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Abstract

We present a model of incomplete information games with sets of priors. Each
player is endowed with a set of priors, and the sets of priors may or may not be com-
mon among the players. Upon arrival of private information, each player “updates”
his set of priors to a set of posterior beliefs, by first applying the Bayes rule to each of
priors in this set and then selecting a possibly proper subset of these. And finally the
player evaluates his actions by the most pessimistic posterior beliefs à la Gilboa and
Schmeidler (1989). So each player’s preferences may exhibit non-linearity in proba-
bilities which can be interpreted as the player’s aversion to ambiguity or uncertainty.
In this setup, we define a couple of equilibrium concepts, establish existence results
for them, and demonstrate by examples how players’ views on uncertainty about the
environment affect the strategic outcomes.
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1 Introduction

We present a model of incomplete information games with multiple priors. More specif-
ically, our model is the same as the standard Bayesian games of incomplete information
except for one point: instead of a single common prior over the states, we assume that
there is a set of priors for each player which may differ among the players.

Upon arrival of private information, each player “updates” the set of priors to a set
of posterior beliefs, by first applying the Bayes rule to each of priors in this set and then
selecting a possibly proper subset of these. And finally the player evaluates his actions by
the most pessimistic belief à la Gilboa and Schmeidler (1989). So each player’s preferences
may exhibit non-linearity in probabilities which can be interpreted as the player’s aversion
to uncertainty or ambiguity.

Our model is simple and very tractable since it is a minimal departure from the stan-
dard Bayesian approach for the games of incomplete information. On the other hand, our
model is rich enough to capture important aspects of incomplete information games, and
distinguish the two key ingredients of incomplete information: lack of information about
payoffs and uncertainty (ambiguity) about them.

In this setup, we define a couple of equilibrium concepts, establish existence results
for them, and demonstrate by examples how players’ views on uncertainty about the
environment affect the strategic outcomes. We will make it clear that not only the aversion
to uncertainty matters in one player’s own decision making, but also it has strategic effects
on the other players’ strategic decision making.

To appreciate our contribution, let us start with a brief review of the standard ap-
proach. By definition, a game of incomplete information is a description of strategic
environment where the players do not necessarily know some of the important parameters
of the environment, such as payoffs. Harsanyi (1967–68) advocated the approach of rep-
resenting incomplete information games by Bayesian games with imperfect information,
which is now the standard approach.

For our purpose, Harsanyi’s points can be summarized into the following two points.
The first point is that the source of uncertainty can be expressed by an underlying state
space, and the incompleteness can be reduced to differences of private information among
the players. The reason is that if there is any uncertainty about the fundamental speci-
fication of the game, it is due to the fact that the description of the underlying states is
insufficient. The rational players then would not and should not be satisfied with such a
description. If the description is refined, to its limit, then all the payoff relevant issues
and the structure of knowledge among players can be summarized in a state space. We
accept this view in our model, and assumes that there is an underlying state space and
each state is a complete description of the game.

The second point is that there is a single, common prior over these states and each
player evaluates his private information by the Bayes rule. We have a different view on this.
When the players do not know payoffs and thus the information is incomplete, the players
must take into account “risks” about payoffs: since his private information is insufficient,
the player can learn payoffs only probabilistically at best. But there is also uncertainty
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or ambiguity about the strategic environment: the player may have some thoughts about
possibilities, but they are so vague that the player is unable to assign probabilities.

In principle, a model of incomplete information games should be able to address risks
and uncertainty separately, to study if and how these two aspects of incomplete information
affect the outcome of the game. But in Harsanyi’s framework with a single and common
prior, by construction, there is no technical difference between genuine lack of information
and uncertainty about payoffs and/or knowledge among players.

So even accepting the postulate that the players should be able to describe all the
relevant states, we think that it is still natural that the players have little idea about the
likelihood of these states. For instance we want to allow for an event whose probability is
perfectly agreed, but the players cannot evaluate subevents of the event; that is, there are
many ways to assign probabilities to the subevents, and the players are not sure about
which is the right one. Also, if such possibilities are to be considered, it is no longer clear
if these assignments should be common. Thus we allow for multiple priors which are not
necessarily common.

The assumption of multiple priors can be justified at the level of individual decision
making to begin with (Gilboa and Schmeidler, 1989). It has been criticized that the
standard framework of Bayesian theory does not necessarily capture the aspect of decision
making which can be attributed to uncertainty or ambiguity of the problem; e.g., the
Ellsberg paradox. Uncertainty is not resolved by considering more sophisticated Bayesian
models, and the attitude towards uncertainty should be modelled differently from that
towards risks.

In strategic environments of incomplete information, we think that the use of multiple
priors is justified and interesting all the more. Say we accept the Bayesian view and
assume that the Ellsberg paradox type problem does not occur as far as a player evaluates
his own payoffs. But there still remains a room for uncertainty about what the other
players might be contemplating, and a player may hesitate to assume the same ability for
all the other players. The strategic decision making will be affected by the way the game
is perceived by, possibly a fraction of, the other players in the game.

In other words, even if the uncertainty concerning payoff relevant issues may be reduced
to risks, the same procedure may be unduly demanding for the uncertainty on knowledge
about how the other players might think about each other. In such an environment, there
will be strategic effects from the uncertainty about players’ knowledge, which cannot be
addressed by a single common prior model.

Allowing uncommon sets of priors is perhaps more controversial, since if these sets
are singletons, our model is a Bayesian game with uncommon prior, and thus subject to
Harsanyi’s criticism. But since we have no firm foundation of the type space construction
for our setup, we do not know if a common set of priors is a natural assumption in this
context. So we chose to present a model allowing for personal sets of priors and established
the existence results. But all of our motivating examples have a common set of priors. In
other words, the strategic effects we presented in this paper do not rely on the diversity
of sets of priors.
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We shall now explain the other ingredients of our model analysis, i.e., updating rules.
For this, it will be helpful to consider the following simple example. Say there are two
experienced investors who are interested in the rating of the profitability of a firm to be
announced near future. There are four possible ratings, 1, 2, 3, and 4, where the smaller
number is better. From the past experiences, the investors know each other very well
and they share the idea that the profitability of this firm is neutral in the sense that the
probability of good ratings 1 or 2 is 0.5, and that of bad ratings 3 or 4 is 0.5. Investor 1
is very good at identifying very promising firm and Investor 2 is very good at identifying
very bad one. That is, by the private information, Investor 1 can tell {1} from {2, 3, 4},
and Investor 2 can tell {4} from {1, 2, 3}. Now suppose that the firm’s profitability is in
fact very good. Then Investor 1 knows for sure that the rating will be 1, but he is unsure
about what Investor 2 might think. Investor 1 can deduce that Investor 2 concludes that
the firm’s profitability is not very bad, but it is ambiguous how Investor 2 might think
about the relative likelihood in {1, 2, 3}.

