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Abstract

This paper considers a two agent model of trade with multiple priors. First, we
characterize the existence of an agreeable bet on some event in terms of the set of
priors. It is then shown that the existence of an agreeable bet on some event is a
strictly stronger condition than the existence of an agreeable trade, whereas the two
conditions are equivalent in the standard Bayesian framework. Secondly, we show
that the two conditions are equivalent when the set of priors is the core of a convex
capacity. These results are also related to the no trade theorems under asymmetric
information.
Journal of Economic Literature Classification Numbers: C70, D81.
Keywords: multiple priors; convex capacity; agreeing and disagreeing; Choquet in-
tegral.
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1 Introduction and summary

Imagine two agents, each of whom has a prior distribution over a finite state space Ω.
If the two agents do not share priors, there exists an agreeable trade between them: by
a trade we mean a function f : Ω → R, and it is said to be agreeable if the expected
value of f for agent 1 is positive and that of −f for agent 2 is positive as well. The
converse is also true: if there exists an agreeable trade, the agents do not share priors.
A trade f is called a bet on event E ⊆ Ω if f is constant over E and Ω\E; if f is larger
on E than on Ω\E, it can be interpreted that agent 1 wins the bet when E occurs, and
agent 2 wins when E does not occur. The existence of an agreeable bet on some event is
equivalent to the existence of an event for which the prior probabilities of the two agents
disagree. Thus if there is no agreeable bet on any event, the priors of the two agents
must coincide. To sum up, disagreement of priors, the existence of an agreeable trade,
and the existence of an agreeable bet are all equivalent conditions in this framework.

Now suppose that two agents have multiple priors over the state space, and they use
the maximin rule à la Gilboa and Schmeidler [9] to evaluate a trade. In this context, a
trade is agreeable if the minimum expected value of f , where the minimum is taken over
the set of priors, is positive for agent 1, and that of −f is positive for agent 2 as well.
Billot et al. [2] has shown that there exists an agreeable trade (i.e., no trade is not ex
ante efficient) if and only if the sets of priors are disjoint (i.e., the agents do not share
any priors). Thus, also in the multiple priors framework, the existence of an agreeable
trade is equivalent to disagreement of priors. Further characterizations of the existence
of an agreeable trade are discussed by Dana [5], Chateauneuf et al. [4], and Tallon [16],
among others, in general equilibrium models with Choquet expected utility where the
sets of priors are given by the core of capacities. But these works do not investigate
the relation with the existence of an agreeable bet, which is logically stronger than the
other two conditions in principle. Thus it is worth investigating the implications of the
existence of an agreeable bet in this context.

The first contribution of this paper is to provide a necessary and sufficient condition
for the existence of an agreeable bet in the multiple priors model (Proposition 2 in
Section 2). It states that there exists an agreeable bet on an event if and only if the
maximum of the probability of the event for one agent is smaller than the minimum
of that for the other agent. We show, by an example, that this condition may not be
satisfied even if the sets of priors are disjoint. This implies that the existence of an
agreeable bet is a strictly stronger condition than the existence of an agreeable trade in
the multiple priors model.
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We then consider the case where the set of priors of each agent is given as the core
of a convex capacity. We show that there exists an agreeable bet on some event if and
only if the sets of priors are disjoint (Proposition 4 in Section 3). Therefore, when
the set of priors is generated by a convex capacity, the three conditions are equivalent.
Mathematically, this result is an application of the separation theorem such that a normal
vector is binary. An agreeable trade exists if and only if there exists a hyperplane
separating the sets of priors, as is shown in Billot et al. [2]. We show that, for an
agreeable bet, the normal vector f ∈ RΩ of the separating hyperplane must be an
indicator function, i.e., f(ω) ∈ {0, 1} for all ω ∈ Ω, and that such a special normal
vector exists for a convex capacity model.

