A Study on Impact of User-generated Content on

Cybersecurity
ZI—PERAY T IIRIAN—tF 2V T 4 ITRIZTHE
2B 25

Hiroki NAKANO
FREY 5L

Doctoral Dissertation

it

Graduate School of Environment and Information Sciences,

Yokohama National University

on March, 2024

Supervisor: Professor Tsutomu MATSUMOTO

ABSTRACT

With the rapid development of the Internet, user-generated content (UGC) has be-
come an integral part of modern society. In particular, the number of users of social
networking services is rapidly increasing, reaching 4.9 billion users by 2023. The main
characteristic of UGC is that individuals and communities can freely disseminate their
opinions and knowledge, facilitating the diversification of information compared to the
past when the media was the center of information sharing. However, UGC has been
pointed out to have reliability and quality issues, and appropriate measures are required
from the perspective of cyber security. On the other hand, there are many successful
cases where new services and communities have been created through the successful use
of UGC by companies and general users. Appropriate collection and analysis of these
UGC information may contribute to the development of traditional countermeasure tech-
nologies related to cyber security.

This paper investigates the impact of UGC on cybersecurity from both positive and
negative perspectives. First, based on the characteristics of UGC services, we organized
the types of platforms and classified them into five types: Social Networking Service,
Video Sharing Service, Online Forum Service, Blogging Service, and User Review Service.
Then, we discussed the actual security threats that could occur for each type and the
related research and actual conditions that have been conducted so far.

Next, we investigate the potential negative impact on cybersecurity. Specifically, we
investigate whether vulnerable source code on online forums affects application vulnera-
bilities. The investigation results show that 15.8% of applications with SSL implemen-
tation vulnerabilities (improper hostname validation), 31.7% of applications with SSL
certificate validation vulnerabilities, and 3.8% of applications with WEBVIEW remote
code execution vulnerabilities contained vulnerable code snippets on Stack Overflow. In
other words, the research revealed that inappropriate UGC information on online forums
affected Android app security issues.

We then investigate attackers who operate across multiple UGC platforms. The
investigation revealed that attackers exploit contextual events to grab users’ attention
and direct them to typical malicious websites (e.g., information theft, survey scams,
installation of suspicious browser plug-ins, etc.) across platforms. We also confirmed
that the current measures taken by UGC platform operators are inadequate, as 87.8%
of those malicious sites have not been removed after more than 100 days, and 69.0%
of malicious UGC remains and is accessible to them. These results reveal examples of
attackers deploying cyber attacks on multiple UGC platforms, causing harm to a large
number of users.

In addition, we investigate the possibility of a positive impact on cybersecurity. Using
Twitter as a new observation point, we collect shared cybersecurity threat information
and compare and evaluate it with existing countermeasure technologies. The results of
a three-month research experiment confirmed that 31,960 URLs shared on Twitter were
later detected by anti-virus engines. They were information that would not have been
covered by existing technologies, and the UGC platform proved capable of collecting a
large amount of useful phishing attack information. Successful use of this information
will lead to the development of countermeasure technologies for phishing attacks.

Finally, based on the research and analysis conducted, we discussed the potential for
future countermeasures and utilization of UGC platforms in cybersecurity. The devel-
opment of UGC platforms has expanded opportunities for information sharing, but it
also poses new security threats such as the spread of misinformation and privacy vio-
lations. To address these threats, three approaches are important: technical measures,
legal regulations, and user education. Maintaining the proper balance between the free
distribution of information and the protection of individual privacy is essential for the
healthy evolution of UGC platforms. In the future, we would like to return our research
results to society by cooperating with UGC platform operators and security vendors to
develop cybersecurity countermeasure technologies.

2

XEE

4 VR =3y bORHEBFRBIHEY, 2—FEHar Ty (UGO) FHRERCBW
TERBRICEDLZIDER->TWVWS., KRS, Y=Y %ty hY—F 27—V 2T, F
AENZHELTED, 2023 FI12F 49 BAORAEL L 5. UGC O ERFHEZ, AL
A 2T 4 PHHIREASHERERETE28ICH D, ERX 7 4 7 EHEE OHL
THo R IR LT, BHMOZRIEPEEZINTVS. L LEDS, UGC IKIXE
FMERHEOMENEHEINTEBYD, YA N—tF 2V 74 OBlEL LD, WYL XED
koohzd, —T, UGC 2RESC—HLI P LEFLIEHT S22 T, #itikyr—b
ARAI 2 =T 4EFEN, BIILTWRHEAIDZHIFETS. oD UGC W%
TN - TTT 2 28T, FAN—tF 2V 7 4 [HEET 2R REMOREICEH
BRCZ 2 AHEEDL D 5.

AL TIE, UGCHIAN—EF a2)74 IIRIZTHEL RVEH L EWEHOM T O
M LHEEEITS. £, UGCOH—LRDFRMELS T Iy b 74— 20N DOWT
I %17V, Social Networking Service, Video Sharing Service, Online Forum Service,
Blogging Service, User Review Service @ 5 fEICMH L7z, Z LT, SEHITHEFITE
0B EXa) T4 BEE ZNETICED M ENT-BEEFSE, ERRIZOWTHR U L.

KT, A N—tF 2V 7 4 ITENEEL RKIXTAREMICOVWTHEZ1TS. BRI
&, AV I7A4 Y7 =75 EOWEFRY —Ra— KRBT TV — a2 Y OMFEEICEEE
HBZTWa25hrEfET 5. AEHERTIE, SSLEEOMTNE (R kR kA
AE) ZFFO7 7V @ 15.8%. SSL AFFAEMEED Mg EE 27 7V @ 31.7%, WEBVIEW
DV E—bFa— FEITOMPFEZFEO7 7V D 3.8%03, Stack Overflow EDEFIED B
53— FA=Ry FEGATOWEZEHLIICL. 2FD, A0 53407 x—F 41
@ UGC DEYITIE R WERDY Android 7 7V Dt ¥ 2V 7 4 ECEELZ A TWS Z
RS IC L.

ZLT, BHOUGC 7Z v b+ 74— L%l L TEET 2 HBEIIOWTHERZITS.
APFEICELD, KEFZZ2—HFOEFEEZUL EOBRARY PEXRICERLT, 779 b
7 & — b R U TR R Web 34 b (BREIEL. 7 > 7 — FEER, ~ELR T IV
PTITA DAV A=NRE) NFELTWRZeHALE. £/, 2R 0EME
FA ME 100 HYLEFSE L TH 87.8%03HIBRE 3, EMR UGC 1E 69.0%035% - 72 5 %
ThHD, ZNHITZ7ERAFETH B Zeh 5, BIROD UGC 75 v b 7 4 — LHEED
WRPARF D THZ e 2R L. 2D RICKD, KBEIEED UGC 77 v
b7 — DI AN—HELEALTED, ZHOL—FAHELLGZTVWELEFZHS
Mz L7,

T, FAN—tF 2) T4 CRBVEELZ I TAREMICOVWTIREZITS. Twitter
EWRBIMAY LTHAL, #HHEXRTWEH A N—tF 2 U 74 OBBIERZ IVE
L, BEFERSRELAM & LEBGHEi 21T 5. =2 HOHEEBROMR, Twitter L THEINT
W7z 31,960 fED URL HMRICT Y F I A LRI Y I VI ko THREIX N 2 e SRS M
2. ZhooiERE, BEEMTREIN—TETVARVWIIRERTH Y, UGC 7 v b
7 —LTlE, BRE7 4y >y 7BEBOERE ZBINERIRETH 2 Z e IfHL 2. Z
NOHOERE EFEHT 22T, 749 Y Z7BEOXEEMOFBEIC ORI .

&I, SROFEBEL Iz b EIl, $AN—tF 2 72 ICBIF25H%DUGC I v

P74 — ADOME L IEHHEDOAREEICOWTH L. UGC I v F 75— ADFEEIZ
IEMIH DR IR L TWED, EEROILHR 774 NS —RBEREOH - htF 2
VT4 BEEDTLLTWS., ZNLDBBISIILT 2 7-0121%, FMIR, R,
I—HF—HED=D2D7 Tu—FHREETHY, EROHBHRTELEAD ST A4 N> —
REDANS ¥ 2BHYNMFEOZ D, UGC 7T v + 74— s DOEEEMICIE R RT
HBLEZ5. 5%E, UGC 7oy b 74— LbHEEZERLF 2V T ARVE LI LTY
AN—tF 2T 4 MREMORBICED S Z 2T, WHERREEHRITRITLIZ W,

Contents

1 Introduction 1
1.1 Background Lo o 1
1.2 Motivation L L 2
1.3 Contributions 3
1.4 Outline 4

2 User-generated Content 5
2.1 Typeof Platform 5
2.2 Related Work on User-generated Content with a Focus on Cyber-

SECUTItY . . . v v o o e 7
2.2.1 Social Networking Service 7
2.2.2 Video Sharing Service 7
2.2.3 Online Forum Service 7
2.2.4 Blogging Service 0o 8
2.2.5 User Review Service 8
2.3 Challenges in Analyzing User-generated Content 8

3 Towards Finding Code Snippets on a Question and Answer
Website Causing Mobile App Vulnerabilities 10
3.1 Introduction. 10
3.2 Background 11

3.2.1 Code Snippets on Q&A Website 11
3.2.2 Comparison of Android and iOS 11
3.2.3 Android Apps Vulnerabilities 12
3.3 Method 13
3.3.1 Overview e 13
3.3.2 Method of Calculating Similarity between Code Snippets
and Bytecode oo 13
3.4 Experiments in Code Reuse Detection 16
3.4.1 Datasets 16
3.4.2 Evaluating Performance of Proposed Method 17
3.4.3 Experimental Results 18
3.4.4 Investigation of Application Updates 19
3.5 Discussion Lo Lo 21
3.5.1 Countermeasures by Market and Q&A Site Operators . . . 21
3.5.2 Enhancing Awareness for Developers 22
3.5.3 Limitation. 22
3.6 Related Work 22
3.6.1 Vulnerability Analysis 22
3.6.2 Research on Mobile App Developers 23
3.6.3 Code Clone Detection 23
3.6.4 Research on Developer Community Website 23

3.7 Conclusion 24

Exploring Event-synced Navigation Attacks across User-generated

Content Platforms in the Wild 25
4.1 Introduction 25
4.2 Guiding Users through UGC 27
4.2.1 Typeof Guidance 27
4.2.2 Threat Model 29
4.2.3 Attacker’s Perspective L. 29
4.2.4 Victim’s Perspective 30
4.3 Proposed Systemo 30
4.3.1 Step 1: Collecting Malicious Twitter UGC Seeds 30
4.3.2 Step 2: Collecting Malicious UGC Candidates on Multiple
UGC Platforms 33
4.3.3 Step 3: Detecting Malicious UGC on Multiple UGC Plat-
forms 36
4.4 Evaluation. 38
4.4.1 Datasets e 38
4.4.2 Detection Accuracy of Malicious UGC on Twitter 39
4.4.3 Collection Performance of Malicious UGC Candidates . . . 40
4.4.4 Detection Accuracy of Malicious UGC on Multiple UGC
Platforms 40
4.5 Measurement 41
4.5.1 Analysis of Platforms 41
4.5.2 Analysis of Detected FQDNs 43
4.5.3 Analysis of Detected Website Categories 44
4.5.4 Case Study: Abused Events 46
4.5.5 Case Study: Directory Listings 47
4.6 Discussion 48
4.6.1 Limitations 48
4.6.2 Ethical Considerations 49
4.6.3 Countermeasures v et e 49
4.7 Related Worko o 50
4.8 Conclusion 50

Understanding Characteristics of Phishing Reports from Ex-

perts and Non-experts on Twitter 52
5.1 Introduction. 52
5.2 Motivating Examples oL 54
5.2.1 Reports on Phishing Message 54
5.2.2 Challenges 55
5.3 Proposed System: Data Collection 56
5.3.1 Collecting Tweets 57
5.3.2 Extracting URLs and Domain Names 58
5.4 Proposed System: Reports Classification 59
5.4.1 Feature Engineering 59
5.4.2 Training and Classification 62
5.4.3 Evaluation of Classification Accuracy 63
5.5 Evaluating User Reports in the Wild 64
5.5.1 Operating Environment 64
5.5.2 Datasets for Evaluation 64
5.5.3 Comparison of Maliciousness using VirusTotal 65

vi

5.6 Comparison of Experts and Non-experts 67

5.6.1 Analysis of Users who Shared Reports 67

5.6.2 Analysis of the Detected URLs’ Characteristics 68

5.6.3 Analysis of Report Sharing Methods 69

5.7 Analyzing Phishing Attacks in User Reports 71

5.7.1 Analysis of Common URLs with Existing Data Feeds . .. 71

5.7.2 Analysis of Phishing Infrastructure 73

5.8 Discussion e 75
5.8.1 Utilizing the Intelligence Collected for Phishing Attack De-

fenseo 75

5.8.2 Role as a Platform for Threat Information Sharing 76

5.8.3 Limitation. 77

5.8.4 Ethical Consideration 7

5.9 Related Work 78

5.10 Conclusion L 78

6 Conclusion and Future Work 79

6.1 Conclusion e 79

6.2 The Future of UGC Platforms. 80

6.3 Future Work 80

References 86

List of Figures

2.1

3.1

3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1
4.2
4.3
4.4

5.1
5.2
5.3

Overall Picture of This Thesis 9
Example of Question Post (Top) and Answer Post (Bottom) on