A natural set of priors is the set of all probabilities on {1, 2, 3, 4} such that probabilities
of events {1, 2} and {3, 4} are 0.5, and thereby we can express the fact that the two
investors agree upon the likelihood of these two events. When the true state is 1, Investor
2 updates his beliefs. Since he was unable to determine the probabilities over 3 and 4
to start with, he will not be able to tell whether 4 did not occur by chance, or 4 had no
chance to start with. So learning that 4 has not occurred does not reduce uncertainty
about the relative probabilities of {1, 2} and {3}, not to mention those between 1 and 2.
Then Investor 1 must take into account not only the fact that Investor 2 does not know if
1 has occurred or not, but also the fact that Investor 2 is not able to assign a unique set
of probabilities to {1, 2, 3}.

Notice that the above reasoning depends on the updating rule. In principle player’s
optimal behavior depends on how he updates priors. We assume that the updating rule is
also part of the description of the game, i.e., the updating rules are exogenously given and
the players understand the updating rules of all the players. We do so by the following
reasons. First, in the multiple priors models, there are various reasonable updating rules,
and they have different strategic implications. So the model should not subscribe itself
to a particular updating rule. Secondly, since updating rules have strategic implications,
endogenizing them will yield excessive degrees of freedom, and consequently the model
will lose its descriptive power. Thirdly, studying the roles of different updating rules in
games is of interest for itself.

Obviously, there can be many reasonable criteria for decision making under uncer-
tainty or ambiguity. We adopt the Gilboa-Schmeidler approach to capture uncertainty
and aversion to it. Although we are aware of valid criticism of Epstein and Zhang (2001)
that this is not exactly what should be termed uncertainty or ambiguity, we contend that
the Gilboa-Schmeidler approach at least addresses some important aspects of uncertainty
and ambiguity, and its tractable form is also very appealing.

We propose interim equilibrium concepts in which each player chooses the best action
for any realization of private signal in equilibrium. An ex ante equilibrium is defined
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naturally from the priors as well in our model, but it is well known that a player with
multiple priors tends to exhibit dynamic inconsistent behavior for any updating rule;
that is, a strategy which is utility maximizing ex ante may specify actions which will be
deemed inferior once private information is received, and vice versa. We contend that the
interim notion is more relevant in applications; even in Harsanyi’s framework, the ex ante
maximization of utility is a purely theoretical tool and it happens to coincide with the
interim notion because the expected utility model with Bayesian updating is dynamically
consistent.

Nevertheless, it is of interest to compare the interim equilibrium with the ex ante
equilibrium to investigate the implication of some players’ dynamic inconsistent behavior,
since one player’s dynamically inconsistent behavior affects all the others who may well
be textbook Bayesian players with single prior. We emphasize again that the study of
such a non-Bayesian behavior is all the more important in strategic environments. Even
if one regards the non-Bayesian behavior as irrelevant at the level of individual decision
making, he will choose different actions from the ones he would against Bayesians, since
actions taken by those non-Bayesians will influence his welfare, and vice versa.

Let us mention related works. Lo (1998) uses a multiple prior model to study auctions
as a game of incomplete information, which Ozdenoren (2002) and Chen et al. (2003)
further elaborate. Salo and Weber (1995) use a Choquet expected utility model with a
convex capacity to study auctions as a game of incomplete information. Their model can
be regarded as a game of incomplete information with multiple priors because it is known
that a Choquet expected utility model with a convex capacity can be represented as a
multiple prior model. As far as we know, however, there has been no attempt to study
incomplete information games as a general class of games with multiple priors, with an
important exception of Epstein and Wang (1996).1 They present a very general form of
games of incomplete information and our model constitutes a subclass of their games. Our
focus is rather on presentation of workable and user friendly special models, which is rich
enough to address issues of incompleteness of information beyond the standard Bayesian
approach.

Let us conclude this introduction with an outline of this paper. We shall give the
details of our model in Section 2. We then propose two equilibrium concepts, which
are natural extensions of the Bayesian Nash equilibrium in Section 3. We contend that
both concepts make sense, and establish the existence results for them. Section 4 contains
examples to demonstrate how our model works and to show some interesting features of the
model. In Section 5 we discuss the foundations of the model to argue why our model with
these equilibrium concepts constitutes a desirable representation of incomplete information
games. We also provide a result generalizing the agreement theorem of Aumann (1976)
under the common multiple prior assumption, which is an interesting by-product. We also
discuss complete information games and related works in the literature.

1See also Ahn (2003).
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2 Incomplete information games with multiple priors

2.1 Basic setup

We consider finite player incomplete information games with finitely many actions and
states. Except for uncommon multiple priors, the setup is standard. The players are
indexed by i ∈ I := {1, . . . , I}. Each player i ∈ I has a finite set of actions denoted by
Ai. The set of action profiles is denoted by A =

∏
i∈I Ai with generic element a = (ai)i∈I .

We shall also write a = (ai, a−i) ∈ Ai ×
∏

j 6=i Aj abusing notation.
The set of payoff relevant states is denoted by Ω, and Ω is assumed to be finite.2

The incompleteness of information is summarized by a random signal τ = (τi)i∈I , each
component of which is observed privately by each player. When ω ∈ Ω occurs, player
i ∈ I observes a signal τi (ω), and then chooses an action in Ai. Denote by Ti the range
of τi and let T =

∏
i∈I Ti. Thus τi is a function from Ω to Ti and τ = (τi)i∈I is a function

from Ω to T .
For any finite set X denote by ∆(X) the set of all probability distributions on X. A

strategy of player i ∈ I is a function σi from Ti to ∆(Ai). Write σi (ai|ti) for the probability
of player i choosing action ai ∈ Ai when he observes ti ∈ Ti by convention. Denote by Si

the set of all strategies for player i and let S =
∏

i∈I Si be the set of strategy profiles. For
an action profile a = (ai)i∈I ∈ A and a profile of realization of signals t = (ti)i∈I ∈ T , we
write σ (a|t) for the probability of action profile a chosen, i.e., σ (a|t) =

∏
i∈I σi (ai|ti). We

shall also write σ = (σi, σ−i) ∈ Si ×
∏

j 6=i Sj and σ−i (a−i|t−i) =
∏

j 6=i σj (aj |tj), abusing
notation.

Player i’s preference ordering over strategy profiles will be generated by a payoff func-
tion ui : A× Ω → R. In the standard incomplete information game, one could assume in
addition that the payoff function ui(a, ω) depends on players’ observed realizations of the
signals only, by replacing ui(a, ω) with ûi(a, t) = E[ui(a, ω)|τ(w) = t]. In our framework,
however, this transformation may change the strategic structure of the game because we
will consider multiple priors and the expectation operator is not uniquely determined.

2.2 Multiple priors

We depart from the standard framework of incomplete information games by assuming
that there is a non-empty compact set of priors Pi ⊆ ∆(Ω) for player i ∈ I. We assume
that there is no null signal, i.e., P (τ−1

i (ti)) > 0 for all ti ∈ Ti, P ∈ Pi, and i ∈ I. The
standard incomplete information game corresponds to the case where each Pi is a singleton
for all i ∈ I, and they coincide. The set Pi is intended to capture the uncertainty about
the structure of the game, which is different from the strategic risk generated by the other
players’ choices of actions. We will demonstrate the different roles of “uncertainty” and
“risk” by some examples later.

