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Abstract

This paper introduces generalized potential functions of complete information

games and studies the robustness of sets of equilibria to incomplete information.

A set of equilibria of a complete information game is robust if every incomplete

information game where payoffs are almost always given by the complete information

game has an equilibrium which generates behavior close to some equilibrium in the

set. This paper provides sufficient conditions for the robustness of sets of equilibria

in terms of argmax sets of generalized potential functions. These sufficient conditions

unify and generalize existing sufficient conditions. Our generalization of potential

games is useful in other game theoretic problems where potential methods have been

applied.
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1 Introduction

Outcomes of a game with common knowledge of payoffs may be very different from out-

comes of the game with a “small” departure from common knowledge, as demonstrated

by Rubinstein [27] and Carlsson and van Damme [4]. This observation lead Kajii and

Morris [12] to study which equilibria of complete information games are not much af-

fected by weakening the assumption of common knowledge; they studied the robustness

of equilibria to incomplete information. An equilibrium of a complete information game

is robust if every incomplete information game with payoffs almost always given by the

complete information game has an equilibrium which generates behavior close to that

equilibrium.

Kajii and Morris [13] demonstrated that robustness can be seen as a very strong

refinement of Nash equilibria. The refinements literature examines what happens to

a given Nash equilibrium in perturbed versions of the complete information game. A

weak class of refinements requires only that the Nash equilibrium continues to be an

equilibrium in some nearby perturbed game. The notion of perfect equilibria due to

Selten [28] is the leading example of this class. A stronger class requires that the Nash

equilibrium continues to be played in all perturbed nearby games. The notion of stable

equilibria due to Kohlberg and Mertens [14] or that of strictly perfect equilibria due to

Okada [21] are leading examples of this class. Robustness belongs to the latter, stronger,

class of refinements. Moreover, robustness to incomplete information allows an extremely

rich set of perturbed games. In particular, while Kohlberg and Mertens [14] allowed only

independent action trembles across players, the definition of robustness leads to highly

correlated trembles and thus an even stronger refinement. Indeed, Kajii and Morris [12]

constructed an example in the spirit of Rubinstein [27] to show that even a game with a

unique Nash equilibrium, which is strict, may fail to have any robust equilibrium.

Kajii and Morris [12] and Ui [34] provided sufficient conditions for the robustness

of equilibria. Kajii and Morris [12] introduced the concept of p -dominance where p =

(p1, . . . , pn) is a vector of probabilities.1 An action profile is a p -dominant equilibrium

if each player’s action is a best response whenever he assigns probability at least pi to

his opponents choosing actions according to the action profile. Kajii and Morris [12]

showed that a p -dominant equilibrium with
∑

i pi < 1 is robust. Ui [34] considered

1Morris et al. [19] earlier presented results about the case where each player had the same pi.
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robust equilibria of potential games, a class of complete information games possessing

potential functions. As defined by Monderer and Shapley [18], a potential function is

a function on the action space that incorporates information about players’ preferences

over the action space that is sufficient to determine all the equilibria. Ui [34] showed

that the action profile that uniquely maximizes a potential function is robust.

These two results are developed in quite different frameworks, and on the face of it the

relationship between the two is not clear. The purpose of this paper is to provide a new

sufficient condition for robustness, which unifies and generalizes the sufficient conditions

provided by Kajii and Morris [12] and Ui [34]. Furthermore, the condition can be used to

provide new sufficient conditions for robustness and applies not only to the robustness of

equilibria but also the robustness of sets of equilibria. This paper introduces generalized

potential functions and provides the condition in terms of argmax sets of generalized

potential functions.

We start by defining the robustness concept as a set valued one,2 the robustness of

sets of equilibria to incomplete information. A set of equilibria of a complete information

game is robust if every incomplete information game with payoffs almost always given

by the complete information game has an equilibrium which generates behavior close to

some equilibrium in the set. If a robust set is a singleton then the equilibrium is robust

in the sense of Kajii and Morris [12, 13]. Because some games have no robust equilibria,

it is natural to ask if a set of equilibria is robust.

We then introduce generalized potential functions. A generalized potential function

is a function on a covering of the action space, a collection of subsets of the action space

such that the union of the subsets is the action space. It incorporates some information

about players’ preferences over the collection of subsets. We call each element of the

domain of a generalized potential function an action subspace. If an action subspace

maximizes a generalized potential function and the generalized potential function has

a unique maximum then we call the action subspace a generalized potential maximizer

(GP-maximizer).

The main results state that there exists a correlated equilibrium assigning probability

1 to a GP-maximizer and that the set of such correlated equilibria is robust. This

immediately implies that if a GP-maximizer consists of one action profile then the action

2Kohlberg and Mertens [14] were the first to propose making sets of equilibria the objects of a theory

of equilibrium refinements.
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profile is a robust equilibrium. It should be noted that a robust set induced by the GP-

maximizer condition is not always minimal. A robust set is minimal if no robust set is

a proper subset of the robust set. In this paper, we do not explore the problem of how

to identify minimal robust sets.

It is not so straightforward to find GP-maximizers from the definition. One reason

is that, as we will see later, a complete information game may have multiple generalized

potential functions with different domains. We restrict attention to generalized potential

functions with two special classes of domains. One class of domains are unordered parti-

tions of action spaces. We introduce best-response potential functions as functions over

the partitions such that the best response correspondence of the function defined over

the partition coincides with that of a complete information game. Potential functions

of Monderer and Shapley [18] form a special class of best-response potential functions

with the finest partitions.3 We show that a best-response potential function is a gen-

eralized potential function. The other class of domains are those induced by ordered

partitions of action spaces. We introduce monotone potential functions as functions over

the partitions such that the best response correspondence of the function defined over

the partition and that of a complete information game has some monotonic relationship

with respect to the order relation of the partition. We show that a monotone potential

function naturally induces a generalized potential function where the domain consists of

intervals of the ordered partition. We then show that a p-dominant equilibrium with
∑

i pi < 1 is the induced GP-maximizer, by which the discussion of Kajii and Morris [12]

and that of Ui [34] are unified. We also provide new sufficient conditions for action pro-

file sets to be GP-maximizers, review some recent applications that use these sufficient

conditions and give some new examples showing how the generalized potential analysis

can be used when the methods of Kajii and Morris [12] and Ui [34] fail.

The unification of the potential maximizer condition and the p-dominance condition

may be of interest in other contexts. For example, both conditions are widely used in

evolutionary contexts. For stochastic evolutionary dynamics, the potential maximizer

condition is discussed by Blume [2, 3] and Ui [32], and the p-dominance condition is

discussed by Ellison [7] and Maruta [16]. For perfect foresight dynamics á la Matsui

and Matsuyama [17], the potential maximizer condition is discussed by Hofbauer and

3Morris and Ui [20] demonstrated that the class of best-response potential functions with the finest

partitions are much larger than the class of potential functions.
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Sorger [10, 11], and the p-dominance condition is discussed by Oyama [23]. Interest-

ingly, a recent paper by Oyama et al. [24] shows that singleton GP-maximizers induced

by monotone potential functions satisfy the stability conditions of perfect foresight dy-

namics. This implies that “generalized potential” methods may work in other contexts,

unifying the potential maximizer and p-dominance conditions. This is not surprising,

we believe, because GP-maximizers are defined so that they inherit some properties of

potential maximizers. We show in this paper that GP-maximizers inherit the robustness

property of potential maximizers, while Oyama et al. [24] show that GP-maximizers

inherit the stability properties of potential maximizers.

Rosenthal [26] was the first to use potential functions in noncooperative game the-

ory.4 He used potential functions as tools for finding pure-action Nash equilibria.5 Re-

cent studies such as Blume [2, 3], Ui [32, 34], and Hofbauer and Sorger [10, 11] used

potential functions as tools for finding Nash equilibria satisfying some criteria for equi-

librium selection. Since a narrow class of games admit potential functions, attempts

have been made to introduce tools for a broader class of games. Monderer and Shapley

[18] introduced ordinal potential functions6 and generalized ordinal potential functions.

Voorneveld [35] introduced best-response potential functions,7 which are different from

best-response potential functions in this paper. These functions inherit ordinal aspects

of potential functions and serve as tools for the former use (finding pure-action equilib-

ria). They are in clear contrast to generalized potential functions in this paper, which

serve as tools for the latter use (refining equilibria).

The organization of this paper is as follows. Section 2 defines robust sets of equilibria.

Section 3 introduces generalized potential functions. Section 4 provides the main results.

Section 5 discusses best-response potential functions and Section 6 discusses monotone

potential functions. Section 7 reports examples of generalized potential functions. Sec-

tion 8 concludes the paper.

4Hart and Mas-Colell [9] have introduced potential functions in cooperative game theory. The potential

functions of Monderer and Shapley [18] can be regarded as an extension of the potential functions of

Hart and Mas-Colell [9] to noncooperative games, as demonstrated by Ui [33].
5In traffic network theory, non-atomic games similar to the finite games of Rosenthal [26] are studied

and non-atomic potential functions are used to calculate pure-action Nash equilibria. See Oppenheim

[22], for example.
6See also Kukushkin [15].
7Ui [32] considered similar functions in the context of stochastic evolutionary games.
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2 Robust Sets

A complete information game consists of a finite set of players N , a finite action set Ai

for i ∈ N , and a payoff function gi : A → R for i ∈ N where A =
∏

i∈N Ai. We write

A−i =
∏

j 6=i Aj and a−i = (aj)j 6=i ∈ A−i. We also write, for S ∈ 2N , AS =
∏

i∈S Ai

and aS = (ai)i∈S ∈ AS . Because we will fix N and A throughout the paper, we simply

denote a complete information game by g = (gi)i∈N .

An action distribution µ ∈ ∆(A) is a correlated equilibrium of g if, for each i ∈ N ,

∑

a−i∈A−i

µ(ai, a−i)gi(ai, a−i) ≥
∑

a−i∈A−i

µ(ai, a−i)gi(a′i, a−i)

for all ai, a
′
i ∈ Ai.8 An action distribution µ ∈ ∆(A) is a Nash equilibrium of g if it is a

correlated equilibrium and, for all a ∈ A, µ(a) =
∏

i∈N µi(ai) where µi ∈ ∆(Ai). We also

say that a ∈ A is a Nash equilibrium if µ ∈ ∆(A) with µ(a) = 1 is a Nash equilibrium.

Consider an incomplete information game with the set of players N and the action

space A. Let Ti be a countable set of types of player i ∈ N . The state space is

T =
∏

i∈N Ti. We write T−i =
∏

j 6=i Tj and t−i = (tj)j 6=i ∈ T−i. Let P ∈ ∆(T ) be the

prior probability distribution on T with
∑

t−i∈T−i
P (ti, t−i) > 0 for all i ∈ N and ti ∈ Ti.

A payoff function of player i ∈ N is a bounded function ui : A × T → R. Because we

will fix T , N , and A throughout the paper, we simply denote an incomplete information

game by (u, P ) where u = (ui)i∈N .

