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Direct CALPHAD coupling phase-field model: Closed-form expression for
interface composition satisfying equal diffusion potential condition
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We formulated two phase-field models to compute interfacial compositions, characterized by their high
computational accuracy and efficiency. The inaugural model utilizes convergence calculations to fulfill the equal
diffusion potential condition, while the subsequent model obviates the need for such calculations. Despite this,
its computational outcomes strongly agree with those of the preceding model. Notably, in these models, the
alteration in composition attributable to interfacial curvatures aligns with the Gibbs-Thomson effect within the
equilibrium system. In this study, the solidification processes of Ni-Al-Cr and Ag-Cu-Sn alloys serve as case
studies to underscore the computational precision and swiftness of the proposed models.
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I. INTRODUCTION

The phase-field model, renowned for its efficacy in ad-
dressing free-boundary problems within materials science
and engineering, has garnered significant interest following
Kobayashi’s pioneering simulation of dendritic growth in pure
materials [1]. This model has since evolved to encompass
binary [2–4] systems and multicomponent [5] and multiphase
[6–8] systems. Its integration with the calculation of phase
diagrams (CALPHAD) approach has enabled the simula-
tion of microstructure evolution in practical alloys [9–13].
The computational cost of CALPHAD integration greatly
depends on how the interfacial composition is handled. In
the Wheeler-Boettinger-McFadden (WBM) model [2], the
interfacial region is assumed to be a mixture of multiple
phases with the same composition. Coupling the CALPHAD
database with the WBM model is straightforward because
there is no need to utilize additional conditions to determine
the interfacial composition. However, the chemical energy
in this model is a double-well-type function with respect
to composition, resulting in excess energy in the interfacial
region.

To remove this spurious energy, the Kim-Kim-Suzuki
(KKS) model [4] considers solute partitioning at the interfa-
cial region such that the coexisting solid and liquid phases
have different compositions. This partitioning is performed
under the assumption that local equilibrium is maintained
in the interfacial region (i.e., an equal diffusion potential
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condition). Nonetheless, determining compositions satisfying
the equal diffusion potential condition is time consuming
because of the complexities of regular solution functions
described by the Redlich-Kister polynomial, which is ex-
tensively used in the CALPHAD approach to specify the
excess Gibbs energy. To mitigate computational demands,
various strategies have been introduced. Kobayashi et al. pro-
posed a method to precompile a database of potential equal
diffusion compositions, thereby circumventing the need to
resolve nonlinear equations midsimulation [11]. Addition-
ally, extrapolation techniques, such as the “diagonal” and
“multibinary” approaches [14–16], enhance computational
efficiency by limiting thermodynamic calculations to spe-
cific intervals and extrapolating quasiequilibrium data until
subsequent evaluations. While these methods offer a versa-
tile framework for software integration and aim to balance
computational speed with accuracy, they inherently face a
tradeoff between reducing computation times and increas-
ing precision. Moreover, these approaches fail to accurately
account for the curvature effect, a critical factor in the evolu-
tion of microscale microstructures. Beyond these approaches,
strategies, including a parabolic approximation of free energy
functions [17,18] and the incorporation of machine learning
[19,20], have been proposed to expedite computations within
the KKS model framework. Nonetheless, the effectiveness
of the former is limited in multicomponent systems, while
the latter necessitates extensive preprocessing of equilibrium
data. Compiling equilibrium data across diverse temperatures
and compositions proves particularly challenging in systems
with three or more components owing to multiple equilibrium
states.
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The finite interface dissipation (FID) model [21,22] as-
sumes that the interfacial region is a mixture of multiple
phases with different compositions and diffusion potentials.
This model was introduced to elucidate rapid solidification
phenomena where the equal diffusion potential condition is
not applicable, offering a framework to accommodate discon-
tinuities in chemical potential across interfaces. In the FID
model, the solute partitioning in the interfaces is determined
by the variational derivative of the total free energy with
respect to the interface concentration. The calculation of the
partitioning equation is straightforward even with CALPHAD
functions, thereby ensuring that the computational cost as-
sociated with CALPHAD integration with the FID model is
as low as that of the WBM model. The interfacial perme-
ability P, which defines the degree of nonequilibrium in the
FID model, indicates that a smaller value corresponds to a
higher degree of nonequilibrium, while a sufficiently large
value can also replicate local equilibrium conditions. There-
fore, the FID model, even when coupled with CALPHAD,
may be used to perform phase-field simulations under local
equilibrium conditions at a low computational cost [23,24].
Although theoretical constructs allow for assigning exceed-
ingly large values to physical quantities, practical numerical
computations encounter difficulties when handling such val-
ues. To maintain numerical stability, interfacial permeability
must be maintained within a moderate range, precluding
the assurance of equal diffusion potentials. Additionally,
the FID model encounters issues in integrating the anti-
trapping current [25,26] necessary for precise quantitative
analysis.

The aim of this study is to overcome the long-standing
lack of a method for effectively solving the equal diffu-
sion condition as this condition is a prerequisite for most
microstructure evolution phenomena. An optimal model for
implementing equal diffusion potential conditions that is ver-
satile enough to apply across various thermodynamic systems
while ensuring computational accuracy and efficiency is de-
sired. Specifically, such a model must fulfill four critical
criteria: (i) Eliminate the need for preliminary calculations,
such as those reliant on machine learning; (ii) unequivocally
ensure equal diffusion potential conditions; (iii) facilitate the
direct application of CALPHAD functions, and (iv) obviate
the necessity for additional parameters, including interfacial
permeability as seen in the FID model and recalibration in-
tervals characteristic of the extrapolation method. We derived
two models aimed at achieving equal diffusion potential con-
ditions by adapting the governing equations of the FID model.
The first model, referred to as the iterative model, utilizes
convergence calculations to meet the equal diffusion poten-
tial condition. In contrast, the second model, known as the
noniterative model, is designed to bypass the need for such
calculations. These models can be referred to as the “direct
CALPHAD coupling phase-field models,” which allow for a
direct coupling of the CALPHAD database with the phase-
field method. To validate the efficacy of the direct CALPHAD
coupling phase-field model, we examined the Gibbs-Thomson
effect and steady-state conditions. Additionally, the mi-
crostructural evolution of Ni-Al-Cr and Ag-Cu-Sn alloys
was simulated, further demonstrating the capabilities of the
developed models.

