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Abstract

Potential games are games with potential functions. Technically, the potential

function defines a refinement concept. We provide justification for this refinement

concept using the notion of robustness of equilibria. A Nash equilibrium of a com-

plete information game is said to be robust if every incomplete information game

where payoffs are almost always given by the complete information game has an

equilibrium which generates behavior close to the Nash equilibrium. We show

that Nash equilibria that maximize potential functions are generically robust.
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1. INTRODUCTION

POTENTIAL GAMES, as considered by Monderer and Shapley (1996), are games with

potential functions. Potential functions are functions of action profiles such that

the difference induced by a single deviation is equal to that of the deviator’s payoff

function. Monderer and Shapley (1996) demonstrated that the set of action profiles

maximizing the potential function is a subset of Nash equilibria and that this subset

does not depend upon a particular potential function. Monderer and Shapley (1996,

p.135) wrote, “at least technically, the potential defines a refinement concept.”

The observation of Monderer and Shapley (1996) drives us to the question what

can justify this refinement concept.2 The purpose of this paper is to provide a possi-

ble justification, using the notion of robustness of equilibria to incomplete information

considered by Kajii and Morris (1997a, 1997b). A Nash equilibrium of a complete

information game is said to be robust if every incomplete information game with pay-

offs almost always given by the complete information game has an equilibrium which

generates behavior close to the Nash equilibrium. We show that Nash equilibria that

maximize potential functions are generically robust in the sense of Kajii and Morris

(1997b).

The robustness of equilibria in Kajii and Morris (1997a) and that in Kajii and

Morris (1997b) are slightly different. In the definition of robustness, Kajii and Morris

(1997a) considered incomplete information games where all types either have pay-

offs given by the complete information game or have any payoffs. Kajii and Morris

(1997b) restricted attention to incomplete information games where all types either
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have payoffs given by the complete information game or have a dominant strategy to

choose one action. Thus, if a Nash equilibrium is robust in the sense of Kajii and

Morris (1997a) then it is also robust in the sense of Kajii and Morris (1997b), though

the difference between them is an open question.

Kajii and Morris (1997a, 1997b) were able to present two classes of games in which

robust equilibria exist. One is a class of games with unique correlated equilibria. The

other is a class of games with p -dominant equilibria such that
∑

i pi < 1. Our result

states that potential games are another class of games in which robust equilibria exist.

To prove the result, we use the “potential function” technique, instead of the “higher

order belief” technique Kajii and Morris (1997a) used.

The organization of this paper is as follows. Section 2 introduces potential games.

Section 3 defines robust equilibria. Section 4 provides the main result.

2. POTENTIAL GAMES

A complete information game consists of a finite set of players N = {1, . . . , n},

a finite action set Ai for i ∈ N , and a payoff function gi : A → R for i ∈ N where

A =
∏

i∈N Ai. We write A−i =
∏

j 6=i Aj and a−i = (a1, . . . , ai−1, ai+1, . . . , an) ∈ A−i.

Because we will fix N and A throughout the paper, we simply denote a complete

information game by g = {gi}i∈N .

A potential game is a complete information game formally defined by Monderer

and Shapley (1996).

DEFINITION 1 A complete information game g is a potential game if there exists a

potential function G : A → R such that

gi(ai, a−i) − gi(a′i, a−i) = G(ai, a−i) − G(a′i, a−i)
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for all i ∈ N , ai, a
′
i ∈ Ai, and a−i ∈ A−i.

Monderer and Shapley (1996) showed that a potential function is uniquely defined up

to an additive constant.

LEMMA 1 Let G and G′ be potential functions of g. There exists a constant c such

that G(a) = G′(a) + c for all a ∈ A.

By the definition, it is clear that action profiles maximizing potential functions

are Nash equilibria. By the lemma, the argmax sets of potential functions do not

depend upon particular potential functions. Accordingly, the argmax sets of potential

functions refine equilibrium sets. For more properties and examples3 of potential

games, see Monderer and Shapley (1996) and Ui (2000).

3. ROBUST EQUILIBRIA

Consider an incomplete information game with the set of players N and the action

space A. Let Ti be a countable set of types of player i ∈ N . The state space

consists of all type profiles, T =
∏

i∈N Ti. We write T−i =
∏

j 6=i Tj and t−i =

(t1, . . . , ti−1, ti+1, . . . , tn) ∈ T−i. Let P ∈ ∆(T ) be the prior probability distribution

on T with P ({ti} × T−i) > 0 for all i ∈ N and ti ∈ Ti. A payoff function of

player i is a bounded function ui : A × T → R. Because we will fix T , N , and A

throughout the paper, we simply denote an incomplete information game by (u, P )

where u = {ui}i∈N .