A (mixed) strategy of player i ∈ N is a mapping σi : Ti → ∆(Ai). We write

Σi for the set of strategies of player i. The strategy space is Σ =
∏

i∈N Σi. We write

Σ−i =
∏

j 6=i Σj and σ−i = (σj)j 6=i ∈ Σ−i. We write σi(ai|ti) for the probability of ai ∈ Ai

given σi ∈ Σi and ti ∈ Ti. For σ ∈ Σ and σ−i ∈ Σ−i, we write σ(a|t) =
∏

i∈N σi(ai|ti)
and σ−i(a−i|t−i) =

∏
j 6=i σj(aj |tj) respectively. Let σP ∈ ∆(A) be such that σP (a) =

∑
t∈T P (t)σ(a|t) for all a ∈ A. We call σP an action distribution generated by σ.

A strategy profile σ ∈ Σ is a Bayesian Nash equilibrium of (u, P ) if, for each i ∈ N ,

∑

t−i∈T−i

∑

a∈A

P (t−i|ti)σ(a|t)ui(a, t) ≥
∑

t−i∈T−i

∑

a−i∈A−i

P (t−i|ti)σ−i(a−i|t−i)ui((a′i, a−i), t)

for all ti ∈ Ti and a′i ∈ Ai where P (t−i|ti) = P (ti, t−i)/
∑

t−i∈T−i
P (ti, t−i). Let Ui(σ) =

∑
t∈T

∑
a∈A P (t)σ(a|t)ui(a, t) be the payoff of strategy profile σ ∈ Σ to player i ∈ N .

8For any finite or countable set S, ∆(S) denotes the set of all probability distributions on S.
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Then, σ ∈ Σ is a Bayesian Nash equilibrium of (u, P ) if and only if, for each i ∈ N ,

Ui(σ) ≥ Ui(σ′i, σ−i) for all σ′i ∈ Σi.

For given g, consider the following subset of Ti:

T ui
i = {ti ∈ Ti |ui(a, (ti, t−i)) = gi(a) for all a ∈ A, t−i ∈ T−i with P (ti, t−i) > 0}.

When ti ∈ T ui
i is realized, payoffs of player i are given by gi and he knows his payoffs.

We write Tu =
∏

i∈N T ui
i .

Definition 1 An incomplete information game (u, P ) is an ε-elaboration of g if P (Tu) =

1− ε for ε ∈ [0, 1].

Payoffs of a 0-elaboration are given by g with probability 1 and every player knows

his payoffs. It is straightforward to see that if a 0-elaboration has a Bayesian Nash

equilibrium σ ∈ Σ then an action distribution generated by σ, σP ∈ ∆(A), is a correlated

equilibrium of g. Kajii and Morris [12, Corollary 3.5] showed the following property of

ε-elaborations, which we will use later.

Lemma 1 Let {(uk, P k)}∞k=1 be such that (uk, P k) is an εk-elaboration of g and εk → 0

as k →∞. Let σk be a Bayesian Nash equilibrium of (uk, P k) and let σk
P k be an action

distribution generated by σk. Then {σk
P k}∞k=1 has a subsequence which converges to some

correlated equilibrium of g.

We say that a set of correlated equilibria of g is robust if, for small ε > 0, every

ε-elaboration of g has a Bayesian Nash equilibrium σ ∈ Σ such that σP ∈ ∆(A) is close

to some equilibrium in the set.

Definition 2 A set of correlated equilibria of g, E ⊆ ∆(A), is robust to all elaborations

in g if, for every δ > 0, there exists ε̄ > 0 such that, for all ε ≤ ε̄, every ε-elaboration

(u, P ) of g has a Bayesian Nash equilibrium σ ∈ Σ such that maxa∈A |µ(a)− σP (a)| ≤ δ

for some µ ∈ E .

If E is a singleton then the equilibrium in E is robust in the sense of Kajii and

Morris [12].

Kajii and Morris [13] considered a weaker version of the robustness of equilibria than

that of Kajii and Morris [12].9 We consider the corresponding version of the robustness
9The difference between them is an open question.
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of sets of equilibria. A type ti ∈ Ti\T ui
i is committed if player i of this type has a strictly

dominant action ati
i ∈ Ai such that ui((ati

i , a−i), (ti, t−i)) > ui((ai, a−i), (ti, t−i)) for all

ai ∈ Ai\{ati
i }, a−i ∈ A−i, and t−i ∈ T−i with P (ti, t−i) > 0. An ε-elaboration of g is

canonical if every ti ∈ Ti\T ui
i is committed for all i ∈ N .

Definition 3 A set of correlated equilibria of g, E ⊆ ∆(A), is robust to canonical elab-

orations in g if, for every δ > 0, there exists ε̄ > 0 such that, for all ε ≤ ε̄, every

canonical ε-elaboration (u, P ) of g has a Bayesian Nash equilibrium σ ∈ Σ such that

maxa∈A |µ(a)− σP (a)| ≤ δ for some µ ∈ E .

If E is a singleton then the equilibrium in E is robust in the sense of Kajii and

Morris [13].

In Section 4, we will provide two sufficient conditions for the robustness of sets of

equilibria, one for the robustness to all elaborations and the other for the robustness to

canonical elaborations respectively.

For either of the robustness concepts, if E is robust then a set of correlated equilibria

E ′ with E ⊆ E ′ is also robust. A robust set E is minimal if no robust set is a proper

subset of E . In this paper, we do not explore the problem of how to identify minimal

robust sets.

Kajii and Morris [12] provided two sufficient conditions for the robustness of singleton

equilibria. One applies to games with unique correlated equilibria.

Theorem 1 If a∗ ∈ A is a unique correlated equilibrium of g, then {a∗} is robust to all

elaborations in g.

The other applies to games with p -dominant equilibria such that
∑

i∈N pi < 1.

Definition 4 Let p = (pi)i∈N ∈ [0, 1]N . Action profile a∗ ∈ A is a p-dominant equilib-

rium of g if, for all i ∈ N and λi ∈ ∆(A−i) with λi(a∗−i) ≥ pi,

∑

a−i∈A−i

λi(a−i)gi(a∗i , a−i) ≥
∑

a−i∈A−i

λi(a−i)gi(ai, a−i)

for ai ∈ Ai.

Theorem 2 If a∗ ∈ A is a p-dominant equilibrium of g with
∑

i∈N pi < 1, then {a∗}
is robust to all elaborations in g.
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Ui [34] provided a sufficient conditions for the robustness of singleton equilibria in

potential games introduced by Monderer and Shapley [18].

Definition 5 A function f : A → R is a weighted potential function of g if there exists

wi > 0 such that

gi(ai, a−i)− gi(a′i, a−i) = wi

(
f(ai, a−i)− f(a′i, a−i)

)
(1)

for all i ∈ N , ai, a
′
i ∈ Ai, and a−i ∈ A−i. A complete information game g is a weighted

potential game if it has a weighted potential function. When wi = 1 for i ∈ N , we call f

a potential function and g a potential game.

Theorem 3 Let g be a potential game with a potential function f . Suppose that {a∗} =

arg maxa∈A f(a). Then {a∗} is robust to canonical elaborations in g.

Sufficient conditions provided by Kajii and Morris [12] and Ui [34] do not apply to

the game g given by the following table.

g

0 1 2

0 3, 2 2, 3 0, 0

1 2, 3 3, 2 0, 0

2 0, 0 0, 0 1, 1

This game has multiple equilibria and thus Theorem 1 does not apply. This game does

not have a potential function and thus Theorem 3 does not apply. This game has one

strict Nash equilibrium 2 = (2, 2). For one player to choose 2, he must believe that his

opponent chooses 2 with probability at least 2/3. This implies that, if 2 is a p-dominant

equilibrium, then it must be true that p1 + p2 ≥ 4/3. Thus, Theorem 2 does not apply.

3 Generalized Potentials

Suppose that g has a weighted potential function f . Then

∑

a−i∈A−i

λi(a−i)
(
gi(ai, a−i)− gi(a′i, a−i)

)
= wi

∑

a−i∈A−i

λi(a−i)
(
f(ai, a−i)− f(a′i, a−i)

)
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for all i ∈ N , ai, a
′
i ∈ Ai, and λi ∈ ∆(A−i). Thus, we have

arg max
ai∈Ai

∑

a−i∈A−i

λi(a−i)gi(ai, a−i) = arg max
ai∈Ai

∑

a−i∈A−i

λi(a−i)f(ai, a−i) (2)

for all i ∈ N and λi ∈ ∆(A−i). We generalize (2) to define generalized potential func-

tions.10

Before providing a formal definition, we present an example. Consider g discussed

in the previous section as an example. Remember that Ai = {0, 1, 2} for i ∈ N = {1, 2}.
We define a collection of subsets of Ai, Ai = {{0, 1}, {0, 1, 2}} for i ∈ N , and define

A = {X1 ×X2 |X1 ∈ A1, X2 ∈ A2}. Consider F : A → R given by the following table.

F

{0, 1} {0, 1, 2}
{0, 1} 2 0

{0, 1, 2} 0 1

The function F has the following property: for Λi ∈ ∆(Aj) and λi ∈ ∆(Aj) with

λi(0) + λi(1) ≥ Λi({0, 1}),

Xi ∩ arg max
ai∈Ai

∑

aj∈Aj

λi(aj)gi(ai, aj) 6= ∅ for all Xi ∈ arg max
X′

i∈Ai

∑

Xj∈Aj

Λi(Xj)F (X ′
i ×Xj)

where i 6= j. As we will see later, F is a generalized potential function of g.

To provide the formal definition, we first introduce the domain of a generalized

potential function denoted by A. For each i ∈ N , let Ai ⊆ 2Ai\∅ be a covering of Ai.

That is, Ai is a collection of nonempty subsets of Ai such that
⋃

Xi∈Ai
Xi = Ai. The

domain of a generalized potential function is A = {∏i∈N Xi |Xi ∈ Ai for i ∈ N}. We

write A−i = {∏j 6=i Xj |Xj ∈ Aj for j 6= i} and X−i =
∏

j 6=i Xj ∈ A−i. Note that A and

A−i are coverings of A and A−i respectively. We call X ∈ A an action subspace.