The foundational equation of the FID model, as formu-
lated by Steinbach et al., posits that compositional changes
at the interface [21,22] are minimal, a constraint driven by the
model’s aim to replicate the solute trapping effect observed
during rapid solidification processes. Contrasting this initial
premise, Koyama expanded the model’s applicability by re-
laxing this assumption, enabling its application to form grain
boundary phases [27]. Building upon this modification, we
have embraced a more flexible formulation and derived the
governing equation pertinent to N phases.

II. MODEL DESCRIPTION

A. FID model

The total free energy functional in a multicomponent and
multiphase alloy is given by

F =
∫

V

⎡
⎣ N∑

α=1

N∑
β=α+1

(
−a2

αβ

2
∇φα · ∇φβ

)

+
N∑

α=1

N∑
β=α+1

(Wαβφαφβ )

+
N∑

α=1

φα fα +
n−1∑
i=1

λi

(
ci −

N∑
α=1

φαci
α

)]
dV, (1)

where ci is the composition field (solvent i = n and solute i =
1, . . . , n−1), φα is the phase-field variable that gives the local
fraction of phase α (α = 1, . . . , N phases), ci

α is the phase
composition of component i of phase α, fα is the chemical
free energy density of phase α, and λi is a Lagrange multiplier
that is used to consider the solute conservation constraint, as
follows:

ci =
N∑

α=1

φαci
α, (2)

where aαβ = √2δαβσαβ and Wαβ = 4 σαβ

δαβ
are the gradient

coefficient and height of double-obstacle potential between
phases α and β, respectively. δαβ and σαβ are the interface
thickness and interface energy between phases α and β, re-
spectively. The governing equation of the phase composition
was obtained using the variational derivative:

∂ci
α

∂t
= −

n−1∑
j=1

Pi j (φα )
δF

δc j
α

= −
n−1∑
j=1

Pi j (φα )φα

(
∂ fα

∂c j
α

− λ j

)
.

(3)

where Pi j (φα ) is the interface permeability [21]. Assuming
that Pi j (φα )φα is a constant Pi j and that the permeability ma-
trix is a diagonal Pi = δi jPi j , where δi j is the Kronecker delta
(δi j = 1 if i = j, otherwise δi j = 0), Eq. (3) can be expressed
as follows:

∂ci
α

∂t
= −Pi

(
∂ fα
∂ci

α

− λi

)
. (4)
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Therefore, an expression for λi is obtained by differentiat-
ing Eq. (2) with time and substituting Eq. (4) into it:

∂ci

∂t
=

N∑
α=1

∂φα

∂t
ci
α +

N∑
α=1

φα

∂ci
α

∂t

=
N∑

α=1

∂φα

∂t
ci
α − Pi

N∑
α=1

φα

∂ fα
∂ci

α

+ Piλi (5a)

∴ λi =
N∑

α=1

φα

∂ fα

∂c j
α

− 1

Pi

(
N∑

α=1

∂φα

∂t
ci
α − ∂ci

∂t

)
. (5b)

By substituting Eq. (5b) into Eq. (4), the governing equa-
tion for the phase composition was obtained as follows:

∂ci
α

∂t
= −Pi

⎧⎨
⎩∂ fα

∂ci
α

−
⎡
⎣ N∑

β=1

φβ

∂ fβ
∂ci

β

− 1

Pi

⎛
⎝ N∑

β=1

∂φβ

∂t
ci
β − ∂ci

∂t

⎞
⎠
⎤
⎦
⎫⎬
⎭ (6a)

= −Pi
N∑

β=1

φβ

(
∂ fα
∂ci

α

− ∂ fβ
∂ci

β

)
−

N∑
β=1

∂φβ

∂t
ci
β + ∂ci

∂t
. (6b)

Using the finite difference method, the change in phase
composition after a time interval 	t can be expressed as
follows:

	ci
α =

N∑
β=1

exchange	ci
αβ + conserve	ci

α. (7)

In this study, the first term of Eq. (7) is the “exchange
term,” which describes the flux of component exchange
between phases α and β:

exchange	ci
αβ = −Piφβ

(
∂ fα
∂ci

α

− ∂ fβ
∂ci

β

)
	t . (8)

Similarly, we refer to the second term in Eq. (7) as the
“conservation term,” which describes the conservation con-
straint of compositions during the evolution of the phase field
and composition field:

conserve	ci
α =

⎛
⎝−

N∑
β=1

∂φβ

∂t
ci
β + ∂ci

∂t

⎞
⎠	t . (9)

The governing equation for the multiphase-field model is
expressed as follows:

∂φα

∂t
= − 2

N

N∑
β=1

Mαβ

(
δF

δφα

− δF

δφβ

)
(10a)

= − 2

N

N∑
β=1

Mαβ

⎧⎨
⎩

N∑
γ=1

[
(Wαγ − Wβγ )φγ + 1

2

(
a2

αγ − a2
βγ

)∇2φγ

]

+ fα − fβ −
n−1∑
i=1

[
N∑

α=1

φα

∂ fα
∂ci

α

− 1

Pi

(
N∑

α=1

∂φα

∂t
ci
α − ∂ci

∂t

)](
ci
α − ci

β

)}
, (10b)

where Mαβ is the mobility of the phase-field variable between
phases α and β.

