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Abstract

This paper proposes a class of weak additivity concepts for an operator on the set of

real valued functions on a finite state space Ω, which include additivity and comonotonic

additivity as extreme cases. Let E ⊆ 2Ω be a collection of subsets of Ω. Two functions x

and y on Ω are E-cominimum if, for each E ∈ E , the set of minimizers of x restricted on

E and that of y have a common element. An operator I on the set of functions on Ω is E-

cominimum additive if I(x+y) = I(x)+I(y) whenever x and y are E-cominimum. The main

result characterizes homogeneous E-cominimum additive operators in terms of the Choquet

integrals and the corresponding non-additive signed measures. As applications, this paper

gives an alternative proof for the characterization of the E-capacity expected utility model of

Eichberger and Kelsey (1999) and that of the multi-period decision model of Gilboa (1989).
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1 Introduction

Consider an operator I on the set of real valued functions on a finite set Ω. It is well known that
an operator I is homogeneous (i.e. I(λx) = λI(x) for a function x on Ω and λ > 0) and additive
(i.e. I(x + y) = I(x) + I(y) for functions x and y on Ω) if and only if it is represented as the
integral with respect to a signed measure v on Ω; that is, I(x) =

∫
xdv for a function x on Ω.

In his seminal paper, Schmeidler (1986) considered a homogeneous operator that is additive
on comonotonic functions. Two functions x and y on Ω are said to be comonotonic if (x(ω) −
x(ω′))(y(ω) − y(ω′)) ≥ 0 for all ω, ω′ ∈ Ω. He showed that an operator I is homogeneous and
additive on comonotonic functions (i.e. I(x+y) = I(x)+I(y) whenever x and y are comonotonic)
if and only if it is represented as the Choquet integral with respect to a non-additive signed
measure v on Ω; that is, I(x) =

∫
xdv for a function x on Ω with the understanding that the

integral is the Choquet integral. In the decision theory under uncertainty, the utility function
representable as a Choquet integral now constitutes one of the important benchmarks.

In this paper, we propose a class of weak additivity concepts for an operator on the set of real
valued functions, which include both additivity and comonotonic additivity as extreme cases. To
be precise, let E ⊆ 2Ω be a collection of subsets of Ω. Two functions x and y on Ω are said to be
E-cominimum if, for every E ∈ E , the set of minimizers of x restricted on E and that of y have
a common element. An operator I is said to be E-cominimum additive if I(x + y) = I(x) + I(y)
whenever x and y are E-cominimum.

For example, if E is empty or contains only singletons, then any two functions are trivially
E-cominimum. In this case, E-cominimum additivity coincides with additivity. If E consists of
all subsets of Ω, then any two comonotonic functions are E-cominimum and conversely any two
E-cominimum functions are comonotonic. In this case, E-cominimum additivity coincides with
comonotonic additivity. Thus, in general, E-cominimum additivity is stronger than comonotonic
additivity but weaker than additivity.

The main result of this paper is a representation theorem for homogeneous operators satisfying
E-cominimum additivity, which we shall sketch in the following. Notice that since E-cominimum
additivity implies comonotonic additivity, a homogeneous E-cominimum additive operator is rep-
resented by the Choquet integral with respect to a non-additive signed measure v by Schmeidler’s
theorem, a fortiori. Since v can be uniquely written as v =

∑
T⊆Ω βT uT , where uT is the so called

unanimity game on T ⊆ Ω, the characterization of the operator can be done in terms of coeffi-
cients {βT }T⊆Ω. We say that T ⊆ Ω is E-complete if, for any two points ω, ω′ ∈ T , there exists
E ∈ E satisfying {ω, ω′} ⊆ E ⊆ T ; that is, any two elements are “connected” within T by an
element of E . The main result shows that a homogeneous operator is E-cominimum additive if
and only if βT = 0 for every T which is not E-complete. It also shows that this condition is
equivalent to the condition that v is modular on a suitably defined collection of pairs of events:
v(T1 ∪ T2) + v(T1 ∩ T2) = v(T1) + v(T2) whenever the pair (T1, T2) belongs to the collection.
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We shall supply two applications to decision models under uncertainty. The first is the
E-capacity expected utility model of Eichberger and Kelsey (1999). The E-capacities include
the so called ε-contamination as a special case. The second is the multi-period decision model
of Gilboa (1989). For both decision models, we provide alternative proofs for the axiomatic
characterizations using our results directly.

The organization of this paper is as follows. Section 2 quotes some known results about
the Choquet integrals and Schmeidler’s theorem. Section 3 introduces E-cominimum functions
and studies properties of E-complete events. Section 4 provides the main results and Section 5
discusses applications.

2 The Choquet integrals and Schmeidler’s theorem

Let Ω = {1, . . . , n} be a finite set of states of the world. A subset E ⊆ Ω is called an event.
Denote by F the collection of all non-empty subsets of Ω, and by Fk the collection of subsets
with k elements.

A set function v : 2Ω → R with v(∅) = 0 is called a game or a non-additive signed measure.
Since each game is identified with a point in RF , we denote by RF the set of all games. For a
game v ∈ RF , we use the following definitions:

• v is non-negative if v(E) ≥ 0 for all E ∈ 2Ω.

• v is monotone if E ⊆ F implies v(E) ≤ v(F ) for all E,F ∈ 2Ω. A monotone game is
non-negative.

