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Abstract

This paper shows that if a game satisfies the sufficient condition for the existence
and uniqueness of a pure-strategy Nash equilibrium provided by Rosen (1965) then
the game has a unique correlated equilibrium, which places probability one on the
unique pure-strategy Nash equilibrium. In addition, it shows that a weaker condition
suffices for the uniqueness of a correlated equilibrium. The condition generalizes
the sufficient condition for the uniqueness of a correlated equilibrium provided by
Neyman (1997) for a potential game with a strictly concave potential function.
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1 Introduction

This paper explores conditions for uniqueness of a correlated equilibrium (Aumann, 1974,
1987) in a class of games where strategy sets are finite-dimensional convex sets and each
player’s payoff function is concave and continuously differentiable with respect to the
player’s own strategy. Liu (1996) showed that a Cournot oligopoly game with a linear
demand function has a unique correlated equilibrium. Neyman (1997) studied a corre-
lated equilibrium of a potential game (Monderer and Shapley, 1996) and showed that
if a potential function is concave and payoff functions are bounded then any correlated
equilibrium is a mixture of potential maximizers in Theorem 1 and that if a potential
function is strictly concave and strategy sets are compact then the potential game has
a unique correlated equilibrium, which places probability one on the unique potential
maximizer, in Theorem 2. The latter, which is derived from the former, generalizes the
result of Liu (1996) because a Cournot oligopoly game with a linear demand function is
a potential game with a strictly concave potential function (Slade, 1994).

We study a correlated equilibrium of a class of games examined by Rosen (1965).
For a given game, consider a vector each component of which is a partial derivative of
each player’s payoff function with respect to the player’s own strategy and call it the
payoff gradient of the game. The payoff gradient is said to be strictly monotone if the
inner product of a difference of arbitrary two strategy profiles and the corresponding
difference of the payoff gradient is strictly negative. Strict monotonicity of the payoff
gradient implies strict concavity of each player’s payoff function with respect to the
player’s own strategy. Theorem 2 of Rosen (1965) showed that if the payoff gradient
is strictly monotone and strategy sets are compact then the game has a unique pure-
strategy Nash equilibrium. The present paper shows that, under the same condition, the
game has a unique correlated equilibrium, which places probability one on the unique
pure-strategy Nash equilibrium. In addition, our main result (Proposition 5) shows that
a weaker condition suffices for the uniqueness of a correlated equilibrium. This result
generalizes Theorem 2 of Neyman (1997) because the payoff gradient of a potential game
with a strictly concave potential function is strictly monotone.

To establish the main result, we first provide a sufficient condition for any correlated
equilibrium to be a mixture of pure-strategy Nash equilibria, which differs from but
overlaps with Theorem 1 of Neyman (1997). We then show that if the payoff gradient
is strictly monotone and strategy sets are compact then the game satisfies the sufficient
condition and thus any correlated equilibrium must place probability one on the unique
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pure-strategy Nash equilibrium.
The organization of this paper is as follows. Preliminary definitions and results are

summarized in section 2. The concept of strict monotonicity for the payoff gradient is
introduced in section 3. The results are reported in section 4.

2 Preliminaries

A game consists of a set of players N = {1, . . . , n}, a measurable set of strategies Xi ⊆
Rmi for i ∈ N with a generic element xi = (xi1, . . . , ximi)

>, and a measurable payoff
function ui : X → R for i ∈ N where X =

∏
i∈N Xi. It is assumed that Xi is a full-

dimensional convex subset1 of an Euclidean space Rmi . We write X−i =
∏

j 6=i Xj and
x−i = (xj)j 6=i ∈ X−i. We will fix N and X throughout this paper and simply denote a
game by u = (ui)i∈N .

A pure-strategy Nash equilibrium of u is a strategy profile x∗ ∈ X such that, for all
xi ∈ Xi and i ∈ N , ui(x∗) ≥ ui(xi, x

∗
−i). A correlated equilibrium2 of u is a probability

distribution µ over X such that, for each i ∈ N and any measurable function ξi : Xi →
Xi, ∫

ui(x)dµ(x) ≥
∫

ui(ξi(xi), x−i)dµ(x).