B. Iterative model

In the FID model, it is necessary to set a suffi-
ciently large interface permeability value to achieve equal
diffusion potential conditions, however, this makes the nu-
merical calculations unstable and does not guarantee equal

diffusion potential conditions. Therefore, this section pro-
poses a method that adds an iterative calculation for the
exchange term new

exchange	ci
αβ to satisfy the equal diffusion po-

tential condition of interfacial compositions without large
interface permeability.

We describe the composition (differing from the phase
composition) transfer from phase β to phase α as φαφβxi. xi

is a variable related to solute i. The phase compositions of
component i in phases α and β after 	t owing to the exchange
term can be described as

ci
α

∣∣
t+	t = ci

α

∣∣
t + new

exchange	ci
αβ = ci

α

∣∣
t + φαφβxi

φα

, (11)

ci
β

∣∣
t+	t = ci

β

∣∣
t + new

exchange	ci
βα = ci

β

∣∣
t − φαφβxi

φβ

. (12)

It is noteworthy that the composition change divided by the phase-field variable corresponds to the phase composition change.
We define a diffusion potential difference function Hi, which corresponds to the difference in diffusion potential for component
i between phases α and β, as follows:

Hi(x1, . . . , xn−1) = ∂ fα
∂ci

α

(
c1
α

∣∣
t+	t , . . . , cn−1

α

∣∣
t+	t

)− ∂ fβ
∂ci

β

(
c1
β

∣∣
t+	t , . . . , cn−1

β

∣∣
t+	t

)
. (13)
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The Maclaurin expansion of Eq. (13) is given by a series of

Hi(x1, . . . , xn−1) =
∞∑

k=0

1

k!

(
x1 ∂

∂x1
+ · · · + xn−1 ∂

∂xn−1

)k

Hi(0, . . . , 0) (14a)

=
∞∑

k=0

1

k!

(
x1 ∂

∂x1
+ · · · + xn−1 ∂

∂xn−1

)k[
∂ fα
∂ci

α

(
c1
α

∣∣
t
, . . . , cn−1

α

∣∣
t

)− ∂ fβ
∂ci

β

(
c1
β

∣∣
t
, . . . , cn−1

β

∣∣
t

)]
. (14b)

When we ignore the second and higher orders of k and apply the chain rule, Eq. (14b) can be written as follows (see Appendix
A for more detail):

Hi(x1, . . . , xn−1) = ∂ fα
∂ci

α

(
c1
α

∣∣
t , . . . , cn−1

α

∣∣
t

)− ∂ fβ
∂ci

β

(
c1
β

∣∣
t , . . . , cn−1

β

∣∣
t

)+ φβ

(
x1 ∂

∂c1
α

+ · · · + xn−1 ∂

∂cn−1
α

)
∂ fα
∂ci

α

(
c1
α

∣∣
t , . . . , cn−1

α

∣∣
t

)

+ φα

(
x1 ∂

∂c1
β

+ · · · + xn−1 ∂

∂cn−1
β

)
∂ fβ
∂ci

β

(
c1
β

∣∣
t , . . . , cn−1

β

∣∣
t

)
. (15)

Considering the equal diffusion potential condition
(Hi = 0) and neglecting the cross terms, Eq. (15) can be
solved analytically with respect to xi to obtain the following
simple form:

∴ xi = −
∂ fα
∂ci

α
− ∂ fβ

∂ci
β

φβ
∂2 fα

(∂ci
α )2 + φα

∂2 fβ
(∂ci

β )2

, (16)

resulting in a significantly reduced computation time. This
approximation applies to most alloys. An analytical solution
with respect to xi can also be obtained without neglecting the
cross terms, as described in Appendix B. Equations (11) and
(16) yield the following exchange term:

new
exchange	ci

αβ = −
∂ fα
∂ci

α
− ∂ fβ

∂ci
β

φβ
∂2 fα

(∂ci
α )2 + φα

∂2 fβ
(∂ci

β )2

φβ. (17)

The diffusion potentials of the α and β phases coincide. In
the iterative model, Eq. (17) is solved repeatedly to guarantee
equal diffusion potential conditions. By applying an infinite
interface permeability and equal diffusion potential condi-
tions to Eq. (10b), the phase-field governing equation can be
modified as

∂φα

∂t
= − 2

N

N∑
β=1

Mαβ

⎧⎨
⎩

N∑
γ=1

[
(Wαγ − Wβγ )φγ

+1

2

(
a2

αγ − a2
βγ

)∇2φγ

]

+ fα − fβ −
n−1∑
i=1

∂ fα
∂ci

α

(
ci
α − ci

β

)}
. (18)

Calculations under an equal diffusion potential condition
are feasible without setting the interface permeability in the
iterative model. It is noteworthy that Eq. (17) is obtained
by assuming a constant value of the phase-field variable,
therefore the exchange term must be computed separately
from the phase-field equations. Physically, this implies that
the exchange of components occurs more rapidly than the

development of the phase-field variable. The iterative model
is equivalent to the standard multiphase-field with quasiequi-
librium model. This is because the iterative model satisfies the
equal diffusion potential condition by iterative exchange and
employs the standard multiphase-field evolution equation for
the phase-field variable as well as the conservation term of
FID, which can be reduced to obtain the standard multiphase-
field evolution equation of composition.

C. Noniterative model

The exchange term was modified in the previous sec-
tion to achieve a fully equal diffusion potential in the
interface-partitioning calculation. This section focuses on the
conservation term conserve	ci

α to develop a noniterative model.
The conservation term often induces a deviation of inter-
face phase compositions from the equal diffusion potential
condition. We modify the conservation term by introducing
a partition coefficient into the conservation constraint. This
approach can correct deviations from the equal diffusion
potential condition without convergence calculations for the
exchange term.