• v is additive if v(E∪F ) = v(E)+v(F ) for all E,F ∈ 2Ω with E∩F = ∅, which is equivalent
to v(E) + v(F ) = v(E ∪ F ) + v(E ∩ F ) for all E,F ∈ 2Ω.

• v is convex (or supermodular) if v(E) + v(F ) ≤ v(E ∪ F ) + v(E ∩ F ) for all E,F ∈ 2Ω.

• v is normalized if v(Ω) = 1.

• v is a non-additive measure if it is monotone. A normalized non-additive measure is called
a capacity.

• v is a measure if it is monotone and additive. A normalized measure is called a probability
measure.

• The conjugate of v, denoted by v′, is defined as v′(E) = v(Ω) − v(Ω\E) for all E ∈ 2Ω.
Note that (v′)′ = v and (v + w)′ = v′ + w′ for v, w ∈ RF .

For T ∈ F , let uT ∈ RF be the unanimity game on T defined by the rule: uT (S) = 1 if T ⊆ S

and uT (S) = 0 otherwise. Let u′
T be the conjugate of uT . Then u′

T (S) = 1 if T ∩ S 6= ∅ and
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u′
T (S) = 0 otherwise. The following result is well known as the Möbius inversion in discrete and

combinatorial mathematics (cf. Shapley, 1953).

Lemma 1 The collection {uT }T∈F is a linear base for RF . The unique collection of coefficients
{βT }T∈F satisfying v =

∑
T∈F βT uT , or equivalently v(E) =

∑
T⊆E βT for all E ∈ F , is given

by βT =
∑

E⊆T (−1)|T |−|E|v(E).

The collection of coefficients {βT }T∈F is referred to as the Möbius transform of v. If v =∑
T∈F βT uT , then the conjugate v′ is given by v′ =

∑
T∈F βT u′

T .
Denote by RΩ = {x |x : Ω → R} the set of all real valued functions on Ω. Let 1E ∈ RΩ

be the indicator function of an event E ∈ F . We write minE x = minω∈E x(ω), arg minE x =
arg minω∈E x(ω), maxE x = maxω∈E x(ω), arg maxE x = arg maxω∈E x(ω) for E ∈ F and x ∈
RΩ.

Definition 1 For x ∈ RΩ and v ∈ RF , the Choquet integral of x with respect to v is defined as∫
xdv =

∫ x̄

x

v(x ≥ α)dα + xv(Ω), (1)

where x̄ = maxΩ x(ω), x = minΩ x(ω), and v(x ≥ α) = v({ω ∈ Ω |x(ω) ≥ α}).

For example, the Choquet integral of an indicator function is
∫

1Edv =
∫ 1

0
v(1E ≥ α)dα =

v(E); the Choquet integral with respect to unanimity games and their conjugates are∫
xduT =

∫ x̄

x

uT (x ≥ α)dα + xuT (Ω) =
[
min

T
x − min

Ω
x
]

+ min
Ω

x = min
T

x,∫
xdu′

T =
∫ x̄

x

u′
T (x ≥ α)dα + xu′

T (Ω) =
[
max

T
x − min

Ω
x
]

+ min
Ω

x = max
T

x

because uT (x ≥ α) = 1 if minT x ≥ α and uT (x ≥ α) = 0 otherwise, and u′
T (x ≥ α) = 1 if

maxT x ≥ α and u′
T (x ≥ α) = 0 otherwise.

It is straightforward to see that the Choquet integral is linear in games:∫
xd(sv + tw) = s

∫
xdv + t

∫
xdw for all x ∈ RΩ, v, w ∈ RF , and s, t ∈ R.

An important implication of the linearity is the following additive representation of the Choquet
integral (cf. Gilboa and Schmeidler, 1994).

Lemma 2 For x ∈ RΩ and v =
∑

T∈F βT uT ∈ RF ,∫
xdv =

∑
T∈F

βT

∫
xduT =

∑
T∈F

βT min
T

x, (2)∫
xdv′ =

∑
T∈F

βT

∫
xdu′

T =
∑
T∈F

βT max
T

x. (3)
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Lemma 2 says that the Choquet integral of x with respect to v can be represented as a
weighted sum of all minima of x with respect to some possibly negative weights.

Two functions x, y ∈ RΩ are said to be comonotonic if (x(ω) − x(ω′))(y(ω) − y(ω′)) ≥ 0 for
all ω, ω′ ∈ Ω. Observe that two functions x, y ∈ RΩ are comonotonic if and only if arg minE x ∩
arg minE y 6= ∅ for all E ∈ F . Symmetrically, two functions x, y ∈ RΩ are comonotonic if and
only if arg maxE x ∩ arg maxE y 6= ∅ for all E ∈ F .

If x and y are comonotonic then minT (x + y) = minT x + minT y for all T ∈ F . Thus, the
Choquet integral is additive on comonotonic functions by Lemma 2:∫

(x + y)dv =
∑
T∈F

βT min
T

(x + y) =
∑
T∈F

βT min
T

x +
∑
T∈F

βT min
T

y =
∫

xdv +
∫

ydv.