A game u is a smooth game if, for each i ∈ N , ui(x) has continuous partial derivatives
with respect to the components of xi. In a smooth game u, the first-order condition for
a pure-strategy Nash equilibrium x∗ ∈ X is

lim
t→+0

ui(x∗
i + t(xi − x∗

i ), x
∗
−i) − ui(x∗)

t

= ∇iui(x∗)>(xi − x∗
i ) ≤ 0 for all xi ∈ Xi and i ∈ N (1)

where ∇iui = (∂ui/∂xi1, . . . , ∂ui/∂ximi)
> denotes the gradient of ui(x) with respect to

xi. It is straightforward to check that (1) is equivalent to∑
i∈N

∇iui(x∗)>(xi − x∗
i ) ≤ 0 for all x ∈ X. (2)

1Even if Xi is not full-dimensional, we can use a reparametrization to get to the full-dimensional case.
2A generalized definition of a correlated equilibrium for an infinite game is proposed by Hart and

Schmeidler (1989).
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The problem of solving this type of an inequality is called the variational inequality
problem3 and the following sufficient condition for the existence of a solution is well-
known.4

Lemma 1 Let u be a smooth game. If Xi is compact for all i ∈ N then there exists
x∗ ∈ X satisfying (2).

A game u is a concave game (Rosen, 1965) if, for each i ∈ N , ui(x) is concave in xi

for every fixed x−i ∈ X−i. It can be readily shown that if u is a smooth concave game
then the first-order condition (1) is necessary and sufficient for a pure-strategy Nash
equilibrium and thus the set of solutions to the inequality problem (2) coincides with
the set of pure-strategy Nash equilibria.5

A game u is a potential game (Monderer and Shapley, 1996) if there exists a potential
function f : X → R such that ui(xi, x−i) − ui(x′

i, x−i) = f(xi, x−i) − f(x′
i, x−i) for all

xi, x
′
i ∈ Xi, x−i ∈ X−i, and i ∈ N . As shown by Monderer and Shapley (1996), a smooth

game u is a potential game with a potential function f if and only if ∇iui = ∇if for all
i ∈ N . This implies that the first-order condition for a pure-strategy Nash equilibrium
and that for a potential maximizer x∗ ∈ arg maxx∈X f(x) coincide. From the equivalence
of the two first-order conditions, we can derive the following lemma, which Neyman
(1997) established, by noting that a smooth potential game with a concave potential
function is a smooth concave game.6

Lemma 2 In a smooth potential game with a concave potential function, a strategy
profile is a pure-strategy Nash equilibrium if and only if it is a potential maximizer.

Neyman (1997) studied a correlated equilibrium of a smooth potential game with
a concave or strictly concave potential function and obtained the following two results,

3Let S ⊆ Rm be a convex set and let F : S → Rm be a mapping. The variational inequality problem

is to find x∗ ∈ S such that F (x∗)>(x − x∗) ≥ 0 for all x ∈ S. It has been shown that a pure-strategy

Nash equilibrium is a solution to the variational inequality problem with F = (−∇iui)i∈N (cf. Hartman

and Stampacchia, 1966; Gabay and Moulin, 1980).
4See Nagurney (1993), for example.
5Accordingly, a smooth concave game with compact strategy sets has a pure-strategy Nash equilibrium

by Lemma 1, whereas Kakutani fixed point theorem directly shows that a concave game with compact

strategy sets, which is not necessarily a smooth game, has a pure-strategy Nash equilibrium if ui(x) is

continuous in x for all i ∈ N .
6If a potential function f is concave then f(txi+(1−t)x′

i, x−i)−f(x′
i, x−i) ≥ t(f(xi, x−i)−f(x′

i, x−i)).

Hence ui(txi+(1−t)x′
i, x−i)−ui(x

′
i, x−i) ≥ t(ui(xi, x−i)−ui(x

′
i, x−i)), which implies that ui(x) is concave

in xi.
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the latter of which is derived from the former. Neyman (1997) obtained Lemma 2 as a
corollary of Proposition 1.