We then introduce, for Λi ∈ ∆(A−i), a corresponding subset of ∆(A−i) denoted

by ∆Λi(A−i). Imagine that player i believes that a−i ∈ A−i is chosen in two steps:

first, X−i ∈ A−i is chosen according to Λi ∈ ∆(A−i), and then, a−i ∈ X−i is chosen

according to some λ
X−i

i ∈ ∆(A−i) such that λ
X−i

i assigns probability 1 to X−i, i.e.,

10The existence of a function f such that property (2) is satisfied is in fact a necessary but not a

sufficient condition for g to be a weighted potential game. See the discussion in Section 5 and Morris

and Ui [20].
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∑
a−i∈X−i

λ
X−i

i (a−i) = 1. Then, the induced belief of player i over A−i is λi ∈ ∆(A−i)

such that

λi(a−i) =
∑

X−i∈A−i

Λi(X−i)λ
X−i

i (a−i)

for all a−i ∈ A−i. We write ∆Λi(A−i) for the set of the beliefs of player i over A−i

induced by the above rule:

∆Λi(A−i) = {λi ∈ ∆(A−i) |λi(a−i) =
∑

X−i∈A−i

Λi(X−i)λ
X−i

i (a−i) for a−i ∈ A−i,

λ
X−i

i ∈ ∆(A−i) with
∑

a−i∈X−i

λ
X−i

i (a−i) = 1 for X−i ∈ A−i}.

Definition 6 A function F : A → R is a generalized potential function of g if, for all

i ∈ N , Λi ∈ ∆(A−i), and λi ∈ ∆Λi(A−i),

Xi ∩ arg max
a′i∈Ai

∑

a−i∈A−i

λi(a−i)gi(a′i, a−i) 6= ∅

for every

Xi ∈ arg max
X′

i∈Ai

∑

X−i∈A−i

Λi(X−i)F (X ′
i ×X−i)

such that Xi is maximal in the argmax set ordered by the set inclusion relation. An action

subspace X∗ ∈ A is a generalized potential maximizer (GP-maximizer) if F (X∗) > F (X)

for all X ∈ A\{X∗}.

It is clear that F : A → R in the above example is a generalized potential function

because ∆Λi(Aj) ⊆ {λi ∈ ∆(Aj) |λi(0) + λi(1) ≥ Λi({0, 1})} where i 6= j.

At the extreme, consider F : A → R such that Ai = {Ai} for all i ∈ N . Note that

A = {A}. Clearly, every complete information game has a generalized potential function

of this type. At the other extreme, consider F : A → R such that Ai = {{ai} | ai ∈ Ai}
for all i ∈ N . Note that A = {{a} | a ∈ A}. A weighted potential game has a generalized

potential function of this type, which we prove in Section 5.

Lemma 2 If g is a weighted potential game with a weighted potential function f then

g has a generalized potential function F : A → R such that Ai = {{ai} | ai ∈ Ai} for all

i ∈ N and F ({a}) = f(a) for all a ∈ A.

Before closing this section, we give a characterization of ∆Λi(A−i).
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Lemma 3 For all Λi ∈ ∆(A−i), λi ∈ ∆Λi(A−i) if and only if

∑

a−i∈B−i

λi(a−i) ≥
∑

X−i∈A−i
X−i⊆B−i

Λi(X−i)

for all B−i ∈ 2A−i.

This lemma is an immediate consequence of the result of Strassen [30], which is well

known in the study of Dempster-Shafer theory.11 Dempster-Shafer theory considers non-

additive probability functions called belief functions. Every Λi ∈ ∆(A−i), called a basic

probability assignment, defines a corresponding belief function vΛi
i : 2A−i → [0, 1] such

that

vΛi
i (B−i) =

∑

X−i∈A−i
X−i⊆B−i

Λi(X−i)

for all B−i ∈ 2A−i . It is known that the correspondence between Λi and vΛi
i is one-to-

one. An additive probability function λi ∈ ∆(A−i) is said to be compatible with a belief

function vΛi
i if

λi(B−i) ≥ vΛi
i (B−i)

for all B−i ∈ 2A−i .12 Strassen [30] proved that, for all Λi ∈ ∆(A−i), λi is compatible

with vΛi
i if and only if λi ∈ ∆Λi(A−i), which is exactly Lemma 3.

4 Main Results

Suppose that g has a generalized potential function F : A → R with a GP-maximizer

X∗. Let EX∗ be the set of correlated equilibria of g that assign probability 1 to X∗:

EX∗ = {µ ∈ ∆(A) |µ is a correlated equilibrium of g such that
∑

a∈X∗
µ(a) = 1}.

The set EX∗ contains at least one Nash equilibrium. To see this, observe that

X∗
i ∈ arg max

Xi∈Ai

F (Xi ×X∗
−i).

11Dempster [5, 6] and Shafer [29].
12In literature of non-additive probabilities written by economists, λi is called a core of vΛi

i because it

is a core when we regard B−i ∈ 2A−i as a coalition.
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By the definition of generalized potential functions,

X∗
i ∩ arg max

ai∈Ai

∑

a−i∈A−i

λi(a−i)gi(ai, a−i) 6= ∅

for every λi ∈ ∆(A−i) with
∑

a−i∈X∗
−i

λi(a−i) = 1. This implies that the best response

correspondence of g restricted to X∗ has nonempty values. Thus, we can show the

existence of Nash equilibria in EX∗ in the standard way using Kakutani fixed point

theorem.

Our main results state that EX∗ is robust. We present two theorems below. In The-

orem 4, we consider all generalized potential functions and provide a sufficient condition

for the robustness to canonical elaborations. In Theorem 5, we consider a special class

of generalized potential functions such that Ai ∈ Ai for all i ∈ N and provide a sufficient

condition for the robustness to all elaborations.

Theorem 4 If g has a generalized potential function F : A → R with a GP-maximizer

X∗, then EX∗ is nonempty and robust to canonical elaborations in g.

Theorem 5 If g has a generalized potential function F : A → R with a GP-maximizer

X∗ such that Ai ∈ Ai for all i ∈ N , then EX∗ is nonempty and robust to all elaborations

in g.

If EX∗ is a singleton, then it is a minimal robust set and the equilibrium in EX∗ is

robust in the sense of Kajii and Morris [12, 13]. Clearly, if a GP-maximizer consists of

one action profile, then EX∗ is a singleton. It is straightforward to see that EX∗ of the

example in the previous section is also a singleton where the GP-maximizer consists of

four action profiles.

It should be noted that EX∗ is not always a minimal robust set. For example, if a

generalized potential function is such that Ai = {Ai} for all i ∈ N , then EX∗ is the set of

all correlated equilibria.13 The above theorems are useful only when we have nontrivial

generalized potential functions.

In the remainder of this section, we prove Theorem 4 and Theorem 5 simultaneously.

The proof is presented in four steps.

13Kajii and Morris [12] noted the robustness of the set of all correlated equilibria.
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For the first step, let (u, P ) be an ε-elaboration of g and consider collections of

mappings

Ξi = {ξi : Ti → Ai | for all ti ∈ Ti\T ui
i , ξi(ti) ∈ Ai contains

every undominated action of type ti},
Ξ = {ξ : T → A| ξ(t) =

∏

i∈N

ξi(ti) for all t ∈ T where ξi ∈ Ξi for all i ∈ N}

where we say that ai ∈ Ai is an undominated action of type ti if it is not a strictly

dominated action of type ti. We say that ai ∈ Ai is a strictly dominated action of type

ti if there exists a′i ∈ Ai such that ui((a′i, a−i), (ti, t−i)) > ui((ai, a−i), (ti, t−i)) for all

a−i ∈ A−i and t−i ∈ T−i with P (ti, t−i) > 0. Note that Ξ is nonempty if and only if, for

all i ∈ N and ti ∈ Ti\T ui
i , there exists Xi ∈ Ai such that Xi contains every undominated

action of type ti. As considered in Theorem 4, if (u, P ) is canonical and player i of type

ti ∈ Ti\T ui
i has a strictly dominant action ati

i ∈ Ai then Ξ is nonempty because Ai is a

covering of Ai and there exists Xi ∈ Ai such that ati
i ∈ Xi. As considered in Theorem

5, if Ai ∈ Ai for all i ∈ N then Ξ is nonempty because Ai contains every action. To

summarize, we have the following lemma.

Lemma 4 If (u, P ) is canonical then Ξ is nonempty. If Ai ∈ Ai for all i ∈ N then Ξ is

nonempty.

For the second step, let V : Ξ → R be such that

V (ξ) =
∑

t∈T

P (t)F (ξ(t))

for all ξ ∈ Ξ and consider the set of its maximizers Ξ∗ = arg maxξ∈Ξ V (ξ).

Lemma 5 If Ξ is nonempty then Ξ∗ is nonempty. If ξ∗ ∈ Ξ∗ then

∑

t∈T, ξ∗(t)=X∗
P (t) ≥ 1− εκ

where κ is a positive constant.

Proof. Let {ξk ∈ Ξ}∞k=1 be such that

lim
k→∞

V (ξk) = sup
ξ∈Ξ

V (ξ).
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Let Qk ∈ ∆(T ×A) be such that Qk(t,X) = P (t)δ(ξk(t), X) for all (t,X) ∈ T ×A where

δ : A × A → {0, 1} is such that δ(X ′, X) = 1 if X ′ = X and δ(X ′, X) = 0 otherwise.

Then

∑

(t,X)∈T×A
Qk(t,X)F (X) =

∑

(t,X)∈T×A
P (t)δ(ξk(t), X)F (X) =

∑

t∈T

P (t)F (ξk(t)) = V (ξk).

We regard {Qk}∞k=1 as a sequence of probability measures on a discrete metric space

T × A. Note that, for every ε > 0, there exists a finite subset Sε ⊂ T such that
∑

(t,X)∈Sε×AQk(t,X) = P (Sε) > 1 − ε for all k ≥ 1. This implies that {Qk}∞k=1 is

tight because Sε ×A is finite and thus compact. Accordingly, by Prohorov’s theorem,14

{Qk}∞k=1 has a weakly convergent subsequence {Qkl}∞l=1 such that Qkl → Q∗ as l →∞.

It is straightforward to see that there exists ξ∗ ∈ Ξ such that

Q∗(t,X) = lim
l→∞

Qkl(t,X) = P (t) lim
l→∞

δ(ξkl(t), X) = P (t)δ(ξ∗(t), X)

for all (t,X) ∈ T ×A. Then

sup
ξ∈Ξ

V (ξ) = lim
l→∞

V (ξkl)

= lim
l→∞

∑

(t,X)∈T×A
Qkl(t,X)F (X)

=
∑

(t,X)∈T×A
Q∗(t,X)F (X) = V (ξ∗).

Therefore, ξ∗ ∈ Ξ∗ and thus Ξ∗ is nonempty.

Let F ∗ = F (X∗), F ′ = maxX∈A\{X∗} F (X), and F ′′ = minX∈A F (X). Note that

F ∗ > F ′ ≥ F ′′. Let ξ ∈ Ξ be such that ξi(ti) = X∗
i for all ti ∈ T ui

i and i ∈ N . We have

V (ξ∗) ≥ V (ξ)

=
∑

t∈Tu

P (t)F (ξ(t)) +
∑

t∈T\Tu

P (t)F (ξ(t))

≥ P (Tu)F ∗ + (1− P (Tu))F ′′ = (1− ε)F ∗ + εF ′′.