Stack Overflow, . 12
Overview of Our Approach 14
Example of Targeted Code Snippets 14
Method of Extracting Features from Code Snippets 15
Method of Extracting Features from Bytecode in Apps 15
Comparative Approach to Information Group of Methods 15
Cumulative Percentage of Vulnerable Classes Present 20
Cumulative Percentage of the Current Version of the App’s Market

Presence 20
Overview of Threat Model 27
System Overview 28
Lifetime of Detected FQDNs 44
Transition in the Number of Detected Malicious UGC Every 6 Hours 45
Reports on Phishing Messages 55
Overview of CrowdCanary 56
Correlation between Users and Number of Times Reports Were

Shared e 67

vii

5.4
9.5
5.6
5.7
5.8

5.9
5.10

Correlation between Users Types and Number of Times URLs
Were Shared
Latency Comparison of Phishing URLs in CrowdCanary and Open-
Phish o
Latency Comparison of Phishing URLs in CrowdCanary and Phish-
Tank
Distribution of Top Level Domains
Distribution of IP Address Locations
Distribution of Hosting Providers
Distribution of Frequent IP Addresses and Hosting Providers

List of Tables

2.1

3.1
3.2
3.3
3.4
3.5
3.6

3.7

3.8
3.9

3.10

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2
5.3

0.4
9.5
5.6

5.7

Platform List

Top 10 Mobile Threats in 2016
List of Evaluated Code Snippets
List of Evaluated Apps
Results of Vulnerability Scanning of Collected Apps by AndroBugs
Results of Performance Verification
Correspondence between Possibly Vulnerable Code Snippets and

Vulnerable Apps
Ratio of Vulnerable Classes with Potentially Vulnerable Code Snip-

pet to All Matched Classes
Results of Application Update Status Investigation
Results of Vulnerability Remediation Status Investigation of Ap-

plications with Updates
Classification Results of Developers’ Responses to Vulnerabilities .

List of Features
Datasets for Evaluation
Evaluation
Results of Detected Malicious UGC
Number of FQDNs Distributed Each Platform
Number of Malicious UGC Deleted by Providers
FQDN Accesses o e e

Selected Security Keywords (English)
List of Features
Ground-truth Dataset for Evaluating the Accuracy of Machine

Learning Models oo
Classification Accuracy Evaluation Results.
Overview of Datasets for Evaluation
Overview of Comparison Results between CrowdCanary and Ex-

isting Systems L
User Categorization Results

viil

68

72

72
73
73
74
75

13
17
17
18
18

19

19
19

19
20

31
38
39
41
42
43
44

o7
60

63
63
64

65
67

5.8 Comparison of URLs Characteristics 68

5.9 Comparison of FQDNs Characteristics 69
5.10 Comparison of Report Sharing Methods 69
5.11 Top 10 Keywords Collected Phishing Reports 70
5.12 Comparative Dataset of Phishing URLs 71

X

Chapter 1

Introduction

1.1 Background

With the rapid development of the Internet, User-generated Content (UGC) has
become an integral part of modern society. UGC is a generic term for content
created and posted independently by users on various platforms and services on
the Internet. With the explosive growth of the Internet, UGC plays an important
role in information sharing and communication, and is active in a wide range of
fields, including websites, blogs, forums, social media, video sharing sites, and
review sites. In particular, social networking services show no signs of slowing
down, from 2.7 billion users in 2017 to 4.9 billion users in 2023, a 1.5-fold [1],
with an expected 6 billion users in 2027.

The main characteristic of UGC is that individuals and communities can freely
disseminate their opinions and knowledge. In conventional media, information is
selected and organized by professional editors such as broadcasters and newspa-
pers, published as articles, and people refer to this information [2]. The UGC
allows non-professional users to proactively disseminate information and share
diverse perspectives and opinions. As a result, people are expected to create new
values and cultures, as well as promote diversification of information.

However, reliability and quality issues have been pointed out for UGC. This
is because the expertise and credibility of information providers are often uncer-
tain, and there is a risk of spreading misinformation and prejudice. For example,
misinformation about news and social conditions spread from uncertain sources
can cause people to behave incorrectly. Recently, cases of misinformation about
COVID-19 being spread and correct information being perceived as misinforma-
tion by the public have been reported and have become a problem [3, 4] Some
UGC also violates laws and ethics, such as copyright infringement, invasion of
privacy, hate speech, and slander. This illegal and inappropriate content may
violate users’ rights and cause social and legal troubles Actually, issues such as
the “legality” of the act of content downloading, the “protection” of content
creators, and the “damage” allegedly brought to the lives of creators by piracy
have been discussed [5]. Addressing these issues is an important challenge for
the sustainable development of UGC. Therefore, platform operators are required
to implement appropriate monitoring and screening systems, remove illegal and
inappropriate content, and provide warnings and guidance to users. Some plat-
forms have also developed a system to evaluate the quality and authenticity of
UGC by utilizing AI technology and machine learning, but even now, however,
this is not a sufficient countermeasure, as reports of malicious postings continue
to emerge.

On the other hand, there are many examples of UGC being successfully uti-

lized by companies and the general public [6, 7]. Companies can leverage UGC
content to gain a credible means of promotion through word-of-mouth and rec-
ommendations; UGC-based campaigns can encourage consumer engagement and
increase brand trust and awareness. For example, Starbucks held a “White Cup
Content” for new designs, inviting people to decorate and draw whatever they
wanted on white cups [8]. The winning design would be used as a limited edition
cup in Starbucks stores, but to do so, the participants had to purchase a drink
in a white cup and post it on the social networking service. The UGC-based
campaign led to sales promotion, new design development, and increased brand
awareness. In addition, through UGC, it is possible to collect user feedback and
requests, which can be used to develop and improve products and services. Thus,
depending on how they are used, companies can offer products that meet the
needs of consumers. Furthermore, UGC platform users facilitate the formation
of online communities where people with the same interests and concerns gather
and share information and opinions. For example, users can find new ideas and
solutions by sharing their knowledge and experiences with each other. Actually,
people with the same interests are connecting on UGC platforms to launch new
services and establish new communities. In general, UGC plays an important role
in the Internet society, and its advantages and risks coexist. In the future, efforts
aimed at improving reliability and quality will become even more important, and
appropriate measures must be taken from the perspective of cybersecurity.

1.2 Motivation

This thesis investigates the impact of UGC on cybersecurity from both positive
and negative aspects. First, in terms of the negative impact of UGC on cyberse-
curity, the analysis focus on Stack Overflow, an online forum on the web that is
used to exchange information among developers. Android application developers
are known to copy code snippets posted on Q&A sites and use them directly in
their applications. However, if the code snippet is vulnerable, the Android app
containing the vulnerable code snippet may have the same vulnerability. Nev-
ertheless, the impact of such vulnerable snippets on Android apps has not been
investigated in depth. We determine whether there are instances where UGC
on online forums can cause actual application vulnerabilities to occur. Next, we
analyze the characteristics of falese information spread by attackers, especially
on social networking services. With the growth of UGC platforms, people are
increasingly relying on UGC rather than search engines to find and access in-
formation on the web. In addition, attackers can exploit malicious content on
highly populated UGC platforms to spread web-based social engineering (SE) at-
tacks widely. Therefore, we investigate the actual situation across multiple UGC
platforms to identify the false information that attackers are spreading. On the
other hand, in terms of the positive impact of UGC on cybersecurity, we evaluate
whether UGC shared on social networking services is useful in cybersecurity mea-
sures. The recent increase in phishing attacks via email and short message service
(SMS) shows no sign of abating. Therefore, the first step in combating the ever-
increasing number of phishing attacks is to collect more phishing cases reaching
end users and understand their characteristics. To understand these characteris-
tics, we collect reports of phishing attacks shared on Twitter and evaluate them
against existing countermeasure technologies.

1.3 Contributions

Towards Finding Code Snippets on a Question and Answer Website
Causing Mobile App Vulnerabilities (Chapter 3). In Chapter 3, we in-
vestigate the correspondence between vulnerable code snippets and vulnerable
apps. We collect code snippets from the Q&A website, extract snippets of pos-
sible vulnerabilities, and calculate the similarity between those snippets and the
bytecodes of vulnerable apps. Based on our experimental results, 15.8% of the
apps with SSL implementation vulnerabilities (improper hostname validation),
31.7% of the apps with SSL certificate validation vulnerabilities, and 3.8% of the
apps with WEBVIEW remote code execution vulnerabilities, which are Stack
Overflow-derived vulnerabilities code snippets included in them. In the worst
case, 4,844 apps contained vulnerabilities due to one type of problematic code
snippet, accounting for 31.2% of all apps with that vulnerability that we collected.
These findings reveal that inappropriate UGC information on online forums is
affecting Android app security issues.

Exploring Event-synced Navigation Attacks across User-generated Con-
tent Platforms in the Wild (Chapter 4). In Chapter 4, we define and focus
on event-synchronized navigation attacks, a type of web-derived SE attack that
generates UGC containing links to malicious websites and delivers them syn-
chronized with real-world events at specific times. We propose three steps to
detect event-synchronized navigation attacks in real time by capturing traces
of the attacks, which are inevitable for an attacker to lead a large number of
people. We evaluate each step of the proposed system and finally confirm that
the proposed system can classify malicious and non-malicious UGC with 97%
accuracy. Furthermore, we conducted a comprehensive fact-finding survey on
event-synchronized navigation attacks spread from UGC platforms with a large
number of users. As a result, we found that 34.1% of malicious website FQDNs
associated with event-synchronized navigation attacks were spread from two or
more UGC platforms. We also found that 87.8% of FQDNs associated with
typical malicious websites (e.g., information theft, survey fraud, installation of
suspicious browser plug-ins, etc.) survived for more than 100 days, and despite
the fact that malicious websites are frequently accessed by users, the UGC plat-
form’s countermeasures was also found to cover only 31.0% of the malicious UGC
detected in this study. This research experiment confirmed that attackers spread
numerous attacks starting from UGC on services with a large number of users,
and that the current UGC platforms are insufficient to counter these attacks.
Understanding Phishing Reports from Experts and Non-experts on
Twitter (Chapter 5). In Chapter 5, we propose an approach that uses Twit-
ter as a new observation point to immediately collect and characterize phishing
cases via email and SMS that bypass current anti-phishing measures and reach
end users. Specifically, we propose CrowdCanary, a system that can extract
phishing information (e.g., URLs and domains) structurally and accurately from
phishing-related tweets from users who have actually discovered or encountered
phishing. We operated CrowdCanary for three months and identified 35,432
phishing URLs from 38,935 phishing reports. Of these phishing URLSs, 31,960
(90.2%) were later detected by anti-virus engines, demonstrating that CrowdCa-
nary outperforms existing systems in both accuracy and quantity of threat ex-
traction. We also analyzed users who shared phishing threats using the extracted
phishing URLs and classified them into two groups: experts and non-experts. As
a result, CrowdCanary was able to collect information specifically included in the
reports of non-experts, such as information shared only by company brand names

in tweets, information about phishing attacks contained only in images in tweets,
and information about landing pages before redirects. Furthermore, a detailed
analysis of the collected information on phishing sites revealed certain biases in
the domain names and hosting servers of phishing sites, revealing new features
that are useful for detecting unknown phishing sites. Our study and experiments
demonstrate that UGC on social platforms can contribute to the development of
security countermeasure technologies.

1.4 Outline

This thesis consists of the following parts. In Chapter 2, we organize what types
of web platforms exist for UGC, introduce their impact on cybersecurity on a
practical example basis, and discuss the issues addressed in this thesis. In Chapter
3, we collect source code fragments (code snippets) posted on Q&A sites and
analyze their relevance to vulnerabilities in Android applications. In Chapter 4,
we propose a system to detect malicious activities of attackers in the context of
events that people pay attention to on multiple social platforms, and investigate
the actual situation. In Chapter 5, we propose a system to extract reports of
phishing attacks shared on Twitter from experts as well as non-experts, and
evaluate it in comparison with existing techniques. Finally, in Chapter 6, we
provide conclusions and future perspectives on this thesis as a whole.

Chapter 2

User-generated Content

2.1 Type of Platform

With the explosion of the Internet, UGC plays an important role in information
sharing and communication, and is active in a wide variety of fields, including
websites, blogs, forums, social media, video sharing sites, and review sites. In
this section, we organize each characteristic of UGC along with the actual plat-
forms. We have categorized them into five broad types: social networking ser-
vices, blogging services, video sharing services, user review services, and online
forum services, as shown in Table 2.1.