Although we consider a multiple priors model and ex ante agreements, our results
help to understand the structure of the so called no trade theorems under asymmetric
information in the standard Bayesian framework, i.e., characterizations of an interim
agreement among agents. We elaborate on this issue in the last part of Section 3:
roughly speaking, starting with a posterior, one can construct multiple priors so that an
interim agreement with the posterior is translated into an ex ante agreement with the
multiple priors, where our results are related.

2 Characterization of agreeable bets on events

Let P1, P2 ⊆ ∆(Ω) be non-empty closed sets,1 which will be referred to as the sets of
priors for agent 1 and agent 2, respectively. We call a function f : Ω → R a trade. A bet
on event E ⊆ Ω is a trade f which is constant on both E and Ω\E. Agents evaluate a
trade f by the minimum of the expected gain, as axiomatized by Gilboa and Schmeidler
[9]. We interpret that f(ω) is a transfer agent 1 receives from agent 2 when the state is
ω ∈ Ω. Thus, we say that a trade f is an agreeable trade if minp∈P1

∑
ω∈Ω p(ω)f(ω) > 0

and minp∈P2

∑
ω∈Ω p(ω)(−f(ω)) > 0. An agreeable bet on event E is an agreeable trade

which is a bet on E.
Let us begin with characterizing the existence of an agreeable trade.2

Lemma 1 Suppose that P1 and P2 are closed and convex. Then, there exists an agreeable
trade if and only if P1 ∩ P2 = ∅.

1The set ∆(Ω) denotes the collection of all probability distributions over Ω.
2The result is a special case of the results of Billot et al. [2], who considered multiple risk averse

agents, and Kajii and Ui [10], who considered multiple risk neutral agents with asymmetric information.

See also Billot et al. [3] who considered a Choquet expected utility model.
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Proof. Since P1 and P2 are compact and convex, by the separation theorem, P1 ∩P2 = ∅
if and only if there exists f : Ω → R and c ∈ R such that minp∈P1

∑
ω∈Ω p(ω)f(ω) > c >

maxp∈P2

∑
ω∈Ω p(ω)f(ω). By letting g = f − c, it is clear that the latter statement is

equivalent to the condition that there exists g : Ω → R such that minp∈P1

∑
ω∈Ω p(ω)g(ω) >

0 and minp∈P2

∑
ω∈Ω p(ω)(−g(ω)) > 0.

Let Pi(E) = minp∈Pi p(E) and Pi(E) = maxp∈Pi p(E) be the minimum and maximum
probabilities of E ⊆ Ω for agent i = 1, 2. The necessary and sufficient condition for the
existence of an agreeable bet on E ⊂ Ω is the following.

Proposition 2 There exists an agreeable bet on E ⊂ Ω if and only if

P1(E) > P2(E) or P2(E) > P1(E).

Proof. Suppose that f is an agreeable bet on E such that f(ω) = a if ω ∈ E and f(ω) = b

otherwise where a, b ∈ R. Note if a = b then f cannot be an agreeable bet. Thus, either
a− b > 0 or a− b < 0 is true. If a− b > 0, we have

min
p∈P1

∑

ω∈Ω

p(ω)f(ω) = P1(E)(a− b) + b > 0,

min
p∈P2

∑

ω∈Ω

p(ω)(−f(ω)) = P2(E)(b− a)− b > 0,

and thus
P1(E) > −b/(a− b) > P2(E).

Similarly, if a− b < 0, we have P2(E) > P1(E).
Conversely, suppose that P1(E) > P2(E) or P2(E) > P1(E). If P2(E) > P1(E),

let f : Ω → R be such that f(ω) = c − 1 if ω ∈ E and f(ω) = c otherwise where
P2(E) > c > P1(E). Then,

min
p∈P1

∑

ω∈Ω

p(ω)f(ω) = c− P1(E) > 0,

min
p∈P2

∑

ω∈Ω

p(ω)(−f(ω)) = P2(E)− c > 0,

implying that f is an agreeable bet on E. If P1(E) > P2(E), let f : Ω → R be such that
f(ω) = 1 − c if ω ∈ E and f(ω) = −c otherwise where P1(E) > c > P2(E). A similar
calculation shows that f is an agreeable bet.
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The condition in the above result is not implied by P1∩P2 = ∅, and hence by Lemma 1
the existence of an agreeable bet is a strictly stronger condition than the existence of an
agreeable trade, as the following example shows.