2The model can be extended to the model where Ω is an infinite measurable state space, but we restrict

our attention to the finite case in order to avoid various measurability and continuity issues associated

with an infinite state space.
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A natural and interesting case is when the set of priors is generated by an underlying
information sub-field E ⊆ 2Ω and a probability measure Q defined over E . This case,
which covers all of our illustrating examples presented later, naturally induces a common
set of multiple priors. First, note that Q assigns a probability to every E ∈ E , but not
to E 6∈ E . Thus, if E 6= 2Ω, then a probability of some event is not known. The inner
measure P∗ : 2Ω → [0, 1] and the outer measure P ∗ : 2Ω → [0, 1] are defined by the rules:

P∗(E) = sup
X⊆E,X∈E

Q(X), P ∗(E) = inf
E⊆X,X∈E

Q(X)

for all E ⊆ Ω. If E = 2Ω, P∗ = Q = P ∗ by construction. Each player i has the set of
priors as follows:

Pi = {P ∈ ∆(Ω) : P∗(E) ≤ P (E) ≤ P ∗(E) for all E ⊆ Ω} . (1)

To interpret, think of E as an information structure which is known to player i, and Q

is a probability assessment of E , and assume that they are objectively given. For an
“unknown” event E /∈ E , P∗(E) is the most cautious estimate of the probability of E and
P ∗(E) is the most optimistic estimate of probability of E. Thus in this case, the set Pi

can be thought as the set of priors which are consistent with Q and E in the sense that
each P ∈ Pi assigns to each unknown event a probability weight at least as much as the
cautious estimate and at most as much as the optimistic estimate.

2.3 Updating rules

Each player chooses an action after the private signal is revealed, as we mentioned ear-
lier. Like in the standard Bayesian games, updating upon private information generates
the differences in views of players. Since the prior is not unique, however, the private
information will matter through two channels in our framework.

The first is the channel through the standard Bayesian updating: when player i ∈ I
observes ti, he calculates the conditional probability distribution for each prior P ∈ Pi by
the Bayes rule, and the resulting distribution in turn affects his choice of actions, just as
in the standard framework.

But the following second channel is not captured in the standard framework: since
information is private, the sets of conditional probability distributions are different among
the players in general, even if Pi’s are common among i ∈ I. In heuristic words, a reve-
lation of private information might change the degree of uncertainty about the structure
of the game, and this may occur differently among the players even with a common set
of priors. Thus differences in views about the uncertainty of payoffs are generated by
how the players process their private information to re-evaluate the uncertainty. We shall
formalize these ideas below.

For each P ∈ ∆(Ω) and ti ∈ Ti, denote by P (·|ti) ∈ ∆(Ω) the conditional probabilities
over Ω; that is, P (E|ti) = P

(
τ−1
i (ti) ∩ E

)
/P

(
τ−1
i (ti)

)
for E ⊆ Ω. Let

Pi(ti) = {P (·|ti) ∈ ∆(Ω) : P ∈ Pi}
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be the set of conditional probability distributions when ti ∈ Ti has been observed. An
updating rule Φi : Ti → 2Pi(ti) for player i ∈ I is a function that assigns a non-empty
compact subset of Pi(ti) to each ti ∈ Ti. After ti is observed, player i uses posteriors
in Φi (ti) to evaluate his actions. The updating rules for players are given as one of the
primitives of the game, and the equilibrium concepts for themselves will be well defined
for any such given rules.

When Pi is a singleton for all i ∈ I, the updating rule coincides with the Bayes rule,
and our model will be reduced to the standard Bayesian games with possibly uncommon
priors. But when Pi is not a singleton, there is a vast variety of sensible updating rules in
principle. Among them, there are a couple of natural and technically tractable updating
rules of particular interest, and we shall concentrate on these cases in the examples we
consider.3

The first is the Fagin-Halpern updating rule or the full Bayesian (FB) updating rule
(Fagin and Halpern, 1990; Jaffray, 1992):

Φi (ti) = Pi(ti) for all ti ∈ Ti. (2)

In words, this is the case where the private information leads the player to update the risk
component of the priors but does not help him to update the degree of uncertainty.

The second is the Dempster-Shafer updating rule or the maximum likelihood (ML)
updating rule (Dempster, 1967; Shafer, 1976):

Φi (ti) = {Q(·|ti) ∈ Pi(ti) : Q ∈ arg max
P∈Pi

P
(
τ−1
i (ti)

)} for all ti ∈ Ti. (3)

Thus, Φi (ti) is the set of posteriors derived from priors that evaluates ti as the most likely
signal.

2.4 Definition of games and decision rules

To sum up the setup, an incomplete information game with multiple priors is a tuple
G := 〈Ω, I, (τi)i∈I , (Pi)i∈I , (Φi)i∈I , (Ai)i∈I , (ui)i∈I〉. The incompleteness of information is
expressed by the priors (Pi)i∈I , the signals (τi)i∈I , and the updating rules (Φi)i∈I .

The equilibrium concepts we introduce in the next section adopt the following decision
rules in G. After ti is observed, player i uses posteriors in Φi (ti) to evaluate his actions.
The interim payoff to a randomized action µi ∈ ∆(Ai) given σ−i ∈ S−i(=

∏
j 6=i Sj) and

Q ∈ Φi (ti) is

Ui(µi, σ−i|Q) =
∑

ω∈Ω

∑

ai∈Ai

∑

a−i∈A−i

µi(ai)ui (ai, a−i, ω) σ−i (a−i|τ−i (ω))Q(ω).

We write Ui(ai, σ−i|Q) instead of Ui(µi, σ−i|Q) if µi(ai) = 1. Since the set of actions and
the set of states are finite, Ui(µi, σ−i|Q) is continuous in (µi, σ−i, Q). We assume that each
player uses an extremely pessimistic decision rule. That is, given the updated priors, we
require that each player evaluates his actions using the worst possible scenario. Formally,

3See Gilboa and Schmeidler (1993) for axiomatization of updating rules.
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after ti ∈ Ti is observed, the interim payoff to a randomized action µi ∈ ∆(Ai) given
σ−i ∈ S−i is

Vi (µi, σ−i|ti) = min
Q∈Φi(ti)

Ui(µi, σ−i|Q). (4)

Notice that the interim payoff function is well behaved, continuous and concave in
µi because Ui is continuous and the set Φi (ti) is compact by assumption. The concavity
follows since it is the minimum of linear functions of µi. But Vi (µi, σ−i|ti) is not necessarily
linear in µi. So a player may strictly prefer to randomize actions, which will lead us to
consider two different equilibrium concepts. Such an extreme decision rule is well studied
in the decision theory literature (Gilboa and Schmeidler, 1989) and hence it constitutes
one of natural specifications of games with uncertainty and ambiguity, but certainly not
the only one.4

Notice that if each player can commit to his strategy ex ante, there is a natural ex
ante equilibrium where player i’s payoff to strategy profile σ is simply

min
P∈Pi

∑

ω∈Ω

∑

a∈A

ui (a, ω) σ (a|τ (ω))P (ω).