Social networking services (SNS) are platforms for people to communicate and
share information through the Internet. SNSs allow users to connect with people
such as friends, family, colleagues, and acquaintances, send and receive messages,
share photos and videos, and exchange opinions and impressions. Typical plat-
forms include Facebook, where users communicate mainly using their real names;
Twitter (currently X), where users can post anonymously and freely; Instagram,
where information is shared mainly through photos; and LinkedIn, whose main
purpose is business use. SNSs have the largest number of users among UGC
platforms, with 4.5 billion users worldwide in 2022 [1]. These services are used
not only by individuals, but also by companies and organizations for marketing
and public relations purposes. SNSs are characterized by their real-time and
diffusion characteristics. Real-time is useful for news and events where breaking
news is important because information can be transmitted instantly. Diffusion
is the potential for information to spread to a large number of people through
easy sharing. On the other hand, SNSs also present problems such as privacy
concerns, the spread of fake news, and online slander.

Video sharing services are online platforms that allow users to upload, share,
and watch video content over the Internet. Typical platforms include YouTube
and DailyMotion, where a wide range of content is shared, including music videos,
news, and sports, as well as Twitch, which specializes in gaming and e-sports.
These platforms are used for a variety of purposes, including education, enter-
tainment, business, and communication. Not only can users search and watch
videos based on their interests and preferences, but users can also create their
own channels and upload videos to share with other users. Video sharing services
allow some content creators to generate revenue through advertising revenue and
sponsorships, which is an incentive for users to share videos. On the other hand,
copyright infringement by illegal video uploading and the spread of false infor-
mation and hoaxes have had a significant impact on users and have become a
social problem in recent years.

Online forum services are discussion and communication platforms available

Table 2.1: Platform List

Type Platform Name

Social Networking Service | Twitter, Facebook, Instagram, LinkedIn

Video Sharing Service YouTube, Twitch, DailyMotion

Online Forum Service Reddit, Stack Overflow, Quora

Blogging Service Blogger, WordPress, Medium

User Review Service Amazon Review, TripAdvisor, GoogleMaps, Yelp

on the Internet. Typical platforms include Reddit, where communication takes
place by creating groups called threads for each topic, Quora and Stack Overflow,
where users can post and search answers to questions in specific fields, and oth-
ers. Users can exchange information, post opinions and questions, and provide
answers and comments on a variety of topics. Online forums range from those
that focus on specific topics, hobbies, specialties, or communities to those that
cover a wide range of topics. The characteristics of the main topics discussed on
each platform differ, and the platform used is selected according to the user’s own
needs. Some people exchange their opinions on common topics, while others use
the platform to allow users with no expertise to ask questions of those who do
have expertise, and receive answers to their questions. On the other hand, users
should be aware of the known risks of posting illegal content, directing users to
malicious sites, and spreading false information.

Blogging services are platforms for individuals and organizations to dissem-
inate information on the Internet and post their opinions, thoughts, daily life,
hobbies, etc. Typical platforms include Blogger, Wordpress, Medium, etc., and
they range from simple to highly functional services. Blogs are basically char-
acterized by the fact that the administrator can freely update posts and third
parties can comment on those posts. Blogs are also good for SEO (search engine
optimization), and can attract a lot of traffic from search engines if appropriate
keywords are used. Not only individuals, but also companies and organizations
are using blogs to introduce their products and services, disseminate information,
and communicate with their customers. Personal blogs are also used as a place to
share hobbies and expertise, interacting with readers and forming communities.
As with SNS, privacy, inappropriate comments, and slander are issues.

User review services are online platforms for sharing opinions and ratings
about products and services. Typical platforms include Amazon reviews, where
ratings about products are posted; TripAdvisor, where reviews are popular mainly
for hotels and restaurants; Google Maps, where many ratings are posted for
stores, tourist attractions, etc.; and Yelp, where reviews are posted mainly for fa-
cilities such as hospitals, beauty salons. These platforms are used by consumers to
obtain information about products and services they are considering purchasing
or using. Most user review services have their own rating systems. This func-
tion allows users to assign star ratings or rating points to products and services.
These ratings are displayed as an average rating or ranking, allowing consumers
to easily determine the quality and popularity of a product or service. On the
other hand, user review services sometimes post inaccurate information or false
reviews. This includes malicious reviews by competitors and reviews posted by
companies to highly rate their own products and services.

2.2 Related Work on User-generated Content with a Focus on
Cybersecurity

This section introduces the cyber security threats that lurk in the UGC platforms
classified by type in the previous section, along with previous studies and reports.

2.2.1 Social Networking Service

The main cybersecurity threat related to social networking services is the prolif-
eration of malicious posts by accounts created by attackers. Kurt et al. inves-
tigated Twitter accounts traded on the underground market and reported their
findings [9]. A large number of accounts were used for phishing, fraud, and other
activities, and they worked with Twitter Inc. to successfully suspend 95% of the
account trading businesses investigated. Md. Sazzadur et al. also developed a
novel application to protect Facebook users and reported on the results of its
operation [10]. The application they developed detects malicious UGC with high
accuracy that could not be detected by conventional countermeasure techniques
such as blocklists, and they also identified a number of new attack campaigns
that exploit the characteristics of Social Networking Service, and found that the
rise of UGC platforms has led to a diversification of attacks. Since Social Net-
working Service allows users to create accounts freely, it is easy for attackers to
create fake accounts, attract users’ attention, and lead many users to malicious
sites.

2.2.2 Video Sharing Service

Video sharing service, there are attackers who direct users to malicious sites in
video comment sections and engage in fraudulent activities in increasing video
engagement. Tulio et al. propose a method to identify with high accuracy ac-
counts that post in YouTube comment sections that direct users to malicious
sites [11]. Popular UGC on video sharing services are often exploited by attack-
ers in this way because of the large number of accesses they receive from users.
Dhruv et al. also reported that there is a group of attackers who are exploit-
ing the system of YouTube to receive incentives based on the number of times
a video is viewed [12]. The attackers are working to illegally earn engagement
by having YouTube videos play as advertisements when watching videos on a
different Video Sharing Service called 123Movies. In this way, attackers exploit
the system’s mechanisms to gain money or use it as a venue for influx of users to
malicious sites, and operators of platforms with a large number of users need to
take especially firm countermeasures.

2.2.3 Online Forum Service

Online forum services allow users to post UGC on free topics, but there are
also numerous spam posts, and service providers are forced to take measures
to prevent them. Felix et al. report the results of an investigation into the
presence of vulnerable source code in posts on Stack Overflow, one of the online
forum services for developers [13]. Many source codes were found to have security
issues, revealing that while developers can easily search for source code on online
forums, many security risks exist. Eshwar et al. report on the results of a
large-scale analysis of posts deleted by moderators on Reddit [14]. Macro code
violations included personal attacks, misogyny, racism and homophobia, while
meso code violations included directing users to malicious sites, confirming the

efforts of operators to keep the platform healthy from a variety of perspectives. In
online forum services, users should similarly verify the authenticity of information
and discard only correct information.

2.2.4 Blogging Service

Blogging services allow users to freely post blog posts, which can be used by
attackers to evade detection of their malicious activities. Malwarebytes Labs has
reported on an actual case where a user was redirected from content on a free
blog service to the Explot Kit through the intermediary of a fake advertiser [15].
Blog visitors are automatically redirected to malicious sites prepared by attackers
when they access UGC on blog services such as those mentioned above. If a vul-
nerability in the blog visitor’s browser is exploited, it could lead to damage such
as virus infection. Palo Alto Networks researchers have also reported that the
malware’s encrypted C2 information is posted in UGC on blogs [16]. The ability
to reference information on blog services and communicate with C2 servers is
present in some of the malware’s processes, and blog services have been exploited
as part of the attackers’ detection evasion logic. Since these attackers’ malicious
activities are performed on legitimate blog service URLs, anti-virus may fail to
detect them as malicious behavior.

2.2.5 User Review Service

User review services have been problematic in manipulating consumers through
fake reviews by non-existent user accounts. Arjun et al. report an evaluation
of Yelp’s fake review detection algorithm Yelp [17]. In fact, the user review ser-
vice has its own algorithm for countermeasures against fake reviews, and the
aforementioned report found that Yelp’s algorithm is reasonable and works well.
Himangshu et al. also evaluate methods proposed to date to combat fake re-
views [18]. The report found that both basic research approaches and approaches
and regulations used in real business have failed to provide a limited level of pro-
tection in preventing the damage caused by fake reviews. Thus, it can be seen
that although many businesses are attempting to take countermeasures against
UGC in the user review service, they are currently inadequate.

2.3 Challenges in Analyzing User-generated Content

In this section, we discuss our roadmap and the challenges in analyzing UGC.
Figure 2.1 summarizes the types of UGC and the position of each study in this
thesis. Since the characteristics of UGC vary by platform, it is not easy to analyze
UGC in relation to each other and to other events. Therefore, we need to collect
the information necessary for the facts we wish to clarify in an analyzable format.
In each chapter, we describe the characteristics of the UGC to be analyzed and
the challenges that need to be solved in order to do so. We address the challenges
and investigate the realities so that we can develop future cybersecurity measures.

First, in Chapter 3, we investigate the source code posted by any user on Stack
Overflow, a Q&A site for developers, which is one of the online forums. Due to
the nature of the online forum, as an open forum, anyone can post source code.
On the other hand, if a vulnerability exists in the posted source code, and the
developer uses that code to implement an application, the application will also be
vulnerable without the developer’s knowledge. However, the code implemented
in the application is written in the application as compiled bytecode, not source

Negative Impact on Cybersecurity Positive Impact on Cybersecurity

Chapter 4 1
Exploring Event- Social Network Service }
synced Navigation Chapter 5
Attacks across Understanding
User-generated Video Sharing Service Phishing Reports
Content Platforms ‘ from Experts and
in the Wild { Online Forum Service Non-experts on
Twitter

Chapter 3
Towards Finding

Code Snippets on a

Blogging Service

Question and
Answer Website User Review Service

Causing Mobile
App Vulnerabilities

Figure 2.1: Overall Picture of This Thesis

code. Therefore, in order to determine whether the source code on the online
forum was used to implement the application, a method is needed to calculate
the similarity between the different forms of information, source code and byte
code. We solve the aforementioned challenge for the purpose of investigating the
existence of application vulnerabilities caused by UGC information.

Next, in Chapter 4, we investigate the actual state of malicious activities by
attackers through a cross-sectional analysis of UGC platforms of different forms,
such as social networking service, video sharing service, and online forum ser-
vice. Attackers need to post contents that attract users’ attention on multiple
UGC platforms in order to induce a large number of users to malicious sites and
obtain money and authentication information. However, since these UGC plat-
forms have different characteristics, they must be analyzed in conjunction with
UGC based on an understanding of their characteristics. We identify attackers
who are exploiting UGC platforms to conduct malicious activities and solve the
aforementioned challenges for the purpose of investigating the actual situation
and characteristics of the attacks.

Chapter 5 then evaluates the effectiveness of cyber security threat information
shared on the Social Networking Service. Due to the nature of UGC platforms,
where users can freely share information, there are many cases of beneficial infor-
mation sharing by well-meaning users. However, in many cases, users on UGC
platforms share information in different media, such as text and images. Further-
more, there are many posts that are not related to cybersecurity at all, such as
daily posts, and it is necessary to extract useful threat information for cybersecu-
rity countermeasures from these large-scale posts. For the purpose of evaluating
whether information on UGC platforms, where information is shared through di-
verse media, is useful for countermeasure techniques as a new observation point,
we solve the aforementioned challenge.

Chapter 3

Towards Finding Code Snippets on a
Question and Answer Website Causing
Mobile App Vulnerabilities

3.1 Introduction

The popularity and spread of mobile devices have led to a huge number of mobile
apps. Various mobile app developers, from professionals to amateurs, register
their apps in app markets, and those apps are downloaded by a great number of
users through the markets.

However, these developers, especially inexperienced ones, can create apps with
serious vulnerabilities, for example, allowing malicious apps access to a user’s per-
sonal information. On the other hand, market providers can take countermea-
sures against these vulnerable apps. For example, Google Play [19] warns devel-
opers about creating vulnerable apps and may ban vulnerable apps if the devel-
opers do not take proper precautions [20, 21, 22]. Despite such actions, many app
markets have been reported to indeed offer numerous vulnerable apps [23, 24, 25].

We envision that one possible source of these vulnerabilities may be commu-
nity websites for software developers. These websites, also called question-and-
answer (Q&A) websites, provide the developers opportunities to discuss, ask,
and answer questions regarding app developments and have grown in popularity.
Indeed, the rich source of information given by the public discussions on these
websites often provides quick solutions to the developers. Inexperienced develop-
ers especially tend to seek direct help and advice with ready-to-use code snippets
from these websites. Moreover, they may simply copy such code snippets and
use them in their own apps without checking their security. Thus, vulnerable
snippets on the Q& A websites may be causing some apps’ vulnerabilities.

