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Abstract

Two games are best-response equivalent if they have the same best-response cor-

respondence. We provide a characterization of when two games are best-response

equivalent. The characterizations exploit a dual relationship between payoff differ-

ences and beliefs. Some “potential game” arguments (cf. Monderer and Shapley,

1996, Games Econ. Behav. 14, 124–143) rely only on the property that potential

games are best-response equivalent to identical interest games. Our results show

that a large class of games are best-response equivalent to identical interest games,

but are not potential games. Thus we show how some existing potential game argu-

ments can be extended.

Journal of Economic Literature Classification numbers: C72.

Keywords: best response equivalence; duality; Farkas’ Lemma; potential games.

2



1 Introduction

We consider three progressively stronger equivalence relations on games and characterize

each of them.

• Two games are best-response equivalent if they have the same best-response cor-

respondence.

• Two games are better-response equivalent if, for every pair of strategies, they agree

when one strategy is better than the other.

• Two games are von Neumann-Morgenstern equivalent (VNM-equivalent) if, for

each player, the payoff function in one game is equal to a constant times the payoff

function in the other game, plus a function that depends only on the opponents’

strategies.

Two games are VNM-equivalent if and only if, for each player i, there is a constant

wi > 0 such that the ratio of payoff differences from switching between one strategy to

another strategy is always wi. The constant wi is thus independent of the strategies

being compared.

Two games are better-response equivalent if and only if they have the same dominance

relations and, for each player i and each pair of strategies ai and a′i such that neither

strategy strictly dominates the other, there exists a constant wi > 0 such that the ratio

of payoff differences from switching between ai and a′i is always wi. In general, this is a

weaker requirement than VNM-equivalence. It is weaker both because the proportional

payoff differences property is no longer required to hold between some strategy pairs, and

because the weight wi is not necessarily independent of the strategy pair. But if the game

does not have dominated strategies, the weights can no longer depend on the strategies

being compared, and better-response equivalence collapses to VNM-equivalence.

Two games are best-response equivalent if and only if, for each player i and each pair

of strategies ai and a′i such that both strategies are a best response to some belief, there

exists a constant wi > 0 such that the ratio of payoff differences from switching between
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ai and a′i is always wi. Even if a game has no dominated strategies, this is a weaker

requirement than VNM-equivalence. In games with diminishing marginal returns, best-

response equivalence is always a strictly weaker requirement than VNM-equivalence.

Examples are given in the paper.

The most extensive discussion and applications of these relations have come in the

literature on potential games. Monderer and Shapley (1996b) said that a game was a

“potential game” if there exists a potential function, defined on the strategy space, with

the property that the change in any player’s payoff function from switching between any

two of his strategies (holding other players’ strategies fixed) was equal to the change

in the potential function.1 A game is “weighted potential game,” if the payoff changes

are proportional for each player. Thus a game is a weighted potential game if and only

if it is VNM-equivalent to a game with identical payoff functions. While some results

using potential or weighted potential game arguments are using the VNM-equivalence to

identical interest games, other arguments are just using the better-response equivalence

and even only best-response equivalence implications of VNM-equivalence.2 Any paper

that deals only with equilibria is using only best-response equivalence (e.g., Neyman,

1997; Ui, 2001; Morris and Ui, 2002). Similarly, fictitious play only uses the best-response

properties of the game (Monderer and Shapley, 1996a).3 An application using only

better-response equivalence but not the VNM-equivalence appears in Morris (1999).

Some papers studying quantal responses or stochastic best responses in potential games

use the full power of VNM-equivalence (e.g., Blume, 1993; Brock and Durlauf, 2001;

Anderson et al., 2001; Ui, 2002).4

1See also Ui (2000) for a characterization and examples of potential games.
2Arguments that exploit potential arguments to prove the existence of a pure strategy equilibrium

(e.g., Rosenthal, 1973) only use ordinal properties of payoffs. Monderer and Shapley (1996b) introduced

ordinal potential games and Voorneveld (2000) and Dubey et al. (2002) showed how ordinal potential

games can be weakened to only require pure strategy best-response equivalence.
3Sela (1999) establishes convergence of fictitious play in a class of “One-Against-All” games. These

are games best-response equivalent to identical interest games, but not potential games.
4More precisely, they use the full power of VNM-equivalence such that the constant wi is the same

for all the players.
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The fact that VNM-equivalence is the same as better-response equivalence in the ab-

sence of dominated strategies and may be different in the presence of dominated strategies

has been noted in a number of contexts (see Sela, 1992; Blume, 1993, p409; Monderer

and Shapley, 1996b, footnote 9; Maskin and Tirole, 2001, p209). However, our charac-

terizations of better-response equivalence in the presence of dominated strategies and of

the significant gap between better-response equivalence and best-response equivalence

fill a gap in the literature.5

The paper is organized as follows. In section 2, we describe our notions of equivalence

and give an example illustrating the differences. In section 3, we report our character-

izations. In section 4, we restrict attention to a class of games where best-response

equivalence is a strictly weaker requirement than VNM-equivalence and characterize

that class. We also discuss an extension to games with infinite strategy spaces and its

application. Section 5 briefly discusses better-response and best-response equivalence in

the mixed strategy extension of a game.

2 Equivalence Properties of Games

A game consists of a finite set of players N and a finite strategy set Ai for i ∈ N , and

a payoff function gi : A → R for i ∈ N where A =
∏

i∈N Ai. We write A−i =
∏

j �=i Aj

and a−i = (aj)j �=i ∈ A−i. We simply denote a game by g = (gi)i∈N . Throughout the

paper, we regard gi(ai, ·) : A−i → R as a vector in R
A−i . We write gi(ai, ·) � gi(a′i, ·) if

gi(ai, a−i) > gi(a′i, a−i) for all a−i ∈ A−i, and gi(ai, ·) ≥ gi(a′i, ·) if gi(ai, a−i) ≥ gi(a′i, a−i)

for all a−i ∈ A−i.

For i ∈ N , let ∆(A−i) denote the set of all probability distributions over A−i. We

call each element of ∆(A−i) player i’s belief. For Xi ⊆ Ai, let Λi(ai,Xi|gi) ⊆ ∆(A−i)

be a set of player i’s beliefs such that player i with a payoff function gi and a belief
5Mertens (1987) studied various notions of best-response equivalence, but with his more abstract

strategy spaces and focus on admissible best responses, there is little overlap with the material in this

paper.
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λi ∈ Λi(ai,Xi|gi) weakly prefers ai to any strategy in Xi:

Λi(ai,Xi|gi)

= {λi ∈ ∆(A−i) |
∑

a−i∈A−i

λi(a−i)
(
gi(ai, a−i) − gi(a′i, a−i)

) ≥ 0 for all a′i ∈ Xi}.

When Xi is a singleton, i.e., Xi = {a′i}, we write Λi(ai, a
′
i|gi) instead of Λi(ai, {a′i}|gi).

We are interested in characterizing two equivalence relations on games captured by

these sets of beliefs by which players prefer one particular strategy.

Definition 1 A game g is better-response equivalent to g′ = (g′i)i∈N if, for each i ∈ N ,

Λi(ai, a
′
i|gi) = Λi(ai, a

′
i|g′i)

for all ai, a
′
i ∈ Ai.

Definition 2 A game g is best-response equivalent to g′ = (g′i)i∈N if, for each i ∈ N ,

Λi(ai, Ai|gi) = Λi(ai, Ai|g′i)

for all ai ∈ Ai.

If g is better-response equivalent to g′, then g is best-response equivalent to g′, since

Λi(ai, Ai|gi) =
⋂

a′
i∈Ai

Λi(ai, a
′
i|gi).

An easy sufficient condition for better-response equivalence is the following.6

Definition 3 A game g is VNM-equivalent to g′ = (g′i)i∈N if, for each i ∈ N , there

exists a positive constant wi > 0 and a function Qi : A−i → R such that

gi(ai, ·) = wig
′
i(ai, ·) + Qi(·)

for all ai ∈Ai.
6Blume (1993) called this property “strongly best-response equivalent.”
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It is straightforward to see that if g is VNM-equivalent to g′, then

gi(ai, ·) − gi(a′i, ·) = wi

(
g′i(ai, ·) − g′i(a

′
i, ·)

)
for all ai, a

′
i ∈ Ai. Conversely, if this is true, then a function Qi : A−i → R such that

Qi(·) = gi(ai, ·) − wig
′
i(ai, ·)

is well defined, and thus g is VNM-equivalent to g′. Thus, we have the following lemma.

Lemma 1 A game g is VNM-equivalent to g′ if and only if, for each i ∈ N , there exists

wi such that

gi(ai, ·) − gi(a′i, ·) = wi

(
g′i(ai, ·) − g′i(a

′
i, ·)

)
(1)

for all ai, a
′
i ∈ Ai.