But as is discussed in the introduction, we are primarily interested in interim concepts,
and the ex ante equilibrium will be referred in so far as to examine the implication of
dynamic inconsistent behavior.5

3 Equilibrium concepts and existence

3.1 Equilibrium with multiple priers I: mixed strategy

We start with an equilibrium concept for G = 〈Ω, I, (τi)i∈I , (Pi)i∈I , (Φi)i∈I , (Ai)i∈I , (ui)i∈I〉
adopting the standard interpretation of mixed strategy in incomplete information games.

Definition 1 A strategy profile σ∗ ∈ S is a mixed equilibrium of G if, for each i ∈ I and
ti ∈ Ti,

Vi

(
σ∗i (ti) , σ∗−i|ti

) ≥ Vi

(
µi, σ

∗
−i|ti

)
(5)

for all µi ∈ ∆(Ai).

That is, in a mixed equilibrium of G, each player is maximizing his interim payoffs
by choosing a lottery conditional on his signal. It is clear that if the set of priors Pi is a
singleton for all i ∈ I, the mixed equilibrium of G is equivalent to the standard Bayesian
Nash equilibrium.

4It is known that, for some class of sets of priors, the decision rule of Gilboa and Schmeidler (1989)

coincides with the decision rule based upon the Choquet integral (Schmeidler, 1989) with respect to convex

capacities. In that case, our model of an incomplete information game with multiple priors can be defined

as an incomplete information game with convex capacities.
5Obviously, if one never refers to the ex ante stage, one could make the collection of sets {Φi (ti) : ti ∈ Ti}

as the sole primitive and the sets of priors are redundant. On the other hand, the model then could not

discuss dynamic consistency and updating within the model, among others. We adopted this formulation

since we are to model a game, not just particular equilibrium concepts.
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The condition (5) trivially implies that Vi

(
σ∗i (ti) , σ∗−i|ti

) ≥ Vi

(
ai, σ

∗
−i|ti

)
for any

action ai ∈ Ai, i.e., no pure action yields a higher payoff to player i. Since the interim
payoff function Vi (µi, σ−i|ti) given by (4) is concave in µi, pure actions will often be
strictly dominated by optimally mixed actions.6

A mixed equilibrium is a Nash equilibrium of the game where each ti is treated as an
independent player, and so under our finiteness assumption,7 it exists.

Proposition 2 A mixed equilibrium of G exists.

Proof. We apply the standard existence theorem for a Nash equilibrium. Since Ω and Ai

are finite, Si is compact and convex for all i ∈ I. For σ−i ∈ S−i, let Bi (σ−i) ⊆ Si be the
set of best responses of player i:

Bi (σ−i) =
⋂

ti∈Ti

{
σi ∈ Si : σi (ti) ∈ arg max

µi∈∆(Ai)
Vi (µi, σ−i|ti)

}
.

We are done if σ−i 7→ Bi (σ−i) is a non-empty, compact and convex valued, and up-
per hemicontinuous correspondence by applying Kakutani fixed point theorem to σ 7→∏

i∈I Bi (σ−i).
Note that Ui(µi, σ−i|Q) is continuous in (µi, σ−i, Q) and that Φi (ti) is compact. Since

Vi(µi, σ−i|ti) is the minimum of Ui(µi, σ−i|Q) over Q ∈ Φi(ti), Vi (µi, σ−i|ti) is continuous
in (µi, σ−i) and concave in µi. Thus, for each ti, the correspondence which maps σ−i

to the set {σi ∈ Si : σi (ti) ∈ arg maxµi Vi (µi, σ−i|ti)} is non-empty, compact and convex
valued, and upper hemicontinuous. Thus, Bi(σ−i) is compact and convex valued, and
upper hemicontinuous as the intersection of such correspondences. Finally, Bi (σ−i) is
non-empty, since for each ti, {σi ∈ Si : σi (ti) ∈ arg maxµi Vi(µi, σ−i|ti)} is non-empty and
this set puts no restriction on the component corresponding to t′i 6= ti. This completes the
proof. ¥

Since a mixed equilibrium is a Nash equilibrium of a strategic form game, it inherits
the standard properties of the Nash equilibrium. For instance, in a mixed equilibrium, no
player ever uses a dominated action.

3.2 Equilibrium with multiple priors II: pure strategy

Allowing mixed strategy as in the previous subsection is a technically natural extension of
the standard Bayesian Nash equilibrium. However, since preferences exhibit non-linearity
in probability, the concept of mixed strategy is less innocuous than in the standard case.
For instance, since the preference over mixed strategies is concave, the player may wish to
randomize two actions if they are equally favorable. Then it is not clear what prevents the
player from randomizing, beyond the strategy space specified before. Such possibilities
are simply assumed away in the previous setup.

Thus we introduce an alternative notion, which is a natural analogue to the equilibrium
in beliefs by Crawford (1990), so we shall adopt the same terminology.

6Such an example will be discussed in Subsection 4.3.
7Our existence results rely on the finiteness of the state space. See Section 5.4
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Definition 3 A strategy profile σ∗ ∈ S is an equilibrium in beliefs of G if, for each i ∈ I
and ti ∈ Ti, σi(ai|ti) > 0 implies

Vi

(
ai, σ

∗
−i|ti

) ≥ Vi

(
a′i, σ

∗
−i|ti

)
(6)

for all a′i ∈ Ai.

The equilibrium in beliefs of G can be understood just as an equilibrium in beliefs
for the complete information games in strategic form. In particular, in an equilibrium
in beliefs σ∗, each player i is taking a pure action, but is believed to be randomizing
over pure actions that are indifferent, as prescribed in σ∗i , by the other players. Such
beliefs are consistent with player i’s interim payoff maximization behavior, although it is
not necessarily fully self-fulfilling in the sense that players’ beliefs coincide with players’
actual (methods of) choices of actions.

It is clear that if the set of priors Pi is a singleton for all i ∈ I, an equilibrium in
beliefs of G is equivalent to the standard Bayesian Nash equilibrium. It follows directly
from the definitions that if a mixed equilibrium σ∗ has the property that every player i

at any ti chooses a pure action, then it is an equilibrium in beliefs. When the updating
rule is singleton-valued, then both equilibrium concepts coincide, since after updating
the players’ preferences are linear in probability assigned to actions. But in general, an
equilibrium in beliefs of G is not necessarily a mixed equilibrium of G, nor vise versa.

The existence can be established by modifying Crawford’s existence argument, as
follows.8

Proposition 4 An equilibrium in beliefs of G exists.