A (mixed) strategy of player i ∈ N is a function σi : Ti → ∆(Ai) where ∆(Ai)

is the set of probability distributions on Ai. We write Σi for the set of strategies of

player i, and write Σ =
∏

i∈N Σi, σ = (σ1, . . . , σn) ∈ Σ, Σ−i =
∏

j 6=i Σj , and σ−i =

(σ1, . . . , σi−1, σi+1, . . . , σn) ∈ Σ−i. We write σi(ai|ti) for the probability of action ai
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given σi ∈ Σi and ti ∈ Ti. We write σ(a|t) =
∏

i∈N σi(ai|ti) and σ−i(a−i|t−i) =∏
j 6=i σj(aj |tj). We write σP (a) =

∑
t∈T P (t)σ(a|t).

The payoff of strategy profile σ ∈ Σ to player i is

Ui(σ) =
∑
t∈T

∑
a∈A

P (t)σ(a|t)ui(a, t).

A strategy profile σ ∈ Σ is a Bayesian Nash equilibrium of (u, P ) if, for each i ∈ N ,

Ui(σ) ≥ Ui(σ′
i, σ−i)

for all σ′
i ∈ Σi.

Let g be given. We consider the following subset of Ti:

T ui
i = {ti ∈ Ti |ui(a, (ti, t−i)) = gi(a) for all a ∈ A, t−i ∈ T−i with P ((ti, t−i)) > 0}.

When ti ∈ T ui
i is realized, payoffs of player i are given by gi, and he knows his payoffs.

We write Tu =
∏

i∈N T ui
i .4

DEFINITION 2 An incomplete information game (u, P ) is an ε-elaboration of g if

P (Tu) = 1 − ε for ε ∈ [0, 1].

Payoffs of a 0-elaboration are given by g with probability 1 and every player knows

his payoffs. Thus, if a∗ ∈ A is a Nash equilibrium of g then the 0-elaboration has

a Bayesian Nash equilibrium σ ∈ Σ with σ(a∗|t) = 1 for all t ∈ T , i.e., σP (a∗) = 1.

We say that a∗ is robust if, for small ε > 0, every ε-elaboration of g has a Bayesian

Nash equilibrium σ ∈ Σ with σP (a∗) close to 1. The robustness of equilibria to all

elaborations is defined by Kajii and Morris (1997a).5

DEFINITION 3 Action profile a∗ is robust to all elaborations in g if, for every δ > 0,

there exists ε̄ > 0 such that, for all ε ≤ ε̄, every ε-elaboration of g has a Bayesian

Nash equilibrium σ with σP (a∗) ≥ 1 − δ.
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We call ti ∈ Ti\T ui
i a committed type if player i of type ti has a strictly dominant

action ati
i ∈ Ai with

ui((ati
i , a−i), (ti, t−i)) > ui((ai, a−i), (ti, t−i))

for all ai ∈ Ai\{ati
i }, a−i ∈ A−i, and t−i ∈ T−i with P ((ti, t−i)) > 0. In this paper,

we focus on the following special class of ε-elaborations.

DEFINITION 4 An ε-elaboration of g is said to be canonical if every ti ∈ Ti\T ui
i is

a committed type for all i ∈ N .

By considering canonical ε-elaborations, we can define a slightly weaker version of

the robustness. The robustness of equilibria to canonical elaborations is defined by

Kajii and Morris (1997b).

DEFINITION 5 Action profile a∗ is robust to canonical elaborations in g if, for every

δ > 0, there exists ε̄ > 0 such that, for all ε ≤ ε̄, every canonical ε-elaboration of g

has a Bayesian Nash equilibrium σ with σP (a∗) ≥ 1 − δ.

Clearly, if a Nash equilibrium is robust to all elaborations then it is also robust to

canonical elaborations. The difference between them, however, is an open question.6

For the purpose of justifying the argmax sets of potential functions as refinements,

we use the robustness to canonical elaborations.

Kajii and Morris (1997a) demonstrated that some games have no robust equilibria.

More precisely, there exist open sets of games with a unique (strict) Nash equilibrium

which is not robust to canonical elaborations. Kajii and Morris (1997a) provided two

sufficient conditions for robustness.7 One applies to games with unique correlated

equilibria.