In the noniterative model, the relationship between the
compositions of phases α and β is obtained by following the
process described in [14],

new
conserve	ci

β = new
conserve	ci

αki
βα, (19)

where ki
βα is the partition coefficient of the component i be-

tween phases β and α. The conservation equation represented
by Eq. (2) after a time interval 	t is expressed as

N∑
β=1

ci
βφβ + ∂ci

∂t
	t =

N∑
β=1

(
ci
β + new

conserve	ci
β

)(
φβ + ∂φβ

∂t
	t

)
.

(20)

Substituting Eq. (19) into Eq. (20) yields the following
equation:

new
conserve	ci

α =
∑N

β=1 ci
βφβ + ∂ci

∂t 	t −∑N
β=1 ci

β

(
φβ + ∂φβ

∂t 	t
)

∑N
β=1 ki

βα

(
φβ + ∂φβ

∂t 	t
) .

(21)
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The partition coefficient can be derived in the same manner
as in the previous section. The phase compositions of compo-
nent i for phases α and β after 	t owing to the conservation
term can be described as

ci
α

∣∣
t+	t = ci

α

∣∣
t + new

conserve	ci
α, (22)

ci
β

∣∣
t+	t

= ci
β

∣∣
t
+ new

conserve	ci
β = ci

β

∣∣
t
+ new

conserve	ci
αki

βα. (23)

We define a diffusion potential difference function Hi,
which corresponds to a difference in diffusion potential for
component i between phases α and β, as follows:

Hi
(

new
conserve	c1

α, . . . , new
conserve	cn−1

α

)
= ∂ fα

∂ci
α

(
c1
α

∣∣
t+	t , . . . , cn−1

α

∣∣
t+	t

)

− ∂ fβ
∂ci

β

(
c1
β

∣∣
t+	t

, . . . , cn−1
β

∣∣
t+	t

)
. (24)

When we ignore the second and higher orders of k and the
cross terms in the Maclaurin expansion of Eq. (24), the diffu-
sion potential difference function takes the following form:

Hi
(new

conserve	c1
α, . . . , new

conserve	cn−1
α

)
= ∂ fα

∂ci
α

(
c1
α

∣∣
t , . . . , cn−1

α

∣∣
t

)

− ∂ fβ
∂ci

β

(
c1
β

∣∣
t
, . . . , cn−1

β

∣∣
t

)

+ new
conserve	ci

α

∂2 fα(
∂ci

α

)2 (c1
α

∣∣
t , . . . , cn−1

α

∣∣
t

)

− new
conserve	ci

αki
βα

∂2 fβ(
∂ci

β

)2 (c1
β

∣∣
t
, . . . , cn−1

β

∣∣
t

)
. (25)

By considering the equal diffusion potential condition at
t + 	t (Hi = 0), the partition coefficient can be described as

ki
βα =

∂ fα
∂ci

α
− ∂ fβ

∂ci
β

+ new
conserve	ci

α
∂2 fα(
∂ci

α

)2

new
conserve	ci

α

∂2 fβ(
∂ci

β

)2

. (26)

The equal diffusion potential condition at t ( ∂ fα
∂ci

α
− ∂ fβ

∂ci
β

) and

Eq. (26) yield the simplified form of the partition coefficient:

ki
βα = ∂2 fα(

∂ci
α

)2 /
∂2 fβ(
∂ci

β

)2 . (27)

By using this partition coefficient, Eq. (21) can be
expressed as follows:

new
conserve	ci

α =
∑N

β=1 ci
βφβ + ∂ci

∂t 	t −∑N
β=1 ci

β

(
φβ + ∂φβ

∂t 	t
)

∑N
β=1

∂2 fα(
∂ci

α

)2 /
∂2 fβ(
∂ci

β

)2

(
φβ + ∂φβ

∂t 	t
) .

(28)

Solving Eq. (28) is straightforward because all variables
on the right-hand side are known. In the noniterative model,
the iterative application of the exchange term is unnecessary
because the model suppresses deviations from the equal diffu-
sion potential condition that stems from the conservation term.
The governing equation for the phase-field variables remains
consistent with that of the iterative model. The equations and
characteristics of FID and iterative and noniterative models
are concisely summarized in Fig. 1, including a flowchart
detailing the numerical calculations. A comprehensive expla-
nation of the flowchart is provided in Sec. III.

D. Diffusion equation and antitrapping current

Although iterative and noniterative models were derived
from the FID model, the target of these models is a phe-
nomenon where the equal diffusion potential condition is
applicable. Therefore, we can use the governing equation of
the composition field ∂ci/∂t in the standard thin interface limit
[28] model with an antitrapping current [25] as follows:

∂ci

∂t
= ∇ ·

N∑
α=1

φα

n−1∑
j=1

Di j
α ∇c j

α + ∇ ·
N∑

α>β

N∑
β=1

Ji
αβ, (29)

where Di j
α is the interdiffusion coefficient of components i

and j in phase α, and Ji
αβ is the antitrapping current of

component i, which acts against the solute-trapping current
between phases α and β. The multicomponent antitrapping
current derived by Kim [29] was extended to our multiphase
case:

Ji
αβ =

N∑
β=1

aαβ√
2Wαβ

(
ci
α − ci

β

)√
φαφβ

∂φα

∂t

∇(φα − φβ )

|∇(φα − φβ )| .