Example 1 Let Ω = {1, 2, 3}, P1 = {p ∈ ∆(Ω) : (p(1), p(2), p(3)) = t(0.4, 0.4, 0.2)+(1−
t)(0.2, 0.2, 0.6), 0 ≤ t ≤ 1}, and P2 = {p ∈ ∆(Ω) : (p(1), p(2), p(3)) = (0.3, 0.25, 0.45)}.
Both P1 and P2 are closed convex sets and P1 ∩ P2 = ∅. However, for any event E ⊂ Ω,
P1(E) < P2(E) = P2(E) < P1(E).

3 Case of convex capacity

A set function v : 2Ω → R with v(∅) = 0 is called a capacity if it is monotone and
normalized: that is, v(E) ≥ v(F ) if E ⊇ F and v(Ω) = 1. A capacity v is said to be
convex if v(E)+v(F ) ≤ v(E∩F )+v(E∪F ) for E, F ⊆ Ω, and it is said to be concave if
−v is convex. For convex and concave capacities, the following separation theorem due
to Frank [8] is known.3

Theorem 3 Let µ : 2Ω → R be a convex capacity and ρ : 2Ω → R be a concave capacity.
If ρ(E) ≥ µ(E) for all E ⊆ Ω, then there exists q : Ω → R such that

ρ(E) ≥ q(E) ≥ µ(E) for all E ⊆ Ω

where q(E) =
∑

ω∈E q(ω).

The core of a capacity v is defined as:

Core(v) = {q ∈ ∆(Ω) : q(E) ≥ v(E) for all E ⊆ Ω}

where q(E) =
∑

ω∈E q(ω). The core is a closed convex set. It is known that if v is
convex, then Core(v) 6= ∅. The following is the main result of this section.

Proposition 4 Suppose that there exists a convex capacity vi such that Pi = Core(vi)
for i = 1, 2. Then, there exists an agreeable bet on some event if and only if P1∩P2 = ∅.

The “only if” part is an immediate consequence of Lemma 1. The “if” part follows
from Proposition 2 and the following lemma.

3This result is also reported in Denneberg [6], and it is a natural extension of the separation theorem

for convex functions, taking into account that the Choquet integral of x ∈ RΩ with respect to a convex

capacity is a concave function of x ∈ RΩ. See for instance Murota [13] for a general discussion.
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Lemma 5 Suppose that there exists a convex capacity vi such that Pi = Core(vi) for
i = 1, 2. If P1 ∩ P2 = ∅, then there exists E ⊂ Ω such that P1(E) > P2(E).

Proof. Define v′2 : 2Ω → R by the rule v′2(E) = 1− v2(Ω\E) for E ⊆ Ω. It can be readily
checked that v′2 is a concave capacity. We shall show that there exists E ⊆ Ω such that
v′2(E) < v1(E). Seeking a contradiction, suppose that v′2(E) ≥ v1(E) for all E ⊆ Ω. By
Theorem 3, there exists q : Ω → R such that

v′2(E) ≥ q(E) ≥ v1(E) for all E ⊆ Ω.

Since v′2(Ω) = v1(Ω) = 1 and v′2(∅) = v1(∅) = 0, we have q ∈ ∆(Ω). Thus, q ∈ Core(v1).
In addition,

q(E) = 1− q(Ω\E) ≥ 1− v′2(Ω\E) = v2(E) for all E ⊆ Ω.

Thus, q ∈ Core(v2), which contradicts to the assumption Core(v1)∩Core(v2) = ∅. There-
fore, there exists E ⊂ Ω such that v′2(E) < v1(E). Note that v1(E) = minp∈Core(v1) p(E)
and v′2(E) = 1− v2(Ω\E) = 1−minp∈Core(v2) p(Ω\E) = maxp∈Core(v2) p(E). Thus,

P1(E) = min
p∈Core(v1)

p(E) = v1(E) > v′2(E) = max
p∈Core(v2)

p(E) = P2(E),

which completes the proof.