THEOREM 1 If action profile a∗ is a unique correlated equilibrium of g then it is

robust to all elaborations.
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The other applies to games with p -dominant equilibria such that
∑

i∈N pi < 1.

DEFINITION 6 Let p = (p1, . . . , pn) ∈ [0, 1]n. Action profile a∗ is a p-dominant

equilibrium of g if, for all i ∈ N and λ ∈ ∆(A−i) with λ(a∗−i) ≥ pi,

a∗i ∈ arg max
ai∈Ai

∑
a−i∈A−i

λ(a−i)gi(ai, a−i).

THEOREM 2 If action profile a∗ is a p-dominant equilibrium of g with
∑

i∈N pi < 1

then it is robust to all elaborations.

The main result of this paper applies to potential games; we will show that if a∗

is a unique potential maximizer then it is robust to canonical elaborations. Before

presenting the result, we demonstrate that conditions of Theorem 1 and Theorem 2

are, in general, too strong for potential games. Consider the following game.

Player 2

a2 b2 c2

a1 4, 4 2, 2 0, 0

Player 1 b1 0, 0 3, 3 0, 0

c1 2, 2 0, 0 3, 3

This is a potential game with a potential function G = g1 = g2, which has three strict

Nash equilibria, (a1, a2), (b1, b2), and (c1, c2). Due to the multiplicity of equilibria,

Theorem 1 does not apply to this game. In addition, we can show that this game has

no (p1, p2)-dominant equilibria with p1 + p2 < 1.

Consider (a1, a2). Let λ ∈ ∆(A2) be such that λ(a2) < 3/5 and λ(c2) = 1−λ(a2),

and µ ∈ ∆(A1) be such that µ(a1) < 3/5 and µ(b1) = 1 − µ(a1). Then {c1} =

arg maxx1∈A1

∑
x2∈A2

λ(x2)g1(x1, x2) and {b2} = arg maxx2∈A2

∑
x1∈A1

µ(x1)g2(x1, x2).

Thus, if (a1, a2) is a (p1, p2)-dominant equilibrium then it must be true that p1 ≥ 3/5

and p2 ≥ 3/5, i.e., p1 + p2 > 1. Similarly, we can show that if (b1, b2) or (c1, c2) is

a (p1, p2)-dominant equilibrium then it must be true that p1 + p2 > 1. Accordingly,

Theorem 2 does not apply to this game.8
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4. ROBUST EQUILIBRIA OF POTENTIAL GAMES

We introduce a potential-like function of an ε-elaboration of a potential game.

DEFINITION 7 Let (u, P ) be an ε-elaboration of a potential game g with a potential

function G. Define a function V : Σ → R such that

V (σ) =
∑
t∈T

∑
a∈A

P (t)σ(a|t)G(a).

V is called an elaboration potential of (u, P ).

An elaboration potential V is not a potential function9 of (u, P ), but close to it

in the following sense.10

LEMMA 2 Let (u, P ) be an ε-elaboration of a potential game g with a potential

function G. Let V be the elaboration potential. For each i ∈ N , if σi, σ
′
i ∈ Σi is such

that σi(ti) = σ′
i(ti) for all ti ∈ Ti\T ui

i then

Ui(σi, σ−i) − Ui(σ′
i, σ−i) = V (σi, σ−i) − V (σ′

i, σ−i)

for all σ−i ∈ Σ−i.

Let (u, P ) be a canonical ε-elaboration. Let ati
i be the strictly dominant action of

a committed type ti ∈ Ti\T ui
i . We consider Σui

i ⊆ Σi such that

Σui
i = {σi ∈ Σi |σi(ati

i |ti) = 1 for all ti ∈ Ti\T ui
i }.

We write Σu =
∏

i∈N Σui
i . In potential games, action profiles maximizing potential

functions are Nash equilibria. A similar claim is true for canonical ε-elaborations of

potential games.11

LEMMA 3 Let (u, P ) be a canonical ε-elaboration of a potential game g with a po-

tential function G. Let V be the elaboration potential. Then arg maxσ∈Σu V (σ) is

nonempty and σ∗ ∈ arg maxσ∈Σu V (σ) is a Bayesian Nash equilibrium of (u, P ).
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If σ∗ ∈ arg maxσ∈Σu V (σ) and {a∗} = arg maxa∈A G(a), we can show that σ∗
P (a∗)

is close to 1 when ε is close to 0, which leads us to our main result:

THEOREM 3 Let g be a potential game with a potential function G. Suppose that

{a∗} = arg maxa∈A G(a). Then a∗ is robust to canonical elaborations in g.