It is straightforward to see that VNM-equivalence is sufficient for better-response

equivalence. In fact, (1) implies that∑
a−i∈A−i

λi(a−i)
(
gi(ai, a−i) − gi(a′i, a−i)

)
= wi

∑
a−i∈A−i

λi(a−i)
(
g′i(ai, a−i) − g′i(a

′
i, a−i)

)

for all λi ∈ ∆(A−i) and thus Λi(ai, a
′
i|gi) = Λi(ai, a

′
i|g′i) for all ai, a

′
i ∈ Ai.

Best-response, better-response, and VNM-equivalence are equivalence relations. Thus,

they define an equivalence class of games. For example, weighted potential games (Mon-

derer and Shapley, 1996b) with a weighted potential function f : A → R are regarded

as a VNM-equivalence class of an identical interest game f = (fi)i∈N with fi = f for

all i ∈ N . This is clear by Lemma 1 and the following original definition of weighted

potential games.

Definition 4 A game g = (gi)i∈N is a weighted potential game if there exists a weighted

potential function f : A → R and wi > 0 for each i ∈ N such that

gi(ai, ·) − gi(a′i, ·) = wi

(
f(ai, ·) − f(a′i, ·)

)
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for all ai, a
′
i ∈ Ai. If wi = 1 for all i ∈ N , g is called a potential game and f is called a

potential function.

As the concept of VNM-equivalence leads us to the definition of weighted potential

games, the concept of better-response equivalence and that of best-response equivalence

lead us to the following definitions of the new classes of games.

Definition 5 A game g = (gi)i∈N is a better-response potential game if it is better-

response equivalent to an identical interest game f = (fi)i∈N with fi = f for all i ∈ N .

A function f is called a better-response potential function.

Definition 6 A game g = (gi)i∈N is a best-response potential game if it is best-response

equivalent to an identical interest game f = (fi)i∈N with fi = f for all i ∈ N . A function

f is called a best-response potential function.

Voorneveld (2000) called a game a best-response potential game if its best-response

correspondence coincides with that of an identical interest game over the class of beliefs

such that λi(a−i) = 0 or 1. Thus, best-response potential games in this paper form a

special class of those in Voorneveld (2000).

Existing potential game results that rely only on better-response equivalence or best-

response equivalence, such as those mentioned in the introduction, automatically hold

for the larger class of better-response potential games or that of best-response potential

games. Thus, we are interested in exactly when and to what extent better-response and

best-response equivalence are weaker requirements than VNM-equivalence.

Notice that best-response and better-response equivalence are clearly weaker require-

ments than VNM-equivalence, because the latter imposes too many constraints on payoffs

from dominated strategies. Moreover, best-response equivalence is significantly weaker

than better-response equivalence, as shown by the following example.

Consider a two player, three strategy, symmetric payoff game g (x, y) parameterized

by (x, y) ∈ R
2
++, where each player’s payoffs are given by the following payoff matrix

(where the player’s own strategies are represented by rows and his opponent’s strategies
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are represented by columns).

1 2 3

1 x −x −2x

2 0 0 0
3 −2y −y y

In the special case where x = y = 1, we have game g (1, 1) with the following payoff

matrix.

1 2 3

1 1 −1 −2
2 0 0 0
3 −2 −1 1

If a row player has a belief λi(k) = πk for k ∈ {1, 2, 3}, he prefers strategy 1 to strategy

2 if and only if

π1 ≥ π2 + 2π3;

he prefers strategy 1 to strategy 3 if and only if

(x + 2y) π1 ≥ (x − y)π2 + (2x + y) π3;

he prefers strategy 3 to strategy 2 if and only if

π3 ≥ π2 + 2π1.

Thus the region of indifference between strategies 1 and 2, and between strategy 2 and 3,

does not depend on x and y. Moreover, whenever strategy 1 (or 3) is preferred to strategy

2, it is also preferred to strategy 3 (or 1). Thus the best response regions for this game are

as in figure 1, for any (x, y) ∈ R
2
++. Thus g (x, y) is best-response equivalent to g (1, 1)

for any (x, y) ∈ R
2
++. On the other hand, the region of indifference between strategies

1 and 3 does depend on x and y: in particular, g (x, y) is better-response equivalent to

g (1, 1) if and only if x = y. We will discuss this example again in section 4.
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Figure 1: The best response regions

3 Results

3.1 Generic Properties of Games

We will appeal to some generic properties of games, i.e., properties that will hold for

all but a Lebesgue measure zero set of payoffs (as long as each player has at least two

actions).

G1: For all i ∈ N , if gi(ai, ·) ≥ gi(a′i, ·), then gi(ai, ·) � gi(a′i, ·) for distinct ai, a
′
i ∈ Ai.

G2: For all i ∈ N , vectors gi(ai, ·)− gi(a′i, ·) and gi(ai, ·)− gi(a′′i , ·) are linearly indepen-

dent for distinct ai, a
′
i, a

′′
i ∈ Ai.

G3: For all i ∈ N , if Λi(ai, Ai|gi)∩Λi(a′i, Ai|gi) �= ∅, then Λi(ai, Ai\{a′i}|gi)\Λi(ai, a
′
i|gi) �=

∅ for distinct ai, a
′
i ∈ Ai.

3.2 Better-Response Equivalence

Strategy ai strictly dominates a′i in game g (we write ai 
g
i a′i) if gi(ai, ·) � gi(a′i, ·), or,

equivalently, Λi(a′i, ai|gi) = ∅. Strategies ai and a′i are better-response comparable (we

write ai ∼g
i a′i) if neither ai 
g

i a′i nor a′i 
g
i ai.

Proposition 1 If games g and g′ satisfy generic property G1, then g is better-response

equivalent to g′ if and only if, for each i ∈ N , (a) they have the same dominance relations

(
g
i =
g′

i ) and (b) whenever ai is better-response comparable to a′i (ai ∼g
i a′i), there exists
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wi(ai, a
′
i) > 0 such that

gi(ai, ·) − gi(a′i, ·) = wi(ai, a
′
i)

(
g′i(ai, ·) − g′i(a

′
i, ·)

)
. (2)

Farkas’ Lemma7 plays a central role in the proofs.

Lemma 2 (Farkas’ Lemma) For vectors a0,a1, . . . ,am ∈ R
n, the following two con-

ditions are equivalent.

• If (a1.y), . . . , (am.y) ≤ 0 for y ∈ R
n, then (a0.y) ≤ 0.8

• There exists x1, . . . , xm ≥ 0 such that x1a1 + · · · + xmam = a0.

Proof of Proposition 1. We first show that (a) and (b) are sufficient for the better-

response equivalence of g and g′. If ai ∼g
i a′i, then (b) implies that

∑
a−i∈A−i

λi(a−i)
(
gi(ai, a−i) − gi(a′i, a−i)

)
= wi(ai, a

′
i)

∑
a−i∈A−i

λi(a−i)
(
g′i(ai, a−i) − g′i(a

′
i, a−i)

)

and thus

Λi(ai, a
′
i|gi) = Λi(ai, a

′
i|g′i).

If ai 
g
i a′i, then

Λi(ai, a
′
i|gi) = Λi(ai, a

′
i|g′i) = ∆ (A−i) .

If a′i 
g
i ai, then

Λi(ai, a
′
i|gi) = Λi(ai, a

′
i|g′i) = ∅.

7See a textbook of convex analysis such as the recent one by Hiriart-Urruty and Lemaréchal (2001),

or the classic one by Rockafellar (1970).

8I.e., if
n�

j=1

aijyj ≤ 0 for each i = 1, . . . , m, then
n�

j=1

a0jyj ≤ 0.
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To prove necessity, suppose that g is better-response equivalent to g′. Since

Λi(ai, a
′
i|gi) = Λi(ai, a

′
i|g′i),

we have

ai 
g
i a′i ⇔ Λi(a′i, ai|gi) = Λi(a′i, ai|g′i) = ∅ ⇔ ai 
g′

i a′i

and thus (a) holds.

To prove (b), suppose that ai ∼g
i a′i. We know that ai ∼g′

i a′i. Let λi ∈ ∆(A−i) be

such that
∑

a−i∈A−i

λi(a−i)
(
gi(ai, a−i) − gi(a′i, a−i)

) ≥ 0.

Since λi ∈ Λi(ai, a
′
i|gi) = Λi(ai, a

′
i|g′i),∑

a−i∈A−i

λi(a−i)
(
g′i(ai, a−i) − g′i(a

′
i, a−i)

) ≥ 0.

This implies that if (ya−i)a−i∈A−i ∈ R
A−i is such that

−
∑

a−i∈A−i

ya−i

(
gi(ai, a−i) − gi(a′i, a−i)

) ≤ 0,

−ya−i ≤ 0 for all a−i ∈ A−i,

then

−
∑

a−i∈A−i

ya−i

(
g′i(ai, a−i) − g′i(a

′
i, a−i)

) ≤ 0.