(30)

This equation is derived assuming no diffusion in phase β.
The relationship between the phase-field and interface mobili-
ties is derived under the thin-interface limit condition with the
antitrapping current described by Eq. (30) as follows:

1

mαβ

= σαβ

Mαβa2
αβ

− π

8

aαβ√
2Wαβ

ζαβ, (31)

ζαβ =
n−1∑
i=1

(
ci
α − ci

β

) n−1∑
j=1

∂2 fα

∂ci
α∂c j

α

n−1∑
k=1

d jk
α

(
ck
α − ck

β

)
, (32)

where mαβ is the interface mobility and d jk
α is the element of

the inverse matrix of the interdiffusion matrix. In diffusion-
controlled calculations (mαβ → ∞), the phase-field mobility
becomes a function of the phase composition:

Mαβ = π2

δ2
αβ

∑n−1
i=1

(
ci
α − ci

β

)∑n−1
j=1

∂2 fα
∂ci

α∂c j
α

∑n−1
k=1 d jk

α

(
ck
α − ck

β

) ,
(33)

at which the local equilibrium condition is maintained at the
interface.
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FIG. 1. Equations and characteristics of the three models described in Secs. II A, II B, and II C, along with a flowchart of the numerical
calculations.

III. APPLICATION EXAMPLES

Several solidification problems were addressed to evaluate
the validity and effectiveness of the two proposed models.
The procedural steps, as outlined in the flowchart depicted in
Fig. 1, were followed for the calculations. The process began
with (i) setting the initial conditions for temperature, com-
position, and phase fields. Subsequently, (ii) the phase-field
parameters were determined. Following this, (iii) phase com-
positions were derived by addressing the exchange term. Next,
(iv) the phase-field mobility was ascertained using Eq. (31).
This was followed by (v) calculating the temporal evolution
of the phase field through the resolution of the phase-field
equation. In step (vi), the time evolution of the phase com-
position field was computed by tackling the conservation
term. Step (vii) involved updating the field variables, and
(viii) repeat steps (iii)–(vii) were iteratively repeated. The
governing equations were numerically solved employing a
finite-difference scheme. For the iterative model, the calcula-
tions persisted until the norm of the exchange terms fell below
10−10 mol %.

For example, numerical tests were conducted on the
Ag-Cu-Sn and Ni-Al-Cr systems. Moon [30] and Huang [31]
developed the thermodynamic descriptions of each system,
and the material parameters are listed in Tables I and II. In
the Ni-Al-Cr system, the anisotropic energy of the fcc/liquid

interface is given as follows [32]:

σ (θ ) = σ (1 − 3ξ )

×
[

1 + 4ξ

1 − 3ξ

(∂φ/∂x)4 + (∂φ/∂y)4 + (∂φ/∂z)4

|∇φ|4
]
,

(34)

where ξ is the strength of the anisotropy.
The simulation code was developed using the Taichi pro-

gramming language, a domain-specific language integrated
within Python [33], to enhance computational efficiency sig-
nificantly. Additionally, the computations were accelerated
using an NVIDIA RTX A6000 GPU [34].

TABLE I. Material parameters for Ag-Cu-Sn system.

Quality Symbol Value

Initial composition of Cu cCu 40.0 mol %
Initial composition of Sn cSn 3.0 mol %
Diffusivity in liquid DL 1.0 × 10−9m2 s−1

Diffusivity in fcc DS 1.0 × 10−13 m2 s−1

Interface energy σ 1.0 Jm−2

Molar volume Vm 1.0 × 10−5 m3 mol−1
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TABLE II. Material parameters for Ni-Al-Cr system.

Quality Symbol Value

Initial composition of Al cAl 20.0 mol %
Initial composition of Cr cCr 5.0 mol %
Diffusivity in liquid DL 1.0 × 10−9 m2 s−1

Diffusivity in fcc DS 1.0 × 10−13 m2 s−1

Interface energy σ 1.0 J m−2

Molar volume Vm 1.0 × 10−5 m3 mol−1

Strength of anisotropy ξ 0.03

A. Gibbs-Thomson effect in iterative and noniterative models

Initially, utilizing both iterative and noniterative models,
we assessed the curvature effects on the solid-liquid equi-
librium state in the Ni-Al-Cr system. A seed crystal was
positioned at the corner of the computational domain, and
the simulations were iterated until an equilibrium state was
reached. For simplicity, interfacial anisotropy was not taken
into account to obtain a constant radius of curvature. Vari-
ations in curvature were introduced by adjusting the grid
resolution. Detailed information about the simulation setup
can be found in Table III.

Curvature undercooling was ascertained by identifying the
temperature at which the fcc phase composition aligned with
the equilibrium composition without curvature effects. This
value was then juxtaposed with the curvature undercooling
predictions made by Gibbs-Thomson theory:

	Tr = K�, (35)

� = σ

	s f
= σTf

	Hf
. (36)

Here, K is the interface curvature, � is the Gibbs-Thomson
coefficient, σ is the interface energy, and 	s f and 	Hf are
entropy and enthalpy changes at transformation temperature
Tf . The Gibbs-Thomson coefficient calculated by Eq. (36) is
1.83 × 10−7 m K.

TABLE III. Calculation conditions in the test of Gibbs-Thomson
effect.

Quality Symbol Value

Interface mobility m ∞ s mol J−1

Initial temperature Tini 1644.62 K
Cooling rate R 0.0 K s−1

Grid resolution 	x
a. Small curvature 6.7 × 10−9 m
b. Middle curvature 1.0 × 10−8 m
c. Large curvature 2.0 × 10−8 m
Interface thickness η 4.0 × 	x m
Number of grids Nx = Ny 64
Discrete time width 	t
a. Small curvature 8.9 × 10−9 s
b. Middle curvature 2.0 × 10−8 s
c. Large curvature 8.0 × 10−8 s

TABLE IV. Calculation conditions of 1D simulation in Ag-Cu-
Sn system.