We say that an operator I : RΩ → R satisfies comonotonic additivity provided it is additive on
comonotonic functions, i.e., I(x + y) = I(x) + I(y) whenever x and y are comonotonic. Thus,
the Choquet integral satisfies comonotonic additivity. We say that an operator I : RΩ → R is
homogeneous (more precisely, positively homogeneous of degree one) provided I(λx) = λI(x)
for all λ > 0. It is easy to see that the Choquet integral is homogeneous. Schmeidler (1986)
showed that a homogeneous operator which satisfies comonotonic additivity must be the Choquet
integral. The following is a slightly different version of Schmeidler’s theorem.1

Theorem 1 An operator I : RΩ → R is homogeneous and satisfies comonotonic additivity if and
only if I(x) =

∫
xdv for all x ∈ RΩ where v ∈ RF is defined by the rule v(E) = I(1E).

Proof. This can be shown by just a minor modification of Schmeidler’s proof.

3 Cominimum functions

We will study homogeneous operators satisfying a property stronger than comonotonic additivity
and weaker than additivity. For this purpose, we generalize the notion of comonotonic functions.

Remember that two functions x, y ∈ RΩ are comonotonic if and only if arg minE x∩arg minE y 6=
∅ for all E ∈ F . By replacing F with a collection of events E ⊆ F , we have a weaker notion of
comonotonic functions.2

Definition 2 Let E ⊆ F be a collection of events. Two functions x, y ∈ RΩ are said to be
E-cominimum, provided arg minE x ∩ arg minE y 6= ∅ for all E ∈ E . Two functions x, y ∈ RΩ are
said to be E-comaximum, provided arg maxE x ∩ arg maxE y 6= ∅ for all E ∈ E .

1Schmeidler (1986) assumed monotonicity instead of homogeneity. But this can be readily shown adopting his

proof. In fact, since homogeneity is a consequence of monotonicity in his proof, our statement is less elegant. But

with monotonicity, the resulting game is necessarily a non-additive measure, which is inconvenient for us since we

want to work with general games.
2Kojima (2004) was the first to consider a weaker notion of comonotonic functions in this direction. He

introduced the notion of cominimum functions, which are {Ω}-cominimum functions in this paper.
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Note that x and y are E-cominimum if and only if −x and −y are E-comaximum. So in
fact any result about E-cominimum functions can be translated for E-comaximum functions in a
straightforward manner.

The following properties are immediate consequences of the definition:

• If two functions are E-cominimum (resp. comaximum) then they are E ′-cominimum (resp.
comaximum) for any E ′ ⊆ E .

• If two functions are both E-cominimum (resp. comaximum) and E ′-cominimum (resp. co-
maximum) then they are E ∪ E ′-cominimum (resp. comaximum).

• Any two functions are F1-cominimum (comaximum) where F1 = {{ω} |ω ∈ Ω}.

• Two functions are E-cominimum (resp. comaximum) if and only if they are E ∪ F1-cominimum
(resp. comaximum).

• The following statements are equivalent.

– Two functions are comonotonic.

– Two functions are F2-cominimum (comaximum) where F2 = {{ω, ω′} |ω, ω′ ∈ Ω}.

– Two functions are F-cominimum (comaximum).

– Two functions are E-cominimum (comaximum) for all E ⊆ F .

The last item above implies that even if E 6= E ′, the collection of E-cominimum pairs of func-
tions may coincide with that of E ′-cominimum pairs. Among collections of events which induce
the same pairs of cominimum functions, there is a special collection, the complete collection,
which will play an important role in the main result of this paper.

Definition 3 Let E ⊆ F be a collection of events. An event T ∈ F is E-complete provided,
for any two distinct points ω1 and ω2 in T , there is E ∈ E such that {ω1, ω2} ⊆ E ⊆ T . The
collection of all E-complete events is called the E-complete collection and denoted by Υ(E). A
collection E is said to be complete if E = Υ(E).

We adopt the term “complete” from an analogy to a complete graph.3 For T ∈ F , consider
an undirected graph with a vertex set T where {ω, ω′} ⊆ T is an edge if there is E ∈ E satisfying
{ω1, ω2} ⊆ E ⊆ T . This is a complete graph if and only if T is E-complete.4

As an operator, Υ is monotone in the sense that Υ(E) ⊆ Υ(E ′) whenever E ⊆ E ′. Note
that any E ∈ E is E-complete, i.e., E ⊆ Υ(E), and any singleton is E-complete trivially, i.e.,

3We can also regard (Ω, E) as a hypergraph. The theory of hypergraph has the concept of completeness, which

is different from that in this paper.
4In addition to the two applications we discuss in Section 5, the notion of E-completeness has an interesting

application in cooperative game theory. See Kajii et al. (2006).
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F1 ⊆ Υ(E). The following results show that Υ(E) itself is complete and it serves as a canonical
collection among collections which induce the same pairs of cominimum functions.

Lemma 3 For any E ⊆ F , Υ(E) is complete, i.e., Υ(E) = Υ(Υ(E)).

Proof. Since Υ(E) ⊆ Υ(Υ(E)) by the monotonicity of Υ, it is enough to show that Υ(E) ⊇
Υ(Υ(E)). Let T ∈ F be Υ(E)-complete, i.e., T ∈ Υ(Υ(E)). Then, for any ω1, ω2 ∈ T , there is
E ∈ Υ(E) such that {ω1, ω2} ⊆ E ⊆ T . Since E ∈ Υ(E) is E-complete, there is E′ ∈ E such that
{ω1, ω2} ⊆ E′ ⊆ E ⊆ T . This implies that T is E-complete and thus T ∈ Υ(E), which completes
the proof.