By Farkas’ Lemma, there exist xai

a′
i
≥ 0 and za−i ≥ 0 for a−i ∈ A−i such that

−xai

a′
i

(
gi(ai, ·) − gi(a′i, ·)

) − ∑
a−i∈A−i

za−iδ
a−i(·) = − (

g′i(ai, ·) − g′i(a
′
i, ·)

)

where δa−i : A−i → R is such that δa−i(a′−i) = 1 if a′−i = a−i and δa−i(a′−i) = 0

otherwise. Thus,

xai

a′
i

(
gi(ai, ·) − gi(a′i, ·)

) ≤ g′i(ai, ·) − g′i(a
′
i, ·).
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If xai

a′
i
= 0, then g′i(ai, ·)− g′i(a

′
i, ·) ≥ 0. However, this is impossible since ai ∼g′

i a′i implies

that ai does not strictly dominate a′i in g′ and G1 requires that if ai does not strictly

dominate a′i, then it is not the case that g′i(ai, ·) − g′i(a
′
i, ·) ≥ 0. Thus, xai

a′
i
> 0.

Symmetrically, we have

x
a′

i
ai

(
gi(a′i, ·) − gi(ai, ·)

) ≤ g′i(a
′
i, ·) − g′i(ai, ·)

where x
a′

i
ai > 0. Thus,

(
xai

a′
i
− x

a′
i

ai

) (
gi(ai, ·) − gi(a′i, ·)

) ≤ 0.

If xai

a′
i
−x

a′
i

ai > 0, then gi(ai, ·)−gi(a′i, ·) ≤ 0, and if xai

a′
i
−x

a′
i

ai < 0, then gi(ai, ·)−gi(a′i, ·) ≥ 0,

which we already noted are impossible. Thus, xai

a′
i
= x

a′
i

ai , which implies that

xai

a′
i

(
gi(ai, ·) − gi(a′i, ·)

)
= g′i(ai, ·) − g′i(a

′
i, ·).

This proves (b).

If g has no dominated strategy, then (2) is true for every ai, a
′
i ∈ Ai. If wi(ai, a

′
i) is the

same for every ai, a
′
i ∈ Ai, then better-response equivalence implies VNM-equivalence.

However, Proposition 1 does not say anything about whether wi(ai, a
′
i) does depend upon

ai, a
′
i ∈ Ai. Thus, we are interested in when better-response equivalence implies VNM-

equivalence. The following proposition provides a sufficient condition for the equivalence

of better-response equivalence and VNM-equivalence.

Proposition 2 Suppose that games g and g′ satisfy generic properties G1 and G2, and

that, for each i ∈ N and for any ai, a
′
i ∈ Ai, there exists a sequence {ak

i }m
k=1 such that

a1
i = ai, am

i = a′i, ak
i ∼g

i ak+1
i for k = 1, . . . ,m−1, and ak

i ∼g
i ak+2

i for k = 1, . . . ,m−2.

Then g is better-response equivalent to g′ if and only if g is VNM-equivalent to g′.

Note that the above condition concerning ∼g
i is trivially satisfied if no strategy is

dominated, i.e., ∼g
i is the complete relation. So, the proposition immediately has the

following corollary.
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Figure 2: The graph of ∼g
i

Corollary 3 If g and g′ satisfy generic properties G1 and G2 and have no strictly

dominated strategies, then g is better-response equivalent to g′ if and only if g is VNM-

equivalent to g′.

It should be emphasized that the sufficient condition of Proposition 2 is sometimes

satisfied even when there are strictly dominated strategies in the game. For example,

consider the following two player game, where only the row player’s payoffs are shown.

1 2
1 4 1
2 1 3
3 2 2
4 3 0

Consider strategies of the row player. We have 1 ∼g
i 2, 2 ∼g

i 3, 3 ∼g
i 4, 1 ∼g

i 3, 2 ∼g
i 4 as

in figure 2, satisfying the condition of Proposition 2, while strategy 1 strictly dominates

strategy 4.

To prove the proposition, we use the following lemma.

Lemma 3 Suppose that g and g′ satisfy generic property G2. For some A′
i ⊆ Ai, if

there exists wi(ai, a
′
i) > 0 such that

gi(ai, ·) − gi(a′i, ·) = wi(ai, a
′
i)

(
g′i(ai, ·) − g′i(a

′
i, ·)

)
for all ai, a

′
i ∈ A′

i, then wi(ai, a
′
i) is the same for all ai, a

′
i ∈ A′

i.

14



Proof. Without loss of generality, assume that |A′
i| ≥ 3. For distinct ai, bi, ci ∈ A′

i, there

exist wi(ai, bi), wi(bi, ci), wi(ai, ci) > 0 such that

gi(ai, ·) − gi(bi, ·) = wi(ai, bi)
(
g′i(ai, ·) − g′i(bi, ·)

)
,

gi(bi, ·) − gi(ci, ·) = wi(bi, ci)
(
g′i(bi, ·) − g′i(ci, ·)

)
,

gi(ai, ·) − gi(ci, ·) = wi(ai, ci)
(
g′i(ai, ·) − g′i(ci, ·)

)
.

We first show that wi(ai, bi) = wi(bi, ci) = wi(ai, ci). Since

wi(ai, bi)
(
g′i(ai, ·) − g′i(bi, ·)

)
+ wi(bi, ci)

(
g′i(bi, ·) − g′i(ci, ·)

)
= gi(ai, ·) − gi(bi, ·) + gi(bi, ·) − gi(ci, ·)
= gi(ai, ·) − gi(ci, ·)
= wi(ai, ci)

(
g′i(ai, ·) − g′i(ci, ·)

)
= wi(ai, ci)

(
g′i(ai, ·) − g′i(bi, ·)

)
+ wi(ai, ci)

(
g′i(bi, ·) − g′i(ci, ·)

)
,

we have

(wi(ai, bi) − wi(ai, ci))
(
g′i(ai, ·) − g′i(bi, ·)

)
+ (wi(bi, ci) − wi(ai, ci))

(
g′i(bi, ·) − g′i(ci, ·)

)
= 0.

By G2, g′i(ai, ·)− g′i(bi, ·) and g′i(bi, ·)− g′i(ci, ·) are linearly independent and thus it must

be true that wi(ai, bi) = wi(bi, ci) = wi(ai, ci).

Similarly, for distinct bi, ci, di ∈ A′
i, wi(bi, ci) = wi(ci, di) = wi(bi, di). Therefore,

wi(ai, bi) = wi(ci, di) for any ai, bi, ci, di ∈ A′
i, which completes the proof.

We now report the proof of Proposition 2.

Proof of Proposition 2. We show that if g is better-response equivalent to g′ then g is

VNM-equivalent to g′. By G1 and Proposition 1, if ai ∼g
i a′i, there exist wi(ai, a

′
i) > 0

such that

gi(ai, ·) − gi(a′i, ·) = wi(ai, a
′
i)

(
g′i(ai, ·) − g′i(a

′
i, ·)

)
.

15



If |Ai| = 2, this completes the proof by Lemma 1. Suppose that |Ai| ≥ 3. For ai, a
′
i ∈ Ai,

let {ak
i }m

k=1 be a sequence such that a1
i = ai, am

i = a′i, ak
i ∼g

i ak+1
i for k = 1, . . . ,m − 1,

and ak
i ∼g

i ak+2
i for k = 1, . . . ,m − 2. There exists xk, yk > 0 such that

gi(ak
i , ·) − gi(ak+1

i , ·) = xk

(
g′i(a

k
i , ·) − g′i(a

k+1
i , ·)

)
,

gi(ak+1
i , ·) − gi(ak+2

i , ·) = xk+1

(
g′i(a

k+1
i , ·) − g′i(a

k+2
i , ·)

)
,

gi(ak
i , ·) − gi(ak+2

i , ·) = yk

(
g′i(a

k
i , ·) − g′i(a

k+2
i , ·)

)
.

By Lemma 3, xk = xk+1 = yk for all k ≤ m − 2. By letting xk = wi(ai, a
′
i), we have

gi(ai, ·) − gi(a′i, ·) =
m−1∑
k=1

(
gi(ak

i , ·) − gi(ak+1
i , ·)

)

=
m−1∑
k=1

xk

(
g′i(a

k
i , ·) − g′i(a

k+1
i , ·)

)

= wi(ai, a
′
i)

(
g′i(ai, ·) − g′i(a

′
i, ·)

)
.

To summarize, for all ai, a
′
i ∈ Ai, there exists wi(ai, a

′
i) > 0 satisfying the above equation.

By Lemma 3, wi(ai, a
′
i) is the same for all ai, a

′
i ∈ Ai. By Lemma 1, g is VNM-equivalent

to g′, which completes the proof.

3.3 Best-Response Equivalence

Strategies ai and a′i are best-response comparable (we write ai ≈g
i a′i) if both strategies

are best responses at some belief, i.e., Λi(ai, Ai|gi)∩Λi(a′i, Ai|gi) �= ∅. Note that ai ≈g
i ai

if and only if Λi(ai, Ai|gi) �= ∅.