Quality Symbol Value

Interface mobility m 5.0 × 10−11s mol J−1

Initial temperature Tini 1036.55 K
Cooling rate R 10.0 K s−1

Grid resolution 	x 2.0 × 10−7 m
Interface thickness η 8.0 × 10−7 m
Number of grids Nx 256
Discrete time width 	t 1.3 × 10−5 s

B. Steady state in iterative, noniterative, and FID models

To assess the performance of the iterative and noniterative
models against the conventional FID model in a steady state,
1D computational solidification experiments were conducted
on a ternary Ag-Cu-Sn system. The objective was to ascertain
whether the iterative and noniterative models could replicate
the results of the conventional FID model when a sufficiently
large interface permeability is assumed.

The simulation domain was set to a size of 51.2 µm with
a grid resolution of 0.2 µm. Solidification commenced 1 K
below the liquidus temperature at a constant cooling rate of 10
K s−1. An Ag-rich fcc seed with a radius of 1 µm was placed at
one end of the domain. The simulations were run with a time
step of 1.0 × 105 applied, corresponding to a solidification
duration of 1.3 s. Additional details regarding the simulation
setup are provided in Table IV.

For the calculation of the FID model, Eqs. (17) and (39)
from Ref. [22] were utilized owing to the complexity involved
in solving Eqs. (6b) and (10b). Notably, the evolution of
the phase-field variable and phase composition are interde-
pendent processes. All one-dimensional (1D) solidification
calculations for the Ag-Cu-Sn system were conducted without
incorporating an antitrapping current.

C. Application to the simulation of microstructure evolution

The computational accuracy and efficiency of the nonit-
erative model were benchmarked against an iterative model,
which incorporates convergence calculations to satisfy the
equal diffusion potential condition. These models have been
employed to simulate two microstructure formation processes
in practical alloys.

One application involved a 2D eutectic growth simulation
within a multiphase Ag-Cu-Sn system. The simulation do-
main measured 25.6 µm × 25.6 µm with a grid resolution of
0.2 µm. Solidification was initiated 1 K below the liquidus
temperature at a constant cooling rate of 5 K s−1. Ag-rich
and Cu-rich fcc seeds, each with a radius of 1 µm, were
arranged with a spacing of 3.2 µm. A time step of 2.0 × 105

was utilized, equating to a solidification duration of 1.6 s.
Additional specifics of the Ag-Cu-Sn system simulation setup
are detailed in Table V.

Another application area includes 2D and 3D dendrite
growth simulations for the Ni-Al-Cr system. In the 2D sce-
nario, the simulation domain was 25.6 µm × 25.6 µm, with
a grid resolution of 0.1 µm. Solidification started 5 K below
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TABLE V. Calculation conditions of 2D simulation in Ag-Cu-Sn
system.

Quality Symbol Value

Interface mobility
between liquid and fcc

m ∞ s mol J−1

Phase-field mobility
between fcc and fcc

M 1.0 × 10−5 m3 J−1 s−1

Initial temperature Tini 1036.55 K
Cooling rate R 5.0 K s−1

Grid resolution 	x 2.0 × 10−7 m
Interface thickness η 8.0 × 10−7 m
Number of grids Nx = Ny 128
Discrete time width 	t 8.0 × 10−6 s

the liquidus temperature at a cooling rate of 50 K/s. A fcc
seed with a radius of 0.5 µm was positioned at one cor-
ner of the domain. Simulations were conducted with a time
step of 4.0 × 104, corresponding to a solidification time of
8.0 × 10−2 s. Further information on the 2D dendrite growth
simulation setup for the Ni-Al-Cr system is available in
Table VI.

In the 3D simulation, the domain measured 51.2 µm ×
51.2 µm × 102.4 µm, with a grid resolution of 0.2 µm. So-
lidification was initiated 5 K below the liquidus temperature,
maintaining a constant cooling rate of 50 K s−1. At the outset,
a fcc seed with a radius of 0.5 µm was positioned at the
bottom center of the domain. A time step of 3.0 × 104 was
applied, corresponding to a solidification time of 1.7 × 10−1 s.
Stochastic noise was introduced to the driving force governing
the phase-field evolution to facilitate the formation of sec-
ondary arms. Additional specifics of the simulation setup are
provided in Table VII.

The practicality of the noniterative model was assessed
based on numerical computation speed and the magnitude of
errors observed. These errors were quantified as the discrep-
ancy in the fcc fraction and, specifically in the 2D simulation,
the difference in the composition profile between the iterative
and noniterative models.

IV. RESULTS AND DISCUSSION

A. Gibbs-Thomson effect in iterative and noniterative models

The equilibrium shape of the fcc phase becomes spher-
ical, with its composition varying in response to curvature.

TABLE VI. Calculation conditions of 2D simulation in Ni-Al-Cr
system.

Quality Symbol Value

Interface mobility m ∞ s mol J−1

Initial temperature Tini 1644.62 K
Cooling rate R 50.0 K s−1

Grid resolution 	x 1.0 × 10−7 m
Interface thickness η 4.0 × 10−7 m
Number of grids Nx = Ny 256
Discrete time width 	t 2.0 × 10−6 s

TABLE VII. Calculation conditions of 3D simulations in Ni-Al-
Cr system.

