However, if it holds that

p(x) ≥ p(x ± χi) for all i ∈ N ⇔ p(x) ≥ p(y) for all y ∈ ZN ,

then every Nash equilibrium maximizes p. To see this, let x ∈ X be a Nash equilibrium.
Then, gi(x) − gi(xi ± 1, x−i) = gi(x) − gi(x ± χi) = p(x) − p(x ± χi) ≥ 0 for all i ∈ N .
This implies that p(x) ≥ p(y) for all y ∈ X. The following result reported in [14] is an
immediate consequence of the above discussion.

Proposition 3 Let g be a potential game with a potential function p. Suppose that
f ≡ −p satisfies (6) for any x, y ∈ ZN with ‖x − y‖1 = 2. Then, x ∈ X maximizes p

if and only if it is a Nash equilibrium. Thus, if a potential maximizer is unique, so is a
Nash equilibrium.

3.2 M-convex, M\-convex, L-convex, and L\-convex functions

Recently, Murota [8, 10] advocates “discrete convex analysis,” where M-convex and L-
convex functions, introduced respectively by Murota [7] and Murota [8], play central
roles. M\-convex and L\-convex functions, introduced respectively by Murota and Sh-
ioura [13] and Fujishige and Murota [4], are variants of M-convex and L-convex functions.
By choosing appropriate D, we can show that these functions are D-convex.

Let supp+(x) = {i : x(i) > 0} be the positive support and supp−(x) = {i : x(i) < 0}
be the negative support of x ∈ ZN . A function f : ZN → R ∪ {+∞} with domf 6= ∅ is
said to be an M-convex function [7] if, for any x, y ∈ domf and i ∈ supp+(x − y), there
exists j ∈ supp−(x − y) such that

f(x) + f(y) ≥ f(x − χi + χj) + f(y + χi − χj).

It is known that this inequality implicitly imposes the condition that the effective domain
of an M-convex function lies on a hyperplane {x ∈ Z :

∑
i∈N x(i) = r} for some r ∈ Z and,

accordingly, we may consider the projection of an M-convex function along a coordinate
axis. A function f : ZN → R ∪ {+∞} is said to be an M\-convex function [13] if the
function f̃ : Z{0}∪N → R ∪ {+∞} defined by

f̃(x0, x) =

{
f(x) if x0 = −

∑
i∈N x(i),

+∞ otherwise

is an M-convex function. The following proposition characterizes an M\-convex function
[10, Theorem 6.2].
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Proposition 4 A function f : ZN → R ∪ {+∞} is an M\-convex function if and only
if, for any x, y ∈ domf and i ∈ supp+(x − y),

f(x) + f(y) ≥min{f(x − χi) + f(y + χi),

min
j∈supp−(x−y)

f(x − χi + χj) + f(y + χi − χj)}.

This proposition and the definition of D-convexity imply that an M\-convex function
is DM-convex with DM = {±χi : i ∈ N} ∪ {χi − χj : i 6= j}. Thus, by Proposition 1, if
f : ZN → R ∪ {+∞} is an M\-convex function, then

f(x) ≤

{
f(x ± χi) for all i ∈ N

f(x + χi − χj) for all i, j ∈ N
⇔ f(x) ≤ f(y) for all y ∈ ZN .

This result is reported in Murota [7]. Proposition 4 says that an M-convex function is
an M\-convex function. Thus, an M-convex function is also DM-convex.3

A function f : ZN → R ∪ {+∞} with domf 6= ∅ is said to be an L-convex function
[8] if

f(x) + f(y) ≥ f(x ∨ y) + f(x ∧ y)

for all x, y ∈ ZN and there exists r ∈ R such that f(x+1) = f(x)+r for all x ∈ ZN . Since
an L-convex function is linear in the direction of 1, we may dispense with this direction
as far as we are interested in its nonlinear behavior. A function f : ZN → R ∪ {+∞} is
said to be an L\-convex function [4] if the function f̃ : Z{0}∪N → R ∪ {+∞} defined by

f̃(x0, x) = f(x − x01)

for x0 ∈ Z and x ∈ ZN is an L-convex function. The following proposition characterizes
an L\-convex function [10, Theorem 7.7].

Proposition 5 A function f : ZN → R∪{+∞} is an L\-convex function if and only if,
for any x, y ∈ ZN with supp+(x − y) 6= ∅,

f(x) + f(y) ≥ f(x − χS) + f(y + χS) where S = arg max
i∈N

(x(i) − y(i)).

This proposition and the definition of D-convexity imply that an L\-convex function
is DL-convex with DL = {±χS : S ⊆ N, S 6= ∅}. Thus, by Proposition 1, if f : ZN →
R ∪ {+∞} is an L\-convex function, then

f(x) ≤ f(x ± χS) for all S ⊆ N ⇔ f(x) ≤ f(y) for all y ∈ ZN .
3One can obtain the local optimality condition for M-convex functions by weakening that for M\-

convex functions. See Murota [10, Theorem 6.26] for more accounts on this issue.
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This result is reported in Murota [9]. It is known that an L-convex function is an L\-
convex function [10, Theorem 7.3]. Thus, an L-convex function is also DL-convex.4

Murota and Shioura [13] introduced semistrictly quasi M-convex and L-convex func-
tions. It can be readily shown that a semistrictly quasi M-convex function is semistrictly
quasi DM-convex and that a semistrictly quasi L-convex function is semistrictly quasi DL-
convex. Murota and Shioura [13] obtained the local optimality conditions for semistrictly
quasi M-convex and L-convex functions, which are weaker than those for DM-convex and
DL-convex functions, respectively.