In this paper, we investigate the reuse of code snippets from a Q&A website
into the mobile apps to see if vulnerable snippets are indeed causing vulnerabil-
ities of the apps. For the investigation, we first collected 243,589 code snippets
from Stack Overflow [26], a representative Q&A website. From the collected
snippets, we selected 209 vulnerable snippets that can cause app vulnerabilities.
Additionally, we collected 61,910 apps from two Android app markets (Google
Play and Qihoo 360 Mobile Assistant) including 47,081 free apps and 14,829
paid apps and identified 8,275,112 vulnerable classes in 48,333 apps by using a
vulnerability scanner. Finally, we investigated the correspondence between the
vulnerable code snippets and the collected apps by using a novel technique to
compare bytecodes in each vulnerable class with the vulnerable snippets.

Our Contributions:

e We collected code snippets from Stack Overflow, analyzed a connection

10

between code snippets and vulnerable apps, and investigated vulnerabilities
attributable to reusing code snippets.

e We found that 15.8% of all evaluated apps that have SSL implementation
vulnerabilities (improper host name verification), 31.7% that have SSL cer-
tificate verification vulnerabilities, and 3.8% that have WEBVIEW remote
code execution vulnerabilities contain the possibly vulnerable code snippets
from Stack Overflow.

o We designed and implemented a fully automated large-scale processing for
analyzing correspondence between code snippets and Android apps.

e Our experimental results clarified that copy&paste-based reusing of code
on a Q&A website is one factor causing app vulnerabilities.

3.2 Background

3.2.1 Code Snippets on Q&A Website

A code snippet is a fragment of code that is ready-to-use. By reusing code snip-
pets, developers can create apps efficiently. Developers often use code snippets
created by others as well as themselves.

A Q&A website for developers has a lot of code examples that developers can
use easily. Developers can post questions on the Q&A websites, and other devel-
opers may answer these questions with code snippets for solving the questioners’
problems. Additionally, it is possible to search already posted questions and an-
swers by using keywords, tags, and so on. Also, users can refer to the evaluation
of the answers with code snippets based on the votes by other users. Our study
focused on Stack Overflow [26], which is one of the most popular Q&A websites
for software developers. Code snippets on Stack Overflow are surrounded by
<code> tags and can therefore easily be crawled. Figure 3.1 illustrates an exam-
ple of a question and a corresponding answer posted on Stack Overflow. One user
posted a question that arose during the development of an Android application,
and another user posted the code for the answer.

3.2.2 Comparison of Android and iOS

We compare Android and iOS in terms of application development and market
characteristics.

Application Development. Android applications are developed primarily in
Java and Kotlin. These are object-oriented programming languages, many de-
velopers are already using these languages, and many developers are actively
discussing them on Stack Overflow. i0S applications are developed in Swift and
Objective-C. Swift is a new language developed by Apple that enables concise
and efficient coding. The same has been discussed in iOS app development on
Stack Overflow, although in smaller quantities than in Android. Android is an
open source platform and developers have a great deal of freedom in the cus-
tomization and flexibility of their apps. However, this requires additional effort
to accommodate different device sizes, screen resolutions, and OS versions. This
is known as fragmentation and is one major challenge for Android developers.
iOS is a closed source platform and must follow Apple’s guidelines and rules.
This reduces the need to accommodate a diversity of device and OS versions, but
on the other hand, it is characterized by limited freedom of customization.

11

Close/hide the Android Soft Keyboard

s | have an EditText and 2 Button in my layout,

2341 After writing in the edit field and clicking on the Button , | want to hide the virual keyboard. |

_ assume that there's a simple, one or two-liner to make this happen.

Where can | find an example of it?

56 Answers volea

4 You can force Android to hide the virtual keyboard using the InputMethodManager, calling
hideSoft InputFromWindow , passing in the token of the window contair:ing your focused view,
3318
v View wview = this.getCurrentFocus();
if (view != null) {
¢ InputMethodManager imm = (InputMethodManager)getSystemService(Context, INPUT_METHOD SERV]
imm. hideSoftInputFroakindow(view. getWindowToken(), @);

This will force the keyboard to be hidden in all silvations. In some cases you will want o pass in
InputMethodManager.HIDE_IMPLICIT_OMLY as the second parameter to ensure you only hide the
keyboard when the user didn't explicitly fores it 1o appear (by holding down menu).

o a0 11 B of 1334
edited Sep 1115 at 13:24

Figure 3.1: Example of Question Post (Top) and Answer Post (Bottom) on Stack
Overflow

Market Characteristics. Android is ahead of iOS in global market share,
especially in emerging and developing markets [27]. However, users generally tend
to pay less for apps and in-app purchases. On the other hand, iOS has a strong
position in certain markets, especially in North America and Western Europe.
Users generally tend to pay more for apps and in-app purchases. The review
process for the Google Play Store, the official Android marketplace, is relatively
quick, allowing new apps and updates to be brought to market quickly. However,
this means that the quality of the apps will vary, and users may encounter apps
with inappropriate content or bugs. In contrast, the Apple App Store’s review
process is known to be rigorous and time-consuming. This ensures that the
quality of apps in the store remains high. However, when releasing new apps or
updates, the review process needs to be included in the plan.

These perspectives show that Android and iOS have very different application
development and market characteristics in terms of mobile operating systems.
We consider Android to be more prone to security threats due to the freedom of
app development and the looseness of market restrictions. Therefore, this study
focuses on security threats to Android apps and analyzes the impact of source
code on the UGC platform.

3.2.3 Android Apps Vulnerabilities

There are various categories of vulnerabilities in Android apps. Table 3.1 lists
the Top Ten Mobile Risks in 2016 reported by the Open Web Application Secu-
rity Project (OWASP) Mobile Security Project [28]. This table shows that client
attacks, network attacks, and server attacks seriously threaten the security of An-
droid apps. For example, vulnerabilities generated defects in AndroidManifest.xml,
inappropriate implementations of Secure Sockets Layer (SSL) or Transport Layer

12

Table 3.1: Top 10 Mobile Threats in 2016

Kinds of Vulnerability ‘ Kinds of Attack
M1 - Improper Platform Usage ‘ Client Attacks

M2 - Insecure Data Storage ‘ Client Attacks
M3 - Insufficient Transport Layer ‘ Network /Traffic Attacks

M4 - Insecure Authentication ‘ Client/Server Attacks

M5 - Insufficient Cryptography ‘ Client /Network /Server Attacks

M6 - Insecure Authorization ‘ Client /Server Attacks
MT7 - Client Code Quality ‘ Client Attacks
MS8 - Code Tampering ‘ Client Attacks
M9 - Reverse Engineering ‘ Client Attacks

M10 - Extraneous Functionality

Security (TLS), inadequate implementations of WebView, and so on. Almost all
these vulnerabilities were the fault of careless developers. Additionally, there are
a lot of existing tools and services for detecting these vulnerabilities. In this
paper, we use Vulnerability Scanner AndroBugs [29] and focused on three kinds
of vulnerabilities attributable to the method of implementation.

3.3 Method

3.3.1 Overview

An overview of our approach is shown in Figure 3.2. In the collection phase,
we collected code snippets in answer posts from Stack Overflow (Figure 3.3) and
downloaded apps from multiple app markets. In the analysis phase, we selected
potentially vulnerable code snippets from all collected snippets and extracted
features from them. Additionally, we checked vulnerable classes in collected apps
by using AndroBugs and extracted features from vulnerable classes flagged by
AndroBugs. In the comparison phase, we calculated the similarity between fea-
tures of code snippets and features of app and investigated code snippets that are
possible causes of vulnerabilities. Output data include similarity between byte-
code and code snippets and also kinds of vulnerability. We can check whether
vulnerabilities are attributable to reusing vulnerable code snippets or not by an-
alyzing output data, e.g., we can determine if codes in apps were reused from a
Q&A website by setting a threshold of similarity value.

3.3.2 Method of Calculating Similarity between Code Snippets and
Bytecode

We explain our proposed method for calculating similarity between code snippets
and bytecode.

It is difficult to investigate whether code snippets have vulnerabilities or not
because existing vulnerability scanners can only scan compilable source codes or
bytecode after compilation. Likewise, source codes on websites are small pieces
in many cases, so converting source codes into bytecode automatically is also

13

Collection phase Analysis phase Comparison phase

Q&A forum ' Code snippet E

i
analysis

Code snippet | ! Output
i selection ™ Features APK, Code, Sim, Vuln.
| 1]

Code APK, Code, Sim, Vuln.
snippet Feature ' APK, Code, Sim, Vuln.

i extraction ' APK, Code, Sim, Vuln.

e —— S Comparing | APK, Code, Sim, Vuln.
e . APK, Code, Sim, Vuln.
i Appanalysis | -

App
markets
Figure 3.2: Overview of Our Approach

Vuln. analysis

1
Feature
extraction

I

public void onReceivedSslError(WebView view,
SslErrorHandler handler, SslError error) {
handler.proceed():

Ignore SSL certificate errors

(]

Figure 3.3: Example of Targeted Code Snippets

difficult. Furthermore, developers are assumed to modify code snippets and im-
plement their apps using somewhat modified code snippets. A method of com-
paring and evaluating partially processing sequences or features needs to be used
to specify code snippets that cause vulnerabilities of apps. Therefore, we evalu-
ated similarities between code snippets and bytecode by using common features
of method call sequences and method definitions.

We used Longest Common Subsequence (LCS) and Levenshtein Distance (LD)
to evaluate method call sequences. Additionally, we also used the rate of con-
cordance for types of the method definitions (TMD) and the similarity degree of
the name of method definitions (NMD) to evaluate method definitions. Finally,
we expressed the evaluation formula (1), which consists of LCS, LD, TMD, and
NMD values.

The method of extracting features from code snippets is shown in Figure 3.4.
We extracted method calls in the method body, the name of the method, and
type modifier characters in method definitions from code snippets. The method
of extracting features from bytecode in apps is shown in Figure 3.5. We also
extracted information from bytecode in the same manner as above.
Comparative Approach to Information Group of Methods. The com-
parative approach to the information group of methods is shown in Figure 3.6.
In this instance, the left side is a code snippet that has two method definitions,
and the right side is a bytecode that has four method definitions. We compare
each method sequentially and find the most similar method pairs between a code
snippet and a bytecode. In this case, (1) and (7) are the most similar pairs. We

14

public void loadData(String data, String
mimeType, String encoding) {
addJavascriptinterface();
super.loadData(data, mimeType,
encoding);

}

public void loadUrl(String url){
addJavascriptinterface();
super.loadUrl(url);

}

[

S

loadData

public,void,(String,String){
addJavaScriptinterface();
loadData();

}

loadUrl
public,void,(String){
addJavaScriptinterface();
loadUrl();

¥

}

Figure 3.4: Method of Extracting Features from Code Snippets

.class public Lcom/test/class/WebView;
.method public loadData

invoke-direct..->addJavascriptinterface()V
Invoke-super..->loadData(..)V
.end method

.method public loadUrl(Ljava/lang/String;)V
invoke-direct..->addJavascriptinterface)V
Invoke-super..->loadUrl (.)V

.end method

R
(Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;)V

loadData
public,void,(String,String) {
addJavaScriptinterface();
loadData();

4

loadUrl
public,void,(String){
addJavaScriptinterface();
loadUrl();

¥

—_—

}

Figure 3.5: Method of Extracting Features from Bytecode in Apps

loadData loadData
public,void, (String,String){ @ public,void,(String,String){
addJavaScriptinterface(); 5 addJavaScriptinterface();
loadData(); loadData();

3 1
loadUr] loadDataWithBaseURL
public,void, (String){ 5 put;lm,vo@,(Stnng,Stnng,

)] 3 String,String){
addJavaScriptinterface(); ddJavaScriptinterface():
loadUrl(); @ addJavaScriptinterface();
} ' 3 loadDataWithBaseURL();
}
Code Snippets loadUrl

Bytecodes

public,void,(String){
addJavaScriptinterface();
loadUrl();

}

loadUrl
public,void,(String,
Map<String,String>){
addJavaScriptinterface();
loadUrl();

}

Figure 3.6: Comparative Approach to Information Group of Methods

describe the method of calculating similarities later.

Evaluation Formula. We calculate similarities between code snippets and byte-
code using the following equation (1). The number of method definitions in code
snippets is n and the number of method definitions in one class of apps is m. We

describe each distance, LCS, LD, TMD and NMD, respectively.

211:1 Inaxogjgm(LC’Sj + LD] + T]VfDJ + NAij)

Score =

15

4

Note that specific features may greatly affect the equation because no similarity is
independent of others. Our future work is to define the formula while considering
the dependency of these similarity definitions.
Longest Common Subsequence (LCS). The LCS is an algorithm to find the
longest subsequence common to all sequences in a set of sequences. It is suited
to evaluate partial method call sequences and able to evaluate appropriate sim-
ilarities if developers modify original code snippets, e.g., inserting other method
calls or reordering call sequences.

The number of method calls in code snippets is S, and the longest common
subsequence can be expressed as the following equation.