Proposition 1 Let u be a smooth potential game with bounded payoff functions. If a
potential function of u is concave then any correlated equilibrium of u is a mixture of
potential maximizers.

Proposition 2 Let u be a smooth potential game with compact strategy sets. If a po-
tential function of u is strictly concave then u has a unique correlated equilibrium, which
places probability one on the unique potential maximizer.

3 Strict monotonicity of the payoff gradient

Let S ⊆ Rm be a convex set and let F : S → Rm be a mapping. A mapping F is said
to be strictly monotone if (F (x) − F (y))>(x − y) > 0 for all x, y ∈ S with x 6= y. The
following sufficient condition for strict monotonicity is well-known.7

Lemma 3 If a mapping F : S → Rm is continuously differentiable and the Jacobian
matrix of F is positive definite for all x ∈ S then F is strictly monotone.

Let us call (∇iui)i∈N the payoff gradient of a smooth game u. We say that, with
some abuse of language, the payoff gradient of u is strictly monotone if a mapping
x 7→ (−∇iui(x))i∈N is strictly monotone, i.e.,∑

i∈N

(∇iui(x) −∇iui(y))>(xi − yi) < 0 for all x, y ∈ X with x 6= y. (3)

Let ci ∈ R++ be a constant for each i ∈ N and call (ci∇iui)i∈N the c-weighted payoff
gradient of u where c = (ci)i∈N . We say that the c-weighted payoff gradient of u is
strictly monotone if a mapping x 7→ (−ci∇iui(x))i∈N is strictly monotone,8 i.e.,∑

i∈N

ci(∇iui(x) −∇iui(y))>(xi − yi) < 0 for all x, y ∈ X with x 6= y. (4)

Note that if ci = cj for all i, j ∈ N then (4) implies (3).

7See Nagurney (1993), for example.
8Rosen (1965) called this property “diagonal strict concavity.”
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Let γi : Xi → R++ be a function for each i ∈ N and call (γi∇iui)i∈N the γ-weighted
payoff gradient of u where γ = (γi)i∈N . We say that the γ-weighted payoff gradient of
u is strictly monotone if a mapping x 7→ (−γi(xi)∇iui(x))i∈N is strictly monotone, i.e.,∑

i∈N

(γi(xi)∇iui(x) − γi(yi)∇iui(y))>(xi − yi) < 0 for all x, y ∈ X with x 6= y. (5)

Note that if γi(xi) = ci ∈ R++ for all xi ∈ Xi and i ∈ N then (5) implies (4).
Rosen (1965) showed that strict monotonicity of the c-weighted payoff gradient leads

to the uniqueness of a pure-strategy Nash equilibrium.

Proposition 3 Let u be a smooth game with compact strategy sets. If there exists a
constant ci ∈ R++ for each i ∈ N such that the c-weighted payoff gradient of u is strictly
monotone then u has a unique pure-strategy Nash equilibrium. Especially, if the payoff
gradient of u is strictly monotone then u has a unique pure-strategy Nash equilibrium.

In the next section, we shall show that strict monotonicity of the γ-weighted payoff
gradient leads to the uniqueness of a correlated equilibrium.

Before closing this section, we discuss two implications of strict monotonicity.9 In a
smooth potential game, strict monotonicity of the payoff gradient is equivalent to strict
concavity of a potential function.

Lemma 4 Let u be a smooth potential game. A potential function of u is strictly concave
if and only if the payoff gradient of u is strictly monotone.