14See Billingsley [1], for example.
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We also have

V (ξ∗) =
∑

t∈T, ξ∗(t)=X∗
P (t)F (ξ∗(t)) +

∑

t∈T, ξ∗(t) 6=X∗
P (t)F (ξ∗(t))

≤
∑

t∈T, ξ∗(t)=X∗
P (t)F ∗ +


1−

∑

t∈T, ξ∗(t)=X∗
P (t)


 F ′.

Combining the above inequalities, we have

(1− ε)F ∗ + εF ′′ ≤
∑

t∈T, ξ∗(t)=X∗
P (t)F ∗ +


1−

∑

t∈T, ξ∗(t)=X∗
P (t)


 F ′

and thus ∑

t∈T, ξ∗(t)=X∗
P (t) ≥ 1− εκ

where κ = (F ∗ − F ′′)/(F ∗ − F ′) > 0.

In order to get intuition about the set Ξ∗, compare V (ξ) with

Ui(σ) =
∑

t∈T

P (t)

(∑

a∈A

σ(a|t)ui(a, t)

)
.

If ε > 0 is close to 0, then ui = gi with probability close to 1. In this case, the relationship

between V and (u, P ) is similar to that between F and g. We already show that there

exists an equilibrium of g assigning probability 1 to the maximizer of F , i.e., X∗. In

the third step below, we will show that there exists an equilibrium of (u, P ) assigning

probability 1 to some maximizer of V , i.e., ξ∗ ∈ Ξ∗.

Let Ξ be partially ordered by the relation ⊆ such that ξ ⊆ ξ′ for ξ, ξ′ ∈ Ξ if and only

if ξi(ti) ⊆ ξ′i(ti) for all ti ∈ Ti and i ∈ N .

Lemma 6 If Ξ∗ ⊆ Ξ is nonempty, then it contains at least one maximal element. If ξ∗

is a maximal element of Ξ∗, then (u, P ) has a Bayesian Nash equilibrium σ∗ ∈ Σ such

that σ∗(t) ∈ ∆(A) assigns probability 1 to the action subspace ξ∗(t) ∈ A for all t ∈ T ,

i.e.,
∑

a∈ξ∗(t) σ∗(a|t) = 1 for all t ∈ T .

Proof. If every linearly ordered subset of Ξ∗ has an upper bound in Ξ∗, then Ξ∗ contains

at least one maximal element by Zorn’s Lemma. Let Ξ′ ⊆ Ξ∗ be linearly ordered. Fix

t = (ti)i∈N ∈ T . For each i ∈ N , observe that

{Xi |Xi = ξ′i(ti), ξ′ ∈ Ξ′} ⊆ Ai

17



is linearly ordered by the set inclusion relation. Since this set is finite, it has a maximum

element, which is equal to
⋃

ξ′i∈Ξ′i
ξ′i(ti) ∈ Ai. Clearly, there exists ξ(i,t) ∈ Ξ′ such that

ξ
(i,t)
i (ti) =

⋃
ξ′i∈Ξ′i

ξ′i(ti). Consider {ξ(i,t) | i ∈ N} ⊆ Ξ′. Since this set is linearly ordered

and finite, it has a maximum element ξ(j,t). Simply denote it by ξ〈t〉, which satisfies

ξ
〈t〉
i (ti) =

⋃
ξ′i∈Ξ′i

ξ′i(ti) for all i ∈ N . For ε > 0, consider {ξ〈t〉 | t ∈ T, P (t) > ε} ⊆ Ξ′.

Since this set is linearly ordered and finite, it has a maximum element ξ〈s〉. Simply

denote it by ξε, which satisfies ξε
i (ti) =

⋃
ξ′i∈Ξ′i

ξ′i(ti) for all ti ∈ Ti and i ∈ N such that

P (t) > ε. Let ξ̃ ∈ Ξ be such that ξ̃i(ti) =
⋃

ξ′i∈Ξ′i
ξ′i(ti) for all ti ∈ Ti and i ∈ N . Note

that ξ̃ is an upper bound of Ξ′. Since ξε(t) = ξ̃(t) for t ∈ T with P (t) > ε, it must be

true that

|V (ξ̃)− V (ξε)| ≤ max
X,X′∈A

|F (X)− F (X ′)| ×
∑

t∈T, P (t)≤ε

P (t).

This implies that limε→0 |V (ξ̃) − V (ξε)| = 0. Note that V (ξε) = maxξ∈Ξ V (ξ) because

ξε ∈ Ξ∗. Therefore, V (ξ̃) = maxξ∈Ξ V (ξ) and thus ξ̃ ∈ Ξ∗, which completes the proof of

the first half of the lemma.

We prove the second half. Let ξ∗ ∈ Ξ∗ be a maximal element. Let ξ∗i ∈ Ξi be such

that ξ∗(t) =
∏

i∈N ξ∗i (ti) for all t ∈ T and write ξ∗−i(t−i) =
∏

j 6=i ξ
∗
j (tj).

We write Σ∗i = {σi ∈ Σi |
∑

ai∈ξ∗i (ti)
σi(ai|ti) = 1 for all ti ∈ Ti}, Σ∗ =

∏
i∈N Σ∗i , and

Σ∗−i =
∏

j 6=i Σ
∗
j . We show that there exists a Bayesian Nash equilibrium σ∗ ∈ Σ∗.

Let βi : Σ∗−i → 2Σ∗i be such that βi(σ−i) = arg maxσi∈Σi Ui(σi, σ−i) ∩ Σ∗i for all

σ−i ∈ Σ∗−i; and let β : Σ∗ → 2Σ∗ be such that β(σ) =
∏

i∈N βi(σ−i) for all σ ∈ Σ∗. Note

that β is the best response correspondence of (u, P ) restricted to Σ∗.

We show that β has nonempty values. This is true if and only if, for all i ∈ N ,

σ−i ∈ Σ∗−i, and ti ∈ Ti,

ξ∗i (ti) ∩ arg max
ai∈Ai

∑

t−i∈T−i

∑

a−i∈A−i

P (t−i|ti)σ−i(a−i|t−i)ui((ai, a−i), t) 6= ∅. (3)

Suppose that ti ∈ Ti\T ui
i . Then (3) is true because ξ∗i (ti) contains every undominated

action of type ti.
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Suppose that ti ∈ T ui
i . Rewrite the left-hand side of (3) as

ξ∗i (ti) ∩ arg max
ai∈Ai

∑

t−i∈T−i

∑

a−i∈A−i

P (t−i|ti)σ−i(a−i|t−i)ui((ai, a−i), t)

= ξ∗i (ti) ∩ arg max
ai∈Ai

∑

a−i∈A−i


 ∑

t−i∈T−i

P (t−i|ti)σ−i(a−i|t−i)


 gi(ai, a−i)

= ξ∗i (ti) ∩ arg max
ai∈Ai

∑

a−i∈A−i

λti
i (a−i)gi(ai, a−i)

(4)

where λti
i ∈ ∆(A−i) is such that

λti
i (a−i) =

∑

t−i∈T−i

P (t−i|ti)σ−i(a−i|t−i)

for all a−i ∈ A−i. Because ξ∗ is a maximal element of Ξ∗,

ξ∗i (ti) ∈ arg max
Xi∈Ai

∑

t−i∈T−i

P (t−i|ti)F (Xi × ξ∗−i(t−i))

= arg max
Xi∈Ai

∑

X−i∈A−i




∑

t−i∈T−i

ξ∗−i(t−i)=X−i

P (t−i|ti)


 F (Xi × ξ∗−i(t−i))

= arg max
Xi∈Ai

∑

X−i∈A−i

Λti
i (X−i)F (Xi ×X−i)

where Λti
i ∈ ∆(A−i) is such that

Λti
i (X−i) =

∑

t−i∈T−i

ξ∗−i(t−i)=X−i

P (t−i|ti)

for all X−i ∈ A−i. This implies that if λti
i ∈ ∆

Λ
ti
i
(A−i) then

ξ∗i (ti) ∩ arg max
ai∈Ai

∑

a−i∈A−i

λti
i (a−i)gi(ai, a−i) 6= ∅ (5)

by the definition of generalized potential functions. To see that λti
i ∈ ∆

Λ
ti
i
(A−i), rewrite

λti
i (a−i) as

λti
i (a−i) =

∑

X−i∈A−i

∑

t−i∈T−i

ξ∗−i(t−i)=X−i

P (t−i|ti)σ−i(a−i|t−i)

=
∑

X−i∈A−i

Λti
i (X−i)λ

ti,X−i

i (a−i)
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where

λ
ti,X−i

i (a−i) =





∑

t−i∈T−i

ξ∗−i(t−i)=X−i

P (t−i|ti)σ−i(a−i|t−i)
Λti

i (X−i)
if Λti

i (X−i) 6= 0,

1
|X−i| if Λti

i (X−i) = 0 and a−i ∈ X−i,

0 if Λti
i (X−i) = 0 and a−i 6∈ X−i.

Because σ−i ∈ Σ∗−i and thus
∑

a−i∈ξ∗−i(t−i)
σ−i(a−i|t−i) = 1 for all t−i ∈ T−i, we have

λ
ti,X−i

i ∈ ∆(A−i) with
∑

a−i∈X−i
λ

ti,X−i

i (a−i) = 1. This implies that λti
i ∈ ∆

Λ
ti
i
(A−i)

and thus (5). Therefore, (3) is true by (4) and (5).

We have shown that β has nonempty values. We can show that Σ∗ is compact15 and

convex and that β has a closed graph and convex values. By Kakutani-Fan-Glicksberg

fixed point theorem, β has a fixed point σ∗ ∈ Σ∗, which is a Bayesian Nash equilibrium

of (u, P ).

We now report the fourth and final step. An immediate implication of the above

lemmas is the following. If (u, P ) is canonical (the case considered in Theorem 4), or if

Ai ∈ Ai for all i ∈ N (the case considered in Theorem 5), then (u, P ) has a Bayesian

Nash equilibrium σ∗ ∈ Σ such that
∑

a∈ξ∗(t) σ∗(a|t) = 1 for all t ∈ T and

∑

a∈X∗
σ∗P (a) =

∑

a∈X∗

∑

t∈T

P (t)σ∗(a|t)

≥
∑

t∈T, ξ∗(t)=X∗
P (t)

∑

a∈X∗
σ∗(a|t)

=
∑

t∈T, ξ∗(t)=X∗
P (t) ≥ 1− εκ

(6)

where ξ∗ is a maximal element of Ξ∗. Thus, to complete the proof, it is enough to show

that, for every δ > 0, there exists ε̄ > 0 such that, for all ε ≤ ε̄ and every ε-elaboration

with a Bayesian Nash equilibrium σ∗ satisfying (6), there exists µ ∈ EX∗ such that

maxa∈A |µ(a)− σ∗P (a)| ≤ δ.