Si % maxo<i<m LCS[
ZZLl Sk Si

Levenshtein Distance (LD). The LD is a string metric for measuring the
difference between two sequences. Similar to the longest common subsequence,
it is also suited to evaluate partial method call sequences and able to evaluate
appropriate similarities if developers modify method call sequences. The number
of method calls in one class of apps is A, and the LD can be expressed as the
following equation.

(3.2)

; LD
S max (1 — l

! Zzzl Sk 8 0<i<m Si+ Ay

) (3.3)
Rate of concordance for types of method definitions (TMD). We cal-
culate similarities between code snippets and bytecode from the viewpoint of
modifiers, the type of return value, the type of argument, and method defini-
tions. In many cases, method definitions in code snippets include characteristic
patterns of a type modifier. Therefore, we can capture these features by using
the following equation.

_ SZ % maxoglgm TMD[
Z}Ezl Sk Si

Similarity degree of name of method definitions (NMD). Code snippets
often have characteristic names of method definitions. We calculate similarities
between code snippets and bytecode from the viewpoint of the NMD by using a
3-gram model that can capture features of partial match because developers may
modify names of method definitions depending on their tastes.

_ Sz % maxo<i<m NMDl
ZZ=1 Sk Si

(3.4)

(3.5)

3.4 Experiments in Code Reuse Detection

In this section, we analyze the relevance between apps and code snippets by
calculating similarities between them with the method proposed in Section 3.3.
In Section 3.4.1, we describe our dataset. In Section 3.4.2, we calculate similarities
between vulnerable code snippets and vulnerable apps using our proposed method
explained in Section 3.3 to analyze their relationship.

3.4.1 Datasets

Collected Code Snippets. First, we extracted question posts tagged with
“Android” from all pages of Stack Overflow. Second, we collected URLs viewed

16

Table 3.2: List of Evaluated Code Snippets

Detection Name by AndroBugs ‘ Classification Condition # Targeted Code Snippets

SSL_CN2 getSocketFactory 43
getHostnameVerifier

SSL_X509 X509Certificate 84
checkClient Trusted
checkServerTrusted
get AcceptedIssures

WEBVIEW_RCE ‘ addJavascriptInterface 82

Table 3.3: List of Evaluated Apps

Market Name # of Apps Price Operating Structure Collection Date

Google Play

(paid apps) 14,829 Paid Official October, 2015
Google Play

(free apps) 16,532 Free Official October, 2015
Qiho0360

Mobile Assistant 30,549 Free Third party May, 2016

L or more times by users. In this paper, L is 1,000. Finally, we obtained 243,589
code snippets crawled from all answer posts on the above-mentioned collected
URLs.

We extracted possibly vulnerable code snippets from all collected code snip-

pets by using the classification conditions in Table 3.2. Specifically, we extracted
code snippets that contain specific API calls related to the focused vulnerabil-
ities. The number of code snippets used for the further evaluation is shown in
Table 3.2. Note that code snippets outside method definitions are not covered in
this experiment.
Collected Android Apps and Focused Vulnerabilities. We collected apps
from Google Play, the official Android market, and Qihoo 360 Mobile Assis-
tant [30], a third party market. Datasets of Google Play include both paid apps
and free apps, but datasets of Qihoo 360 Mobile Assistant include only free apps.
The breakdown of these datasets is in Table 3.3. Additionally, Table 3.4 presents
the results of vulnerability scanning by AndroBugs.

As was mentioned in Section 3.2.3, there are various kinds of vulnerabilities in
Android apps. We focus on three critical vulnerabilities named by the vulnerabil-
ity scanner AndroBugs: SSL_CN2, SSL._X509, and WEBVIEW_RCE. SSL_CN2
and SSL_X509 are related to insecure communication by Secure Sockets Layer.
That is, these vulnerabilities indicate that apps do not verify server certificates,
which allows attackers to do man-in-the-middle (MITM) attacks. These vulnera-
bilities may leak sensitive information such as login credentials. WEBVIEW _RCE
is related to WebView and Remote Code Execution. It causes apps to allow exter-
nal JavaScript to control the host application. This critical vulnerability allows
attackers to execute arbitrary codes by malicious JavaScript.

3.4.2 Evaluating Performance of Proposed Method

We evaluated the performance of the proposed method using apps created by
ourselves using several code snippets. First, we selected five code snippets that
are likely to have been reused by developers. Second, we simulated developer’s
behaviors of copying and pasting code snippets into their apps by actually cre-

17

Table 3.4: Results of Vulnerability Scanning of Collected Apps by AndroBugs

Market Name # of Detected Apps / # of All Apps
CN2 X509 WEBVIEW
Google Play 875/14,829 1,538/14,829 3,036,/14,829
(Paid Apps) (5.9%) (10.4%) (20.5%)
Google Play 2,610/16,532 3,732/16,532 7,936/16,532
(Free Apps) (15.8%) (22.6%) (48.0%)
Qihoo360 8,569/30,549 10,274/30,549 12,102/30,549
Mobile Assistant (28.1%) (33.6%) (39.6%)
Total 12,054/61,910 15,544/61,910 23,074/61,910
(19.5%) (25.1%) (37.3%)

Table 3.5: Results of Performance Verification

Code Snippets ‘ # of Defs # of Calls‘ LCS LD TMD NMD Score

Code_A \ 7 10[1.000 0.900 0.847 1.000 0.937
Code_B | 12 15]0.923 0.892 1.000 1.000 0.954
Code_C | 1 20|1.000 0.741 1.000 1.000 0.935
Code.D | 2 19]0.947 0.947 0.884 1.000 0.945
Code E \ 4 20]1.000 0.928 0.983 0.950 0.965

ating five apps by using the code snippets with IDE autocomplete. Finally, we
applied the proposed method to see if the code snippets and the five created
apps could be correctly matched. Table 3.5 presents the results of the evaluation.
We show that the proposed method ensures high performance in the five code
snippets.

3.4.3 Experimental Results

We calculated similarities between the collected code snippets and apps using the
proposed method in Section 3.3 with a similarity threshold of 0.8. In Section 3.4.2,
we evaluated the performance of the proposed method. From that results, if
developers copy and paste code snippets into their apps without modifications,
the Score is not less than 0.9. As mentioned above, developers are assumed to
modify code snippets and implement their apps using somewhat modified code
snippets. Hence, we decided a similarity threshold of 0.8 considering somewhat
modified code snippets. Note that we used code snippets with two or more
method calls because our method cannot handle such small snippets properly and
may produce false matches. We discuss this limitation in Section 3.5.3. Table 3.6
presents the results. We revealed that 31.7% of all evaluated apps that have
X509 vulnerabilities contain the possibly vulnerable code snippets from Stack
Overflow. Especially, we confirmed that a single problematic snippet has caused
4,844 apps to contain X509 vulnerabilities, which is 31.2% of all collected apps
with that vulnerability.

The above results confirm that the possibly vulnerable code snippets indeed
have a high chance of being contained in the vulnerable apps. However, the
results do not confirm if these snippets are indeed causing the vulnerability of
the apps. To clarify that, we analyze the relationship between the snippets and
vulnerable apps in more detail.

We selected the “most popular” vulnerable code snippet from each of the three
vulnerabilities. That is, for each of the three vulnerabilities, we selected the code

18

Table 3.6: Correspondence between Possibly Vulnerable Code Snippets and Vul-

nerable Apps

Market Name

of Apps with Possibly Vulnerable Snippet

/ # of All Apps

CN2 X509 WEBVIEW

Google Play 146/875 234/1,538 116/3,036
(Paid apps) (16.7%) (15.2%) (3.8%)
Google Play 269/2,610 816/3,732 278/7,936
(Free apps) (10.3%) (21.9%) (3.5%)
Qihoo360 1,489/8,569 3,878/10,274 513/12,102
Mobile Assistant (17.4%) (37.7%) (4.2%)
Total 1,904/12,054 4,928/15,544 907/23,074
(15.8%) (31.7%) (3.8%)

Table 3.7: Ratio of Vulnerable Classes with Potentially Vulnerable Code Snippet
to All Matched Classes

of Vulnerable Classes with Snippet

Market Name / # of All Classes with Snippet
CN2 X509 WEBVIEW
Google Play 82/87 602/605 14/14
(paid apps) (94.3%) (99.5%) (100%)
Google Play 195/200 1,766/1,767 195/200
(free apps) (97.5%) (99.9%) (97.5%)
Qihoo360 1,820/1,903 7,205/7,212 139/139
Mobile Assistant (95.6%) (99.9%) (100%)
Total 1,904/2,190 9,573/9,584 348/353
(95.8%) (99.9%) (98.6%)

Table 3.8: Results of Application Update Status Investigation

#Total

487 (100%)
1,287 (100%)

#Updated

198 (40.7%)
681 (52.9%)

#Non-updated

188 (38.6%)
395 (30.7%)

#Non-existence

101(20.7%)
211(16.4%)

Type of Application ‘

Google Play (paid apps)
Google Play (free apps)

Table 3.9: Results of Vulnerability Remediation Status Investigation of Applica-
tions with Updates

Type of Application ‘ #Total #No Vulnerabilities # Vulnerable
Google Play (paid apps) | 198(100%) 118(59.6%) 80(40.4%)
Google Play (free apps) | 681(100%) 481(71.6%) 200(29.4%)

snippet that is used most frequently in the corresponding vulnerable apps. Then,
we checked if these code snippets are indeed used only in the vulnerable classes
in the vulnerable apps identified by AndroBugs. As a result, 95.8% or more
vulnerable classes indeed contained the potentially vulnerable code snippets, as
shown in Table 3.7. We believe that the above results show that reusing code
snippets on Stack Overflow greatly contributes to vulnerabilities of apps.

3.4.4 Investigation of Application Updates

We investigated whether the apps were currently updated and whether the vul-
nerabilities had been remedied for those apps where we found vulnerabilities
derived from code snippet reuse. Then, using the results of the experiment, we

19

Table 3.10: Classification Results of Developers’ Responses to Vulnerabilities

Developer Type ‘ #Devlopers
All apps have been updated and all vulnerabilities have been remedied | 102 (42.3%)
App has been updated but not all vulnerabilities have been remedied 34 (14.1%)
Not updating all apps 105 (43.6%)

0.8 - -
v 0.6 - ,
o
Q
<
Y=
o
[T
[a)
O 04 - -
0.2 - _
— Developers A
— Developers B
0.0 -
0 1 2 3 4 5 6 7 8 9 10

Ratio of Vulnerable Class[%]

Figure 3.7: Cumulative Percentage of Vulnerable Classes Present

1.0 .
— Developers A

— Developers B

0.8 -

CDF of Apps
o
[o)]

o
S
|

0.2 -

| | | |
0 500 1000 1500 2000
Lifetime[days]

Figure 3.8: Cumulative Percentage of the Current Version of the App’s Market
Presence

20

classified the update status of developers of apps in which code snippet-derived
vulnerabilities were found for developers.

Investigation of Vulnerable Apps for Remediation Status. We retrieved
apps (487 paid apps and 1,287 free apps) with the same package names as the vul-
nerable apps in the experiments described in Section 3.4 from Google Play using
the Google Play Unofficial Python API [31]. For the acquired apps, we inves-
tigated whether the relevant classes have been improved using the vulnerability
scanning tool AndroBugs [29]. Table 3.8 shows the results of the investigation
into whether apps with the same package name as the vulnerable apps have been
updated on the current Google Play. We found that 188 paid applications (38.6
% of the total) and 395 free applications (30.7 % of the total) existed in the
market without updates. In addition, we retrieved 198 paid apps (40.7 % of the
total) and 681 free apps (52.9 % of the total) with updates from the market and
investigated the vulnerabilities of the relevant classes, the results of which are
shown in Table 3.9. Although many of the vulnerabilities had been remedied, 80
paid apps (40.4 % of apps with updates) and 200 free apps (29.4 % of apps with
updates) had the same vulnerabilities. These findings suggest that there are still
many apps on the market with code snippet vulnerabilities, and that developers
themselves may not be aware of the existence of these vulnerabilities.
Characteristic Analysis by Developer. Using the experimental results of
apps and vulnerability update status, we categorized the update status of de-
velopers of apps in which code snippet-derived vulnerabilities were found for
developers who met the following criteria.

e Group of apps found with code snippet-derived vulnerabilities
e Developers with two or more apps in the above group of apps

The results of the classification are shown in Table 3.10. We confirmed that
there are two groups of developers: one group of developers who update all the
apps they publish and remedy all vulnerabilities, and the other group of develop-
ers who do not update all their apps at all despite the existence of vulnerabilities.
The former group is referred to as developer group A and the latter as developer
group B.

We randomly retrieved 500 different groups of apps currently published on
the market by each group of developers, and plotted the cumulative ratios based
on the following two indices in Figure 3.7 and Figure 3.8.

e Percentage of classes that AndroBugs warns are vulnerable relative to classes
present in the app

e The period from the time the app was collected to the last update date
listed on the market

Both indicators show that a large difference exists between developer group A
and developer group B. These results reveal that developer group B tends not to
update their apps at all and that the apps they publish are often more vulnerable
than those of developer group A.