Proof. Let f be a potential function and suppose that f is strictly concave. For x 6= y,∑
i∈N ∇if(x)>(yi−xi) > f(y)−f(x) and

∑
i∈N ∇if(y)>(xi−yi) > f(x)−f(y). Adding

these two inequalities, we have∑
i∈N

(∇if(x) −∇if(y))>(xi − yi) =
∑
i∈N

(∇iui(x) −∇iui(y))>(xi − yi) < 0

since ∇if = ∇iui, which implies that the payoff gradient of u is strictly monotone.
Conversely, suppose that the payoff gradient of u is strictly monotone. Fix x, y ∈ X

with x 6= y. Let φ(t) = f(x + t(y − x)) for t ∈ [0, 1]. Then, φ is differentiable and, by

9I thank a referee for pointing out the next two lemmas with proofs.
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the mean-value theorem, there exist 0 < θ1 < 1/2 < θ2 < 1 such that φ(1/2) − φ(0) =
φ′(θ1)/2 and φ(1) − φ(1/2) = φ′(θ2)/2, which are rewritten as

f((x + y)/2) − f(x) =
∑
i∈N

∇if(x + θ1(y − x))>(yi − xi)/2, (6)

f(y) − f((x + y)/2) =
∑
i∈N

∇if(x + θ2(y − x))>(yi − xi)/2. (7)

On the other hand, since the payoff gradient is strictly monotone,∑
i∈N

(∇iui(x + θ2(y − x)) −∇iui(x + θ1(y − x)))>(θ2 − θ1)(yi − xi) < 0

and thus ∑
i∈N

∇if(x + θ2(y − x))>(yi − xi) <
∑
i∈N

∇if(x + θ1(y − x))>(yi − xi)

because θ2 − θ1 > 0 and ∇iui = ∇if . This inequality, (6), and (7) imply that f((x +
y)/2) > (f(x) + f(y))/2. Therefore, f must be strictly concave by the continuity of f .

In a smooth game, strict monotonicity of the c-weighted payoff gradient implies strict
concavity of each player’s payoff function with respect to the player’s own strategy.

Lemma 5 Let u be a smooth game. If there exists a constant ci ∈ R++ for each i ∈ N

such that the c-weighted payoff gradient of u is strictly monotone then, for each i ∈ N ,
ui(x) is strictly concave in xi for every fixed x−i ∈ X−i.

Proof. Fix arbitrary i ∈ N and x−i ∈ X−i and consider a game with a singleton player set
{i}, a strategy set Xi, and a payoff function ui(·, x−i) : Xi → R. This game is trivially a
potential game with a potential function ui(·, x−i). Note that the payoff gradient of this
game is strictly monotone. Thus, the potential function is strictly concave by Lemma 4.
This implies that ui(x) is strictly concave in xi.

4 Results

We provide a sufficient condition for any correlated equilibrium to be a mixture of pure-
strategy Nash equilibria.
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Proposition 4 Let u be a smooth game with bounded payoff functions. Assume that
there exists a pure-strategy Nash equilibrium x∗ ∈ X and a bounded measurable function
γi : Xi → R++ for each i ∈ N such that:

(i)
∑
i∈N

γi(xi)∇iui(x)>(x∗
i − xi)

{
≥ 0 for all x ∈ X,
> 0 if x is not a pure-strategy Nash equilibrium,

(ii) inf
(x,t)∈X×(0,1]

ui(xi + t(x∗
i − xi), x−i) − ui(x)

t
> −∞ for all i ∈ N .

Then, any correlated equilibrium of u is a mixture of pure-strategy Nash equilibria.

Proof. Let µ be a probability distribution over X such that µ(Y ) > 0 for some measurable
set Y ⊆ X containing no pure-strategy Nash equilibria. It is enough to show that µ is
not a correlated equilibrium. By (i),∫ ∑

i∈N

γi(xi)∇iui(x)>(x∗
i − xi)dµ(x) > 0.

Thus, there exists i ∈ N such that∫
γi(xi)∇iui(x)>(x∗

i − xi)dµ(x) > 0.

By (ii), inf(x,t)∈X×(0,1] γi(xi)(ui(xi+t(x∗
i −xi), x−i)−ui(x))/t > −∞ since γi is bounded.

Thus, by the Lebesgue-Fatou Lemma,

lim inf
t→+0

∫
γi(xi)

ui(xi + t(x∗
i − xi), x−i) − ui(x)

t
dµ(x)

≥
∫

lim inf
t→+0

γi(xi)
ui(xi + t(x∗

i − xi), x−i) − ui(x)
t

dµ(x)

=
∫

γi(xi)∇iui(x)>(x∗
i − xi)dµ(x) > 0.