Lemma 4 Two functions are E-cominimum if and only if they are Υ(E)-cominimum.

Proof. Since E ⊆ Υ(E), Υ(E)-cominimum functions are E-cominimum. Conversely, let two
functions x1 and x2 be E-cominimum. Seeking a contradiction, suppose that these are not Υ(E)-
cominimum; that is, there is an E-complete event T ∈ F such that arg minT x1∩arg minT x2 = ∅.
Pick ω1 ∈ arg minT x1 and ω2 ∈ arg minT x2. Since T is E-complete, there is E ∈ E with
{ω1, ω2} ⊆ E ⊆ T . Since x1 and x2 are E-cominimum, there is ω∗ ∈ arg minE x1 ∩ arg minE x2.
But then xi(ω∗) ≤ xi(ωi) for i = 1, 2, and thus ω∗ ∈ arg minT x1 ∩ arg minT x2, which is a
contradiction.

If two functions are indicator functions, the E-cominimum relation naturally induces a relation
on a pair of events. We shall pursue this idea in the following.

Definition 4 Let E ⊆ F be a collection of events. A pair of events (T1, T2) ⊆ F × F with
T1 6⊆ T2 and T2 6⊆ T1 are said to be an E-decomposition pair for T ∈ F , provided T1 ∪ T2 = T

and, for any E ∈ E , E ⊆ T implies E ⊆ T1 or E ⊆ T2 (or both). Denote by W (E) the collection
of all the E-decomposition pairs for some events:

W (E) = {(T1, T2) ∈ F × F |T1 6⊆ T2 and T2 6⊆ T1,

E ⊆ T1 ∪ T2 implies E ⊆ T1 or E ⊆ T2 for all E ∈ E}.

An event T ∈ F is E-decomposable if there exists an E-decomposition pair for T , i.e., T = T1∪T2

for some (T1, T2) ∈ W (E).

The idea of E-decomposition is exactly the E-cominimum relation restricted to indicator
functions, as is shown next.

Lemma 5 Let T1, T2 ∈ F be such that T1 6⊆ T2 and T2 6⊆ T1. Indicator functions 1T1 and 1T2

are E-cominimum if and only if (T1, T2) ∈ W (E).
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Proof. Suppose that (T1, T2) ∈ W (E). Pick any E ∈ E . If E ⊆ T1 ∪ T2, then E ⊆ T1 or E ⊆ T2

and thus arg minE 1T1 = E or arg minE 1T2 = E must hold. In both cases, arg minE 1T1 ∩
arg minE 1T2 6= ∅ holds. If E 6⊆ T1 ∪ T2, then arg minE 1T1 ∩ arg minE 1T2 = E\T1 ∩ E\T2 =
E\(T1 ∪ T2) 6= ∅. Therefore, 1T1 and 1T2 are E-cominimum.

Conversely, assume that 1T1 and 1T2 are E-cominimum. Seeking a contradiction, suppose
that (T1, T2) 6∈ W (E). Then, there is E ∈ E with E ⊆ T1 ∪ T2 but E 6⊆ T1 and E 6⊆ T2. Thus,
arg minE 1T1 = E\T1 ⊆ (T1 ∪ T2)\T1 and arg minE 1T2 = E\T2 ⊆ (T1 ∪ T2)\T2, which implies
arg minE 1T1 ∩ arg minE 1T2 = ∅, contrary to the assumption. Therefore, such an event E ∈ E
cannot exist and so (T1, T2) ∈ W (E).

As is then easily expected, E-decomposability of an event is closely related to E-completeness.
Note that any singleton is not E-decomposable trivially, and that any E ∈ E is not E-decomposable.
The latter implies that any E-complete event, which is necessarily an element of Υ(E) by def-
inition, is not Υ(E)-decomposable. In fact, E-decomposability and Υ(E)-decomposability are
equivalent as the following lemma shows.

Lemma 6 For any E ⊆ F , W (E) = W (Υ(E)).

Proof. Since E ⊆ Υ(E), W (E) ⊇ W (Υ(E)). We show W (E) ⊆ W (Υ(E)). Suppose that
(T1, T2) ∈ W (E) and (T1, T2) 6∈ W (Υ(E)). The former implies that T1 6⊆ T2 and T2 6⊆ T1, and the
latter implies that there exists E ∈ Υ(E) such that E ⊆ T1 ∪ T2 but neither E ⊆ T1 nor E ⊆ T2.
Thus, there exist ω1, ω2 ∈ E such that ω1 ∈ T1\T2 and ω2 ∈ T2\T1. Since E is E-complete, there
exists E′ ∈ E such that {ω1, ω2} ⊆ E′ ⊆ E, which contradicts to the assumption that (T1, T2) is
an E-decomposition pair for T .

The next result shows that the decomposability is in fact the “complement” of the complete-
ness.

Lemma 7 An event T ∈ F is E-complete if and only if T is not E-decomposable. Consequently,

Υ(E) = {T ∈ F |T 6= T1 ∪ T2 for any (T1, T2) ∈ W (E)}

= F\{T1 ∪ T2 | (T1, T2) ∈ W (E)}.