Proof. For each i ∈ I, and for any σ−i ∈ S−i, let Bi (σ−i) be defined by the rule:

Bi (σ−i) =
⋂

ti∈Ti

{
σi ∈ Si : σi (ai|ti) = 0 if ai /∈ arg max

a′i∈Ai

Vi

(
a′i, σ−i|ti

)}
.

By construction, Bi (σ−i) is non-empty. It is convex valued and upper hemicontinuous as
the intersection of convex valued and upper hemicontinuous correspondences (note that
Vi (a′i, σ−i|ti) is continuous in σ−i). So the correspondence σ 7→ ∏

i∈I Bi (σ−i) has a fixed
point σ∗. Then by the construction of Bi, σ∗ constitutes an equilibrium in beliefs of G. ¥

Since each player chooses a best action given information and the others’ strategies,
no player ever chooses an action which is dominated by another (pure) action. An equilib-
rium action may be dominated by a “mixed action” but like Crawford’s idea in complete
information games, the basic hypothesis here is that the players never randomize, and it
is their beliefs which are in equilibrium.

8Again, the finiteness assumption is important. See Section 5.4 for discussion.
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4 Examples: uncertainty under strategic interaction

We shall present examples which clarify the role of uncertainty or ambiguity in our model.

4.1 Difference of uncertainty induced by private information

In our setup, incomplete information can be expressed by differences in private infor-
mation, as Harsanyi’s Bayesian game. We shall give an example in which differences of
uncertainty can be expressed by differences in private information.

Let there be two players, and consider a state space,

Ω = {1, 2, 3a, 3b, 4a, 4b}

where the players have assigned probability ε/2 to the events {1} and {2} and probability
(1 − ε)/2 to the events {3a, 3b} and {4a, 4b}, respectively, where 0 < ε ≤ 1 is a given
parameter. The difference between state 3a and state 3b and that between 4a and 4b are
ambiguous in the sense that the players do not know how the probabilities assigned to
{3a, 3b} and {4a, 4b} should be allocated to these states. Thus the players have a common
set of priors, which is:

P1 = P2 =
{

P ∈ ∆(Ω) : P ({1}) = P ({2}) =
ε

2
, P ({3a, 3b}) = P ({4a, 4b}) =

(1− ε)
2

}
.

Let E = {1, 2}. The following table summarizes the actions and payoffs, where Player
1 chooses a row and Player 2 chooses a column, and the numbers on the left are Player
1’s payoffs and on the right are Player 2’s payoffs.

ω ∈ E

α β

α 1,−2 0, 0
β 0,−2 1, 0

ω 6∈ E

α β

α 1, 1 0, 0
β 0, 1 1, 0

Note that Player 1’s best response is to choose the action Player 2 chooses. Given ω,
Player 2’s payoffs are independent of Player 1’s choice of action, and Player 2 wants to
choose β if ω ∈ E and to choose α if ω 6∈ E.

As a bench mark, consider the case where there is no private information. Then both
players agree that event E occurs with probability ε, and this is common knowledge. So in
this game the multiplicity of priors is inessential if both players remain uninformed about
the state. If ε is small enough, then playing α maximizes Player 2’s payoff regardless of
Player 1’s behavior, and thus a unique equilibrium is that both players choose α.

Now let us consider private information. The ranges of signals (τ1, τ2) are

T1 = {{1, 3a, 3b}, {2, 4a, 4b}},
T2 = {{1, 3a, 4a}, {2, 3b, 4b}},

where τi (ω) ∈ Ti is the set containing ω ∈ Ω. The reader may find it easy to think of this
as if the private information is given by partitions suggested by T1 and T2.
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We assume that both players use the FB updating rule (2). So the set of updated
priors is that of all probability distributions which are consistent with observation. We
have:

Φ1({1, 3a, 3b}) ={P ∈ ∆(Ω) : P ({1}) = ε, P ({3a, 3b}) = 1− ε},
Φ1({2, 4a, 4b}) ={P ∈ ∆(Ω) : P ({2}) = ε, P ({4a, 4b}) = 1− ε},

Φ2({1, 3a, 4a}) =
{

P ∈ ∆(Ω) : P ({1}) =
ε

ε + 2 (x + y)
, P ({3a}) =

2x

ε + 2 (x + y)
,

P ({4a}) =
2y

ε + 2 (x + y)
where x ∈

[
0,

1− ε

2

]
, y ∈

[
0,

1− ε

2

]}
,

Φ2({2, 3b, 4b}) =
{

P ∈ ∆(Ω) : P ({2}) =
ε

ε + 2 (x + y)
, P ({3b}) =

2x

ε + 2 (x + y)
,

P ({4b}) =
2y

ε + 2 (x + y)
where x ∈

[
0,

1− ε

2

]
, y ∈

[
0,

1− ε

2

]}
.

We shall find a unique equilibrium of this game. Note that the updated probabilities of
E are:

{P (E) |P ∈ Φ1(t1)} = {ε}, {P (E) |P ∈ Φ2(t2)} = [ε/(2− ε), 1]

for all t1 ∈ T1 and t2 ∈ T2.9 Thus, within each player, the evaluation of E is the same
for every state ω ∈ Ω. But in spite that the players start with a common set of multiple
priors, they have different uncertainty concerning E when ε > 0; Player 1 assigns the
unique probability ε and Player 2 assigns multiple probabilities ranging from ε/(2 − ε)
to 1. The difference of uncertainty is attributed to the difference of private information
T1 and T2.

To find optimal actions, let p be the probability Player 2 chooses action α. For any
t2 ∈ T2, the interim payoff of Player 2 is

min
P∈Φ2(t2)

((−2p + 0 · (1− p)) · P (E) + (1p + 0 · (1− p)) · (1− P (E)))

= min
P (E)∈[ε/(2−ε),1]

(−3pP (E) + p) = −3p + p = −2p

if p > 0, and it is 0 if p = 0, which implies that β is a strictly dominant action for
all t2 ∈ T2. Knowing this, Player 1, who wants to match his action, must choose β for
all t1 ∈ T1. To summarize, the game has a unique equilibrium, in both definitions we
proposed, in which both players always choose β. Note that this is true for any small
ε > 0.

Now look at the case ε = 0 where there is no difference of uncertainty concerning the
event E because E is null:

{P (E) |P ∈ Φ1(t1)} = {P (E) |P ∈ Φ2(t2)} = {0}.
Thus payoffs are given by the table corresponding to ω 6∈ E with probability one. So we
have a complete information game with a randomization device τ , but since α is a strictly

9Though players have different uncertainty, there is a common probability in the sense that {P (E) |P ∈
Φ1(t1)} ∩ {P (E) |P ∈ Φ2(t2)} 6= ∅. We will discuss this issue in the next section.
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dominant action for Player 2, we conclude that there is a unique equilibrium where both
players choose α.

In conclusion, the equilibrium set changes discontinuously with respect to ε at ε = 0.
Note that even at ε = 0, the players have multiple priors. But Player 2’s set of updated
probabilities of the relevant event E gets degenerate at ε = 0, and this fact generates the
discontinuity. Intuitively, Player 2, being very pessimistic, hesitates to choose action α

which is very bad when E occurs, as long as there is some chance that E is true. When
ε = 0, his worry disappears and he is willing to choose α.