Therefore, there exists t > 0 such that∫
γi(xi)

(
ui(xi + t(x∗

i − xi), x−i) − ui(x)
)
dµ(x) > 0. (8)

Set ξi(xi) = xi + t(x∗
i − xi) for all xi ∈ Xi.
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For a measurable function f : X → R, let Eµ(x)[f(x)|xi] denote the conditional
expected value of f(x) given xi ∈ Xi with respect to µ. Define a measurable set

Si = {xi ∈ Xi |Eµ(x)[ui(ξi(xi), x−i) − ui(x)|xi] ≥ 0}

and write 1Si : Xi → {0, 1} for its indicator function. Let γ̄i = supxi∈Si
γi(xi) < ∞.

Then,

Eµ(x)[1Si(xi)(ui(ξi(xi), x−i) − ui(x))|xi] ≥
γi(xi)

γ̄i
Eµ(x)[1Si(xi)(ui(ξi(xi), x−i) − ui(x))|xi]

≥ γi(xi)
γ̄i

Eµ(x)[ui(ξi(xi), x−i) − ui(x)|xi]

=
1
γ̄i

Eµ(x)[γi(xi)(ui(ξi(xi), x−i) − ui(x))|xi].

This and (8) imply that∫
1Si(xi)

(
ui(ξi(xi), x−i) − ui(x)

)
dµ(x) ≥ 1

γ̄i

∫
γi(xi)

(
ui(ξi(xi), x−i) − ui(x)

)
dµ(x) > 0.

Let ξ′i : Xi → Xi be such that ξ′i(xi) = ξi(xi) if xi ∈ Si and ξ′i(xi) = xi otherwise. Then,∫ (
ui(ξ′i(xi), x−i) − ui(x)

)
dµ(x) =

∫
1Si(xi)

(
ui(ξi(xi), x−i) − ui(x)

)
dµ(x) > 0

and thus µ is not a correlated equilibrium, which completes the proof.

As the next lemma shows, a smooth potential game with bounded payoff functions
satisfies the sufficient condition for any correlated equilibrium to be a mixture of pure-
strategy Nash equilibria given by Proposition 4 if its potential function is concave and
a potential maximizer exists. On the other hand, Proposition 1 does not assume the
existence of a potential maximizer a priori: it asserts that if a correlated equilibrium
exists then a potential maximizer also exists and any correlated equilibrium is a mixture
of potential maximizers, i.e., pure-strategy Nash equilibria. In this sense, Proposition 4
with the following lemma partially explains Proposition 1.

Lemma 6 Let u be a smooth potential game with bounded payoff functions. If a potential
function of u is concave and a potential maximizer exists then, for a potential maximizer
x∗ ∈ X and γi : Xi → R++ with γi(xi) = 1 for all xi ∈ Xi and i ∈ N , the conditions (i)
and (ii) in Proposition 4 are true.
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Proof. Let f be a potential function and write X∗ = arg maxx∈X f(x), which is non-
empty by the assumption and coincides with the set of pure-strategy Nash equilibria by
Lemma 2. Let x∗ ∈ X∗. Then,∑

i∈N

∇iui(x)>(x∗
i − xi) =

∑
i∈N

∇if(x)>(x∗
i − xi) ≥ f(x∗) − f(x) ≥ 0

for all x ∈ X by the concavity of f . If x 6∈ X∗ then
∑

i∈N ∇iui(x)>(x∗
i − xi) ≥ f(x∗) −

f(x) > 0, which establishes (i). Next, note that (ui(xi + t(x∗
i − xi), x−i) − ui(x))/t =

(f(xi + t(x∗
i − xi), x−i) − f(x))/t is decreasing in t ∈ (0, 1] since f is concave. Thus,

inf
(x,t)∈X×(0,1]

ui(xi + t(x∗
i − xi), x−i) − ui(x)

t
≥ inf

x∈X

(
ui(x∗

i , x−i) − ui(x)
)

> −∞

since ui is bounded, which establishes (ii).