Remark 1 If a capacity v is additive, i.e., it is a probability measure, its core is a
singleton {v}. Hence, Proposition 4 covers the known result for a single prior model. It
also applies to the Choquet integral model [15], which is a particular case of the multiple
priors model when the capacity is convex.

Remark 2 Lemma 5 can be restated as a separation theorem for the core of convex
capacities with a binary normal vector: if vi : 2Ω → R is convex for i = 1, 2 and
Core(v1) ∩ Core(v2) = ∅, then there exists f : Ω → {0, 1} such that minp∈Core(v1) p · f >

maxp∈Core(v2) p · f . Hence, it is related to the separation theorem for the core of discrete
convex set functions shown in Murota [12, Theorem 3.6], which inspired our proof.

Finally, let us relate our results to the so called no trade theorems under asymmetric
information in the standard Bayesian framework. It is known that agents do not have
a common prior if there exists an interim agreeable bet, i.e., it is common knowledge
that a posterior probability of some event for one agent is smaller than that for the
other agent. This is a generalized version of Aumann’s agreement theorem [1]. But it
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is also known that the converse does not hold; non-existence of a common prior does
not necessarily imply the existence of an interim agreeable bet. The resemblance to our
analysis is not a coincidence, since an interim agreeable trade in a single prior model can
be characterized in terms of an (ex ante) agreeable trade with multiple priors as follows.

Let Πi ⊆ 2Ω be an information partition of agent i = 1, 2 with a generic element
πi ∈ Πi. Let qi(·|πi) ∈ ∆(Ω) be a posterior distribution given πi ∈ Πi for agent i such that∑

ω∈πi
qi(ω|πi) = 1. A trade f : Ω → R is interim agreeable if

∑
ω∈π1

q1(ω|π1)f(ω) > 0
for all π1 ∈ Π1 and

∑
ω∈π2

q2(ω|π2)(−f(ω)) > 0 for all π2 ∈ Π2. Now let Pi ⊆ ∆(Ω)
be the convex hull of {qi(·|πi)}πi∈Πi for i = 1, 2; that is, Pi := {p ∈ ∆(Ω) : p =∑

πi∈Πi
λ(πi)qi(·|πi) where λ ∈ ∆(Πi)}. Then it can be readily shown that a trade f is

interim agreeable if and only if it is (ex ante) agreeable for agents with multiple priors P1

and P2. So by Lemma 1, there exists an interim agreeable trade if and only if P1∩P2 = ∅.
If p ∈ P1 ∩ P2 exists, it is a (fictitious) common prior in the sense that a conditional
probability of p given πi coincides with qi(·|πi). This is the essence of the characterization
results obtained by Morris [11], Feinberg [7], and Samet [14].

Then Proposition 4 implies that the converse of the generalized agreement theorem
holds if the induced set of priors Pi can be expressed as the core of some convex capacity
for each agent. In other words, our results suggest a reason why the converse mentioned
above may fail: the induced set of priors is not the core of a convex capacity in general.
We shall give a simple example below to conclude. A similar example can be constructed
for more general cases.

Example 2 Let Ω = {1, 2, 3}, Πi = {{1}, {2, 3}}, and the prior of player i is pi ∈ ∆(Ω)
such that (pi(1), pi(2), pi(3)) = (1/2, α/2, (1− α)/2). Then qi(1|{1}) = 1, qi(2|{2, 3}) =
α, and qi(2|{2, 3}) = 1 − α, and so we have Pi = {p ∈ ∆(Ω) : (p(1), p(2), p(3)) =
(t, α(1 − t), (1 − α)(1 − t)), 0 ≤ t ≤ 1}. It is straightforward to check that there is no
capacity vi satisfying Pi = Core(vi) if and only if 0 < α < 1.
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