Quality Symbol Value

Interface mobility m ∞ s mol J−1

Initial temperature Tini 1644.62 K
Cooling rate R 50.0 K s−1

Temperature gradient G 1.0 × 105 K m−1

Grid resolution 	x 2.0 × 10−7 m
Interface thickness η 8.0 × 10−7 m
Number of grids Nx = Ny 256
Number of grids Nz 512
Discrete time width 	t 5.7 × 10−6 s

Such curvature undercooling was quantified for each compo-
nent because, in multicomponent systems, curvature effects
alter the equilibrium composition, causing it to diverge from
the equilibrium composition at other temperatures. Figure 2
illustrates the outcomes derived from both iterative and
noniterative models. The circular plots depict the curvature
undercooling based on the Al composition in the fcc phase,
while the triangular plots represent the undercooling calcu-
lated using the Cr composition in the fcc phase. For scenarios
of zero curvature, a 1D calculation was executed, yielding a
fraction, Al composition, and Cr composition in the fcc phase
of 0.217, 18.2 mol %, and 4.55 mol %, respectively. These fig-
ures align with the equilibrium calculations conducted using
pycalphad [35]. The line in the graph signifies the curva-
ture undercooling as predicted by the Gibbs-Thomson theory
[Eq. (35)]. The proximity of the plots to this line corrob-
orates the capability of the developed models to replicate
the Gibbs-Thomson effect accurately. As depicted in Fig. 3,
the equilibrium shape exhibiting an anisotropy strength of
0.05 obtained using by iterative [Fig. 3(a)] and noniterative
[Fig. 3(b)] models (solid black line) were aligned with that
obtained using the analytical solution provided by Eq. (2) in
[36] (dashed white line). These two lines overlap completely
and appear as a single line.

B. Steady state in iterative, noniterative, and FID models

Figure 4 presents the temperature-dependent fraction of
the fcc phase as determined by the iterative and noniterative
models alongside the FID model. The outcomes from the FID
model align with those of the iterative and noniterative models
as the interface permeability increases. The maximum inter-
face permeabilities necessary for stable computations were
found to be PCu = 3.0 × 10−5 m3 J−1 s−1 and PSn = 2.0 ×
10−6 m3 J−1 s−1. With these interface permeability levels, the
FID model produced results equivalent to the iterative and
noniterative models. Consequently, it is demonstrated that
both iterative and noniterative models can fulfill the equal
diffusion potential condition without needing to adjust the
interface permeability.

C. Application to the simulation of microstructure evolution

Figure 5 illustrates the composition distribution as deter-
mined by the iterative model and the composition profiles
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FIG. 2. Curvature undercooling of (a) iterative and (b) noniterative models calculated by Al and Cr compositions and Gibbs-Thomson
theory in Ni-Al-Cr system.

generated using both the iterative and noniterative models.
The horizontal axes for the latter are aligned with the direction
indicated by the arrows in the former’s composition distri-
bution. Solid lines denote the composition profiles obtained
from the iterative model, while dashed lines represent those
calculated by the noniterative model. As depicted in Fig. 5,
the noniterative model exhibits no variation in composition
distribution, mirroring the uniform composition distribution
observed in the iterative model. Figures 5(a) and 5(b) demon-
strate that the position of the interface, the compositions
within the fcc phase, and the morphology of the diffusion
layer as determined by the noniterative model closely align
with those derived from the iterative model. Furthermore, in
Figs. 5(c) and 5(d), the fluctuations observed in the liquid
phase composition near the eutectic interfaces are consis-
tently represented in both models. In particular, as shown in
Fig. 5(d), subtle fluctuations on the order of 10−5 mol % are
consistent. Here, the errors in the fraction of the fcc phase are
calculated as

fNoniterative − fIterative, (37)

where fIterative and fNoniterative are the fractions of fcc calcu-
lated using the iterative and noniterative models, respectively.
Throughout the simulation, the errors were not larger than
1.2 × 10−6 in the 2D calculation of the Ag-Cu-Sn system
and 2.8 × 10−7 in the 2D calculation of the Ni-Al-Cr system.
Although the noniterative model does not use convergence
calculations, the results are consistent with the iterative model,

FIG. 3. Equilibrium shape with an anisotropy of 0.05 obtained
by (a) iterative and (b) noniterative models (solid black line) and the
analytical solution (dashed white line).

which uses convergence calculations to ensure equal diffusion
potential conditions.

Figure 6 displays the morphologies of fcc dendrites in the
3D simulation of the Ni-Al-Cr system at solidification times
of 2.8 × 10−2, 8.6 × 10−2, and 1.7 × 10−1 s, as predicted by
the iterative model. The competitive growth observed among
multiple dendrites originated from a single fcc seed. The
growth of dendrite arms was inhibited when they were in close
proximity, whereas secondary arms developed when the arms
were more sparsely distributed. The 3D simulation quantified
discrepancies between the iterative and noniterative models
using Eq. (37). Throughout the simulation, the observed errors
did not exceed 1.9 × 10−3. The increased error compared to
2D simulations could be attributed to the synergistic effect of
secondary arm growth and stochastic noise in the driving force
for phase-field evolution, yet this error remained negligibly
small.

Table VIII outlines the computational times for each simu-
lation. The 3D simulations required relatively short durations
of 159.1 min for the iterative model and 53.3 min for the
noniterative model. Across all simulations, the noniterative
model demonstrated superior speed to the iterative model.

FIG. 4. Temperature dependence of the fraction of fcc phase in
three models in 1D solidification of Ag-Cu-Sn system.

065303-9



MORINO, ODE, AND HIROSAWA PHYSICAL REVIEW E 109, 065303 (2024)

FIG. 5. Composition distribution and composition profile of (a) Al, (b) Cr, (c) Cu, and (d) Sn at a solidification time of 8.0 × 10−2 s in
the calculation of dendrite growth in Ni-Al-Cr system and 1.6 s in the calculation of eutectic growth in Ag-Cu-Sn system. The composition
distribution is the result of the iterative model, while the composition profile results from both iterative and noniterative models.

This efficiency stems from the noniterative model’s avoid-
ance of convergence calculations with conditional branches,
enabling more efficient parallel computations by the GPU.

V. CONCLUSIONS

We introduced a different approach for directly coupling
the CALPHAD database with phase-field modeling, deriving
two models to ensure equal diffusion potential conditions
by adapting the governing equations of the finite interface
dissipation model. The iterative model utilizes convergence
calculations to meet the equal diffusion potential condition,
whereas the noniterative model eliminates the need for such
calculations. Key characteristics of these models include
(i) the elimination of preliminary calculations, (ii) the assur-
ance of equal diffusion potential conditions, (iii) the ability
to directly apply CALPHAD functions, and (iv) the absence
of additional parameters, such as interface permeability in
the FID model and recalculation intervals in the extrapolation
method.