Using Proposition 4, we show that strict monotonicity of the γ-weighted payoff gra-
dient leads to the uniqueness of a correlated equilibrium.

Proposition 5 Let u be a smooth game with compact strategy sets. If there exists a
bounded measurable function γi : Xi → R++ for each i ∈ N such that the γ-weighed
payoff gradient of u is strictly monotone then u has a unique correlated equilibrium,
which places probability one on a unique pure-strategy Nash equilibrium. Especially, if
the payoff gradient of u is strictly monotone then u has a unique correlated equilibrium.

Proposition 5 generalizes Proposition 2 because, by Lemma 4, the payoff gradient of
a smooth potential game with a strictly concave potential function is strictly monotone.
Proposition 5 also generalizes Proposition 3 because the c-weighted payoff gradient is a
special case of the γ-weighted payoff gradient.

To prove Proposition 5, we first show the existence10 and uniqueness of a pure-
strategy Nash equilibrium.

Lemma 7 Let u be a smooth game with compact strategy sets. If there exists a function
γi : Xi → R++ for each i ∈ N such that the γ-weighed payoff gradient of u is strictly
monotone then u has a unique pure-strategy Nash equilibrium.

10The game in Proposition 5 is not necessarily a concave game and thus we cannot directly use the

existence result by Rosen (1965).
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Proof. First, we show that u has a pure-strategy Nash equilibrium. By Lemma 1, there
exists x∗ ∈ X satisfying (2), which is equivalent to (1). Thus, it is enough to show that
x∗ is a pure-strategy Nash equilibrium. Fix i ∈ N and xi 6= x∗

i . By strict monotonicity,
we have

(γi(x∗
i )∇iui(x∗) − γi(xi + t(x∗

i − xi))∇iui(xi + t(x∗
i − xi), x∗

−i))
>(1 − t)(x∗

i − xi) < 0

for t ∈ [0, 1) by letting x = x∗ and y = (xi + t(x∗
i − xi), x∗

−i) in (5). Hence, by (1),

∇iui(xi + t(x∗
i − xi), x∗

−i)
>(x∗

i − xi) >
γi(x∗

i )
γi(xi + t(x∗

i − xi))
∇iui(x∗)>(x∗

i − xi) ≥ 0

and thus

d

dt
ui(xi + t(x∗

i − xi), x∗
−i) = ∇iui(xi + t(x∗

i − xi), x∗
−i)

>(x∗
i − xi) > 0

for all t ∈ [0, 1). Therefore, ui(x∗) ≥ ui(xi, x
∗
−i), which implies that x∗ is a pure-strategy

Nash equilibrium because xi ∈ Xi and i ∈ N are chosen arbitrarily.
Next, we show that a pure-strategy Nash equilibrium is unique. Let x∗, y∗ ∈ X be

two pure-strategy Nash equilibria. By (1), it holds that γi(x∗
i )∇iui(x∗)>(y∗i − x∗

i ) ≤ 0
and γi(y∗i )∇iui(y∗)>(x∗

i − y∗i ) ≤ 0 for all i ∈ N . By adding them and taking a sum over
i ∈ N , we have

∑
i∈N (γi(x∗

i )∇iui(x∗) − γi(y∗i )∇iui(y∗))>(x∗
i − y∗i ) ≥ 0. On the other

hand, if x∗ 6= y∗ then
∑

i∈N (γi(x∗
i )∇iui(x∗) − γi(y∗i )∇iui(y∗))>(x∗

i − y∗i ) < 0 by strict
monotonicity. Thus, x∗ and y∗ must coincide, which completes the proof.

We are now ready to prove Proposition 5.