Proposition 4 If games g and g′ satisfy generic property G3, then g is best-response

equivalent to g′ if and only if, for each i ∈ N , (a) they have the same best-response

comparability relation (≈g
i =≈g′

i ) and (b) whenever ai is best-response comparable to a′i
(ai ≈g

i a′i), there exists wi(ai, a
′
i) > 0 such that

gi(ai, ·) − gi(a′i, ·) = wi(ai, a
′
i)

(
g′i(ai, ·) − g′i(a

′
i, ·)

)
.
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Proof. We first show that (a) and (b) are sufficient for the best-response equivalence of g

and g′. If Λi(ai, Ai|gi) = ∅, then Λi(ai, Ai|gi) = Λi(ai, Ai|g′i) = ∅ because Λi(ai, Ai|gi) =

∅ implies that ai ≈g
i ai is not true and thus (a) implies that ai ≈g′

i ai is not true. If

Λi(ai, Ai|gi) �= ∅, then
{
a′i|ai ≈g

i a′i
} �= ∅, and we must have

Λi(ai, Ai|gi) =
⋂

a′
i∈Ai

Λi(ai, a
′
i|gi) =

⋂
{a′

i|ai≈g
i a′

i}
Λi(ai, a

′
i|gi). (3)

Clearly, (3) is true when
{
a′i|ai ≈g

i a′i
}

= Ai. To see that (3) is true when
{
a′i|ai ≈g

i a′i
} ⊂

Ai, suppose otherwise. Then,

⋂
a′

i∈Ai

Λi(ai, a
′
i|gi) ⊂

⋂
{a′

i|ai≈g
i a′

i}
Λi(ai, a

′
i|gi),

and thus there exists a′′i �∈ {
a′i|ai ≈g

i a′i
}

such that

⋂
a′

i∈Ai

Λi(ai, a
′
i|gi) ⊂

⋂
a′

i∈Ai\{a′′i }
Λi(ai, a

′
i|gi).

However, this implies that ai ≈g
i a′′i , which is a contradiction. Thus, (3) must be true.

If ai ≈g
i a′i, then (b) implies that

∑
a−i∈A−i

λi(a−i)
(
gi(ai, a−i) − gi(a′i, a−i)

)
= wi(ai, a

′
i)

∑
a−i∈A−i

λi(a−i)
(
g′i(ai, a−i) − g′i(a

′
i, a−i)

)
,

and thus

Λi(ai, a
′
i|gi) = Λi(ai, a

′
i|g′i). (4)

Therefore, by (a), (3), and (4), we have Λi(ai, Ai|gi) = Λi(ai, Ai|g′i). This completes the

proof of sufficiency.

To prove necessity, suppose that g is best-response equivalent to g′. Since

Λi(ai, Ai|gi) = Λi(ai, Ai|g′i),
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we have

Λi(ai, Ai|gi) ∩ Λi(a′i, Ai|gi) = Λi(ai, Ai|g′i) ∩ Λi(a′i, Ai|g′i)

and thus ≈g
i =≈g′

i . This proves (a).

If ai ≈g
i a′i, then there exists λi ∈ ∆(A−i) such that∑
a−i∈A−i

λi(a−i)
(
gi(ai, a−i) − gi(a′′i , a−i)

) ≥ 0 for all a′′i ∈ Ai,

∑
a−i∈A−i

λi(a−i)
(
gi(a′i, a−i) − gi(a′′i , a−i)

) ≥ 0 for all a′′i ∈ Ai\ {ai} .

Since λi ∈ Λi(ai, Ai|gi) = Λi(ai, Ai|g′i),∑
a−i∈A−i

λi(a−i)
(
g′i(ai, a−i) − g′i(a

′
i, a−i)

) ≥ 0.

The above implies that, if (ya−i)a−i∈A−i ∈ R
A−i is such that

−
∑

a−i∈A−i

ya−i

(
gi(ai, a−i) − gi(a′i, a−i)

) ≤ 0,

−
∑

a−i∈A−i

ya−i

(
gi(ai, a−i) − gi(a′′i , a−i)

) ≤ 0 for all a′′i ∈ Ai\
{
ai, a

′
i

}
,

−
∑

a−i∈A−i

ya−i

(
gi(a′i, a−i) − gi(a′′i , a−i)

) ≤ 0 for all a′′i ∈ Ai\
{
ai, a

′
i

}
,

−ya−i ≤ 0 for all a−i ∈ A−i,

then

−
∑

a−i∈A−i

ya−i

(
g′i(ai, a−i) − g′i(a

′
i, a−i)

) ≤ 0.

By Farkas’ Lemma, there exist xai

a′
i
≥ 0, γai

a′
i

: A−i → R, and δai

a′
i

: A−i → R such that

−xai

a′
i

(
gi(ai, ·) − gi(a′i, ·)

) − γai

a′
i
(·) − δai

a′
i
(·) = − (

g′i(ai, ·) − g′i(a
′
i, ·)

)
where

γai

a′
i
(·) =

∑
a′′

i �=ai,a′
i

uai

a′′
i

(
gi(ai, ·) − gi(a′′i , ·)

)
+

∑
a′′

i �=ai,a′
i

v
a′

i

a′′
i

(
gi(a′i, ·) − gi(a′′i , ·)

)
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with uai

a′′
i
, v

a′
i

a′′
i
≥ 0 and

δai

a′
i
(·) =

∑
a−i∈A−i

za−iδ
a−i(·)

with za−i ≥ 0. Thus,

xai

a′
i

(
gi(ai, ·) − gi(a′i, ·)

)
+ γai

a′
i
(·) ≤ g′i(ai, ·) − g′i(a

′
i, ·).

We show xai

a′
i
> 0. Suppose that xai

a′
i
= 0, i.e., γai

a′
i
(·) ≤ g′i(ai, ·) − g′i(a

′
i, ·). Let

λ′
i ∈ Λi(ai, Ai\{a′i}|gi)\Λi(ai, a

′
i|gi),

which exists by ai ≈g
i a′i and G3. Since λ′

i ∈ Λi(ai, Ai\{a′i}|gi) ∩ Λi(a′i, Ai\{ai}|gi),

∑
a−i∈A−i

λ′
i(a−i)γai

a′
i
(a−i) =

∑
a′′

i �=ai,a′
i

uai

a′′
i

∑
a−i∈A−i

λ′
i(a−i)

(
gi(ai, a−i) − gi(a′′i , a−i)

)

+
∑

a′′
i �=ai,a′

i

v
a′

i

a′′
i

∑
a−i∈A−i

λ′
i(a−i)

(
gi(a′i, a−i) − gi(a′′i , a−i)

) ≥ 0.

Since λ′
i ∈ Λi(a′i, Ai|gi) = Λi(a′i, Ai|g′i) and λ′

i �∈ Λi(ai, Ai|gi) = Λi(ai, Ai|g′i),∑
a−i∈A−i

λ′
i(a−i)

(
g′i(ai, a−i) − g′i(a

′
i, a−i)

)
< 0.

This is a contradiction. Thus, we must have xai

a′
i
> 0.

We have

xai

a′
i

(
gi(ai, ·) − gi(a′i, ·)

)
+ γai

a′
i
(·) ≤ g′i(ai, ·) − g′i(a

′
i, ·)

and symmetrically

x
a′

i
ai

(
gi(a′i, ·) − gi(ai, ·)

)
+ γ

a′
i

ai (·) ≤ g′i(a
′
i, ·) − g′i(ai, ·)

where xai

a′
i
, x

a′
i

ai > 0. Adding both,

(
xai

a′
i
− x

a′
i

ai

) (
gi(ai, ·) − gi(a′i, ·)

)
+ γai

a′
i
(·) + γ

a′
i

ai (·) ≤ 0. (5)
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We show xai

a′
i
− x

a′
i

ai = 0. Suppose that xai

a′
i
− x

a′
i

ai > 0. Let

λi ∈ Λi(a′i, Ai\{ai}|gi)\Λi(a′i, ai|gi) ⊆ Λi(ai, Ai\{a′i}|gi) ∩ Λi(a′i, Ai\{ai}|gi).

Then, the expectation of the left-hand side of (5) is positive because

(
xai

a′
i
− x

a′
i

ai

) ∑
a−i∈A−i

λi(a−i)
(
gi(ai, a−i) − gi(a′i, a−i)

)
> 0

and

∑
a−i∈A−i

λi(a−i)
(
γai

a′
i
(a−i) + γ

a′
i

ai (a−i)
)

=
∑

a′′
i �=ai,a′

i

(uai

a′′
i

+ vai

a′′
i
)

∑
a−i∈A−i

λi(a−i)
(
gi(ai, a−i) − gi(a′′i , a−i)

)

+
∑

a′′
i �=ai,a′

i

(va′
i

a′′
i

+ u
a′

i

a′′
i
)

∑
a−i∈A−i

λi(a−i)
(
gi(a′i, a−i) − gi(a′′i , a−i)

) ≥ 0.