3.3 Discretely-convex and integrally-convex functions

For x ∈ RN , let N(x) = {z ∈ ZN : bxc ≤ z ≤ dxe} where bxc denotes the vector
obtained by rounding down and dxe by rounding up the components of x to the nearest
integers. A function f : ZN → R ∪ {+∞} is a discretely-convex function [5] if, for any
x, y ∈ domf , it holds that

λf(x) + (1 − λ)f(y) ≥ min
z∈N(λx+(1−λ)y)

f(z) (∀λ ∈ [0, 1]). (7)

Let DA = {−1, 0, 1}N\{0}. The following lemma connects a discretely-convex function
to a semistrictly quasi DA-convex function.

Lemma 6 Let x, y ∈ ZN be such that y 6∈ DA(x), x 6∈ DA(y), and DA(x) ∩ DA(y) ∩
R(x, y) 6= ∅. Then, N((x + y)/2) ⊆ DA(x) ∩ DA(y) ∩R(x, y).

Proof. By the assumption, there exist d, d′ ∈ DA such that y = x + d + d′, d + d′ 6= 0,
and d + d′ 6∈ DA. This implies that |d(i) + d′(i)| ≤ 2 for all i ∈ N and |d(i) + d′(i)| = 2
for some i ∈ N . Thus, if b(d+d′)/2c ≤ δ ≤ d(d+d′)/2e then δ ∈ {−1, 0, 1}N\{0} = DA.

Let z ∈ N((x + y)/2). Then, b(x + y)/2c ≤ z ≤ d(x + y)/2e. Thus, z ∈ DA(x)
because (x + y)/2 = x + (d + d′)/2. Similarly, z ∈ DA(y). Since z ∈ R(x, y), we have
N((x + y)/2) ⊆ DA(x) ∩ DA(y) ∩R(x, y).

Let x, y ∈ domf satisfy the condition in the above lemma. Assume that f is
discretely-convex. Then, we have

f(x) + f(y) ≥ 2 min
z∈N((x+y)/2)

f(z) ≥ 2 min
z∈DA(x)∩DA(y)∩R(x,y)

f(z)

4One can obtain the local optimality condition for L-convex functions by weakening that for L\-convex

functions. See Murota [10, Theorem 7.14] for more accounts on this issue.
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where the first inequality is due to (7) and the second inequality is due to Lemma 6.
This implies that (3) is true for all x, y ∈ ZN with y 6∈ DA(x), x 6∈ DA(y), and DA(x) ∩
DA(y) ∩R(x, y) 6= ∅. Thus, we have the following proposition by Proposition 2.

Proposition 7 A discretely-convex function is semistrictly quasi DA-convex.

Therefore, by Proposition 1, if f : ZN → R is a discretely-convex function, then

f(x) ≤ f(x + χS − χT ) for all S, T ⊆ N ⇔ f(x) ≤ f(y) for all y ∈ ZN .

This result is reported in [5].
Favati and Tardella [3] introduced integrally-convex functions and showed that these

functions form a special class of discretely-convex functions. Thus, an integrally-convex
function is also semistrictly quasi DA-convex.

References

[1] E. Altman, B. Gaujal, and A. Hordijk: Multimodularity, convexity, and optimization
properties, Mathematics of Operations Research, 25 (2000), 324–347.

[2] M. Avriel, W. E. Diewert, S. Schaible, and I. Zang: Generalized Concavity, Plenum
Press, New York, 1988.

[3] P. Favati and F. Tardella: Convexity in nonlinear integer programming, Ricerca
Operativa, 53 (1990), 3–44.

[4] S. Fujishige and K. Murota: Notes on L-/M-convex functions and the separation
theorems, Mathematical Programming, 88 (2000), 129–146.

[5] B. L. Miller: On minimizing nonseparable functions defined on the integers with an
inventory application, SIAM Journal on Applied Mathematics, 21 (1971), 166–185.

[6] D. Monderer and L. S. Shapley: Potential games, Games and Economic Behavior,
14 (1996), 124–143.

[7] K. Murota: Convexity and Steinitz’s exchange property, Advances in Mathematics,
124 (1996), 272–311.

[8] K. Murota: Discrete convex analysis, Mathematical Programming, 83 (1998), 313–
371.

10



[9] K. Murota: Algorithms in discrete convex analysis, IEICE Transactions on Systems
and Information, E83-D (2000), 344–352.

[10] K. Murota: Discrete Convex Analysis, SIAM, Philadelphia, 2003.

[11] K. Murota: Note on multimodularity and L-convexity, Mathematics of Operations
Research (2005), in press.

[12] K. Murota and A. Shioura: M-convex function on generalized polymatroid, Mathe-
matics of Operations Research, 24 (1999), 95–105.

[13] K. Murota and A. Shioura: Quasi M-convex and L-convex functions: Quasiconvexity
in discrete optimization, Discrete Applied Mathematics, 131 (2003), 467–494.

[14] T. Ui: Discrete concavity for potential games, working paper, Yokohama National
University, 2004.

11