Proof of Proposition 5. We show that u satisfies the sufficient condition for any correlated
equilibrium to be a mixture of pure-strategy Nash equilibria given by Proposition 4. By
Lemma 7, u has a unique pure-strategy Nash equilibrium x∗ ∈ X. For any x 6= x∗,∑

i∈N

(γi(x∗
i )∇iui(x∗) − γi(xi)∇iui(x))>(x∗

i − xi) < 0

by strict monotonicity and thus∑
i∈N

γi(xi)∇iui(x)>(x∗
i − xi) >

∑
i∈N

γi(x∗
i )∇iui(x∗)>(x∗

i − xi) ≥ 0

by (1), which establishes (i).
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Fix i ∈ N . By the mean-value theorem, for any x ∈ X and t ∈ (0, 1], there exists
θ ∈ (0, t) such that (ui(xi+t(x∗

i −xi), x−i)−ui(x))/t = ∇iui(xi+θ(x∗
i −xi), x−i)>(x∗

i −xi).
Thus,

inf
(x,t)∈X×(0,1]

ui(xi + t(x∗
i − xi), x−i) − ui(x)

t

≥ min
(x,θ)∈X×[0,1]

∇iui(xi + θ(x∗
i − xi), x−i)>(x∗

i − xi) > −∞

since X is compact and ∇iui is continuous, which establishes (ii).
Therefore, by Proposition 4, any correlated equilibrium of u must place probability

one on the unique pure-strategy Nash equilibrium x∗, which completes the proof.

Using Lemma 3, we can obtain a sufficient condition for strict monotonicity of the γ-
weighed payoff gradient which is in some cases easier to verify than (5) if payoff functions
are twice continuously differentiable. By considering a special case with Xi ⊆ R for all
i ∈ N , we have the following corollary of Proposition 5.

Corollary 6 Let u be a smooth game. Suppose that Xi ⊆ R is a closed bounded interval
for all i ∈ N and that payoff functions are twice continuously differentiable. If there
exists a continuously differentiable function γi : Xi → R++ for each i ∈ N such that a
matrix [

δij
dγi(xi)

dxi

∂ui(x)
∂xi

]
+

[
γi(xi)

∂2ui(x)
∂xi∂xj

]
(9)

is negative definite for all x ∈ X where δij is the Kronecker delta then u has a unique
correlated equilibrium, which places probability one on a unique pure-strategy Nash equi-
librium. Especially, if a matrix [∂2ui(x)/∂xi∂xj ] is negative definite for all x ∈ X then
u has a unique correlated equilibrium.

Proof. Note that γi : Xi → R++ is a bounded measurable function for each i ∈ N .
Consider a mapping x 7→ (−γi(xi)∇iui(x))i∈N . Then, (9) is the Jacobian matrix multi-
plied by −1. Thus, if (9) is negative definite for all x ∈ X then the mapping is strictly
monotone by Lemma 3. This implies that the γ-weighted payoff gradient of u is strictly
monotone, which completes the proof by Proposition 5.

As shown by Monderer and Shapley (1996), if the matrix [∂2ui(x)/∂xi∂xj ] is sym-
metric for all x ∈ X then u is a potential game and [∂2ui(x)/∂xi∂xj ] coincides with
the Hessian matrix of a potential function. Thus, if [∂2ui(x)/∂xi∂xj ] is symmetric and
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negative definite for all x ∈ X then u is a smooth potential game with a strictly concave
potential function and thus a correlated equilibrium of u is unique by Proposition 2.
Corollary 6 says that [∂2ui(x)/∂xi∂xj ] needs not be symmetric for the uniqueness of a
correlated equilibrium.

Finally, we discuss two examples.

Example 1 Consider a Cournot oligopoly game with differentiated products in which
a strategy of firm i ∈ N is a quantity of differentiated product i ∈ N to produce. So
let Xi ⊆ R+ be a closed bounded interval for all i ∈ N . An inverse demand function
for product i is denoted by pi : X → R+ and a cost function of firm i is denoted by
ci : Xi → R+. It is assumed that both of them are twice continuously differentiable and
that d2ci(xi)/dx2

i ≥ 0 for all xi ∈ Xi. The payoff function ui : X → R of firm i is given
by ui(x) = pi(x)xi − ci(xi).