Proof. The “only if” part is clear from the definition. We shall establish the “if” part. Assume
that T is not E-complete. Then there exists two distinct points ω1, ω2 ∈ T such that there exists
no E ∈ E satisfying {ω1, ω2} ⊆ E ⊆ T . Set T1 = T\{ω1} and T2 = T\{ω2}. By construction,
T1 6⊆ T2, T2 6⊆ T1, and T1 ∪ T2 = T . Also, for any E ∈ E , if E ⊆ T1 ∪ T2 then {ω1, ω2} * E

and so E ⊆ T1 or E ⊆ T2 must hold by construction. Therefore, (T1, T2) ∈ W (E) and thus T is
E-decomposable.

To conclude this section, we shall give a sufficient condition for completeness.
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Lemma 8 Suppose that E ⊆ F contains all the singleton events and satisfies the following
property: if E,E1, . . . , En ∈ E satisfy E ⊆

∪n
i=1 Ei then E∪Ei ∈ E for at least one i ∈ {1, . . . , n}.

Then, E is complete.

Proof. Let T /∈ E . We want to show that T is not E-complete. By Lemma 7, it suffices to
show that T is E-decomposable. Fix ω̄ ∈ T , and let T1 ⊆ T be a maximal set containing ω̄ and
included in E . Since T 6∈ E , T1 must be a proper subset of T .

If T1 = {ω̄}, then there is no event E ∈ E such that {ω̄} ( E ⊆ T . Then it is readily verified
that T1 and T\T1 constitute an E-decomposition pair for T .

If T1 6= {ω̄}, then let E ′ = {E ∈ E |E ⊆ T and E * T1}. It must be true that T1 *
∪

E∈E′ E.
To see this, suppose that T1 ⊆

∪
E∈E′ E. Then, there exists E ∈ E ′ such that T1 ∪ E ∈ E by the

assumption on E . Since E ⊆ T and E * T1, we have T ⊇ T1 ∪ E ) T1, which contradicts to the
maximality of T1.

Let T2 = (T\T1) ∪ (
∪

E∈E′ E). We claim that (T1, T2) is an E-decomposition pair for T . By
construction, T1 ∪ T2 = T . As we noted above, T1 ( T . Since T1 *

∪
E∈E′ E, T2 ( T , and hence

T1 6⊆ T2 and T2 6⊆ T1. Finally, pick any E ∈ E with E ⊆ T and suppose E * T1. Then E ∈ E ′,
and so E ⊆ T2. Thus (T1, T2) ∈ W (E), which completes the proof.

In practice, a stronger condition is also useful.5

Lemma 9 Suppose that E ⊆ F contains all the singleton events and satisfies the following
property: for any E1, E2 ∈ E, if E1 ∩ E2 6= ∅ then E1 ∪ E2 ∈ E. Then, E is complete.

Proof. The condition above implies the property of Lemma 8; if E ⊆
∪n

i=1 Ei, then for at least
one i, E ∩ Ei 6= ∅, and so E ∪ Ei ∈ E .

If E ∩ E′ = ∅ or E ⊆ E′ or E′ ⊆ E for all E,E′ ∈ E , then E ∪ F1 is complete. Especially, if
E is a partition of Ω, then E ∪ F1 is complete.

Lemma 8, however, does not provide a necessary condition for completeness. For instance, let
Ω = {1, 2, 3, 4} and E = {{1}, {2}, {3}, {4}, {1, 2}, {2, 3}, {3, 4}}. Then it can be readily checked
that E is complete. But E does not satisfy the condition of Lemma 8.

4 Cominimum additive operators

The notion of E-cominimum (comaximum) functions induces the following additivity property of
an operator I : RΩ → R.

5This stronger condition is applied in cooperative game theory. See, for instance, Myerson (1980), Nouweland

et al. (1992), and Algaba et al. (2000).
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Definition 5 An operator I : RΩ → R is E-cominimum additive (resp. comaximum additive)
provided I(x + y) = I(x) + I(y) whenever x and y are E-cominimum (resp. comaximum).

Since E-cominimum (comaximum) additivity implies comonotonic additivity, we have the
following corollary of Theorem 1.

Corollary 2 An operator I : RΩ → R is homogeneous and E-cominimum (comaximum) additive
for some E ⊆ F if and only if I(x) =

∫
xdv for all x ∈ RΩ where v ∈ RF is defined by the rule

v(E) = I(1E).

Therefore, a homogeneous, E-cominimum (comaximum) additive operator is associated with
a game v. As is easily expected, E-cominimum (comaximum) additivity of an operator requires
some further structure on the corresponding game v. To find the required structure, we shall
focus on a game v, and say that v is E-cominimum (comaximum) additive to mean that the
corresponding operator is E-cominimum (comaximum) additive.

Definition 6 A game v is said to be E-cominimum additive (resp. E-comaximum additive) pro-
vided

∫
(x + y)dv =

∫
xdv +

∫
ydv whenever x and y are E-cominimum (resp. E-comaximum).

The following result gives a simple sufficient condition for E-cominimum additivity.

Lemma 10 Let v =
∑

T∈F βT uT ∈ RF be a game. If βT = 0 for all T 6∈ E, then v is E-
cominimum additive.

Proof. Let two functions x and y be E-cominimum. Note that, for all E ∈ E , arg minE x ∩
arg minE y 6= ∅ and thus minE(x + y) = minE x + minE y. So using (2), we have∫

(x + y)dv =
∑
T∈F

βT min
T

(x + y) =
∑
T∈E

βT min
T

(x + y) =
∑
T∈E

βT (min
T

x + min
T

y)

=
∑
T∈E

βT min
T

x +
∑
T∈E

βT min
T

y =
∑
T∈F

βT min
T

x +
∑
T∈F

βT min
T

y =
∫

xdv +
∫

ydv,

which completes the proof.