PROOF Let (u, P ) be a canonical ε-elaboration of g. Let V be the elaboration poten-

tial. Let σ∗ be a Bayesian Nash equilibrium of (u, P ) such that σ∗ ∈ arg maxσ∈Σu V (σ),

which exists due to Lemma 3.

Define G∗ = G(a∗), G′ = maxa∈A\{a∗} G(a), and G′′ = mina∈A G(a). Note that

G∗ > G′ ≥ G′′. Let σ ∈ Σu be such that σi(a∗i |ti) = 1 for all ti ∈ T ui
i and i ∈ N .

We have

V (σ∗) ≥ V (σ) =
∑
t∈Tu

∑
a∈A

P (t)σ(a|t)G(a) +
∑

t∈T\Tu

∑
a∈A

P (t)σ(a|t)G(a)

= P (Tu)G(a∗) +
∑

t∈T\Tu

P (t)
∑
a∈A

σ(a|t)G(a)

≥ P (Tu)G∗ + [1 − P (Tu)]G′′ = (1 − ε)G∗ + εG′′.

We also have

V (σ∗) =
∑
a∈A

[∑
t∈T

P (t)σ∗(a|t)

]
G(a)

=
∑
a∈A

σ∗
P (a)G(a)

= σ∗
P (a∗)G(a∗) +

∑
a∈A\{a∗}

σ∗
P (a)G(a)

≤ σ∗
P (a∗)G∗ + [1 − σ∗

P (a∗)]G′.

Combining the above inequalities, we have

(1 − ε)G∗ + εG′′ ≤ σ∗
P (a∗)G∗ + [1 − σ∗

P (a∗)]G′

and thus

σ∗
P (a∗) ≥ 1 − ε

G∗ − G′′

G∗ − G′ .
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This implies that, for every δ > 0, if we choose ε̄ = δ(G∗ − G′)/(G∗ − G′′) > 0 then,

for all ε ≤ ε̄, every canonical ε-elaboration of g has a Bayesian Nash equilibrium σ∗

with σ∗
P (a∗) ≥ 1 − δ, which completes the proof. Q.E.D.

REMARK 1 Theorem 3 does not necessarily imply that a∗ is the unique robust

equilibrium. On the other hand, as shown by Kajii and Morris (1997a, Corollary 5.6),

a strictly p-dominant equilibrium with
∑

i pi < 1 is the unique robust equilibrium. It

is an open question when robust equilibria are unique, if they exist.

REMARK 2 Using the similar argument, we can show that a∗ is robust to a class

of elaborations that have Bayesian potential functions in the sense of Facchini et al.

(1997). This robustness is considered to be stronger than the robustness to canonical

elaborations.

Institute of Policy and Planning Sciences, University of Tsukuba, 1-1-1 Tennodai,

Tsukuba, Ibaraki 305-8573, Japan.

APPENDIX

PROOF of LEMMA 2 For each i ∈ N , let γi : A−i → R be such that

γi(a−i) = gi(a) − G(a)

for all a−i ∈ A−i. The function γi, found by Slade (1994) and Facchini et al. (1997),

is well defined because

gi(ai, a−i) − G(ai, a−i) = gi(a′i, a−i) − G(a′i, a−i)

for all ai, a
′
i ∈ Ai and a−i ∈ A−i. Thus gi(a) = G(a) + γi(a−i) for all a ∈ A. Noting
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that σi(ti) = σ′
i(ti) for all ti ∈ Ti\T ui

i , we have

Ui(σi, σ−i) − Ui(σ′
i, σ−i) =

∑
t∈T

∑
a∈A

P (t)[σi(ai|ti) − σ′
i(ai|ti)]σ−i(a−i|t−i)ui(a, t)

=
∑

(ti,t−i)∈T
ui
i ×T−i

∑
a∈A

P (t)[σi(ai|ti) − σ′
i(ai|ti)]σ−i(a−i|t−i)gi(a)

=
∑

(ti,t−i)∈T
ui
i ×T−i

∑
a∈A

P (t)[σi(ai|ti) − σ′
i(ai|ti)]σ−i(a−i|t−i)[G(a) + γi(a−i)]

=
∑

(ti,t−i)∈T
ui
i ×T−i

∑
a∈A

P (t)[σi(ai|ti) − σ′
i(ai|ti)]σ−i(a−i|t−i)G(a)

=
∑
t∈T

∑
a∈A

P (t)[σi(ai|ti) − σ′
i(ai|ti)]σ−i(a−i|t−i)G(a)

= V (σi, σ−i) − V (σ′
i, σ−i),

which completes the proof. Q.E.D.