The matrix (9) is calculated as[
δij

dγi(xi)
dxi

∂pi(x)xi

∂xi

]
+

[
γi(xi)

∂2pi(x)xi

∂xi∂xj

]
−

[
δij

d

dxi

(
γi(xi)

dci(xi)
dxi

)]
.

If γ(xi) = 1 for each i ∈ N then the above is reduced to[
∂2pi(x)xi

∂xi∂xj

]
−

[
δij

d2ci(xi)
dx2

i

]
.

Thus, if a matrix
[
∂2pi(x)xi/∂xi∂xj

]
is negative definite for all x ∈ X then u has a

unique correlated equilibrium by Corollary 6 since a matrix
[
δijd

2ci(xi)/dx2
i

]
is positive

semidefinite for all x ∈ X. As a special case, consider a linear inverse demand func-
tion pi(x) =

∑
j∈N aijxj + bi for all i ∈ N . In this case, ∂2pi(x)xi/∂x2

i = 2aii and
∂2pi(x)xi/∂xi∂xj = aij for i 6= j. Thus, if a matrix [(1 + δij)aij ] is negative definite
then u has a unique correlated equilibrium. Note that if [(1 + δij)aij ] is symmetric, i.e.,
aij = aji for all i, j ∈ N , then [∂2ui(x)/∂xi∂xj ] is symmetric and thus u is a potential
game.

Example 2 Let Xi ⊆ R be a closed bounded interval for all i ∈ N and let u be a
smooth game such that the payoff gradient of u is strictly monotone. Consider another
game v = (vi)i∈N such that, for all x ∈ X and i ∈ N ,

vi(x) = wi(xi)ui(x) −
∫ xi

ci

dwi(t)
dt

ui(t, x−i)dt + zi(x−i) (10)
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where wi : Xi → R++ is a continuously differentiable function, zi : X−i → R is a bounded
measurable function, and ci ∈ Xi. Then it holds that ∇ivi(x) = wi(xi)∇iui(x) for all
x ∈ X and i ∈ N . Since a mapping x 7→ (−∇iui(x))i∈N is strictly monotone, so is a
mapping x 7→ (−∇ivi(x)/wi(xi))i∈N . This implies that the γ-weighted payoff gradient
of v is strictly monotone with γi(xi) = 1/wi(xi) for all xi ∈ N and i ∈ N . Therefore,
not only u but also v have a unique correlated equilibrium by Proposition 5.

For example, assume that min Xi > 0 and let wi(xi) = xi for all xi ∈ Xi and i ∈ N .
Then (10) is rewritten as

vi(x) = xiui(x) −
∫ xi

ci

ui(t, x−i)dt + zi(x−i). (11)

Furthermore, let ui(x) = −∂fi(x)/∂xi and zi(x−i) = fi(ci, x−i) for all x ∈ X and i ∈ N

where fi : X → R is a twice continuously differentiable function. Then, (11) is rewritten
as

vi(x) = fi(x) − xi
∂fi(x)

∂xi
.

One possible interpretation is that xi ∈ Xi is a quantity of a good consumed by player i,
fi(x) is player i’s benefit of consumption where there exists a consumption externality,
and xi(∂fi(x)/∂xi) is player i’s consumption expenditure where the price of the good is
set at the marginal benefit of consumption and player i knows that the price depends
upon the choice of xi. Note that, in the game v, each player chooses his consumption
to maximize the benefit minus the cost, whereas, in the game u = (−∂fi/∂xi)i∈N , each
player chooses his consumption to minimize the marginal benefit. By Proposition 5, if
the payoff gradient of u is strictly monotone then not only u but also v have a unique
correlated equilibrium.

In the construction of this example, for a game v of which γ-weighted payoff gradient
is strictly monotone, there exists a game u of which payoff gradient is strictly monotone
such that ∇iui(x) = γi(xi)∇ivi(x).11 It should be noted that this is not always true if
Xi ⊆ Rmi with mi ≥ 2: in this case, for given v and γ, there may not exist u such that
∇iui(x) = γi(xi)∇ivi(x).

11It can be readily shown that u and v have the same best-response correspondence. See Morris and

Ui (2004).
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