3.5 Discussion

3.5.1 Countermeasures by Market and Q& A Site Operators

Our experimental results confirmed that reusing code snippets on Stack Overflow
strongly increases the likelihood of three vulnerabilities identified by AndroBugs:

21

SSL_CN2, SSL_X509, and WEBVIEW _RCE. Qihoo360 has a higher rate of vul-
nerable apps than Google Play, so Google Play can be said to focus more on
countermeasures against vulnerabilities. Results also confirmed that Qihoo360
has a higher rate of vulnerable apps including potentially vulnerable code snip-
pets. This may be because more unskilled developers are reusing potentially
vulnerable code snippets on Stack Overflow in the Qihoo360 market. Addition-
ally, we found that free apps are more vulnerable than paid ones. We speculate
that some developers of free apps are non-professional and less able to eliminate
vulnerabilities from their apps.

We found the same code snippets on many different pages, suggesting users
of Q& A websites also copy and paste the code snippets. It would be problematic
if potentially vulnerable code snippets spread over the sites in this way. To
prevent such spreads, Q& A website operators should search for and remove these
potentially vulnerable code snippets.

3.5.2 Enhancing Awareness for Developers

Developers should try to check whether code snippets are implemented correctly
or not before they reuse them and they should not use code snippets that have
vulnerabilities. Software modules can sometimes contain potentially vulnerable
codes, and developers may use the modules by mistake without noticing the
vulnerabilities.

3.5.3 Limitation

The proposed similarity calculation method has limitations. It is difficult to
correlate code snippets with apps if code snippets do not have specific features,
e.g., a snippet contains trivial functionalities and everyone will implement it in
the same manner regardless of whether they reuse code snippets or not. This
problem will also occur if a code snippet is small-scale.

Moreover, code obfuscation can also be problematic for calculating similari-
ties. However, code snippets related to Android API are unaffected by obfusca-
tions, thus we may be able to propose a new method for specifying vulnerable
code snippets with obfuscations in our future work.

3.6 Related Work

Android apps vulnerabilities, mobile app developers, code clone detection, and
developer community websites have been studied. However, few studies have
focused on the effect of real code snippets on Android app vulnerabilities. In
this paper, we collected code snippets from Stack Overflow, analyzed a connec-
tion between code snippets and vulnerable apps, and investigated vulnerabilities
attributable to reusing code snippets.

3.6.1 Vulnerability Analysis

Fahl et al. [32] introduced a tool to detect potential vulnerability against MITM
attacks. They analyzed 13,500 popular free apps downloaded from Google Play
and revealed that 1,074 (8.0%) of the apps examined contained SSL/TLS code
that is potentially vulnerable to MITM attacks.

Egele et al. [33] developed program analysis techniques to automatically check
programs on the Google Play and found that 10,327 out of 11,748 apps that
use cryptographic APIs - 88% overall - make at least one mistake. They then

22

suggested specific recommendations on the basis of their analysis for improving
overall cryptographic security in Android apps.

Furukawa et al. [34] investigate 15,064 of popular Android apps to identify
their library version and to reveal statistical distribution of the versions. As a
result, several apps even published on Japanese Google Play turn out to be using
old version libraries warned their security risks.

3.6.2 Research on Mobile App Developers

Acar et al. [35] contacted developers in Google Play and investigated the resources
the developers reference when they create apps, reference frequencies, developers’
experience, and so on. Moreover, they performed an experiment in which their
research team members develop apps by limiting referenced resources such as
Stack Overflow, official documents, and books. Furthermore, they evaluated
completed codes from the point of view of functional correctness and security.
They also investigated how specific implemented codes are related to security
in real apps. By doing these surveys, they analyzed the effects of resources
referenced by developers creating apps on security problems. As a result, they
clarified not only that Stack Overflow contains more handy resources than official
documents do but also that a lot of resources are possible causes of vulnerabilities.

Wang et al. [36] presented a study of the mobile app ecosystem from the
perspective of app developers. On the basis of over one million Android apps and
320,000 developers from Google Play, they analyzed the Android app ecosystem
from different aspects. Their analysis shows that while over half of the developers
have released only one app in the market, many have released hundreds of apps.
Then they classified over 320,000 developers into four groups on the basis of
the number of apps they released and analyzed the characteristics for different
developer groups from the aspects of app quality, development behaviors, and
privacy behaviors. The results revealed a wide variation among app developers.
In particular, highly active developers, who have created more than 50 apps, tend
to release low-quality, less popular, and high privacy risk apps.

3.6.3 Code Clone Detection

Various studies [37, 38, 39, 40] have been reported on code clone detection in
Android apps. Hanna et al. [41] investigated present situations of code reuse
using similarities between Android apps by focusing on specific operation codes
included bytecode. Their results found some applications with confirmed buggy
code reuse of Google-provided sample code that lead to serious vulnerabilities in
real-world apps, some instances of known malware and variants, and some pirated
variants of a popular paid games.

Zhou et al. [42] proposed a module decoupling technique to partition an app’s
code into primary and non-primary modules and developed a feature fingerprint
technique to extract various semantic features. Their investigation shows that
piggybacked apps are mainly used to steal ad revenue from the original developers
and implant malicious payloads.

3.6.4 Research on Developer Community Website

Liu et al. [43] proposed a unified framework to tackle the challenge of detecting
collusive spamming activities of Community Question Answering, which provides
rich sources of information on a variety of topics. They also proposed a combined
factor graph model to detect deceptive Q& As simultaneously by combining two

23

independent factor graphs. Using a large-scale practical dataset, they found that
their proposed framework can detect deceptive contents at an early stage and
outperform a number of competitive baselines.

Fischer et al. [44] crawled Stack Overflow for code snippets and evaluated
their security score using a stochastic gradient descent classifier. As a result,
they revealed that 15.4% of the 1.3 million Android apps they analyzed con-
tained security-related code snippets from Stack Overflow. Out of these, 97.9%
contained at least one insecure code snippet.

3.7 Conclusion

We analyzed the relationship between Android apps vulnerabilities and code snip-
pets on a Q&A website. As a result, we showed that a single problematic snippet
has caused 4,844 apps to contain a vulnerability, which is 31.2% of all collected
apps with that vulnerability. Moreover, we found the same potentially vulnera-
ble code snippets are on many different pages and should be removed by the site
operators.

In the future, we will try to comprehensively investigate code snippets that
are possible causes of vulnerabilities besides the Q& A websites. Additionally, we
will also analyze the mechanism of vulnerable app development using potentially
vulnerable code snippets.

24

Chapter 4

Exploring Event-synced Navigation Attacks
across User-generated Content Platforms in
the Wild

4.1 Introduction

With the advent of user-generated content (UGC) platforms, people are using the
search functions of such platforms as well as conventional search engines to search
for information. UGC includes videos, blogs, bulletin board posts, images, and
music that can be shared. The platforms that distribute UGC play an increasingly
vital role in web communication among users, DataReportal estimated that there
would be approximately 3.8 billion users worldwide as of 2020 [45].

Whereas users previously relied on conventional search engines to find infor-
mation using keywords related to their interests, now they often obtain informa-
tion and access links through UGC. Typically, a UGC platform provides users
with ways to easily access interesting information from the large amount of UGC
generated daily, e.g., trend searches and tagging as well as keyword searches. A
UGC platform also attracts attackers who distribute malicious links that direct
users to external malicious websites. This is a type of web-based social engineer-
ing (SE) attack that exploits user’s psychological vulnerabilities. Studies have
reported that users are more likely to click on links in UGC than in emails be-
cause users feel connected to each other with a sense of trust and camaraderie, and
that 30%-66% of the subjects were tricked into clicking on links in tool-generated
malicious posts that target specific users [46]. A web-based SE attack leverages
various methods to navigate users to malicious websites to accomplish an at-
tacker’s objectives. Such methods include malware download attacks that mimic
legitimate software to be installed [47], survey scams that mimic questionnaires
and require users to input personal information [48], and telephone scams that
claim to be from legitimate support centers [49]. Among web-based SE attacks,
those that piggyback on real-life events are increasing. To increase the chances
of malicious links being seen by users, attackers take advantage of extensive user
interest to distribute related UGC with malicious links. It has been reported that
numerous Apple-related phishing websites tend to appear around the times Ap-
ple announces new products [50], and many fake websites were discovered during
the 2019 Rugby World Cup [51].

In this paper, we focus on event-synced navigation attacks, a type of web-based
SE attack that generates UGC with links to an external malicious website and is
distributed synced with a real-life event that attracts user attention at a specific
time. Event-synced navigation attacks have been deployed across multiple UGC
platforms; however, existing research [52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62,

25

63, 64, 65, 66] only targets a single UGC platform. Thus, a full picture of these
attacks has not yet been presented. Therefore, we propose a system to detect
event-synced navigation attacks in real time to comprehensively understand the
attacks in the wild. The proposed system leverages three intrinsic properties of
attacks; (1) UGC are posted at specific times corresponding to real-life events,
(2) UGC are posted across multiple UGC platforms and (3) UGC are posted with
links to an external malicious website. These properties are inevitable footprints
left by attackers to attract user attention and lead users to a malicious website.
Finally, we detected a significant amount of malicious UGC in the wild using
the proposed system and investigated malicious entities involved in the attacks.
We found many cases where the same attacker spread attacks across multiple
platforms. Especially, those attacks originating from multiple platforms were
accessed more than four times as frequently as attacks originating from a single
platform. We also found that 87.8% of the fully qualified domain names (FQDN)
survived for more than 100 days and that, one week after being posted, 69.0% of
malicious UGC had not been removed by UGC platform providers.
Our primary contributions are summarized as follows.

e We defined a new threat, i.e., event-synced navigation attacks, that can
affect many users across multiple UGC platforms in relation to real-life
events.

e We proposed an innovative system that detected event-synced navigation
attacks in real time with 97% accuracy.

e Using the proposed detection system, we found 39,646 malicious UGC
posted over a period of 40 days.

This paper is an extended version of a paper presented at IEEE COMPSAC
2021 [67]. The paper [67] proposes a new system for early detection of event-
synced navigation attacks, and evaluates its ability to detect attacks with high
accuracy against test data. However, we did not conduct a detailed analysis
of the malicious content detected in the wild, nor did we evaluate the current
countermeasure techniques of each UGC platform providers. In this study, we
analyzed the detected event-synced navigation attacks from five new perspectives
(Section 4.5). The new contributions of this paper are as follows.

e We found that 34.1% of event-synced navigation attacks are spread across
two or more popular UGC platforms.

e We revealed UGC platform providers often miss malicious UGC and that
attackers abuse the context of real-world events, particularly sporting events
to which people pay attention, especially sporting events which attract
significant user attention.

e We confirmed a number of cases where event-synced navigation attacks
have led users from popular social platforms to malicious sites (i.e., infor-
mation theft, survey scams, suspicious browser plugin installations, etc.),
as identified in a number of existing studies.

26

Attractive
event info

-
2)
@] O
O] O]
Dl«<||| D |
S1E[] 8 |E
25| 2&ls
S15(|2L |3
[@1 o
= 1ol]2 o
—— O|| YO
*DO)|l r S

)(3)

Redirect

"

Attack
Attractive

Figure 4.1: Overview of Threat Model

4.2 Guiding Users through UGC

4.2.1 Type of Guidance

UGC is used as a medium to direct users to external sites or different platforms
in a variety of contexts.

Link Sharing. Users post links to their favorite websites and articles on UGC
platforms, directing other users to those links.

Online Review. Users post reviews of products and services to encourage other
users to visit their websites.

Contests and Campaigns. Companies conduct photo contests or hashtag

27

E_ 90000060 [VVVVVVVV || 08800800
1ppay 9QqNLNOA %00G80€] JSlM L

STEEERREES

Z# 19PON TN feo) O L# [9PON TN {e)
Swioelg swoje|d
09N adnin AAALAARA | O°N Siatini uo SPeeS 9ON weans
uo DHN snoidleA N >u> O | SSlEPIPUEBD DON JonIm| snoioleln .
Bunosieq 00 008 SnoalE Bunoeiiod JepmL
. deig Bugoaion | deig
g daig #
ﬁ # DON oML Snollfe|y
29N snoIfep sejepipuen 0o snolely SPooS DON ISHIML SNODIEN DO JORIML SNOIOIBW-UON

Figure 4.2: System Overview
Celebrity Marketing. Celebrities recommend specific products on their own
Forums and Q& A sites. Users provide information to solve specific problems
28

campaigns on UGC platforms to direct participants and viewers to their websites
accounts on UGC platforms and direct followers to product sales sites.

or specific platforms.

and direct other users to the site by sharing links to their sources and related
information.

The activity of directing users from well-known UGC platforms to other plat-
forms and websites in the aforementioned contexts raises security threats. For
example, user-generated links and files may contain malware, either intentionally
or unintentionally. It could also lead to phishing scams in which users provide
personal information believing it comes from a reliable source. In this study, we
target these types of malicious activities that lead users away from well-known
UGC platforms for detection and analysis.