A natural question then is whether the converse is true, i.e., E-cominimum additivity implies
βT = 0 for any T /∈ E . But in general, this is not true. For example, F2-cominimum additivity
does not imply βT = 0 for any T /∈ F2 (where F2 is the set of all two-point events). This
is because F2-cominimum additivity is equivalent to comonotonic additivity and the Choquet
integral with respect to any game satisfies comonotonic additivity. Now remember that two
functions are E-cominimum if and only if they are Υ(E)-cominimum by Lemma 4. Thus, one can
expect that E-cominimum additivity implies βT = 0 for any T /∈ Υ(E), which we will formally
show later.
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To provide the complete characterization of E-cominimum additivity, we introduce the notion
of modularity for E-decomposition pairs. If v is E-cominimum additive then, by Lemma 5 and
the definition of the Choquet integral,

v(T1 ∪ T2) + v(T1 ∩ T2) =
∫

(1T1 + 1T2)dv =
∫

1T1dv +
∫

1T2dv = v(T1) + v(T2) (4)

for all (T1, T2) ∈ W (E). We call this property the modularity for E-decomposition pairs.

Definition 7 A game v is said to be modular for E-decomposition pairs provided

v(T1 ∪ T2) + v(T1 ∩ T2) = v(T1) + v(T2) for all (T1, T2) ∈ W (E).

We can show that E-cominimum additivity and the modularity for E-decomposition pairs are
equivalent, which leads us to the following main result of this paper.

Theorem 3 Let v =
∑

T∈F βT uT ∈ RF be a game. The following three statements are equiva-
lent: (i) v is E-cominimum additive; (ii) v is modular for E-decomposition pairs; (iii) βT = 0 for
any T /∈ Υ(E). Therefore, if E is complete, v is E-cominimum additive if and only if βT = 0 for
any T /∈ E.

Proof. (iii) ⇒ (i). By Lemma 10, v is Υ(E)-cominimum additive. By Lemma 4, two functions
are Υ(E)-cominimum if and only if they are E-cominimum. Thus, v must be E-cominimum
additive.

(i) ⇒ (ii). This is true by Lemma 5 and the definition of the Choquet integral, as in (4).
(ii) ⇒ (iii). We show by induction that, for all k ≥ 1, if |T | = k and T /∈ Υ(E) then βT = 0.

Since |T | ≥ 2 for all T 6∈ Υ(E), the statement is true when k = 1 vacuously. Let k ≥ 2 and
suppose as an induction hypothesis that βT = 0 for any T 6∈ Υ(E) with |T | ≤ k − 1.

Let T 6∈ Υ(E) with |T | = k. Then T is E-decomposable by Lemma 7, and so there exists
(T1, T2) ∈ W (E) such that T = T1 ∪ T2. Since W (E) = W (Υ(E)) by Lemma 6, any S ∈ Υ(E)
with S ( T must satisfy either S ⊆ T1 or S ⊆ T2 (or both, i.e., S ⊆ T1∩T2). Therefore, if S ⊆ T

satisfies S 6⊆ T1 and S 6⊆ T2, then S /∈ Υ(E) and so βS = 0 by the induction hypothesis, unless
S = T . Now from the modularity for E-decomposition pairs, we have

0 = v(T1 ∪ T2) + v(T1 ∩ T2) − v(T1) − v(T2)

=
∑
S⊆T

βS +
∑

S⊆T1∩T2

βS −
∑

S⊆T1

βS −
∑

S⊆T2

βS

=
∑

S⊆T, S 6⊆T1, S 6⊆T2

βS = βT ,

which completes the proof.

The cominimum additivity is the conjugate of the comaximum additivity, and vice versa in
the following sense.
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Lemma 11 A game v is E-cominimum additive if and only if v′ is E-comaximum additive.

Proof. Since minω∈T −x(ω) = −maxω∈T x(ω), we have
∫
−xdv = −

∫
xdv′ by (2) and (3).

Thus,
∫

(x + y)dv =
∫

xdv +
∫

ydv if and only if
∫

((−x) + (−y))dv′ =
∫

(−x)dv′ +
∫

(−y)dv′. So
the result holds because x and y are E-cominimum if and only if −x and −y are E-comaximum.

Using the conjugate, an analogous characterization can be done for E-comaximum additivity.

Corollary 4 Let v =
∑

T∈F γT u′
T ∈ RF be a game. The following three statements are equiv-

alent: (i) v is E-comaximum additive; (ii) v(T1 ∪ T2) + v(T1 ∩ T2) = v(T1) + v(T2) for all
(T1, T2) ∈ F × F with (Ω\T1,Ω\T2) ∈ W (E); (iii) γT = 0 for any T /∈ Υ(E). Therefore, if E is
complete, v is E-comaximum additive if and only if γT = 0 for any T /∈ E.

Proof. Note that v′ =
∑

T∈F γT uT . By Lemma 11, v is E-comaximum additive if and only if v′

is E-cominimum additive. So the result follows from Theorem 3.

A slight modification of Theorem 3 shows that the completeness is tight for our characteri-
zation in the following sense.