Notice the dynamic inconsistency of Player 2’s behavior: suppose Player 2 could com-
mit in advance to the action he will be playing after arrival of private information. That
is, we look at an ex ante equilibrium of the game. Then for any prior in P2, the value of
committing to always playing α is −2×ε+1×(1− ε), which is positive if ε is small, better
than the value of committing to β whose value is zero. Since Player 1 is just reacting to
Player 2’s action, the difference of the equilibrium behavior from the bench mark case can
also be attributed (at least partially) to the dynamic inconsistent behavior of Player 2.

But for a game theoretic implication, a more important point is the way Player 1’s
behavior is affected. Notice that Player 1 unambiguously assigns a single probability to
the payoff relevant event E, irrespective of the value of ε and his private information. So
as far as his payoffs are concerned, he has no uncertainty at all. But Player 1 knows that
Player 2 tends to interpret his private information very pessimistically, and Player 1 must
take this into account in equilibrium. In fact, this example can be modified that Player
1 has a single prior; just take any prior in P1. Hence this example can also be seen as
an instance of a standard Bayesian player’s action is affected by the other non-Bayesian
player.

4.2 An equilibrium with no BNE justification and the role of updating

rule

We shall give a simple example where there is an equilibrium with multiple priors under
the FB updating rule (2) which cannot be justified as a Bayesian Nash equilibrium for
the given state space and information structure, and moreover it is not an equilibrium if
the ML updating rule (3) is adopted. So this is also an example to understand the role of
updating as well as multiplicity of priors.

We use the same notation as in the previous example. Let Ω = {1, 2a, 2b, 3} with

P1 = P2 = {P ∈ ∆(Ω) : P (1) = 0.25, P ({2a, 2b}) = 0.5, P (3) = 0.25}.

Let the payoffs be given by the following table.

ω = 1
α β

α 3, 3 0, 1
β 0, 0 1, 1

ω ∈ {2a, 2b}
α β

α 1, 3 1, 1
β 0, 0 0, 1

ω = 3
α β

α 3, 3 0, 1
β 0, 0 1, 1
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The signals are given by:

T1 = {{1}, {2a}, {2b}, {3}}, T2 = {{1, 2a}, {2b, 3}}.

Player 1 always knows the payoffs, and Player 2’s payoffs do not depend on ω. So there
is no “uncertainty” in the payoff structure.

With the FB updating rule, the following strategy profile constitutes an equilibrium
with multiple priors for both definitions.

σ1({1}) = β, σ1({2a}) = α, σ1({2b}) = α, σ1({3}) = β,

σ2({1, 2a}) = β, σ2({2b, 3}) = β.

Let us confirm this. Since α is a dominant action for Player 1 when ω ∈ {2a, 2b}, playing
α in 2a and 2b is optimal. If Player 2 plays β, β is a best response for Player 1 when
ω ∈ {1, 3}. So Player 1’s behavior is optimal. Player 2’s behavior can be shown to be
optimal by a similar calculation as in the previous example. Intuitively, when Player 1 is
to play β in state 1, after observing {1, 2a}, if Player 2 is to play α with some probability,
he will assign probability one to state 1 which is the worst scenario, and then playing β

for sure is a best response. A symmetric argument applies for {2b, 3}.
But the strategy profile given above cannot be a Bayesian Nash equilibrium for any

single prior P ∈ Pi. The reason is as follows: since P (2a) + P (2b) = 0.5 must hold,
one of 2a and 2b must have ex ante probability no less than 0.25. Assume that it is 2a

without loss of generality since the structure of the game is symmetric. Then after {1, 2a}
is observed, Player 2 must assign at least probability 0.5 to state 2a. Since Player 1 plays
α in state 2a, this implies that Player 2 knows that α is played at least probability 0.5,
and then he must choose α since it is the risk dominant action for Player 2.

The strategy profile above is not an equilibrium with the ML updating rule. For
Player 2, after observing {1, 2a}, the prior which makes this most likely is the one assigning
ex ante probability of 0.5 to 2a. Thus he believes action β and α occurs with ratio 0.25 : 0.5,
and so Player 2 must play α. Since it is never a best response of Player 1 to play β with
any probability in states 2a and 2b, we see that Player 2 must always play α in any
equilibrium. Then Player 1 must always play α since it is a best response to α for any ω.
In conclusion, with the ML updating rule, in a unique equilibrium strategy profile, both
players always play α.

4.3 Difference of two equilibrium concepts

Let us give an example to clarify the differences of the two notions of equilibria we pro-
posed.10 Let I = {1, 2} and Ω = {1, 2}. The set of priors P1 = P2 is just the set of all
probability distributions on Ω. Player 2 observes every ω ∈ Ω, but Player 1 has no private
information. Player 1 has three actions, α, β, γ and Player 2 has two actions 1 and 2.

Independent of Player 1’s action, Player 2’s payoff is 10 if he chooses action ω when
ω ∈ Ω occurs, otherwise 0. Then for both equilibrium concepts, Player 2 must play action

10This example and discussion are inspired by Lo (1996).
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ω when ω ∈ Ω is observed. This makes the game effectively a single person decision
problem of Player 1 against the nature, where the decision maker has multiple priors P1.
The payoffs of Player 1 are as follows.

1 2
α 10 0
β 0 10
γ 1 1

Then the payoffs to actions α and β are both zero owing to Player 1’s pessimistic
expectations, whereas action γ is worth 1. So a unique equilibrium in beliefs is that
Player 1 chooses γ and Player 2 behaves as described above. But if mixed actions are
considered, randomizing equally between α and β yields 5 irrespective of priors, and this is
payoff maximizing. So in a unique mixed equilibrium, Player 1 chooses this randomization
strategy.

5 Discussions and generalizations

5.1 Foundations

Let us comment on a couple of issues on the foundation of our model: preferences and
types.

For preferences, we simply postulated that there exist sets of priors and that the play-
ers’ preferences over strategies are induced by the most pessimistic posteriors. A possible
objection is lack of axiomatic foundations, and our defense is as follows. As for the use of
multiple priors, in a single person setting, there is a well known axiomatization of such pref-
erence relations by Gilboa and Schmeidler (1989). Even for complete information games,
a common justification for expected utility preferences is based on individual decision
making. So if this line of justification is accepted, we contend that the Gilboa-Schmeidler
axiomatization justifies our multiple priors approach as well.

To discuss the role of types in our model, let us first review the standard approach:
each point of a type space are associated a state of nature as well as a single posterior for
each player on the type space itself. The type of a player encodes not only his beliefs on
the space, but also his beliefs about others’ beliefs, his beliefs about others’ beliefs about
others’ beliefs, and so on. Whether or not this entire sequence of beliefs can be captured in
a single type space is a fundamental question to the construction and analysis of games with
incomplete information. Mertens and Zamir (1985) did the first mathematical analysis on
this, and gave an affirmative answer.