FIG. 6. Dendrite growth of a single fcc seed in Ni-Al-Cr system
at solidification time of (a) 2.8 × 10−2 s, (b) 8.6 × 10−2 s, and
(c) 1.7 × 10−1 s calculated by iterative model.

To validate the computational accuracy and efficiency of
these models, case studies were performed focusing on the
solidification processes in Ag-Cu-Sn and Ni-Al-Cr systems.
The findings from these studies are summarized below.

(1) The iterative and noniterative models effectively repli-
cated the Gibbs-Thomson effect.

(2) The results of the iterative and noniterative models
were consistent with those of the FID model, with the highest
interface permeabilities required for stable computation.

(3) The discrepancy in the fraction of the fcc phase be-
tween the iterative and noniterative models was negligible,
indicating high accuracy in phase fraction predictions. Ad-
ditionally, differences in the composition profiles between
the models were not visually discernible, further attesting
to their precision. Utilizing the NVIDIA RTX A6000 GPU,
the 3D dendrite growth simulation, encompassing steps on
a 256 × 256 × 512 grid, was completed in 159.1 and
53.3 min by the iterative and noniterative models, respec-
tively. This showcases the significant computational efficiency
of the noniterative model, attributed to its streamlined cal-
culation process that bypasses the need for convergence
calculations.

The model proposed in this study is applicable for substi-
tutional solution phases wherein the free energy is assessed as
a function of solute concentration and temperature, however,

TABLE VIII. Computational time for each simulation.

Iterative model Noniterative model

2D dendrite growth in
Ni-Al-Cr system

87 s 66 s

2D eutectic growth in
Ag-Cu-Sn system

472 s 317 s

3D dendrite growth in
Ni-Al-Cr system

159.1 min 53.3 min
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is not implementable for intermetallic compounds and inter-
stitial solute phases described by the CALPHAD sublattice
approach. Future work will address the extension of the model
to the CALPHAD sublattice approach.
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APPENDIX A: DETAILED DERIVATION OF EQ. (15)

In this appendix, we show how Eq. (15) is obtained from Eq. (14b) in Sec. III. Equations (11) and (12) yield the following
equations:

∂ci
α

∂xi
= φβ, (A1)

∂ci
β

∂xi
= −φα. (A2)

Ignoring higher orders and applying the chain rule in Eq. (14b), we obtain

Hi(x1, . . . , xn−1) = ∂ fα
∂ci

α

(
c1
α

∣∣
t , . . . , cn−1

α

∣∣
t

)− ∂ fβ
∂ci

β

(
c1
β

∣∣
t , . . . , cn−1

β

∣∣
t

)+
(

x1 ∂

∂x1
+ · · · + xn−1 ∂

∂xn−1

)

×
[

∂ fα
∂ci

α

(
c1
α

∣∣
t , . . . , cn−1

α

∣∣
t

)− ∂ fβ
∂ci

β

(
c1
β

∣∣
t , . . . , cn−1

β

∣∣
t

)]
(A3)

= ∂ fα
∂ci

α

(
c1
α

∣∣
t
, . . . , cn−1

α

∣∣
t

)− ∂ fβ
∂ci

β

(
c1
β

∣∣
t
, . . . , cn−1

β

∣∣
t

)

+
(

x1 ∂

∂c1
α

∂c1
α

∂x1
+ · · · + xn−1 ∂

∂cn−1
α

∂cn−1
α
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)
∂ fα
∂ci

α

(
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α
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α
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−
(
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∂c1
β

∂x1
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β

∂cn−1
β

∂xn−1

)
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∂ci

β

(
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β
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β

∣∣
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)
. (A4)

By substituting Eqs. (A1) and (A2) into Eq. (A4), the following equation is obtained:

Hi(x1, . . . , xn−1) = ∂ fα
∂ci

α

(
c1
α

∣∣
t , . . . , cn−1

α

∣∣
t

)− ∂ fβ
∂ci

β

(
c1
β

∣∣
t , . . . , cn−1

β

∣∣
t

)+ φβ

(
x1 ∂

∂c1
α

+ · · · + xn−1 ∂

∂cn−1
α

)
∂ fα
∂ci

α

(
c1
α

∣∣
t , . . . , cn−1

α

∣∣
t

)

+ φα

(
x1 ∂

∂c1
β

+ · · · + xn−1 ∂

∂cn−1
β

)
∂ fβ
∂ci

β

(
c1
β

∣∣
t
, . . . , cn−1

β

∣∣
t

)
. (A5)

APPENDIX B: ANALYTICAL SOLUTION OF xi WITHOUT NEGLECTING CROSS TERMS

Although we ignored cross terms to derive the exchange term in this study, the analytical solution of the exchange term can
also be obtained without this simplification. Using Eq. (A5), the equal diffusion potential condition for each component can be
expressed as follows:

H1(x1, . . . , xn−1) = ∂ fα
∂c1

α

− ∂ fβ
∂c1

β

+ φβ

(
x1 ∂

∂c1
α

+ · · · + xn−1 ∂

∂cn−1
α

)
∂ fα
∂c1

α
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x1 ∂
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β

+ · · · + xn−1 ∂
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β

)
∂ fβ
∂c1

β

= 0,

...

Hn−1(x1, . . . , xn−1) = ∂ fα
∂cn−1

α

− ∂ fβ
∂cn−1

β

+ φβ

(
x1 ∂
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α
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α

)
∂ fα

∂cn−1
α
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(
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β
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β

)
∂ fβ

∂cn−1
β

= 0. (B1)
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Equation (B1) can be solved with respect to xi as follows:

∴
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