This is a contradiction. Symmetrically, if xai

a′
i
− x

a′
i

ai < 0, then we have the symmetric

contradiction. Thus, xai

a′
i
− x

a′
i

ai = 0, and (5) is reduced to

γai

a′
i
(·) + γ

a′
i

ai (·) ≤ 0. (6)

We show γai

a′
i
(·) = γ

a′
i

ai (·) = 0. Suppose that either γai

a′
i
(·) �= 0 or γ

a′
i

ai (·) �= 0 is true. Let

λi, λ
′
i ∈ ∆(A−i) be such that

λi ∈ Λi(a′i, Ai\{ai}|gi)\Λi(a′i, ai|gi) ⊆ Λi(ai, Ai\{a′i}|gi) ∩ Λi(a′i, Ai\{ai}|gi),

λ′
i ∈ Λi(ai, Ai\{a′i}|gi)\Λi(ai, a

′
i|gi) ⊆ Λi(ai, Ai\{a′i}|gi) ∩ Λi(a′i, Ai\{ai}|gi).
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Consider (λi + λ′
i)/2 ∈ ∆(A−i). Then, the expectation of the left-hand side of (6) is

positive because

∑
a−i∈A−i

λi(a−i) + λ′
i(a−i)

2

(
γai

a′
i
(a−i) + γ

a′
i

ai (a−i)
)

=
∑

a′′
i �=ai,a′

i

(uai

a′′
i

+ vai

a′′
i
)

∑
a−i∈A−i

λi(a−i) + λ′
i(a−i)

2
(
gi(ai, a−i) − gi(a′′i , a−i)

)

+
∑

a′′
i �=ai,a′

i

(va′
i

a′′
i

+ u
a′

i

a′′
i
)

∑
a−i∈A−i

λi(a−i) + λ′
i(a−i)

2
(
gi(a′i, a−i) − gi(a′′i , a−i)

)

≥
∑

a′′
i �=ai,a′

i

(uai

a′′
i

+ vai

a′′
i
)

∑
a−i∈A−i

λi(a−i)
2

(
gi(ai, a−i) − gi(a′′i , a−i)

)

+
∑

a′′
i �=ai,a′

i

(va′
i

a′′
i

+ u
a′

i

a′′
i
)

∑
a−i∈A−i

λ′
i(a−i)

2
(
gi(a′i, a−i) − gi(a′′i , a−i)

)
> 0.

This is a contradiction. Thus, γai

a′
i
(·) = γ

a′
i

ai (·) = 0.

Summarizing the above, we have

xai

a′
i

(
gi(ai, ·) − gi(a′i, ·)

)
= g′i(ai, ·) − g′i(a

′
i, ·)

where xai

a′
i
> 0. This proves (b).

The following proposition and corollary follow by exactly the same arguments in

Proposition 2 and Corollary 3 in the previous subsection for better-response equivalence.

Proposition 5 Suppose that games g and g′ satisfy generic properties G2 and G3, and

that, for each i ∈ N and for any ai, a
′
i ∈ Ai, there exists a sequence {ak

i }m
k=1 such that

a1
i = ai, am

i = a′i, ak
i ≈g

i ak+1
i for k = 1, . . . ,m − 1, ak

i ≈g
i ak+2

i for k = 1, . . . ,m − 2.

Then g is best-response equivalent to g′ if and only if g is VNM-equivalent to g′.

Corollary 6 If g and g′ satisfy generic properties G2 and G3 and ≈g
i is the complete

relation, then g is best-response equivalent to g′ if and only if g is VNM-equivalent to g′.
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4 Games with Own-strategy Unimodality

Best-response equivalence relation is an equivalence relation. It will be useful if, as a

closed form, we can describe the best-response equivalence class of a game in which

best-response equivalence is a strictly weaker requirement than VNM-equivalence.

Let Ai be linearly ordered such that Ai = {1, ...,Ki} with Ki ≥ 3. For qi : A−i → R

and wi : Ai\{Ki} → R++, let (qi, wi) ◦ gi : A → R be such that

(qi, wi) ◦ gi(1, ·) = qi(·),

(qi, wi) ◦ gi(ai, ·) = qi(·) +
ai−1∑
k=1

wi(k) (gi(k + 1, ·) − gi(k, ·)) for ai ≥ 2.

Let Di(gi) be a class of payoff functions of player i obtained by this transformation:

Di(gi) = {g′i : A → R | g′i = (qi, wi) ◦ gi, qi : A−i → R, wi : Ai\{Ki} → R++}.

It is straightforward to see that g′i ∈ Di(gi) if and only if there exists wi : Ai\{Ki} → R++

such that

g′i(ai + 1, ·) − g′i(ai, ·) = wi(ai) (gi(ai + 1, ·) − gi(ai, ·)) (7)

for all ai ∈ Ai\{Ki}. Note that gi ∈ Di(gi), g′i ∈ Di(gi) implies gi ∈ Di(g′i), and

g′i ∈ Di(gi) with g′′i ∈ Di(g′i) implies g′′ ∈ Di(gi). Thus, Di(gi) defines an equivalence

class of payoff functions of player i. We write

D(g) = {g′ = (g′i)i∈N | g′i ∈ Di(gi) for all i ∈ N}.

For example, consider a parametrized class of games {g(x, y)}(x,y)∈�2
++

discussed in

section 2. We have {g(x, y)}(x,y)∈�2
++

⊂ D(g(1, 1)). To see this, we write g(x, y) =

(gi(·|x, y))i∈{1,2}. Then, for any (x, y) ∈ R
2
++ and i �= j,

gi(1, aj |x, y) = qi(aj),

gi(2, aj |x, y) = qi(aj) + x (gi(2, aj |1, 1) − gi(1, aj |1, 1)) ,

gi(3, aj |x, y) = qi(aj) + x (gi(2, aj |1, 1) − gi(1, aj |1, 1)) + y (gi(3, aj |1, 1) − gi(2, aj |1, 1))
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where qi : {1, 2, 3} → R is such that qi(1) = x, qi(2) = −x, and qi(3) = −2x. Remember

that, for any (x, y) ∈ R
2
++, g(x, y) is best-response equivalent to g(1, 1). It is easy to

see that every game in D(g(1, 1)) is VNM-equivalent to g(x, y) for some (x, y) ∈ R
2
++.

Thus, every game in D(g(1, 1)) is best-response equivalent to g(1, 1).

This observation leads us to the question when every game in D(g) is best-response

equivalent to g. We provide a necessary and sufficient condition for it.

We say that gi is own-strategy unimodal if, for all λi ∈ ∆(A−i), there exists k∗ ∈ Ai

such that,∑
a−i∈A−i

λi(a−i) (gi(ai, a−i) − gi(ai − 1, a−i)) ≥ 0 if ai ≤ k∗ and k∗ > 1,

∑
a−i∈A−i

λi(a−i) (gi(ai, a−i) − gi(ai + 1, a−i)) ≥ 0 if ai ≥ k∗ and k∗ < Ki.
(8)

Note that if gi is own-strategy unimodal, then (8) is true if and only if λi ∈ Λi(k∗, Ai|gi).

Clearly, by (7), gi is own-strategy unimodal if and only if g′i ∈ Di(gi) is own-strategy

unimodal.

We say that gi is own-strategy concave if gi(·, a−i) : Ai → R is concave, i.e., gi(ai +

1, a−i) − gi(ai, a−i) is decreasing in ai for all a−i ∈ A−i.

Lemma 4 Suppose that gi(ai +1, a−i) �= gi(ai, a−i) for all ai ∈ Ai\{Ki} and a−i ∈ A−i,

and that there is no weakly dominated strategy. Then, gi is own-strategy unimodal if and

only if there exists g̃i ∈ Di(gi) such that g̃i is own-strategy concave.

Proof. Suppose that g̃i ∈ Di(gi) is own-strategy concave. Then, g̃i(ai+1, a−i)−g̃i(ai, a−i)

is decreasing in ai for all a−i ∈ A−i. Thus,
∑

a−i∈A−i
λi(a−i) (g̃i(ai + 1, a−i) − g̃i(ai, a−i))

is also decreasing in ai for all λi ∈ ∆(A−i). This immediately implies that g̃i ∈ Di(gi) is

own-strategy unimodal. Since
∑

a−i∈A−i

λi(a−i) (gi(ai + 1, a−i) − gi(ai, a−i))

=
1

wi(ai)

∑
a−i∈A−i

λi(a−i) (g̃i(ai + 1, a−i) − g̃i(ai, a−i)) ,

gi is also own-strategy unimodal.
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Suppose that gi is own-strategy unimodal. We prove the existence of an own-strategy

concave payoff function g̃i = (qi, wi) ◦ gi by construction. Later, we will show that there

exists Ck > 0 such that

gi(k + 1, ·) − gi(k, ·) ≥ Ck (gi(k + 2, ·) − gi(k + 1, ·)) . (9)

For Ck satisfying (9), we let wi : Ai → R++ be such that wi(1) = 1 and wi(ai) =
∏ai−1

k=1 Ck

for ai ≥ 2, and qi : A−i → R be such that qi(a−i) = 0 for all a−i ∈ A−i. Since

g̃i(ai + 1, ·) − g̃i(ai, ·) = wi(ai) (gi(ai + 1, ·) − gi(ai, ·)) ,

we have

g̃i(k + 1, ·) − g̃i(k, ·) = wi(k) (gi(k + 1, ·) − gi(k, ·)) ,

g̃i(k + 2, ·) − g̃i(k + 1, ·) = Ckwi(k) (gi(k + 2, ·) − gi(k + 1, ·)) .