Seeking a contradiction, suppose otherwise. Then, for some δ > 0, there exists a

sequence {(uk, P k)}∞k=1 such that:

• (uk, P k) is an εk-elaboration of g and εk → 0 as k →∞.
15A strategy subspace Σ∗ is compact with the topology of weak convergence defined in {ρσ ∈ ∆(T ×

A) |σ ∈ Σ∗, ρσ(t, a) = P (t)σ(a|t) for all (t, a) ∈ T ×A}.
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• (uk, P k) has a Bayesian Nash equilibrium σ∗k with
∑

a∈X∗ σ∗kP (a) ≥ 1− εkκ.

• max
a∈A

|µ(a)− σ∗kP (a)| > δ for all µ ∈ EX∗ or EX∗ = ∅.

By Lemma 1, {σ∗kP }∞k=1 has a subsequence {σ∗kl
P }∞l=1 such that

lim
l→∞

max
a∈A

|µ(a)− σ∗kl
P (a)| = 0

where µ ∈ ∆(A) is a correlated equilibrium of g. Because

∑

a∈X∗
µ(a) = lim

l→∞

∑

a∈X∗
σ∗kl

P (a) ≥ lim
l→∞

(1− εklκ) = 1,

we have µ ∈ EX∗ . This is a contradiction, which completes the proof of the theorems.

5 Unordered Domains

We restrict attention to the class of generalized potential functions such that domains

are partitions of action spaces. Let Pi ⊆ 2Ai\∅ be a partition of Ai. We write P =

{∏i∈N Xi |Xi ∈ Pi for i ∈ N} and P−i = {∏j 6=i Xj |Xj ∈ Pj for j 6= i}, which are

partitions of A and A−i, respectively. The partition element of Pi containing ai ∈ Ai is

denoted by Pi(ai). Similarly, the partition element of P containing a and that of P−i

containing a−i are denoted by P (a) and P−i(a−i), respectively. We say that a function

v : A → R is P-measurable if v(a) = v(a′) for a, a′ ∈ A with a′ ∈ P (a).

Definition 7 A P-measurable function v : A → R is a best-response potential function

of g if, for each i ∈ N ,

Xi ∩ arg max
a′i∈Ai

∑

a−i∈A−i

λi(a−i)gi(a′i, a−i) 6= ∅

for all Xi ∈ Pi and λi ∈ ∆(A−i) such that

Xi ⊆ arg max
a′i∈Ai

∑

a−i∈A−i

λi(a−i)v(a′i, a−i).

A partition element X∗ ∈ P is a best-response potential maximizer (BRP-maximizer) if

v(a∗) > v(a) for all a∗ ∈ X∗ and a 6∈ X∗.
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For example, consider the special case where Pi is the finest partition, i.e., Pi =

{{ai}}ai∈Ai for all i ∈ N . Then, it is straightforward to see that a function v : A → R is

a best-response potential function of g if and only if

arg max
a′i∈Ai

∑

a−i∈A−i

λi(a−i)v(a′i, a−i) ⊆ arg max
a′i∈Ai

∑

a−i∈A−i

λi(a−i)gi(a′i, a−i)

for all i ∈ N and λi ∈ ∆(A−i).16 For example, a weighted potential function is a

best-response potential function by (2). However, a best-response potential function is

not always a weighted potential function, even if there are no dominated actions, as

demonstrated by Morris and Ui [20]. Thus the class of best-response potential functions

is much larger than the class of weighted potential functions.

A best-response potential function v induces a generalized potential function. Let

F : A → R be such that A = P and F (P (a)) = v(a) for all a ∈ A. Note that

P-measurability of v implies that F is well defined. Since A−i is a partition of A−i,

λi ∈ ∆Λi(A−i) if and only if
∑

a−i∈X−i
λi(a−i) = Λi(X−i) for all X−i ∈ A−i by Lemma 3.

Thus, for Λi ∈ ∆(A−i) and λi ∈ ∆Λi(A−i),
∑

X−i∈A−i

Λi(X−i)F (X ′
i ×X−i) =

∑

a−i∈A−i

λi(a−i)v(a′i, a−i)

if X ′
i = Pi(a′i). This implies that, if

Xi ∈ arg max
X′

i∈Ai

∑

X−i∈A−i

Λi(X−i)F (X ′
i ×X−i),

then

Xi ⊆ arg max
a′i∈Ai

∑

a−i∈A−i

λi(a−i)v(a′i, a−i)

and thus

Xi ∩ arg max
a′i∈Ai

∑

a−i∈A−i

λi(a−i)gi(a′i, a−i) 6= ∅

for all λi ∈ ∆Λi(A−i) by the definition of best-response potential functions. Therefore,

F : A → R is a generalized potential function. This proves Lemma 2 and immediately

implies the following result by Theorem 4, which generalizes Theorem 3.

Proposition 1 If g has a best-response potential function v : A → R with a BRP-

maximizer X∗, then EX∗ is nonempty and robust to canonical elaborations in g.
16A best-response potential function considered by Voorneveld [35] is a function satisfying this condi-

tion for the class of beliefs such that λi(a−i) = 0 or 1. Thus, best-response potential functions in this

paper form a special class of those in Voorneveld [35].
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6 Ordered Domains

Let Pi be a partition of Ai such that Pi is linearly ordered by the order relation ≤i for

i ∈ N . Let Zi and Zi be the smallest and the largest elements of Pi, respectively. The

corresponding product order relation over P is denoted by ≤N , and that over P−i is

denoted by ≤−i, respectively. If Pi(ai) ≤i Zi for ai ∈ Ai and Zi ∈ Pi, we simply write

ai ≤i Zi. For Xi ⊆ Ai, we say that ai ∈ Xi is minimal in Xi if ai ≤i Pi(xi) for all xi ∈ Xi

and that ai ∈ Xi is maximal in Xi if ai ≥i Pi(xi) for all xi ∈ Xi.

Definition 8 Let X∗ ∈ P be given. A P-measurable function v : A → R with v(a∗) >

v(a) for all a∗ ∈ X∗ and a 6∈ X∗ is a monotone potential function of g if, for all i ∈ N

and λi ∈ ∆(A−i), there exists

ai ∈ arg max
a′i≤iX∗

i

∑

a−i∈A−i

λi(a−i)gi(a′i, a−i),

ai ∈ arg max
a′i≤iX∗

i

∑

a−i∈A−i

λi(a−i)v(a′i, a−i)

such that Pi(ai) ≥i Pi(ai), and symmetrically, there exists

ai ∈ arg max
a′i≥iX∗

i

∑

a−i∈A−i

λi(a−i)gi(a′i, a−i),

ai ∈ arg max
a′i≥iX∗

i

∑

a−i∈A−i

λi(a−i)v(a′i, a−i)

such that Pi(ai) ≤i Pi(ai). A partition element X∗ ∈ P is called a monotone potential

maximizer (MP-maximizer).

We restrict attention to a complete information game g satisfying strategic comple-

mentarities or a monotone potential function v satisfying strategic complementarities in

the following sense.

Definition 9 A complete information game g satisfies strategic complementarities if,

for each i ∈ N ,

gi(ai, a−i)− gi(a′i, a−i) ≥ gi(ai, a
′
−i)− gi(a′i, a

′
−i)

for all ai, a
′
i ∈ Ai and a−i, a

′
−i ∈ A−i such that Pi(ai) >i Pi(a′i) and P−i(a−i) >−i

P−i(a′−i). A function v : A → R satisfies strategic complementarities if an identical

interest game g with gi = v for all i ∈ N satisfies strategic complementarities.
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Note that if the partition Pi is the finest one, then the order relation ≤i naturally

induces an order relation over the action set Ai and the above definition of strategic

complementarities reduces to the standard one.

A monotone potential function v with an MP-maximizer X∗ induces a generalized

potential function with a GP-maximizer X∗ if g or v satisfies strategic complementarities.

Let A be such that

Ai = {[Z ′i, Z ′′i ] |Z ′i, Z ′′i ∈ Pi, Z ′i ≤i X∗
i ≤i Z ′′i }

for i ∈ N where [Z ′i, Z
′′
i ] ⊆ Ai is such that

[Z ′i, Z
′′
i ] =

⋃

Z′i≤iZi≤iZ′′i

Zi.

Note that [Zi, Zi] = Ai ∈ Ai. For Z ′−i, Z
′′
−i ∈ P−i with Z ′−i ≤−i Z ′′−i and Z ′, Z ′′ ∈ P

with Z ′ ≤N Z ′′, we write

[Z ′−i, Z
′′
−i] =

∏

j 6=i

[Z ′j , Z
′′
j ] =

⋃

Z′−i≤−iZ−i≤−iZ′′−i

Z−i,

[Z ′, Z ′′] =
∏

i∈N

[Z ′i, Z
′′
i ] =

⋃

Z′≤NZ≤NZ′′
Z.

Then, we have

A−i = {[Z ′−i, Z
′′
−i] |Z ′−i, Z

′′
−i ∈ P−i, Z ′−i ≤−i X∗

−i ≤−i Z ′′−i},
A = {[Z ′, Z ′′] |Z ′, Z ′′ ∈ P, Z ′ ≤N X∗ ≤N Z ′′}.

Note that, for [Z ′i, Z
′′
i ] ∈ Ai and [Z ′−i, Z

′′
−i] ∈ A−i, [Z ′, Z ′′] = [Z ′i, Z

′′
i ] × [Z ′−i, Z

′′
−i] ∈ A.

Let F : A → R be such that

F ([Z ′, Z ′′]) = V (Z ′) + V (Z ′′)

where V : P → R is such that V (P (a)) = v(a) for all a ∈ A, which is well defined by

P-measurability of v. Note that F (X∗) > F (X) for all X ∈ A\{X∗}. By showing that

F is a generalized potential function, we claim the following result.

Proposition 2 Suppose that g has a monotone potential function v : A → R with an

MP-maximizer X∗. If g or v satisfies strategic complementarities, then EX∗ is nonempty

and robust to all elaborations in g.
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Proof. By Theorem 5, it is enough to show that F : A → R given above is a generalized

potential function of g with a GP-maximizer X∗.

For Λi ∈ ∆(A−i), let Z∗i , Z∗∗i ∈ Pi be such that

[Z∗i , Z∗∗i ] ∈ arg max
[Z′i,Z

′′
i ]∈Ai

∑

[Z′−i,Z
′′
−i]∈A−i

Λi([Z ′−i, Z
′′
−i])F ([Z ′i, Z

′′
i ]× [Z ′−i, Z

′′
−i])

and [Z∗i , Z∗∗i ] is maximal in the argmax set ordered by the set inclusion relation. We

prove that

[Z∗i , Z∗∗i ] ∩ arg max
xi∈Ai

∑

a−i∈A−i

λi(a−i)gi(xi, a−i) 6= ∅ (7)

for all λi ∈ ∆Λi(A−i).