Corollary 5 The following statements are equivalent: (i) E is complete, i.e., Υ(E) = E; (ii) For
any game v =

∑
T∈F βT uT ∈ RF , v is E-cominimum additive if and only if βT = 0 for any

T /∈ E.

Proof. (i) ⇒ (ii). This is a restatement of Theorem 3.
(ii) ⇒ (i). Suppose that E is not complete. Then there is T ∗ /∈ E which is E-complete, i.e.,

T ∗ ∈ Υ(E). Consider a game v =
∑

T∈F βT uT = uT∗ . Since βT = 0 for every T /∈ Υ(E), v is
E-cominimum additive by Theorem 3. On the other hand, if (ii) is true, v is not E-cominimum
additive because βT∗ 6= 0 and T ∗ /∈ E , which is a contradiction.

5 Applications

5.1 The E-capacity and ε-contamination

Denote by ∆(Ω) the set of all probability measures and by ΠE the set of probability measures
assigning probability one to an event E ∈ F , i.e., ΠE = {p ∈ ∆(Ω) | p(E) = 1}.

Definition 8 For π ∈ ∆(Ω), 0 ≤ ε ≤ 1, and E ∈ F , the set of probability measures {(1− ε)π +
εp | p ∈ ΠE} is referred to as the ε-contamination of π on E.

The notion of ε-contamination is old; it is discussed in the literature of robust statistics since
Huber (1964). In economic applications, the ε-contamination is used with the maximin decision
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rule (Gilboa and Schmeidler, 1989) which evaluates a function x by the minimum of expected
values with respect to the ε-contamination. The following result characterizes this decision rule,6

which follows from a more general result we shall present later.

Proposition 1 Let v ∈ RF be a convex capacity and E ∈ F be an event. Then the following three
statements are equivalent: (i)

∫
(x+y)dv =

∫
xdv +

∫
ydv whenever arg minE x∩arg minE y 6= ∅;

(ii) there exist π ∈ ∆(Ω) and ε ∈ [0, 1] such that v = (1−ε)π+εuE; (iii) there exist π ∈ ∆(Ω) and
ε ∈ [0, 1] such that

∫
xdv = min{

∫
xdq | q = (1−ε)π+εp, p ∈ ΠE} for any function x ∈ RΩ, i.e.,

the Choquet integral of x is the minimum of expected values with respect to the ε-contamination
of π on E.

The maximin decision rule with the ε-contamination of π on E is represented by the Choquet
integral with respect to v = (1−ε)π+εuE .7 Thus, we also call this capacity the ε-contamination
of π on E.

Eichberger and Kelsey (1999) investigated the class of capacities which explain the Ellsberg
paradox. They called these capacities the E-capacities, and the ε-contamination is a special case.

Definition 9 Let E1, . . . , EK be non-empty, disjoint subsets of Ω with |Ek| ≥ 2 for each k. Let
E = {E1, . . . , EK}. A capacity v ∈ RF is said to be an E-capacity with respect to E if there
exists a probability π and a number ε ∈ [0, 1], and probability assignment ρ on E (i.e. ρ(Ek) ≥ 0
for each k and

∑K
k=1 ρ(Ek) = 1) such that v = (1 − ε)π + ε

∑K
k=1 ρ(Ek)uEk

.

Eichberger and Kelsey (1999) gave an axiomatic characterization of the E-capacity, and so
that of the ε-contamination, a fortiori. The next result, which generalizes Proposition 1, is
essentially Proposition 3.1 of Eichberger and Kelsey (1999), but we give an alternative proof
based on our main result.8

Proposition 2 Let v ∈ RF be a convex capacity. Let E1, . . . , EK be non-empty, disjoint subsets
of Ω with |Ek| ≥ 2 for each k. Let E = {E1, . . . , EK}. Then the following three statements
are equivalent: (i) v is E-cominimum additive; (ii) v is an E-capacity with respect to E; (iii)
there exists a probability π and numbers ε1, . . . , εK ∈ [0, 1] with

∑K
k=1 εk ≤ 1 such that

∫
xdv =

min{
∫

xdq | q = (1 −
∑K

k=1 εk)π +
∑K

k=1 εkpk, pk ∈ ΠEk
} for any function x ∈ RΩ.

Proof. (i) ⇒ (ii): Let E∗= E ∪ F1. From Lemma 9, E∗ is complete. So by Theorem 3, (i)
implies that βT = 0 for every T /∈ E∗ where v =

∑
T∈F βT uT . Therefore, v must be of the

form v =
∑

ω∈Ω β{ω}u{ω} +
∑

k βEk
uEk

, and this expression is unique. Since v(Ω) = 1, we have

6Proposition 1 is a generalization of Kojima (2004) who considered the case with E = Ω.
7In fact, the core of v = (1 − ε)π + εuE coincides with the ε-contamination of π on E, which is a consequence

of additivity of the core (cf. Danilov and Koshevoy, 2000).
8Nishimura and Ozaki (2006) gave an alternative axiomatization of the ε-contamination. Their axioms are not

directly comparable with Eichberger and Kelsey (1999) or Kojima (2004).
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∑
ω∈Ω β{ω}+

∑K
k=1 βEk

= 1. Since v is non-negative, for all ω ∈ Ω, β{ω} = v({ω}) ≥ 0. We claim
βEk

≥ 0 for each k. To see this, write Ek as the union of non-empty disjoint sets, F1 and F2, which
is possible because |Ek| ≥ 2. Then by the convexity of v, and from the assumption that Ek’s
are disjoint,