PROOF of LEMMA 3 Any σi ∈ Σi\Σui
i is strictly dominated by some σ′

i ∈ Σui
i .

Thus σ is a Bayesian Nash equilibrium if σ ∈ Σu and, for each i ∈ N ,

Ui(σ) ≥ Ui(σ′
i, σ−i)

for all σ′
i ∈ Σui

i . Due to Lemma 2, we have

Ui(σ) − Ui(σ′
i, σ−i) = V (σ) − V (σ′

i, σ−i)

for all i ∈ N , σ ∈ Σu, and σ′
i ∈ Σui

i because ti ∈ Ti\T ui
i implies σi(ti) = σ′

i(ti).

Therefore, any σ∗ ∈ arg maxσ∈Σu V (σ) is a Bayesian Nash equilibrium, if it exists.

We show that arg maxσ∈Σu V (σ) is nonempty. Let {σk ∈ Σu}∞k=1 be such that

limk→∞ V (σk) = supσ∈Σu V (σ). Consider Qk ∈ ∆(T ×A) with Qk(t, a) = P (t)σk(a|t)

and regard T × A as a metric space with a metric ρ such that ρ((t, a), (t′, a′)) = 1 if

(t, a) 6= (t′, a′) and ρ((t, a), (t, a)) = 0. Note that, for every ε > 0, there exists a finite

subset Sε ⊂ T such that Qk(Sε ×A) = P (Sε) > 1− ε for all k ≥ 1. This implies that

{Qk}∞k=1 is tight because Sε ×A is compact. Thus {Qk}∞k=1 is relatively compact due
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to Prohorov’s theorem (see Billingsley, 1968). Let {Qkl}∞l=1 be the weakly convergent

subsequence with Qkl → Q∗ as l → ∞.

For each i ∈ N , let σ∗
i ∈ Σui

i be such that

σ∗
i (ai|ti) = lim

l→∞
σkl

i (ai|ti)

for all ai ∈ Ai and ti ∈ Ti. Note that the limit in the right hand side exists because

lim
l→∞

σkl
i (ai|ti) = lim

l→∞
σkl

i (ai|ti)
∑

a−i∈A−i

σkl
−i(a−i|t−i)

= lim
l→∞

∑
a−i∈A−i

Qkl(t, a)/P (t)

=
∑

a−i∈A−i

Q∗(t, a)/P (t)

where t−i ∈ T−i is such that P (t) > 0. Then we have

Q∗(t, a) = lim
l→∞

Qkl(t, a) = P (t) lim
l→∞

σkl(a|t) = P (t)σ∗(a|t)

for all (t, a) ∈ T × A. Thus

sup
σ∈Σu

V (σ) = lim
l→∞

V (σkl) = lim
l→∞

∑
(t,a)∈T×A

P (t)σkl(a|t)G(a)

= lim
l→∞

∑
(t,a)∈T×A

Qkl(t, a)G(a) =
∑

(t,a)∈T×A

Q∗(t, a)G(a)

=
∑

(t,a)∈T×A

P (t)σ∗(a|t)G(a) = V (σ∗)

and σ∗ ∈ arg maxσ∈Σu V (σ), which completes the proof. Q.E.D.
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NOTES

1 I thank seminar participants at the University of Tokyo, Kyoto University, and

University of Tsukuba. Financial Support from the Grant-in-Aid for Encouragement

of Young Scientists is gratefully acknowledged. The usual disclaimer applies.

2 Monderer and Shapley (1996) referred to Blume (1993). See also Hofbauer

and Sorger (1999).

3 Examples of potential games include the incomplete contract model of Hart

and Moore (1990), the endogenous coalition formation model of Myerson (1977, 1991),

and the congestion model of Rosenthal (1973).

4 T
u = {t ∈ Tu |P (t) > 0} corresponds to ΩU of Kajii and Morris (1997a,

Definition 2.4).

5 In Kajii and Morris (1997a), robustness of correlated equilibria is defined.

6 To the author’s knowledge, we do not yet find examples of equilibria that are

robust to canonical elaborations but not robust to all elaborations.

7 See also Morris (1997).

8 As the number of players increases, the condition of p-dominance with
∑

i pi <

1 becomes stronger.

9 Exact potential functions of incomplete information games are discussed in

Facchini et al. (1997).

10 The proof is in the Appendix.

11 The proof is in the Appendix.