First, we calculate

∑

[Z′−i,Z
′′
−i]∈A−i

Λi([Z ′−i, Z
′′
−i])F ([Z ′i, Z

′′
i ]× [Z ′−i, Z

′′
−i])

=
∑

[Z′−i,Z
′′
−i]∈A−i

Λi([Z ′−i, Z
′′
−i])V (Z ′i × Z ′−i)

+
∑

[Z′−i,Z
′′
−i]∈A−i

Λi([Z ′−i, Z
′′
−i])V (Z ′′i × Z ′′−i)

=
∑

Z′−i≤−iX∗
−i


 ∑

Z′′−i≥−iX∗
−i

Λi([Z ′−i, Z
′′
−i])


 V (Z ′i × Z ′−i)

+
∑

Z′′−i≥−iX∗
−i


 ∑

Z′−i≤−iX∗
−i

Λi([Z ′−i, Z
′′
−i])


 V (Z ′′i × Z ′′−i).

Thus, we have

Z∗i = min


arg max

Z′i≤iX∗
i

∑

Z−i∈P−i

Γ′i(Z−i)V (Z ′i × Z−i)


 ,

Z∗∗i = max


arg max

Z′′i ≥iX∗
i

∑

Z−i∈P−i

Γ′′i (Z−i)V (Z ′′i × Z−i)



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where Γ′i,Γ
′′
i ∈ ∆(P−i) are such that

Γ′i(Z−i) =





∑

Z′′−i≥−iX∗
−i

Λi([Z−i, Z
′′
−i]) if Z−i ≤−i X∗

−i,

0 otherwise,

Γ′′i (Z−i) =





∑

Z′−i≤−iX∗
−i

Λi([Z ′−i, Z−i]) if Z−i ≥−i X∗
−i,

0 otherwise.

Next, consider λi ∈ ∆Λi(A−i). Let Γi ∈ ∆(P−i) be such that

Γi(Z−i) =
∑

a−i∈Z−i

λi(a−i)

for all Z−i ∈ P−i. We show that Γ′′i first order stochastically dominates Γi and Γi first

order stochastically dominates Γ′i. We say that Q−i ⊆ P−i is a decreasing subset of

P−i if Z−i ∈ Q−i and Z ′−i ≤−i Z−i together imply Z ′−i ∈ Q−i. The definition of the

stochastic dominance relation says that Γ′′i first order stochastically dominates Γi if, for

any decreasing subset Q−i ⊆ P−i,

∑

Z−i∈Q−i

Γi(Z−i) ≥
∑

Z−i∈Q−i

Γ′′i (Z−i). (8)

It is known that Γ′′i first order stochastically dominates Γi if and only if, for any increasing

function17 Gi : P−i → R,

∑

Z−i∈P−i

Γi(Z−i)Gi(Z−i) ≤
∑

Z−i∈P−i

Γ′′i (Z−i)Gi(Z−i).

We show (8) for two cases separately, X∗
−i 6∈ Q−i and X∗

−i ∈ Q−i. If X∗
−i 6∈ Q−i, then

Z−i ≥−i X∗
−i is false for all Z−i ∈ Q−i and thus

∑

Z−i∈Q−i

Γi(Z−i) ≥
∑

Z−i∈Q−i

Γ′′(Z−i) = 0

17We say that Gi : P−i → R is increasing if Gi(Z−i) ≥ Gi(Z
′
−i) for Z−i ≥−i Z′−i.
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because Γ′′i (Z−i) = 0 unless Z−i ≥−i X∗
−i. If X∗

−i ∈ Q−i, Lemma 3 implies that

∑

Z−i∈Q−i

Γi(Z−i) =
∑

Z−i∈Q−i


 ∑

a−i∈Z−i

λi(a−i)




=
∑

a−i∈
S

Z−i∈Q−i
Z−i

λi(a−i)

≥
∑

[Z′−i,Z
′′
−i]∈A−i

[Z′−i,Z
′′
−i]⊆

S
Z−i∈Q−i

Z−i

Λi([Z ′−i, Z
′′
−i])

=
∑

Z′′−i≥−iX
∗
−i

Z′′−i∈Q−i


 ∑

Z′−i≤−iX∗
−i

Λi([Z ′−i, Z
′′
−i])




=
∑

Z−i≥−iX
∗
−i

Z−i∈Q−i

Γ′′i (Z−i)

=
∑

Z−i∈Q−i

Γ′′i (Z−i).

Therefore, Γ′′i first order stochastically dominates Γi. Symmetrically, we can show that

Γi first order stochastically dominates Γ′i.

Using the stochastic dominance relation, we show that

[Z∗i , X∗
i ] ∩ arg max

xi≤iX∗
i

∑

a−i∈A−i

λi(a−i)gi(xi, a−i) 6= ∅, (9)

[X∗
i , Z∗∗i ] ∩ arg max

xi≥iX∗
i

∑

a−i∈A−i

λi(a−i)gi(xi, a−i) 6= ∅, (10)

which imply (7). For Z−i ∈ P−i, let λ
Z−i

i ∈ ∆(A−i) be such that

λ
Z−i

i (a−i) =





λi(a−i)
Γi(Z−i)

if Γi(Z−i) > 0 and a−i ∈ Z−i,

1
|Z−i| if Γi(Z−i) = 0 and a−i ∈ Z−i,

0 if a−i 6∈ Z−i.

Note that
∑

a−i∈Z−i
λ

Z−i

i (a−i) = 1 and λi(a−i) =
∑

Z−i∈P−i
Γi(Z−i)λ

Z−i

i (a−i) for all

a−i ∈ A−i. Thus,
∑

a−i∈A−i

λi(a−i)gi(xi, a−i) =
∑

Z−i∈P−i

Γi(Z−i)
∑

a−i∈A−i

λ
Z−i

i (a−i)gi(xi, a−i).
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Let λ′i ∈ ∆(A−i) be such that

λ′i(a−i) =
∑

Z−i∈P−i

Γ′i(Z−i)λ
Z−i

i (a−i).

Then, we have

∑

a−i∈A−i

λ′i(a−i)v(xi, a−i) =
∑

Z−i∈P−i

Γ′i(Z−i)
∑

a−i∈A−i

λ
Z−i

i (a−i)v(xi, a−i)

=
∑

Z−i∈P−i

Γ′i(Z−i)V (Pi(xi)× Z−i).

This implies that Z∗i = Pi(a′i) where

a′i ∈ arg max
xi≤iX∗

i

∑

a−i∈A−i

λ′i(a−i)v(xi, a−i)

is minimal in the argmax set. Let

ai ∈ arg max
xi≤iX∗

i

∑

a−i∈A−i

λi(a−i)v(xi, a−i)

be minimal in the argmax set and let

bi ∈ arg max
xi≤iX∗

i

∑

a−i∈A−i

λi(a−i)gi(xi, a−i),

b′i ∈ arg max
xi≤iX∗

i

∑

a−i∈A−i

λ′i(a−i)gi(xi, a−i)

be maximal in the argmax sets, respectively. Since v is a monotone potential function, it

must be true that Pi(ai) ≤i Pi(bi) and Pi(a′i) ≤i Pi(b′i). Suppose that g satisfies strategic

complementarities. For any xi ∈ Ai with Pi(xi) <i Pi(b′i),

gi(b′i, a−i)− gi(xi, a−i) ≥ gi(b′i, a
′
−i)− gi(xi, a

′
−i)

whenever P−i(a−i) >−i P−i(a′−i). This implies that

∑

a−i∈A−i

λ
Z−i

i (a−i)
(
gi(b′i, a−i)− gi(xi, a−i)

) ≥
∑

a−i∈A−i

λ
Z′−i

i (a−i)
(
gi(b′i, a−i)− gi(xi, a−i)

)
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whenever Z−i >−i Z ′−i. In other words,
∑

a−i∈A−i
λ

Z−i

i (a−i)
(
gi(b′i, a−i)− gi(xi, a−i)

)
is

increasing in Z−i. Since Γi first order stochastically dominates Γ′i, it must be true that
∑

a−i∈A−i

λi(a−i)
(
gi(b′i, a−i)− gi(xi, a−i)

)

=
∑

Z−i∈P−i

Γi(Z−i)
∑

a−i∈A−i

λ
Z−i

i (a−i)
(
gi(b′i, a−i)− gi(xi, a−i)

)

≥
∑

Z−i∈P−i

Γ′i(Z−i)
∑

a−i∈A−i

λ
Z−i

i (a−i)
(
gi(b′i, a−i)− gi(xi, a−i)

)

=
∑

a−i∈A−i

λ′i(a−i)
(
gi(b′i, a−i)− gi(xi, a−i)

) ≥ 0.

This implies that Pi(b′i) ≤i Pi(bi). Therefore, Z∗i = Pi(a′i) ≤i Pi(b′i) ≤i Pi(bi) and

thus (9) is true. Suppose that v satisfies strategic complementarities. By the similar

discussion, for any xi ∈ Ai with Pi(xi) <i Pi(a′i),
∑

a−i∈A−i

λi(a−i)
(
v(a′i, a−i)− v(xi, a−i)

)

=
∑

Z−i∈P−i

Γi(Z−i)
∑

a−i∈A−i

λ
Z−i

i (a−i)
(
v(a′i, a−i)− v(xi, a−i)

)

≥
∑

Z−i∈P−i

Γ′i(Z−i)
∑

a−i∈A−i

λ
Z−i

i (a−i)
(
v(a′i, a−i)− v(xi, a−i)

)

=
∑

a−i∈A−i

λ′i(a−i)
(
v(a′i, a−i)− v(xi, a−i)

)
> 0.

This implies that Pi(a′i) ≤i Pi(ai). Therefore, Z∗i = Pi(a′i) ≤i Pi(ai) ≤i Pi(bi) and thus

(9) is true.

To summarize, if either g or v satisfies strategic complementarities, (9) is true. Sim-

ilarly, we can show that (10) is true. Therefore, we obtain (7).

We can obtain the simpler form of the MP-maximizer condition if a complete infor-

mation game satisfies diminishing marginal returns. We say that a complete information

game satisfies diminishing marginal returns if every player’s payoff function is concave

with respect to his own action. Let Z+
i ∈ Pi be the smallest element larger than Zi 6= Zi,

and Z−i ∈ Pi be the largest element smaller than Zi 6= Zi.

Definition 10 A complete information game g satisfies diminishing marginal returns

if, for each i ∈ N and a−i ∈ A−i,

gi(a+
i , a−i)− gi(ai, a−i) ≤ gi(ai, a−i)− gi(a−i , a−i)
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for ai 6∈ Zi ∪ Zi, a+
i ∈ Pi(ai)+, and a−i ∈ Pi(ai)−.

In the case of diminishing marginal returns, we will see that the MP-maximizer

condition reduces to the following simpler condition.