∑
ω∈Ek

β{ω} + βEk
= v(Ek) ≥ v(F1) + v(F2) =

∑
ω∈F1

β{ω} +
∑

ω∈F2
β{ω}. Hence

βEk
≥ 0. Set ε =

∑K
k=1 βEk

= 1−
∑

ω∈Ω β{ω}. We show that v =
∑

ω∈Ω β{ω}u{ω} +
∑

k βEk
uEk

is indeed the required expression. If 0 < ε < 1, set ρ(Ek) = βEk
/ε for each k, and set π =

1
1−ε

∑
ω∈Ω β{ω}u{ω}. If ε = 0, set π =

∑
ω∈Ω β{ω}u{ω}, and if ε = 1, set ρ(Ek) = βEk

for each k.
(ii) ⇒ (iii): Assume v = (1− ε)π + ε

∑K
k=1 ρ(Ek)uEk

. Using (2), for any function x ∈ RΩ, we
have

∫
xdv =

∫
xd((1− ε)π + ε

∑K
k=1 ρ(Ek)uEk

) = (1− ε)
∫

xdπ + ε
∑K

k=1 ρ(Ek)min
Ek

x = (1−
ε)

∫
xdπ+ε

∑K
k=1 ρ(Ek)minpk∈ΠEk

∫
xdpk. Since Ek’s are disjoint, this is equal to min{

∫
xdq | q =

(1 − ε)π + ε
∑K

k=1 ρ(Ek)pk, pk ∈ ΠEk
}, so set εk = ερ(Ek), and we have (iii) since

∑K
k=1 εk =

ε
∑K

k=1 ρ(Ek) = ε.
(iii) ⇒ (i): Let two functions x and y be E-cominimum. Then minEk

(x + y) = minEk
x +

min
Ek

y for every k. Set ε = 1−
∑K

k=1 εk. We have
∫

(x+y)dv = min{
∫

(x+y)dq | q = (1−ε)π +∑K
k=1 εkpk, pk ∈ ΠEk

} = (1− ε)
∫

(x + y)dπ +
∑K

k=1 εk min
Ek

(x + y) = (1− ε)(
∫

xdπ +
∫

ydπ) +∑K
k=1 εk(minEk

x+minEk
y) = (1−ε)

∫
xdπ+

∑K
k=1 εk minEk

x+(1−ε)
∫

ydπ+
∑K

k=1 εk minEk
y =∫

xdv +
∫

ydv, establishing E-cominimum additivity of v.

Let us point out that although we started with a convex capacity for the sake of brevity,
the results above can be translated to an “uncertainty averse preference based” axiomatiza-
tion of the E-capacity and the ε-contamination in a straightforward manner. Indeed, replace
Schmeidler (1989)’s comonotonic independence axiom with the E-cominimum additivity with
E = {E1, . . . , EK}. Since E-cominimum additivity implies comonotonic additivity, by Schmei-
dler’s theorem, we have a utility function in the Choquet expected utility form with a convex
capacity v. Then apply the result above to show that v is the E-capacity with respect to E .

5.2 Multi-period decisions

We shall consider a multi-period decision model developed by Gilboa (1989), which axiomatizes
the following special form of utility:

n∑
i=1

pix (i) +
n∑

i=2

δi|x(i) − x(i − 1)|, (5)

where p1, . . . , pn and δ2, . . . , δn are constants.9 Interpret Ω = {1, . . . , n} as a collection of time
periods, and x(1), . . . , x(n) as a stream of income. The utility in (5) describes the value of the
stream of income as a weighted average

∑n
i=1 pix(i) plus an adjustment factor

∑n
i=2 δi|x(i) −

x(i − 1)| which measures the variations of the stream.
9We thank I. Gilboa for suggesting this application. This is a simplified version of the model studied in Gilboa

(1989), which we adopted for ease of exposition.
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Let E = {{i, i + 1} | 1 ≤ i < n}. Thus, E is the collection of adjacent time periods. Note that
E ∪ F1 is complete since if E /∈ E ∪ F1 then E must contain two points which are not adjacent.

Proposition 3 Let v =
∑

T∈F βT uT ∈ RF be a game, and define E as above. Then the following
two statements are equivalent: (i) v is E-cominimum additive; (ii) the Choquet integral with
respect to v has the form (5).

Proof. Note that |a − b| = a + b − 2min{a, b} for any a, b ∈ R. So, (5) can be written as

n∑
i=1

pix(i) +
n∑

i=2

δi|x(i) − x(i − 1)| =
n∑

i=1

pix(i) +
n∑

i=2

δi(x(i) + x(i − 1) − 2min{x(i), x(i − 1)})

=
n∑

i=1

βix(i) +
n∑

i=2

β{i−1,i} min{x(i), x(i − 1)}, (6)

where β1 = p1 + δ2, βi = pi + δi + δi+1 for i ∈ {2, . . . , n − 1}, βn = pn + δn, and β{i−1,i} = −2δi

for i ∈ {2, . . . , n}.
Since E ∪ F1 is complete, by Theorem 3, (i) is equivalent to the condition that βT = 0 unless

T is a singleton or T ∈ E . This is true if and only if the Choquet integral with respect to v is of
the form (6).
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