In our framework, we postulate a multiple posterior version of type spaces as above:
with each point of a type space are associated a state of nature as well as multiple posteriors
for each player on the type space itself. Then a similar question will naturally arise. Can
one construct a type space with multiple priors from a hierarchy of sets of beliefs?

A seminal work in this direction is Epstein and Wang (1996), which criticize the
Bayesian approach of comprehensive belief types and provide a preference based construc-

16



tion of general type spaces which serves as a foundation for games with incomplete infor-
mation. Our model conforms to their general definition of incomplete information games.
But the preference based approach, by construction, does not spell out the structure of
sets of beliefs independently.

More closely related to our model is Ahn (2003)’s construction of type spaces. He con-
sidered players with multiple priors over the state space, which is similar to our model, and
studied generalization of the classic coherency condition which produces a Mertens-Zamir
style type space to encode the hierarchy of beliefs. He discussed a class of incomplete infor-
mation games with multiple priors to demonstrate that his result serves as its foundation.
The class of games in Ahn (2003) consist of players with multiple priors and general pref-
erences over players’ beliefs and consequences. It can be seen that if the preferences are
defined in terms of the decision rule of Gilboa and Schmeidler (1989), the class of games
are reduced to our model. In this sense, Ahn (2003)’s result directly serves as a foundation
of our model.11

5.2 Common priors and “agreeing to disagree”

In the single prior model, it has been pointed out that the common prior assumption
has excessively strong economic implications; e.g., various no trade results originated in
Milgrom and Stokey (1982). This excess power of the model gives rise to some skepticism,
and indeed it has motivated many works on relaxing the common prior assumption (more
importantly common support assumption) in the literature. So from this point of view, it
is desirable to consider a model allowing for different sets of priors, which we chose to do.

On the other hand, it is not necessarily clear if our model exhibits similar drawbacks
if we assume a common set of priors. As a matter of fact, the implications we draw from
the examples in Section 4 do not rely on the heterogeneity of sets of priors at all because
all the examples assume a common set of priors.

Since there are two channels, risks and uncertainty, through which private information
makes differences, our model is much richer than the single prior model, even if a common
set of priors is assumed in addition. For instance, we saw in Subsection 4.2 a game with
common multiple priors where there is an equilibrium which cannot be explained by a
single common prior. Therefore, even if a common set of priors is required in addition, it
does not seem to be too restrictive as far as our main messages are concerned.

It is an interesting future research topic to study whether a common set of priors is a
theoretically natural requirement. To make a contribution on this direction, we investigate
implications of a common set of priors, by considering the role of “common knowledge”
via the problem of “agreeing to disagree” à la Aumann (1976) in our setup.

Since our premise is that the structure of the game is completely determined by state
ω ∈ Ω, and the private information of player i is given by τi, it is natural to adopt

11Ahn (2003) also defined an equilibrium concept, which can be translated in our framework. Roughly

speaking, a strategy profile is an equilibrium in Ahn’s sense in our model if it is both a mixed equilibrium

and a equilibrium in beliefs in our model. Since there are games where these two concepts do not imply

each other as we saw in Subsection 4.3, Ahn’s equilibrium may not exist in general.
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Aumann’s formulation of common knowledge in our setup. That is, an event E ⊆ Ω is
common knowledge (at ω ∈ E) if E contains a partition element of the finest common
coarsening of partitions

{
τ−1
i (ti) : ti ∈ Ti

}
, i = 1, . . . , I. Thus the multiplicity of priors

does not play any role in determining whether or not an event is common knowledge
among the players.

Let an event E ⊆ Ω be given. For each player i ∈ I and a state ω ∈ Ω, define ρi(E|ω)
by the rule:

ρi(E|ω) = {p ∈ [0, 1] : p = P (E), P ∈ Φi(τi(ω))},
which is the collection of player i’s ex post evaluation of E at ω ∈ Ω.

A natural question in view of Aumann’s theorem is if players with common multiple
priors can agree to disagree, and if they do, to what extent they agree. We attempt to
answer this question by the following proposition, which contains Aumann’s agreement
theorem as a special case.

Proposition 5 Let E ⊆ Ω be an event. Suppose that

• Pi = P ⊆ ∆(Ω) for all i ∈ I,
• every player adopts the FB updating rule,

• for all i ∈ I, ρi(E|ω) is common knowledge at ω ∈ Ω : that is, the event {ω′ ∈ Ω :
ρi(E|ω) = ρi(E|ω′)} is common knowledge,

• for all i ∈ I, ρi(E|ω) is a closed interval.

Then we have: ⋂

i∈I
ρi(E|ω) 6= ∅.

Proof. The common knowledge assumption implies that there exists a common knowledge
event F with ω ∈ F such that ρi(E|ω′) = ρi(E|ω) for all ω′ ∈ F for each i ∈ I. For any ω′ ∈
F , set ti = τi(ω′), and then it must be true that τ−1

i (ti) ⊆ F since F is common knowledge.
Thus, P (E|ti) = P

(
τ−1
i (ti) ∩ E

)
/P

(
τ−1
i (ti)

)
= P

(
τ−1
i (ti) ∩ F ∩ E

)
/P

(
τ−1
i (ti)

)
= P (E∩

F |ti). That is, the conditional probabilities of E and E ∩ F are the same at any ω′ ∈ F

for any P ∈ P.
Let p∗(i), p∗(i) ∈ [0, 1] be the upper bound and the lower bound of ρi(E|ω′):

p∗(i) = min
p∈ρi(E|ω′)

p = min
P∈P

P (E|τi(ω′)) = min
P∈P

P (E ∩ F |τi(ω′)),

p∗(i) = max
p∈ρi(E|ω′)

p = max
P∈P

P (E|τi(ω′)) = max
P∈P

P (E ∩ F |τi(ω′)),

for all ω′ ∈ F .
Let P∗, P ∗ ∈ P be such that:

P∗(E|F ) = P∗(E ∩ F )/P∗(F ) = min
P∈P

P (E ∩ F )/P (F ),

P ∗(E|F ) = P ∗(E ∩ F )/P ∗(F ) = max
P∈P

P (E ∩ F )/P (F ).
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Then, for any ti ∈ τi (F ), we have:

p∗(i) ≤ P∗(E ∩ F |ti) =
P∗(E ∩ F ∩ τ−1

i (ti))
P∗(τ−1

i (ti))
,

p∗(i) ≥ P ∗(E ∩ F |ti) =
P ∗(E ∩ F ∩ τ−1

i (ti))
P ∗(τ−1

i (ti))
,

or equivalently,

p∗(i)P∗(τ−1
i (ti)) ≤ P∗(E ∩ F ∩ τ−1

i (ti)),

p∗(i)P ∗(τ−1
i (ti)) ≥ P ∗(E ∩ F ∩ τ−1

i (ti)).