By this and (9), we have

g̃i(k + 1, ·) − g̃i(k, ·) ≥ g̃i(k + 2, ·) − g̃i(k + 1, ·),

which implies that g̃i is own-strategy concave.

We prove the existence of Ck satisfying (9) by Farkas’ Lemma. Before doing it, we

must first observe that if

∑
a−i∈A−i

λi(a−i) (gi(k + 1, a−i) − gi(k, a−i)) = 0 (10)

then

∑
a−i∈A−i

λi(a−i) (gi(k + 2, a−i) − gi(k + 1, a−i)) ≤ 0.

To see this, suppose otherwise. Then, there exists λi ∈ ∆(A−i) satisfying both (10) and

∑
a−i∈A−i

λi(a−i) (gi(k + 2, a−i) − gi(k + 1, a−i)) > 0.
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Since gi(k + 1, a−i) − gi(k, a−i) �= 0 for all a−i ∈ A−i, (10) implies that there exist

a′−i, a
′′
−i ∈ A−i such that 0 < λi(a′−i) < 1 with gi(k + 1, a′−i) − gi(k, a′−i) > 0 and

0 < λi(a′′−i) < 1 with gi(k+1, a′′−i)−gi(k, a′′−i) < 0. Let ε > 0 be sufficiently small. More

precisely, let ε > 0 be such that

ε < min

{
λi(a′−i), 1 − λi(a′′−i),

∑
a−i∈A−i

λi(a−i) (gi(k + 2, a−i) − gi(k + 1, a−i))

2 × maxa−i∈A−i |gi(k + 2, a−i) − gi(k + 1, a−i)|

}
.

Let λ′
i ∈ ∆(A−i) be such that

λ′
i(a−i) =




λi(a−i) − ε if a−i = a′−i,

λi(a−i) + ε if a−i = a′′−i,

λi(a−i) otherwise.

Then, we have

∑
a−i∈A−i

λ′
i(a−i) (gi(k + 1, a−i) − gi(k, a−i))

=
∑

a−i∈A−i

λi(a−i) (gi(k + 1, a−i) − gi(k, a−i))

+ ε
(
gi(k + 1, a′′−i) − gi(k, a′′−i)

) − ε
(
gi(k + 1, a′−i) − gi(k, a′−i)

)
= ε

(
gi(k + 1, a′′−i) − gi(k, a′′−i)

) − ε
(
gi(k + 1, a′−i) − gi(k, a′−i)

)
< 0,

∑
a−i∈A−i

λ′
i(a−i) (gi(k + 2, a−i) − gi(k + 1, a−i))

=
∑

a−i∈A−i

λi(a−i) (gi(k + 2, a−i) − gi(k + 1, a−i))

+ ε
(
gi(k + 2, a′′−i) − gi(k + 1, a′′−i)

) − ε
(
gi(k + 2, a′−i) − gi(k + 1, a′−i)

)
≥

∑
a−i∈A−i

λi(a−i) (gi(k + 2, a−i) − gi(k + 1, a−i))

− 2ε max
a−i∈A−i

|gi(k + 2, a−i) − gi(k + 1, a−i)| > 0,

which contradicts to the assumption that gi is own-strategy unimodal.
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Now, we know that, if gi is own-strategy unimodal and satisfies the assumptions,

then it must be true that if

∑
a−i∈A−i

λi(a−i) (gi(k + 1, a−i) − gi(k, a−i)) ≤ 0,

then

∑
a−i∈A−i

λi(a−i) (gi(k + 2, a−i) − gi(k + 1, a−i)) ≤ 0.

This implies that if (ya−i)a−i∈A−i ∈ R
A−i is such that

∑
a−i∈A−i

ya−i (gi(k + 1, a−i) − gi(k, a−i)) ≤ 0,

−ya−i ≤ 0 for all a−i ∈ A−i,

then

∑
a−i∈A−i

ya−i (gi(k + 2, a−i) − gi(k + 1, a−i)) ≤ 0.

By Farkas’ Lemma, there exist xk ≥ 0 and za−i ≥ 0 for a−i ∈ A−i such that

xk (gi(k + 1, ·) − gi(k, ·)) −
∑

a−i∈A−i

za−iδ
a−i(·) = gi(k + 2, ·) − gi(k + 1, ·).

Thus,

xk (gi(k + 1, ·) − gi(k, ·)) ≥ gi(k + 2, ·) − gi(k + 1, ·). (11)

If xk = 0, then gi(k + 2, ·)− gi(k + 1, ·) ≤ 0. However, this is impossible since there is no

weakly dominated strategy. Thus, xk > 0. By letting Ck = 1/xk, (11) implies (9).

Consider again {g(x, y)}(x,y)∈�2
++

⊂ D(g(1, 1)). In general, gi(·|x, y) is not always

own-strategy concave. However, gi(·|1,1) is own-strategy concave. Thus, Lemma 4 says

that gi(·|x, y) is own-strategy unimodal.

We claim that, generically, D(g) is a best-response equivalence class if and only if gi

is own-strategy unimodal for all i ∈ N .
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Proposition 7 Suppose that g has no dominated strategy. Every game in D(g) is best-

response equivalent to g if and only if gi is own-strategy unimodal for all i ∈ N . If gi

is own-strategy unimodal for all i ∈ N and g satisfies generic property G3, then every

game best-response equivalent to g and satisfying G3 is in D(g).

Proof. Suppose that gi is own-strategy unimodal for all i ∈ N . We show that if g′ ∈ D(g)

then g′ is best-response equivalent to g. Let λi ∈ Λi(a∗i , Ai|gi). Then, (8) implies that∑
a−i∈A−i

λi(a−i) (gi(ai, a−i) − gi(ai − 1, a−i)) ≥ 0 if ai ≤ a∗i and a∗i > 1,

∑
a−i∈A−i

λi(a−i) (gi(ai, a−i) − gi(ai + 1, a−i)) ≥ 0 if ai ≥ a∗i and a∗i < Ki.
(12)

By (7), this is true if and only if∑
a−i∈A−i

λi(a−i)
(
g′i(ai, a−i) − g′i(ai − 1, a−i)

) ≥ 0 if ai ≤ a∗i and a∗i > 1,

∑
a−i∈A−i

λi(a−i)
(
g′i(ai, a−i) − g′i(ai + 1, a−i)

) ≥ 0 if ai ≥ a∗i and a∗i < Ki.
(13)

Thus, λi ∈ Λi(a∗i , Ai|g′i). Conversely, let λi ∈ Λi(a∗i , Ai|g′i). Since g′i is own-strategy

unimodal, we have (13), which is true if and only if (12) is true. Thus, λi ∈ Λi(a∗i , Ai|gi).

Therefore, Λi(a∗i , Ai|gi) = Λi(a∗i , Ai|g′i) and thus g′ is best-response equivalent to g.

Conversely, suppose that every game in D(g) is best-response equivalent to g. We

show that gi is own-strategy unimodal for all i ∈ N . Seeking a contradiction, suppose

otherwise. Then, there exist a∗i , ãi ∈ Ai and λi ∈ Λi(a∗i , Ai|gi) such that either of the

following is true:

a∗i < ãi and
∑

a−i∈A−i

λi(a−i) (gi(ãi, a−i) − gi(ãi − 1, a−i)) > 0, (14)

a∗i > ãi and
∑

a−i∈A−i

λi(a−i) (gi(ãi, a−i) − gi(ãi + 1, a−i)) > 0. (15)

When (14) is true, let g′i = (qi, wi) ◦ gi ∈ Di(gi) be such that qi(·) = 0 and

wi(ai) =

{
L if ai = ãi − 1,

1 otherwise.
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Then, we have∑
a−i∈A−i

λi(a−i)
(
g′i(ãi, a−i) − g′i(a

∗
i , a−i)

)
=

∑
a−i∈A−i

λi(a−i)
(
g′i(ãi, a−i) − g′i(ãi − 1, a−i)

)
+

∑
a−i∈A−i

λi(a−i)
(
g′i(ãi − 1, a−i) − g′i(a

∗
i , a−i)

)
= L

∑
a−i∈A−i

λi(a−i) (gi(ãi, a−i) − gi(ãi − 1, a−i))

+
∑

a−i∈A−i

λi(a−i) (gi(ãi − 1, a−i) − gi(a∗i , a−i)) .

By choosing very large L > 0, we have∑
a−i∈A−i

λi(a−i)
(
g′i(ãi, a−i) − g′i(a

∗
i , a−i)

)
> 0

and thus Λi(a∗i , Ai|gi) �= Λi(a∗i , Ai|g′i). When (15) is true, we also have Λi(a∗i , Ai|gi) �=
Λi(a∗i , Ai|g′i) by the similar argument. This implies that some game in D(g) is not best-

response equivalent to g, which completes the proof of the first half of the proposition.