Definition 11 Let X∗ ∈ P be given. A P-measurable function v : A → R with v(a∗) >

v(a) for all a∗ ∈ X∗ and a 6∈ X∗ is a local potential function of g if, for each i ∈ N and

Zi >i X∗
i ,

max
a′i∈Z−i

∑

a−i∈A−i

λi(a−i)gi(a′i, a−i) ≥ max
a′i∈Zi

∑

a−i∈A−i

λi(a−i)gi(a′i, a−i)

for all λi ∈ ∆(A−i) such that
∑

a−i∈A−i

λi(a−i)v(a−i , a−i) ≥
∑

a−i∈A−i

λi(a−i)v(ai, a−i)

where a−i ∈ Z−i and ai ∈ Zi; and symmetrically, for each i ∈ N and Zi <i X∗
i ,

max
a′i∈Z+

i

∑

a−i∈A−i

λi(a−i)gi(a′i, a−i) ≥ max
a′i∈Zi

∑

a−i∈A−i

λi(a−i)gi(a′i, a−i)

for all λi ∈ ∆(A−i) such that
∑

a−i∈A−i

λi(a−i)v(a+
i , a−i) ≥

∑

a−i∈A−i

λi(a−i)v(ai, a−i)

where a+
i ∈ Z+

i and ai ∈ Zi. A partition element X∗ ∈ P is called a local potential

maximizer (LP-maximizer).

We show that if a complete information game satisfies diminishing marginal returns,

then a local potential function is a monotone potential function, by which we claim the

following result.

Proposition 3 Suppose that g has a local potential function v : A → R with an LP-

maximizer X∗. If g satisfies diminishing marginal returns, and if g or v satisfies strategic

complementarities, then EX∗ is nonempty and robust to all elaborations in g.

Proof. By Proposition 2, it is enough to show that if g satisfies diminishing marginal

returns, then a local potential function v is a monotone potential function. Let

ai ∈ arg max
xi≤iX∗

i

∑

a−i∈A−i

λi(a−i)gi(xi, a−i)
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be maximal in the argmax set and let

ai ∈ arg max
xi≤iX∗

i

∑

a−i∈A−i

λi(a−i)v(xi, a−i)

be minimal in the argmax set. We prove that Pi(ai) ≥i Pi(ai). If Pi(ai) = Zi, then

Pi(ai) ≥i Pi(ai). If Pi(ai) 6= Zi, then Pi(ai)
− exists, and it must be true that, for all

a−i ∈ Pi(ai)−, ∑

a−i∈A−i

λi(a−i)
(
v(ai, a−i)− v(a−i , a−i)

)
> 0.

Since v is a local potential function, for some a∗i ∈ Pi(ai),
∑

a−i∈A−i

λi(a−i)
(
gi(a∗i , a−i)− gi(a−i , a−i)

) ≥ 0

for all a−i ∈ Pi(ai)−. Since g satisfies diminishing marginal returns, we must have
∑

a−i∈A−i

λi(a−i)
(
gi(xi, a−i)− gi(x−i , a−i)

) ≥ 0

for all xi ≤i Pi(ai)− and x−i ∈ Pi(xi)−. This implies that
∑

a−i∈A−i

λi(a−i)gi(a∗i , a−i) ≥
∑

a−i∈A−i

λi(a−i)gi(xi, a−i)

for all xi ≤i Pi(ai)−. Therefore, it must be true that Pi(ai) ≥i Pi(a∗i ) = Pi(ai).

Symmetrically, let

ai ∈ arg max
xi≥iX∗

i

∑

a−i∈A−i

λi(a−i)gi(xi, a−i)

be minimal in the argmax set and let

ai ∈ arg max
xi≥iX∗

i

∑

a−i∈A−i

λi(a−i)v(xi, a−i)

be maximal in the argmax set. By the symmetric argument, we can prove that Pi(ai) ≤i

Pi(ai).

Combining the above arguments, we conclude that a local potential function v is a

monotone potential function.

Proposition 3 has an important implication in the special case where

Pi = {{a∗i }, Ai\{a∗i }}

31



with {a∗i } ≤i Ai\{a∗i } for all i ∈ N and an LP-maximizer is {a∗}.18 Note that a

complete information game satisfies diminishing marginal returns in the trivial sense. It

is straightforward to see that a function v : A → R is a local potential function with an

LP-maximizer {a∗} if and only if

• v(a∗) > v(a) for a 6= a∗,

• for all i ∈ N , v(ai, a−i) = v(a′i, a−i) for ai, a
′
i ∈ Ai\{a∗i } and a−i ∈ A−i,

• for all i ∈ N , if

∑

a−i∈A−i

λi(a−i)v(a∗i , a−i) ≥
∑

a−i∈A−i

λi(a−i)v(ai, a−i), (11)

then ∑

a−i∈A−i

λi(a−i)gi(a∗i , a−i) ≥
∑

a−i∈A−i

λi(a−i)gi(ai, a−i) (12)

for ai 6= a∗i .

One can show that if g has a p-dominant equilibrium a∗ with
∑

i∈N pi < 1 (see

Definition 4), then g has a local potential function v of this type. Thus, Theorem 2 is an

immediate consequence of Proposition 3, the above discussion and the following lemma.

Lemma 7 For p = (pi)i∈N ∈ [0, 1]N with
∑

i∈N pi < 1, g has a p-dominant equilibrium

a∗ if and only if g has a local potential function v : A → R with an LP-maximizer {a∗}
such that

v(a) =





1−∑
i∈N pi if a = a∗,

−∑
i∈S pi if ai = a∗i for i ∈ S and ai 6= a∗i for i 6∈ S.

In addition, v satisfies strategic complementarities.

Proof. Since

v(a∗i , a−i)− v(ai, a−i) =





1− pi if a−i = a∗−i,

−pi otherwise

18We have elsewhere labelled this class of local potential functions as “characteristic potential func-

tions” because there exists one-to-one correspondence between v : A → R and φ : 2N → R by the rule

φ(S) = v(a) if and only if ai = a∗i for i ∈ S and ai 6= a∗i for i 6∈ S.
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for ai 6= a∗i , v satisfies strategic complementarities. Note that v is P-measurable and

v(a∗) > v(a) for a 6= a∗. Note also that (11) is equivalent to
∑

a−i∈A−i

λi(a−i) (v(a∗i , a−i)− v(ai, a−i)) = λi(a∗−i)(1− pi) +
∑

a−i 6=a∗−i

λi(a−i)(−pi)

= λi(a∗−i)− pi ≥ 0

for ai 6= a∗i . Thus, v is a local potential function function of g if and only if λi(a∗−i) ≥ pi

implies (12), which is true if and only if a∗ is a p-dominant equilibrium. This completes

the proof.

A local potential function in Lemma 7 can be extended to the more general case

where

Pi = {X∗
i , Ai\X∗

i }
with X∗

i ≤i Ai\X∗
i for all i ∈ N . Consider v : A → R such that

v(a) =





1−∑
i∈N pi if a ∈ X∗,

−∑
i∈S pi if ai ∈ X∗

i for i ∈ S and ai 6∈ X∗
i for i 6∈ S

with
∑

i∈N pi < 1. If g has a local potential function v given above with an LP-maximizer

X∗, then X∗ can be regarded as a set-valued extension of p-dominance. In fact, Tercieux

[31] extended the notion of p-dominance to a set-valued one, p-best response set, and

demonstrated that a p-best response set X∗ is characterized by a local potential function

v given above with an LP-maximizer X∗.19

Local potential functions have the following characterization, which is easier to apply

in finding local potential functions. Remember that, in weighted potential functions, the

payoff difference condition (1) leads to the belief condition (2).20 The condition in

the following lemma provides the payoff difference condition which leads to the belief

condition in Definition 11.

Lemma 8 Let X∗ ∈ P be given. A P-measurable function v : A → R with v(a∗) > v(a)

for all a∗ ∈ X∗ and a 6∈ X∗ is a local potential function of g if, for each i ∈ N , there

exists µi(a−i , ai) ≥ 0 for ai ∈ Zi with Zi >i X∗
i and a−i ∈ Z−i such that

gi(a−i , a−i)− gi(ai, a−i) ≥ µi(a−i , ai)
(
v(a−i , a−i)− v(ai, a−i)

)
19We are grateful to Olivier Tercieux for discussions clarifying the relation between LP-maximizers

and p-best response sets, which led to small change in the formulation of the LP-maximizer condition.
20See Morris and Ui [20] for the duality argument between beliefs and payoff differences.
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for all a−i ∈ A−i, and symmetrically, there exists µi(a+
i , ai) ≥ 0 for ai ∈ Zi with

Zi <i X∗
i and a+

i ∈ Z+
i such that

gi(a+
i , a−i)− gi(ai, a−i) ≥ µi(a+

i , ai)
(
v(a+

i , a−i)− v(ai, a−i)
)

for all a−i ∈ A−i.

Proof. Suppose that v satisfies the condition in the lemma. Then,

∑

a−i∈A−i

λi(a−i)
(
gi(a−i , a−i)− gi(ai, a−i)

)

≥ µi(a−i , ai)
∑

a−i∈A−i

λi(a−i)
(
v(a−i , a−i)− v(ai, a−i)

)
.

Clearly, if ∑

a−i∈A−i

λi(a−i)
(
v(a−i , a−i)− v(ai, a−i)

) ≥ 0,

then ∑

a−i∈A−i

λi(a−i)
(
gi(a−i , a−i)− gi(ai, a−i)

) ≥ 0.

Thus, v satisfies the first half of the condition in Definition 11. By the symmetric

argument, we can show that v also satisfies the second half. Therefore, v is a local

potential function.

If Pi is the finest partition for all i ∈ N , then the converse of the above lemma is

also true. For ai ∈ Ai, let a+
i ∈ Ai be the smallest element larger than ai and a−i ∈ Ai

be the largest element smaller than ai.

Lemma 9 Suppose that Pi = {{ai}}ai∈Ai for all i ∈ N . Let a∗ ∈ A be given. A function

v : A → R with v(a∗) > v(a) for all a 6= a∗ is a local potential function of g if and only

if, for each i ∈ N , there exists µi(a−i , ai) ≥ 0 for ai >i a∗i and a−i such that

gi(a−i , a−i)− gi(ai, a−i) ≥ µi(a−i , ai)
(
v(a−i , a−i)− v(ai, a−i)

)

for all a−i ∈ A−i, and symmetrically, there exists µi(a+
i , ai) ≥ 0 for ai <i a∗i and a+

i

such that

gi(a+
i , a−i)− gi(ai, a−i) ≥ µi(a+

i , ai)
(
v(a+

i , a−i)− v(ai, a−i)
)

for all a−i ∈ A−i.
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Proof. It is enough to show the “only if” part. Suppose that v is a local potential

function. To show that µi(a−i , ai) and µi(a+
i , ai) exist, we use Farkas’ Lemma.21 Farkas’

Lemma says that, for finite dimensional vectors a0,a1, . . . ,am ∈ Rn, the following two

conditions are equivalent.

• If (a1.y), . . . , (am.y) ≤ 0 for y ∈ Rn, then (a0.y) ≤ 0.

• There exists x1, . . . , xm ≥ 0 such that x1a1 + · · ·+ xmam = a0.