Since both P∗ and P ∗ are priors and so they are additive, summing the above over ti ∈
τi (F ), we have

p∗(i)P∗(F ) ≤ P∗(E ∩ F ),

p∗(i)P ∗(F ) ≥ P ∗(E ∩ F ).

This means that [P∗(E|F ), P ∗(E|F )] ⊆ ρi(E|ω) for every i, so we have established the
result. ¥

This result is an extension of Aumann’s theorem since if Pi is singleton, so is each
ρi (E|ω) and hence

⋂
i∈I ρi(E|ω) 6= ∅ implies the agreement ρi (E|ω) = ρj (E|ω) for any

i, j ∈ I.
We can interpret

⋂
i∈I ρi(E|ω) = ∅ as a situation where the players completely disagree

about posterior beliefs on E. So the proposition implies that complete disagreement cannot
be common knowledge, and so it has the flavor of Aumann’s theorem: if posteriors are
common knowledge, they must share a posterior belief as one of the posterior beliefs in
ρi(E|ω).

In general, the sets ρi(E|ω), i = 1, . . . , I, differ from each other, and thus there are
posterior beliefs in their posterior belief sets which do not belong to each others’ posterior
belief set. Consider the example discussed in Subsection 4.1. We have already obtained

ρ1(E|ω) = {ε}, ρ2(E|ω) = [ε/(2− ε), 1]

for all ω ∈ Ω. Thus, ρ1(E|ω) and ρ2(E|ω) are common knowledge at every ω ∈ Ω. Clearly,
ρ1(E|ω) 6= ρ2(E|ω) and ρ1(E|ω) ∩ ρ2(E|ω) = ρ1(E|ω).

The problem of “agreeing to disagree” is closely related to various no trade results,
and this issue for multiple prior models is discussed in Kajii and Ui (2004). They present
a framework to understand the possibility of a purely speculative trade under asymmetric
information, where the decision making rule of each trader conforms to the multiple priors
model. In this framework, they derive a necessary and sufficient condition on the sets of
posteriors, thus implicitly on the updating rules adopted by the players, for non-existence
of trade such that it is always common knowledge that every player expects a positive
gain. As a corollary of the main result, they obtain generalization of Proposition 5, which
states that, not only when Pi = Pj for all i, j ∈ I, but also when

⋂
i∈I Pi 6= ∅, we obtain⋂

i∈I ρi(E|ω) 6= ∅. For more details, see Kajii and Ui (2004).
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5.3 Complete information games

Consider the special cases where payoff functions are independent of state ω. Thus sig-
nals and priors can be seen as external randomization devices. Then our model can be
understood as a complete information game with an external randomization device, but
there is uncertainty about which randomization devices are to be used. Let us relate this
to the studies on generalizations of Nash equilibrium for complete information games,
by allowing uncertainty averse players. These studies include Dow and Werlang (1994),
Eichberger and Kelsey (2000), Klibanoff (1996), Marinacci (2000), and Lo (1996, 2002).
It can be shown that the mixed equilibrium in our definition is a correlated equilibrium
under uncertainty in Lo (2002) in general, and when the signals are independent for any
priors, it corresponds to the equilibrium (with agreement) of Lo (1996).

In the studies of the generalized Nash equilibrium, the issue is endogenous formation
of beliefs, accommodating players’ possibly non-additive beliefs on the other’s actions. On
the other hand, in our framework, player’s beliefs about the opponents’ action distributions
are formed from two components: the first is about the opponents’ strategic choices of
actions after they have observed signals, and the second is inference about what private
signals the opponents have observed, given the player’s private information. The player’s
beliefs may be non-additive for the second components, but they are additive for the first.
So the possibly non-additive part is exogenous in our framework, which makes our model
very tractable.

Moreover, there is a conceptual difficulty of endogenously formed non-additive beliefs,
in particular in dynamic settings with more than 2 players, that it is not clear how updating
is done. In our setup the updating is controlled exogenously so there will be no conceptual
issues of this kind.

Coming back to the example discussed in Subsection 4.3, Lo (1996) used essentially the
same example to justify why he favors mixed equilibrium over equilibrium in beliefs. One
of the reasons is that an action dominated by a mixed action may survive in equilibrium
in beliefs with uncertainty aversion: a player may form an excessively pessimistic beliefs
about the others’ choices and so he may assign an excessively low value to something
whose payoffs depend on the others’ choices, even if he could perfectly hedge risks had
he not been occupied with an extremely pessimistic view. Also, since the support of a
non-additive measure is not necessarily well defined, the equilibrium in beliefs requires
well defined support by definition.

However, we do not particularly favor the mixed equilibrium over the equilibrium in
beliefs. First of all, both make good sense. Secondly, it is not necessarily a defect of
the equilibrium concept if a particular player chooses a “dominated” action. In strategic
environments, we are often interested in strategic implications of dominated action to the
other players. Thirdly, in our model, the equilibrium in beliefs do not have this problem
about the support. Roughly speaking, our equilibrium in beliefs can be regarded as a
purified version of the equilibrium in beliefs à la Dow and Werlang (1994), and it is well
behaved.

Since a standard Nash equilibrium is always an equilibrium with uncertainty aversion,
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if endogenous formation of non-additive beliefs is considered, there is a large number
of equilibria which include the ones supported by extremely pessimistic expectations of
some players. Therefore, although the generalized Nash equilibrium concepts explain why
players may be stuck in a situation by pessimism, they do not have any stronger predictive
power than the standard Nash equilibrium. In order to be used for economic analysis, one
need to think about “refinements” of those endogenous equilibria, as is done in Marinacci
(2000) for instance, after all.

Our position is that the payoff matrix should be “complete” by itself and it is more
natural to model any extra doubt and uncertainty about how players might have among
themselves as an exogenous state space (and multiple priors) outside the payoff matrix. If
one has to apply an extraneous refinement criteria on “equilibria” affected by uncertainty
anyway, why not describe the uncertainty specifically in the model.

5.4 On finiteness assumptions and generalizations

Let us conclude by mentioning possible generalization of our models. We assumed the
state space and action sets to be finite sets. But the definitions of equilibria we proposed
are very general. For instance, an auction model of Lo (1998) conforms to our model except
for finiteness.12 It is worth pointing out that the so called global games which assumes
an “improper prior” of uniform distribution over the entire real line13 can be readily
interpreted as multiple priors with the ML updating rule in our model. Conceptually,
there is not much reason for using finite models, and in fact one would need to use infinite
state space to model complex structures of incomplete information.

We chose a finite model to make the existence results transparent, but more impor-
tantly it is one of our purposes that even a simple finite model is rich enough to explain
interesting phenomena. Technically, we are confident that the existence results can be ex-
tended to allow an infinite state space and infinite actions once we assume strong enough
continuity and compactness. The existence problem for a general infinite state space is
delicate even for the standard Bayesian Nash equilibria, so our model naturally inherits the
same difficulty, and in addition, the equicontinuity property of payoff functions indexed
by the updated prior sets (Φi)i∈I is tricky in general spaces.
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