We prove the last half of the proposition. Suppose that gi is own-strategy unimodal

for all i ∈ N and that g satisfies generic property G3. Let g′ be best-response equivalent

to g and satisfy G3. We show g′ ∈ D(g).

We first observe that ai ≈g
i ai + 1 for all ai ∈ Ai\{Ki}. To see this, let λk

i ∈
Λi(k,Ai|gi) for k ∈ Ai, which exists since g has no dominated strategy. Note that if

λi = λk
i or λi = λk+1

i then∑
a−i∈A−i

λi(a−i)gi(k, a−i) ≥
∑

a−i∈A−i

λi(a−i)gi(ai, a−i) for all ai ≤ k,

∑
a−i∈A−i

λi(a−i)gi(k + 1, a−i) ≥
∑

a−i∈A−i

λi(a−i)gi(ai, a−i) for all ai ≥ k + 1.
(16)

Let t ∈ [0, 1] and λk,t
i = tλk

i + (1 − t)λk+1
i ∈ ∆(A−i) be such that∑

a−i∈A−i

λk,t
i (a−i)gi(k, a−i) =

∑
a−i∈A−i

λk,t
i (a−i)gi(k + 1, a−i). (17)
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Then, (16) implies that

∑
a−i∈A−i

λk,t
i (a−i)gi(k, a−i) ≥

∑
a−i∈A−i

λk,t
i (a−i)gi(ai, a−i) for all ai ≤ k,

∑
a−i∈A−i

λk,t
i (a−i)gi(k + 1, a−i) ≥

∑
a−i∈A−i

λk,t
i (a−i)gi(ai, a−i) for all ai ≥ k + 1.

By (17), we have λk,t
i ∈ Λi(k,Ai|gi)∩Λi(k + 1, Ai|gi). This implies that ai ≈g

i ai + 1 for

all ai ∈ Ai\{Ki}.
Since g and g′ satisfy G3 and are best-response equivalent, we can use Proposition 4,

which says that there exists wi : Ai\{Ki} → R++ such that

g′i(ai + 1, ·) − g′i(ai, ·) = wi(ai) (gi(ai + 1, ·) − gi(ai, ·)) .

This implies that g′i ∈ Di(gi) and thus g′ ∈ D(g).

A weaker, but similar claim is true for games such that strategy sets are intervals of

real numbers and payoff functions are differentiable, which has a couple of applications.

In the remainder of this section, we discuss this issue.

Abusing notation, we give a definition of best-response equivalence for a class of

games with a continuum of actions. Let Ai be a closed interval of R for all i ∈ N .

Assume that gi : A → R is bounded and continuously differentiable. Let ∆(A−i) be the

set of all probability measures over A−i and Λi(ai,Xi|gi) be such that

Λi(ai,Xi|gi)

= {λi ∈ ∆(A−i) |
∫

A−i

(
gi(ai, a−i) − gi(a′i, a−i)

)
dλi(a−i) ≥ 0 for all a′i ∈ Xi}.

The definition of best-response equivalence is the same as that for finite games: we say

that g is best-response equivalent to g′ if, for each i ∈ N , Λi(ai, Ai|gi) = Λi(ai, Ai|g′i)
for all ai ∈ Ai.

We say that gi is own-strategy unimodal if, for any λi ∈ ∆(A−i), there exists x∗ such
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that

∂

∂ai

∫
A−i

gi(ai, a−i)dλi(a−i) ≥ 0 if ai ≤ x∗ and x∗ > min Ai,

∂

∂ai

∫
A−i

gi(ai, a−i)dλi(a−i) ≤ 0 if ai ≥ x∗ and x∗ < max Ai.

(18)

Note that if gi is own-strategy unimodal, then (18) is true if and only if λi ∈ Λi(x∗, Ai|gi).

Since

∂

∂ai

∫
A−i

gi(ai, a−i)dλi(a−i) =
∫

A−i

∂gi(ai, a−i)
∂ai

dλi(a−i),

gi is own-strategy unimodal if gi is own-strategy concave, i.e., ∂gi(ai, a−i)/∂ai is decreas-

ing in ai for all a−i ∈ A−i.

For measurable functions qi : A−i → R and wi : Ai → R++, let (qi, wi) ◦ gi : A → R

be such that, for ai ∈ Ai and a−i ∈ A−i,

(qi, wi) ◦ gi(ai, a−i) = qi(a−i) +
∫

x≤ai

wi(x)
∂gi(x, a−i)

∂x
dx.

Let

Di(gi) = {g′i : A → R | g′i = (qi, wi) ◦ gi, qi : A−i → R, wi : Ai → R++},
D(g) = {g′ = (g′i)i∈N | g′i ∈ Di(gi)}.

Proposition 8 Suppose that gi is own-strategy unimodal for all i ∈ N . Then, every

game in D(g) is best-response equivalent to g.

Proof. Let g′ ∈ D(g). Since gi is own-strategy unimodal, for all λi ∈ ∆(Ai), there exists

a∗i ∈ Ai such that

∂

∂ai

∫
A−i

gi(ai, a−i)dλi(a−i) ≥ 0 if ai ≤ a∗i and a∗i > minAi,

∂

∂ai

∫
A−i

gi(ai, a−i)dλi(a−i) ≤ 0 if ai ≥ a∗i and a∗i < maxAi.

(19)

Since

∂g′i(ai, a−i)
∂ai

= wi(ai)
∂gi(ai, a−i)

∂ai
,
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(19) is true if and only if

∂

∂ai

∫
A−i

g′i(ai, a−i)dλi(a−i) ≥ 0 if ai ≤ a∗i and a∗i > minAi,

∂

∂ai

∫
A−i

g′i(ai, a−i)dλi(a−i) ≤ 0 if ai ≥ a∗i and a∗i < maxAi.

(20)

Thus, g′i is also own-strategy unimodal. Since (19) is true if and only if λi ∈ Λi(a∗i , Ai|gi)

and (20) is true if and only if λi ∈ Λi(a∗i , Ai|g′i), we must have Λi(a∗i , Ai|gi) = Λi(a∗i , Ai|g′i),
which completes the proof.

This proposition has a useful application concerning the uniqueness of correlated

equilibria. Neyman (1997) showed that if g has a continuously differentiable and strictly

concave potential function,9 then the potential maximizer is the unique correlated equi-

librium of g. The set of correlated equilibria is the same for two games if the two games

are best-response equivalent. Thus, we claim the following.

Corollary 9 Suppose that g has a continuously differentiable and strictly concave po-

tential function f . Then, the potential maximizer is the unique correlated equilibrium of

every game in D(g).

Note that a game in D(g) is not necessarily a potential game and payoff functions

are not necessarily concave.

5 Mixed Extensions of Equivalence

We have focused on players’ preferences over pure strategies, given nondegenerate conjec-

tures about their opponents’ behavior. But we could ask the same question in the mixed

strategy extension of the original game; equivalently, we could look at players’ prefer-

ences over mixed strategies.10 The natural question is whether or not our discussion so

far must be modified by the “mixed extension” of equivalence.
9The definition of potential functions of this class of games is the same as those of finite games.

10The associate editor suggested the observations in this section.
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For i ∈ N , let ∆(Ai) denote the set of all mixed strategies of player i. Abusing

notation, we write gi(pi, a−i) =
∑

ai∈Ai
pi(ai)gi(ai, a−i) for pi ∈ ∆(Ai). By the mixed

extension of Λi, we can naturally define Λi(pi,Xi|gi) for pi ∈ ∆(Ai) and Xi ⊆ ∆(Ai):

Λi(pi,Xi|gi)

= {λi ∈ ∆(A−i) |
∑

a−i∈A−i

λi(a−i)
(
gi(pi, a−i) − gi(p′i, a−i)

) ≥ 0 for all p′i ∈ Xi}.

We use the same rule Λi(pi, p
′
i|gi) = Λi(pi, {p′i}|gi) as before. We consider the following

equivalence relations of games.

Definition 7 A game g is mixed better-response equivalent to g′ if, for each i ∈ N ,

Λi(pi, p
′
i|gi) = Λi(pi, p

′
i|g′i)

for all pi, p
′
i ∈ ∆(Ai).

Definition 8 A game g is mixed best-response equivalent to g′ if, for each i ∈ N ,

Λi(pi,∆(Ai)|gi) = Λi(pi,∆(Ai)|g′i)

for all pi ∈ ∆(Ai).

Note that VNM-equivalence is sufficient for both mixed better-response equivalence

and mixed best-response equivalence. Note also that mixed better-response equivalence

is sufficient for better-response equivalence, and that mixed best-response equivalence

is sufficient for best-response equivalence. It is easy to see that mixed best-response

equivalence is not only sufficient but also necessary for best-response equivalence.