Since v is a local potential function and Pi = {{ai}}ai∈Ai for all i ∈ N , if

∑

a−i∈A−i

λi(a−i)
(
v(a−i , a−i)− v(ai, a−i)

) ≥ 0,

then ∑

a−i∈A−i

λi(a−i)
(
gi(a−i , a−i)− gi(ai, a−i)

) ≥ 0.

This implies that, if (ya−i)a−i∈A−i ∈ RA−i is such that

−
∑

a−i∈A−i

ya−i

(
v(a−i , a−i)− v(ai, a−i)

) ≤ 0,

−ya−i ≤ 0 for a−i ∈ A−i,

then

−
∑

a−i∈A−i

ya−i

(
gi(a−i , a−i)− gi(ai, a−i)

) ≤ 0.

By Farkas’ Lemma, there exist x ≥ 0 and xa−i ≥ 0 for a−i ∈ A−i such that

−x
(
v(a−i , a−i)− v(ai, a−i)

)−
∑

a′−i∈A−i

xa′−i
δa′−i(a−i) = − (

gi(a−i , a−i)− gi(ai, a−i)
)

for all a−i ∈ A−i where δa′−i : A−i → R is such that δa′−i(a−i) = 1 if a−i = a′−i and

δa′−i(a−i) = 0 otherwise. Thus,

gi(a−i , a−i)− gi(ai, a−i) ≥ x
(
v(a−i , a−i)− v(ai, a−i)

)

and we can choose µi(a−i , ai) = x. Symmetrically, we can show the existence of µi(a+
i , ai),

which completes the proof.

21See textbooks of convex analysis such as Rockafellar [25].
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7 Examples

As well as unifying the sufficient conditions for the robustness of equilibria provided

by Kajii and Morris [12] and Ui [34], our generalized potential approach generates other

sufficient conditions for the robustness of equilibria where the earlier results do not apply.

In this section, we discuss examples applying these new sufficient conditions.

3× 3 Games

We first discuss how to use Lemma 9. Consider the following g and v.

g

0 1 2

0 5, 5 3, 3 −4, 0

1 3, 3 7, 7 4, 6

2 0, −4 6, 4 6, 6

v

0 1 2

0 5 4 1

1 4 6 5

2 1 5 7

Assuming the finest partitions of players’ action sets, g satisfies diminishing marginal

returns and v satisfies strategic complementarities. In addition,

gi(1, aj)− gi(0, aj) = 2 (v(1, aj)− v(0, aj)) ,

gi(2, aj)− gi(1, aj) = v(2, aj)− v(1, aj).

Thus, by Lemma 9, v is a local potential function with an LP-maximizer {(2, 2)}, and

by Proposition 3, (2, 2) is a robust equilibrium.

Frankel et al. [8] study LP-maximizers of two player three action games with symmet-

ric payoffs. They report a slightly involved but complete characterization of the unique

singleton LP-maximizer for this class.22 Oyama et al. [24] report a complete character-

ization of the unique singleton MP-maximizer in generic two player three action games

with symmetric payoffs satisfying strategic complementarities. These characterizations,

however, cannot be extended beyond three action games: Frankel et al. [8] establish the

non-existence of a singleton LP-maximizer in an open set of two player four action games

22Frankel et al. [8] describe an extension of the LP-maximizer condition that allows for continuous

action games and use it to provide sufficient conditions for an action profile to be selected as the “noise

independent selection” of a global game. Equilibria that are robust to incomplete information will always

be the “noise independent selection” of a global game.
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with symmetric payoffs satisfying strategic complementarities and diminishing marginal

returns. An interesting (but open) question is whether the methods in this paper could

be used to characterize a minimal non-singleton local potential maximizer in two player

many action games with symmetric payoffs satisfying strategic complementarities and

diminishing marginal returns.

As noted above, recent results in Tercieux [31] showing the robustness of “p-best

response sets” can be shown to be a special case of our generalized potential results.

In the example we cited at the end of Section 2, the GP-maximizer {0, 1} × {0, 1} is a

“(1
3 , 1

3)-best response set” in Tercieux’s sense. Tercieux [31] provides further examples

of action profile sets satisfying the (p1, p2)-best response property, with p1 + p2 < 1, for

two player three action games.

Binary Action Games

For i ∈ N = {1, . . . , n}, let Ai = {1, 2} and Pi = {{1}, {2}} where Pi is linearly ordered

by the rule {1} ≤i {2}. Note that g satisfies diminishing marginal returns in the trivial

sense. By Lemma 9, v : A → R is a local potential function with an LP-maximizer

{1} = {(1, . . . , 1)} if and only if v(1) > v(a) for all a 6= 1 and there exists µi ≥ 0 such

that gi(1, a−i)− gi(2, a−i) ≥ µi (v(1, a−i)− v(2, a−i)) for all a−i ∈ A−i and i ∈ N .

To illustrate the condition, consider a unanimity game g such that

gi (a) =





yi if a = 1,

zi if a = 2,

0 otherwise

where yi, zi > 0 for all i ∈ N . Note that g satisfies strategic complementarities. A

function v : A → R is a local potential function with an LP-maximizer {1} if and only

if v(1) > v(a) for all a 6= 1 and there exists µi ≥ 0 such that yi ≥ µi (v(1)− v(2,1−i)),

−zi ≥ µi (v(1,2−i)− v(2)), and 0 ≥ µi (v(1, a−i)− v(2, a−i)) for a−i 6= 1−i,2−i, for all

i ∈ N . Because zi > 0, we must have µi > 0 and v(1,2−i) − v(2) < 0. Then, we can

show that the above condition implies that yi/µi > zj/µj for all i 6= j. In other words,

{1} is an LP-maximizer only if there exists µi > 0 for i ∈ N such that yi/µi > zj/µj for

all i 6= j. We show this when i = 1 and j = n. Let {ak ∈ A}n
k=0 be such that, for each
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k, ak
i = 1 if i > k and ak

i = 2 if i ≤ k. Note that a0 = 1 and an = 2. We have

y1/µ1 ≥ v(a0)− v(a1),

0 ≥ v(ak−1)− v(ak) for k ∈ {2, . . . , n− 1},
−zn/µn ≥ v(an−1)− v(an).

Thus, y1/µ1 − zn/µn ≥
∑n

k=1

(
v(ak−1)− v(ak)

)
= v(a0)− v(an) = v(1)− v(2) > 0.

It should be noted that there exist an open set of games that do not have any

local potential function. For example, all games in the neighborhood of the following

unanimity game do not have a local potential function with an LP-maximizer {1} or {2}.
Let N = {1, 2, 3}, y1 = 6, y2 = y3 = 1, z1 = z2 = z3 = 2. If {1} is an LP-maximizer,

then it must be true that 1/µ2 > 2/µ3 and 1/µ3 > 2/µ2, which implies that 1 > 4.

Thus, {1} is not an LP-maximizer. If {2} is an LP-maximizer, then it must be true

that 2/µ2 > 6/µ1 and 2/µ1 > 1/µ2, which implies that 4 > 6. Thus, {2} is not an

LP-maximizer.

Non-Singleton LP-Maximizers in Three Action Games

For i ∈ N = {1, . . . , n}, let Ai = {0, 1, 2} and Pi = {{0, 1}, {2}} where Pi is linearly

ordered by the rule {0, 1} ≤i {2}. Note that g satisfies diminishing marginal returns in

the trivial sense. By Lemma 8, a P-measurable function v : A → R is a local potential

function with an LP-maximizer X∗ = {0, 1}N if v(a∗) > v(a) for all a∗ ∈ X∗ and a 6∈ X∗,

and there exists µ0
i , µ

1
i ≥ 0 such that

gi(0, a−i)− gi(2, a−i) ≥ µ0
i (v(0, a−i)− v(2, a−i)) ,

gi(1, a−i)− gi(2, a−i) ≥ µ1
i (v(1, a−i)− v(2, a−i))

for all a−i ∈ A−i and i ∈ N .

For example, consider the following game:

gi (a) =





yi(a) if a ∈ X∗,

zi if a = 2,

0 otherwise

where yi : X∗ → R is such that yi(a) > 0 for all a ∈ X∗ and zi > 0. Note that g satisfies

strategic complementarities. A P-measurable function v : A → R is a local potential
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function with an LP-maximizer X∗ if v(a∗) > v(a) for all a∗ ∈ X∗ and a 6∈ X∗, and

there exists µai
i ≥ 0 for ai ∈ {0, 1} such that yi(a) ≥ µai

i (v(a)− v(2, a−i)) for a−i ∈ X∗
−i,

−zi ≥ µai
i (v(ai,2−i)− v(2)), and 0 ≥ µai

i (v(a)− v(2, a−i)) for a−i 6∈ X∗
−i ∪ {2−i}, for

all i ∈ N . Note that µai
i > 0 and v(ai,2−i)− v(2) < 0 because zi > 0.

In general, a robust set induced by the LP-maximizer, EX∗ , is not a singleton. Con-

sider Example 3.1 of Kajii and Morris [12]. Let N = {1, 2, 3} and zi = 1 for all i ∈ N .

Let the restricted game (yi)i∈N be the cyclic matching pennies game; each player’s pay-

offs depend only on his own action and the action of his “adversary.” Player 3’s adversary

is player 2, player 2’s adversary is player 1, and player 1’s adversary is player 3. Thus,

for example, player 1’s payoffs are completely independent of player 2’s action. Every

player tries to choose action different from his adversary’s. Player 1’s restricted payoff

function is such that y1(1, 0, a3) = y1(0, 1, a3) = 3 and y1(1, 1, a3) = y1(0, 0, a3) = 2 for

all a3 ∈ {0, 1}. The other players’ restricted payoff functions are given similarly.

Kajii and Morris [12] showed that no single correlated equilibrium is robust. However,

v : A → R such that

v(a) =





2 if a ∈ X∗,

1 if a = 2,

0 otherwise

is a local potential function and X∗ is an LP-maximizer. Thus, EX∗ is a robust set.

8 Concluding Remarks

This paper introduces generalized potential functions and provides sufficient conditions

for the robustness of sets of equilibria. Special cases of the conditions unify the sufficient

conditions for the robustness of equilibria provided by Kajii and Morris [12] and Ui [34],

and provide new sufficient conditions.

The generalized potential technique introduced in this paper may be useful in analyz-

ing questions other than the robustness of incomplete information, as already suggested

by the work of Oyama et al. [24]. In addition, there are a number of open questions

about the robustness of equilibria. First, are robust equilibria unique if they exist? Kajii

and Morris [12] showed that a strictly p-dominant equilibrium with
∑

i∈N pi < 1 is the

unique robust equilibrium; and we do not have examples of generic games with multiple

robust equilibria. However, we do not know an argument showing that robust equilibria
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of generic games must be unique if they exist. Second, how can we tell if a robust set is

a minimal robust set? Finally, is there a gap between robustness to all elaborations and

robustness to all canonical elaborations? The generalized potential technique might be

employed to answer each of these basic questions about the robustness of equilibria.
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