4.2.2 Threat Model

Our threat model for an event-synced navigation attack is shown in Figure 4.1.
An attacker posts content that includes keywords related to an exciting real-life
event that attracts a large number of users/victims who use UGC during the
event. The posts contains links to a prepared malicious website. For example,
during matches in the 2019 Rugby World Cup matches, users searched UGC plat-
forms for keywords related to the tournament. The key to a successful attack is
to distribute malicious UGC posts at the best time to attract the users’ attention
and lead a large number of users to the malicious website. In this study, we
focus on attacks that target pre-scheduled events except for sudden incidents or
scandals as a context (e.g., celebrity scandals, earthquakes, and riots) because
the context and method of spreading differ significantly. We then describe the
attacker and victim’s perspectives in our threat model.

4.2.3 Attacker’s Perspective

The attacker executes the attack in three steps as follows.

Preparing Malicious Websites. The attacker selects an event that can attract
a large number of users (1). For example, the attacker can select an upcoming
sporting event or a product launch. Then, the attacker constructs an attack
scenario based on the event to target the users’ psychological vulnerabilities.
Take the Rugby World Cup as an example. In this case, the attacker may create
a phishing website that mimics an official streaming website with a form asking
for credit card and address details.

Creating Malicious UGC. The attacker creates UGC in a context that makes
the user want to access the prepared malicious website (2). The URL in the
UGC is designed to reach the malicious website via multiple websites. Note that
attackers often use URL shortening services or redirects to intermediate websites
where the destination is unknown until users actually access the website. This
method is employed to evade detection by malicious URL detection algorithms
deployed on each UGC platform.

Distributing Malicious UGC. The attacker disguises themselves as a legiti-
mate user and spreads the UGC on multiple UGC platforms with a large number
of users (3). As mentioned previously, the attacker distributes the trap when
the user is expected to search for keywords related to the event using the search
functions on the UGC platforms. For example, malicious UGC spreads on UGC
platforms like Twitter and Facebook when users are most interested in the tar-
geted events, e.g., immediately after the release of a new iPhone or the start of
the Rugby World Cup.

29

4.2.4 Victim’s Perspective

A user encounters the attack in three steps as follows.

Searching for Event Information. A user searches for relevant keywords on
UGC platforms based on their interests (4). For example, if the user wants to
watch a live Rugby World Cup match on the web, they may input the keywords
“rugby world cup free live streaming.” In addition, trending words, e.g., “rugby
world cup 2019”7, and related hashtags e.g., #RWC2019, may also be used in search
terms. The search results will present both non-malicious content and malicious
UGC posted by the attacker. Previous studies [68, 69] have stated the results of
search engines (e.g., Google, Bing and Baidu), are polluted by black hat search
engine optimization techniques, and the results link to malicious websites. UGC
platform users frequently search for UGC in chronological order to obtain the
most up-to-date information; therefore, an attacker’s posts may appear in large
numbers depending on the timing.

Reaching Malicious Websites. When the user clicks a URL in malicious UGC
spread by the attacker, they are redirected to the prepared malicious website (5).
Note that some malicious websites contain a large number of redirects, or go
through different UGC on the same platform or UGC on different platforms.
Becoming a Victim of an Attack. The user may be asked for their personal
information or to install fake software to gain access to the target website, which
is actually a fake and malicious website (6). Once the user enters their personal
information (e.g., email address, password, credit card details, etc.), the entered
information is sent to the attacker; however, the user cannot access the desired
content.

4.3 Proposed System

In this paper, we propose a system to identify malicious UGC spread by event-
synced navigation attacks in real time. Figure 4.2 shows an overview of the
proposed system. Given a Twitter UGC stream as input, the proposed system
automatically identifies malicious UGC spread on multiple UGC platforms. The
malicious UGC identified by the proposed system include those that lead to mal-
ware download websites, phishing websites, and fake websites. The proposed
system involves three steps: (1) collecting malicious UGC seeds on Twitter, (2)
collecting malicious UGC candidates on multiple UGC platforms, and (3) detect-
ing malicious UGC on multiple UGC platforms. The following sections describe
these steps in detail.

4.3.1 Step 1: Collecting Malicious Twitter UGC Seeds

The first step takes a Twitter UGC stream as input. We selected Twitter as the
first input to the proposed system because it is better suited than any other UGC
platforms in terms of generating information to search for similar malicious UGC
(i.e., malicious UGC seeds) due to its ability to retrieve large amounts of data in
real time. Then, we employed a supervised machine learning approach to identify
malicious Twitter UGC seeds and output them as a starting point for subsequent
detection of malicious UGC on multiple platforms. This step comprises three
sub-steps: extracting features, labeling, and applying machine learning.

30

Table 4.1: List of Features

Type Model Features Dimensions
UGC Context Features ML Model #1 & #2 UGC Word Embedding 700

UGC Timing Features ML Model #1 # of Selected UGC
Average Time Interval
Average # of URLs per Post
Unique # of URLs
Unique # of Users

Infrastructure Features ML Model #2 # of Selected UGC
of Distributed Platforms
Average # of URLs per Post
Unique # of Landing URLs
Unique # of Users

Web Content Features ML Model #2 HTML Word Embedding
HTML Tag Counts
of Redirects

= e [e e

-3
w o
(=N

—

Step 1.1: Extracting Features

In this sub-step, features that contribute to the identification of malicious Twitter
UGC are extracted from the Twitter UGC stream. Twitter is an extremely
high-volume UGC stream; thus, designed features can quickly identify malicious
Twitter UGC. To realize this, we design the features under the limitation that
we do not need to access the URLs contained in the Twitter UGC, which allows
us to identify malicious Twitter UGC quickly after an attacker posts it. Here,
we utilize two features (Table 4.1), i.e., UGC context features and UGC timing
features.

UGC Context Features. We generated distinguishable features for the char-
acteristic text in malicious Twitter UGC (e.g., the context in which the attacker
attempts to direct users to a malicious website). Specifically, we created 700-
dimensional features corresponding to the text from text portions contained in
each input UGC using word embedding. Word embedding is a feature learning
technique in natural language processing that is used to extract fixed-dimensional
feature vectors by converting words and phrases in the lexicon to real vectors.
Among the many existing word embedding algorithms, Sent2Vec [70] was used in
this study because it has been reported to perform the best for relatively short
sentences used in UGC platforms, which are the target of this study. The various
parameters were set to the same values as in the experiments in the previous
study [70], and the dimensions of the feature vectors were set to 700 dimensions
as well.

UGC Timing Features. We generated UGC timing features to capture the
characteristics of malicious Twitter UGC that is widely spread at a specific time.
These features allow us to capture the unique concurrences of malicious Twitter
UGC caused by events not captured in only the textual context considered by the
UGC context features. Here, we first extract multiple UGC posted within the last
60 minutes of the input UGC from the T'witter UGC stream. The threshold was
set to 60 minutes because we considered that if attackers target the beginning
of a sports festival or a new product launch, similar posts will cluster within
60 minutes. Then, we selected only the UGC that is similar to the text of the
input UGC from the extracted UGC. Here, we calculated the degree of similarity
between the input UGC and the extracted UGC using the Jaccard coeflicient,
and if the calculated similarity was greater than or equal to a predetermined
threshold, it was considered similar. In this study, the threshold for the Jaccard

31

coefficient was set to 0.7, which is similar to that used in a previous study [71].
The selected UGC is the one posted at similar times that has text that is similar
to the input UGC. Then, we generated five features from the selected UGC
(Table 4.1). The first feature is the number of UGC in the selected UGC, which
captures the characteristics of similar malicious Twitter UGC itself spread at
specific times. The second feature is the average posting time interval of the
selected UGC. The same attacker or an attacker with the same target can post
many malicious UGC simultaneously; thus, the shorter the average posting time
interval, the more characteristics of malicious Twitter UGC can be captured. The
third feature is the average number of URLs contained in each UGC, as selected
by the Jaccard coefficient described above. Attackers include many URLs in
UGC to tempt users to click on a URL [52], and this feature can capture that
characteristic. The fourth feature is the unique number of all URLs in the selected
UGC. Attackers use URL shortening services and intermediate websites to evade
URL-based blocklist detection, which leads users to the same malicious website
with a different URL [53, 72]. In other words, the larger this feature is, the more
likely it is to be malicious Twitter UGC. The fifth feature is the number of unique
users who have posted their selected UGC. It has been reported that attackers
post simultaneous malicious Twitter UGC on many accounts to avoid detection
on the platform [52]. Similarly, the larger this feature is, the more likely it is to
be malicious Twitter UGC.

Step 1.2: Labeling

In the labeling sub-step, ground truth labels are assigned to the input UGC
to be used as training data for supervised machine learning. Here, the ground
truth label is binary: malicious Twitter UGC and non-malicious Twitter UGC.
Generally, a large amount of training data with ground truth labels is essential
to the success of supervised machine learning. Therefore, we design a method to
obtain the ground truth labels for many unlabeled UGC without manual labeling.
Here, we first select the UGC that contains URLs that lead to websites outside
of Twitter from the input UGC. To label malicious Twitter UGC, we adopted
the settings from a previous study [53] and our own settings to capture trends.
We labeled UGC that satisfies the following criteria as malicious Twitter UGC:
(1) the UGC deleted by Twitter after a certain period from the posted date or
posted by accounts suspended by Twitter, and (2) UGC that includes at least
one keyword that is listed in Google Trends [73] or Twitter Trends [74] at the
same timing as the post. We labeled the UGC as non-malicious if it had text
similar to that contained in the UGC previously labeled as malicious and if it
contained unpopular URLs. UGC with popular URLSs are not considered in this
study since they can be easily determined to be non-malicious by the URL list.
UGC that have similar contexts to malicious UGC but have not been removed
by the respective UGC platform providers are considered non-malicious in this
study. The similarity metric of UGC text is based on the Jaccard coefficient.
In this study, popular websites were considered those in the top 10,000 of the
most recent Alexa top sites [75] at that time. Note that we did not simply define
non-malicious Twitter UGC as that containing popular URLs. Our proposal is
to accurately detect both malicious Twitter UGC and similar but non-malicious
Twitter UGC when subsequently creating machine learning models. For example,
if we label Twitter UGC as non-malicious simply because it contains the URLs of
popular websites, we will detect UGC containing unpopular URLs as malicious
Twitter UGC. Thus, we would not be able to detect malicious Twitter UGC

32

involved in event-synced navigation attacks.

Step 1.3: Applying Machine Learning

In this sub-step, the model is trained using the training data, and the trained
model is used to identify malicious Twitter UGC seeds from a Twitter UGC
stream. Here, we first constructed a supervised machine learning model (ML
Model #1, in Figure 4.2) using training data comprising the extracted features
and the corresponding ground truth labels. Supervised ML includes various al-
gorithms (e.g., random forest, decision tree, support vector machine, logistic
regression, and naive Bayes). We performed preliminary evaluation and selected
random forest, which exhibited the highest and most stable accuracy on the
training data. Next, we used the constructed training model to predict the bi-
nary classification of malicious Twitter UGC or non-malicious Twitter UGC for
each input UGC obtained from the real-time Twitter UGC stream. The identi-
fied malicious Twitter UGC was used as the malicious Twitter UGC seeds in the
following steps.

4.3.2 Step 2: Collecting Malicious UGC Candidates on Multiple UGC
Platforms

In the second step, the malicious Twitter UGC seeds (obtained in Step 1) are
taken as a starting point, and similar malicious UGC candidates are collected
from multiple UGC platforms (Twitter, Facebook, YouTube, and Reddit). We
targeted these four UGC platforms because they have a large number of users [45]
and are likely to be targeted by attackers. This step involves two sub-steps, i.e.,
generating search queries and collecting malicious UGC candidates.

Step 2.1: Generating Search Queries

This sub-step generates a search query to find malicious UGC candidates that are
similar to malicious Twitter UGC seeds in the four UGC platforms. For example,
consider the malicious Twitter UGC text “Rugby World Cup Japan vs Russia
Free Live Streaming Click This Link [URL].” Here, to search for similar mali-
cious UGC candidates from the UGC platforms, we must generate a set of words
extracted from the malicious Twitter UGC, e.g., “Japan vs Russia” and “Rugby
World Cup” as a search query. This is required because, in our event-synced nav-
igation attack, multiple attackers create multiple malicious UGC independently
for an event on multiple UGC platforms: thus, they are not covered by exact
match searches with the known malicious Twitter UGC. In addition, the search
algorithm differs greatly depending on the UGC platform. For example, some
UGC platforms, e.g., Twitter, display all UGC results that match even if the
query is short, while others, e.g., YouTube, calculate the degree of similarity on
the basis of the search query using their own algorithm and only display results
with high similarity. Thus, we design a search query generation method to collect
malicious UGC candidates efficiently considering each UGC platform’s search al-
gorithm. Here, two methods were employed to generate queries from different
perspectives, i.e., contexrt-based query generation, which generates a query based
on the context of the words, and frequency-based query generation, which gen-
erates a query based on the frequency of occurrence of words. Then, in query
selection, we select the most suitable query to collect malicious UGC candidates
on each UGC platform using the collection results of known malicious UGC on
each UGC platform.