Lemma 5 A game g is mixed best-response equivalent to g′ if and only if g is best-

response equivalent to g′.
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Proof. Note that

λi ∈ Λi(pi,∆(Ai)|gi)

⇔ pi ∈ arg max
p′i∈∆(Ai)

∑
a−i∈A−i

λi(a−i)gi(p′i, a−i)

⇔ pi(ai) > 0 implies ai ∈ arg max
a′

i∈Ai

∑
a−i∈A−i

λi(a−i)gi(a′i, a−i)

⇔ pi(ai) > 0 implies λi ∈ Λi(ai, Ai|gi).

Thus, if Λi(ai, Ai|gi) = Λi(ai, Ai|g′i) for all ai ∈ Ai, then Λi(pi,∆(Ai)|gi) = Λi(pi,∆(Ai)|g′i)
for all pi ∈ ∆(Ai). This completes the proof.

This lemma implies that the characterization of mixed best-response equivalence is

reduced to that of best-response equivalence.

On the other hand, mixed better-response equivalence is a strictly stronger require-

ment than better-response equivalence. Consider a two player, three strategy, symmetric

payoff games g and g′, where each player’s payoffs are given by the following payoff ma-

trices (where the player’s own strategies are represented by rows and his opponent’s

strategies are represented by columns).

g

1 2 3
1 1 −2 −2
2 0 0 0
3 2 −1 −1

g′

1 2 3
1 x −2x −2x

2 0 0 0
3 2y −y −y

We assume that x, y > 0 and x/2 < y < 2x. Then, 1 ∼g
i 2, 2 ∼g

i 3, 3 
g
i 1, and


g
i =
g′

i . We also have x (gi(1, ·) − gi(2, ·)) = g′i(1, ·) − g′i(2, ·) and y (gi(2, ·) − gi(3, ·)) =

g′i(2, ·)− g′i(3, ·). Thus, by Proposition 1, g is better-response equivalent to g′. However,

we can show that g is mixed better-response equivalent to g′ only if x = y. To see

this, suppose that a row player believes that the column player never chooses 1: a row

player has a belief λi with λi(1) = 0. Consider a row player’s mixed strategy pi such

that pi(1) = p and pi(2) = 1 − p. In g, he prefers strategy pi to strategy 3 if and only
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if −2p ≥ −1, i.e., p ≤ 1/2. In g′, he prefers strategy pi to strategy 3 if and only if

−2xp ≥ −y, i.e., p ≤ y/2x. In order for g to be mixed better-response equivalent to g′,

it must be true that 1/2 = y/2x, i.e., x = y. In this case, g is VNM-equivalent to g′ and

thus mixed better-response equivalent to g′.

In the above example, the relation ∼g
i generates a connected graph since 1 ∼g

i 2

and 2 ∼g
i 3. Thus, under the connectedness of ∼g

i , better-response equivalence does

not necessarily imply VNM-equivalence, but mixed better-response equivalence may im-

ply VNM-equivalence. The natural question is whether this is true. Remember that

Proposition 2 provides a condition to ensure the equivalence of better-response equiva-

lence and VNM-equivalence. The condition includes the connectedness of ∼g
i . But the

connectedness is not sufficient as demonstrated by the above example. In contrast, the

following proposition asserts that the connectedness of ∼g
i ensures the equivalence of

mixed better-response equivalence and VNM-equivalence.

Proposition 10 Suppose that games g and g′ satisfy generic properties G1 and G2,

and that, for each i ∈ N , ∼g
i generates a connected graph on Ai. Then g is mixed

better-response equivalent to g′ if and only if g is VNM-equivalent to g′.

To prove the proposition, we use the following lemma.

Lemma 6 Suppose that g and g′ satisfy generic properties G1 and G2, and that g is

mixed better-response equivalent to g′. For distinct ai, bi, ci ∈ Ai, if ai ∼g
i bi and bi ∼g

i ci,

then there exists wi > 0 such that

gi(ai, ·) − gi(bi, ·) = wi

(
g′i(ai, ·) − g′i(bi, ·)

)
,

gi(bi, ·) − gi(ci, ·) = wi

(
g′i(bi, ·) − g′i(ci, ·)

)
.

Proof. By G1 and Proposition 1, there exist wi(ai, bi), wi(bi, ci) > 0 such that

gi(ai, ·) − gi(bi, ·) = wi(ai, bi)
(
g′i(ai, ·) − g′i(bi, ·)

)
,

gi(bi, ·) − gi(ci, ·) = wi(bi, ci)
(
g′i(bi, ·) − g′i(ci, ·)

)
.

We show that wi(ai, bi) = wi(bi, ci).
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Either ai ∼g
i ci, ai 
g

i ci, or ci 
g
i ai is true. If ai ∼g

i ci, there exists wi(ai, ci) > 0

such that

gi(ai, ·) − gi(ci, ·) = wi(ai, ci)
(
g′i(ai, ·) − g′i(ci, ·)

)
by Proposition 1. Thus, by Lemma 3, wi(ai, bi) = wi(bi, ci) = wi(ai, ci).

Suppose that ai 
g
i ci. Note that 
g

i =
g′
i by Proposition 1. Let λi ∈ ∆(A−i) be

such that

∑
a−i∈A−i

λi(a−i)
(
g′i(bi, a−i) − g′i(ci, a−i)

)
< 0, (21)

which exists since bi ∼g′
i ci and G1. The relation ai 
g′

i ci implies that

∑
a−i∈A−i

λi(a−i)
(
g′i(ai, a−i) − g′i(ci, a−i)

)
> 0. (22)

By the weighted average of (21) and (22), we can choose pi ∈ ∆(Ai) such that pi(ai) = p,

pi(bi) = 1 − p, and

∑
a−i∈A−i

λi(a−i)
(
g′i(pi, a−i) − g′i(ci, a−i)

)
= 0. (23)

Mixed better-response equivalence implies that

∑
a−i∈A−i

λi(a−i) (gi(pi, a−i) − gi(ci, a−i)) = 0. (24)

Now calculate

gi(pi, ·) − gi(ci, ·) = pgi(ai, ·) + (1 − p)gi(bi, ·) − gi(ci, ·)
= p (gi(ai, ·) − gi(bi, ·)) + gi(bi, ·) − gi(ci, ·)
= wi(ai, bi)p

(
g′i(ai, ·) − g′i(bi, ·)

)
+ wi(bi, ci)

(
g′i(bi, ·) − g′i(ci, ·)

)
= wi(ai, bi)

(
pg′i(ai, ·) + (1 − p)g′i(bi, ·) − g′i(ci, ·)

)
+(wi(bi, ci) − wi(ai, bi))

(
g′i(bi, ·) − g′i(ci, ·)

)
= wi(ai, bi)

(
g′i(pi, ·) − g′i(ci, ·)

)
+(wi(bi, ci) − wi(ai, bi))

(
g′i(bi, ·) − g′i(ci, ·)

)
.
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By the expectations with respect to λi for both sides of the equation, and by (23) and

(24), we have

(wi(bi, ci) − wi(ai, bi))
∑

a−i∈A−i

λi(a−i)
(
g′i(bi, a−i) − g′i(ci, a−i)

)
= 0.

By (21), we must have wi(ai, bi) = wi(bi, ci). Similarly, if ci 
g
i ai, we must have

wi(ai, bi) = wi(bi, ci). This completes the proof.

We now report the proof of Proposition 10.

Proof of Proposition 10. We show that if g is mixed better-response equivalent to g′

then g is VNM-equivalent to g′. By G1 and Proposition 1, if ai ∼g
i a′i, there exist

wi(ai, a
′
i) > 0 such that

gi(ai, ·) − gi(a′i, ·) = wi(ai, a
′
i)

(
g′i(ai, ·) − g′i(a

′
i, ·)

)
.

If |Ai| = 2, this completes the proof by Lemma 1. Suppose that |Ai| ≥ 3. For ai, a
′
i ∈ Ai,

let {ak
i }m

k=1 be a sequence such that a1
i = ai, am

i = a′i, ak
i ∼g

i ak+1
i for k = 1, . . . ,m − 1,

which exists by the connectedness of ∼g
i . There exists xk > 0 such that

gi(ak
i , ·) − gi(ak+1

i , ·) = xk

(
g′i(a

k
i , ·) − g′i(a

k+1
i , ·)

)
.

By Lemma 6, xk = xk+1 for all k ≤ m − 1. By letting xk = wi(ai, a
′
i), we have

gi(ai, ·) − gi(a′i, ·) =
m−1∑
k=1

(
gi(ak

i , ·) − gi(ak+1
i , ·)

)

=
m−1∑
k=1

xk

(
g′i(a

k
i , ·) − g′i(a

k+1
i , ·)

)

= wi(ai, a
′
i)

(
g′i(ai, ·) − g′i(a

′
i, ·)

)
.

To summarize, for all ai, a
′
i ∈ Ai, there exists wi(ai, a

′
i) > 0 satisfying the above equation.

By Lemma 3, wi(ai, a
′
i) is the same for all ai, a

′
i ∈ Ai. By Lemma 1, g is VNM-equivalent

to g′, which completes the proof.
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