33

Context-based Query Generation. We leverage text summarization tech-
niques in natural language processing to capture contextual features, e.g., “live
streaming” and “free giveaways,” which commonly appear in malicious UGC
text. Text summarization techniques are used to automatically select a set of
words suitable to summarize a given text. Although various text summarization
algorithms have been proposed, we generated a contextual search query using
the EmbedRank algorithm [76], which is a fast algorithm that can detect event-
synced navigation attacks early. EmbedRank automatically extracts a set of
words that represent the characteristics of a sentence from the target sentence
without supervised data. EmbedRank comprises three steps, i.e., key phrase can-
didates are generated according to certain rules, key phrase candidate and the
target sentence are converted to corresponding vectors using the same embed-
ding model, and the cosine similarity between the key phrase candidate and the
target sentence is calculated to rank key phrase candidates. In our case, we first
generate key phrase candidates based on the word-by-word 2-gram (e.g., Live
Streaming), 3-gram (e.g., Japan vs Russia), and 4-gram (e.g., Streaming Click
This Link) from the collected malicious Twitter UGC seeds (Step 1). Then, we
convert the key phrase candidates and original malicious UGC sentences into 700-
dimensional feature vectors using the word embedding model (Step 1.1). Finally,
we compute the cosine similarity between the feature vectors and rank the key
phrase candidates. From the ranking results, we generate search queries that are
greater than a predetermined rank such that we obtain search queries specific to
the malicious UGC sentences.
Frequency-based Query Generation. Keywords like “Rugby World Cup”
and “iPhone release” appear frequently in malicious UGC in relation to the event-
synced navigation attack. We employ the Z-score method [77] to capture the
increase in occurrence frequency of these words as an anomaly. The Z-score is
the number of standard deviations by which the value of a raw score (i.e., an
observed value or data point) is greater or less than the mean value of what
is being observed or measured. The Z-score is defined as an observed value
minus the mean value divided by the standard deviation. This makes it a robust
anomaly detection method as this group of data has a mean of 0 and a standard
deviation of 1, thereby enabling the comparison of values with different units. As
a result, anomalies can be identified with nearly the same accuracy even when
the flow rate of UGC per unit time increases or decreases significantly. Here, we
first generate candidate search queries based on word-by-word 2-gram, 3-gram,
and 4-gram from the malicious Twitter UGC seeds collected in Step 1 as in the
case of the context-based query generation. Then, the Z-score of the search query
candidate was calculated, and if its value exceeds a threshold, it was generated
as a search query.
Query Selection. We select a search query for each UGC platform from the
search queries generated by the two methods described previously. We design a
preferential selection in consideration of the search queries identified as malicious
UGC on each UGC platform in the past. We compute word malicious score on
a word-by-word basis for each UGC platform using the words contained in the
known malicious UGC search queries, and we finally compute query maliciousness
score for the overall query. Here, all scores have a range of 0.0-1.0. If a word does
not exist in a past search query, it is set to a new word with a word maliciousness
score of 1.0.

The word maliciousness and query maliciousness scores are calculated as fol-
lows. First, we calculate word maliciousness score for each UGC platform using
the UGC collected in the past for each word. For example, consider the situation

34

where we determine whether to perform a search with the query “rugby stream-
ing japan” on Twitter. Here, assume we have only “rugby world cup streaming,”
“free live streaming,” and “rugby free live,” for Twitter’s past search queries con-
taining each word (rugby, streaming, and japan) in the search query at that time.
Their past search queries and corresponding results are summarized as follows.
Among the UGC collected by the query “rugby world cup streaming” on Twitter,
20 were malicious UGC and 50 were non-malicious UGC. Among the UGC col-
lected by the query “free live streaming” on Twitter, 100 were malicious UGC and
100 were non-malicious UGC. Among the UGC collected by the query “rugby free
live” on Twitter, 10 were malicious UGC and 100 were non-malicious UGC. There
were no previous search queries and corresponding results containing “japan” on
Twitter. In this case, the query maliciousness score for “rugby SQEreamilglg Japan”

is calculated as follows. First, the word maliciousness score is

1
4 00

20
for “rugby” and 20500000 — (.39 for “streaming” , and 1.0 for “japan” be-

cause it is a new word. Second, we calculate the query maliciousness scores of the
candidate search queries using the average of the calculated word maliciousness
score for each word. Third, the query maliciousness score of the search query
candidate “rugby streaming japan” on Twitter is %W = 0.53. Then, we
calculate the word maliciousness score for each word on Facebook, YouTube, and
Reddit as well as the query maliciousness score for the search query candidates.
Finally, we select search queries up to the threshold value for each UGC platform
in order from the highest to lowest query maliciousness scores of the candidate
queries. For ethical consideration (Section 4.6.2), we limited the number of search
queries to a maximum of 100 on each platform per query selection.

+
20450 ° 104100 __
20£507T05I00. — ()19

Step 2.2: Collecting Malicious UGC Candidates

This sub-step collects malicious UGC candidates from the four UGC platforms
using the generated search query. Here, we collect UGC from the four UGC
platforms as follows. Note that we exclude posts without URLs to external
websites for all services because such posts are beyond the scope of this study.
Twitter. With Twitter, we search for the most recent UGC by combining the
URLs and queries. We then retrieve information from the search results, including
the sentences contained in the UGC, user names, and posting times.
Facebook. On Facebook, we search for three types of UGC, i.e., posts, videos,
and events, by combining the URLs and queries. First, for posts, we obtain the
sentences, user names, and post times from the top 20 results in chronological
order. Then, for videos, we obtain the video title, summary, user name, and time
of posting from the top 20 results in chronological order. Here, the text of the
UGC is the combined string of the video title and summary. Finally, for events,
we obtain the event title, event details, and user names from the top 20 results
in chronological order. Here, the text of the UGC is a string combining the event
title and event details.

YouTube. On YouTube, we search for two types of UGC, i.e., video posting
and video distribution, by combining the URLs and queries. We then obtain the
URLs of the videos from the top 20 results in chronological order. In addition,
we access each URL to obtain the video title, summary, and user name. Here,
the text of the UGC is the combined string of the video title and summary.
Reddit. On Reddit, we search for one type of UGC in a thread by combining
the URLs and queries. Then, we obtain the URLSs of the threads from the top 20
results in chronological order. In addition, we access each URL and obtain the

35

thread title, content, user name for posting, and posting time. Here, the text of
the UGC is the combined string of the thread title and content.

4.3.3 Step 3: Detecting Malicious UGC on Multiple UGC Platforms

The third step takes malicious UGC candidates collected from each UGC platform
as input. Then, supervised ML is employed to identify malicious UGC on the
four UGC platforms as the output. Note that Step 1 only targets malicious
Twitter UGC seeds, whereas Step 3 collects malicious UGC on all four UGC
platforms. This step comprises three sub-steps, i.e., extracting features, labeling,
and applying ML.

Step 3.1: Extracting Features

In this sub-step, features that contribute to identifying malicious UGC on the four
UGC platforms are extracted. We design features from multiple UGC platforms
that can identify malicious UGC quickly and are not dependent on a specific
platform. The UGC features for multiple UGC platforms, i.e., UGC context
features, infrastructure features, and web content features (Table 4.1), can be
classified as malicious or non-malicious UGC using a single training model.
UGC Context Features. We generated distinguishable features for the charac-
teristic text contained in common malicious UGC. As discussed in Section 4.3.1,
we created a 700-dimensional feature corresponding to the text from the text
portions contained in the UGC on each of the input platforms using Sent2Vec
in word embedding. Note that the features have the same number of dimensions
even if the platforms differ.

Infrastructure Features. We created infrastructure features to capture the
infrastructure, e.g., diverting accounts on UGC platforms for attackers to spread
links and eventually reach malicious websites. These features allow us to capture
resources that cannot be captured by textual context alone. Here, we first access
the URLs contained in the input UGC using a web crawler. Then, we obtain
the IP address of the finally reached website. We extract multiple UGC from
the input UGC with the same IP address as the finally reached website. The
UGC is posted by the same user or attacker even though there may be UGC on
different platforms or with different usernames. Then, we create the five features
from the UGC (Table 4.1). The first feature is the number of unique UGC in
the extracted UGC. This feature can capture the characteristics of attacks that
are spread at a specific time that reuse the same hosting server or domain name,
which are spread at a specific time. The second feature is the number of platforms
on which the extracted UGC was posted. We can capture the characteristic of
an attacker who posts to multiple platforms to lead a large number of users to
a malicious website. The third feature is the average number of URLs listed in
each UGC among the extracted UGC. As discussed in Section 4.3.1, here, we can
capture the characteristic that attackers include many URLs in UGC to make
users click on the URLs. The fourth feature is the number of unique URLs in the
extracted multiple UGC. As discussed in Section 4.3.1, the attacker uses different
URLs to evade URL-based blocklists. Therefore, the larger the feature, the more
likely it is to be a more malicious UGC. The fifth feature is the number of unique
users in the extracted multiple UGC. Here, we can capture the characteristic of
an attacker creating multiple accounts for each platform to post malicious UGC
simultaneously.

Web Content Features. We generate web content features to capture the

36

characteristics of malicious websites commonly seen in attacks, and we classify
these features as malicious or non-malicious. Here, we first access the URL in
the malicious UGC candidates using a web crawler. We then obtain the web
content of the final destination website by handling redirections. Then, we create
the three features shown in Table 4.1 based on the obtained information. The
first feature is to generate text-identifiable features to trigger information input
and button clicks on a website. Here, we use a word embedding technique to
generate 700-dimensional features corresponding to the text, excluding HTML
tags, from the obtained web content. To capture the characteristic text, we
employ Sent2Vec [70] in the word embedding (Section 4.3.1) because websites that
trick users by disguising themselves as legitimate websites often contain similar
text [78], and many such websites also contain text that is similar to malicious
UGC. The second feature is the number of the top 30 frequently appearing HTML
tags in malicious websites, which were identified in a preliminary investigation.
The attacker simultaneously creates many similar malicious websites; thus, we can
capture the characteristic that malicious websites have similar HT'ML structures.
The third feature is the number of redirects that occurred prior to reaching
the final destination website. It has been reported that attackers attempt to
evade detection by platform providers using URL shortening services and various
redirection paths [53]. The larger this feature, the UGC is more likely to be
classified as malicious.

Step 3.2: Labeling

Similar to Section 4.3.1, this sub-step assigns ground truth labels to malicious
UGC candidates to be used as training data for the supervised ML. Here, the
ground truth label is binary, i.e., malicious or non-malicious. Note that we can
obtain the ground truth labels semi-automatically without manually labeling ev-
erything. To label malicious UGC on each platform, we essentially labeled them
in the same manner described in Section 4.3.1. In this sub-step, the labeling cov-
ers multiple UGC platforms; thus, each platform has different criteria to remove
malicious UGC. Therefore, we expand the training data, especially malicious
UGC, by taking advantage of the multiple platforms. We obtain the IP address
derived from accessing a URL contained in UGC labeled as malicious UGC on
one of the platforms and then we label UGC that contains a URL with the same
IP address as malicious UGC (even if it is from a different platform). As a re-
sult, we can efficiently label the malicious UGC of the same attacker on diffrent
platforms. To label non-malicious UGC on each platform, we apply the approach
described in Section 4.3.1 to multiple platforms. From the remaining UGC not
labeled as malicious, we label the UGC as non-malicious UGC if the URLs are
not included in the popular websites. The non-malicious UGC is collected by a
search query due to its similarity in context to malicious UGC; however, here, it
is assumed to be non-malicious. For example, the events abused by the attackers
have official websites, related websites, and news websites.

Step 3.3: Applying Machine Learning

In this sub-step, the model is trained using the training data, and the trained
model is used to identify malicious UGC on multiple UGC platforms from the
malicious UGC candidates. Differing from the process described in Section 4.3.1,
here, we construct a model that can handle the UGC of multiple platforms as the
input data for classification. Even if the posted UGC platform differs, we only

37

Table 4.2: Datasets for Evaluation

Steps to use / Collected Time Dataset Name # UGC
Twitter Stream Dataset All Twitter 63,442,349
Step 1 Malicious Twitter 73,146
09/15/2019 — 10/14/2019 Non-malicious Twitter 165,813
Search Result Dataset Malicious Twitter 4,343
Step 2 and Step 3 Non-malicious Twitter 1,386
10/22/2019 - 10/23/2019 Malicious Facebook 2,002
Non-malicious Facebook 485
Malicious YouTube 517
Non-malicious YouTube 369
Malicious Reddit 1,723
Non-malicious Reddit 1,163

require a single trained model because the designed features are fixed-dimensional
with the same criterion that can be used with different UGC platforms. We also
construct a supervised machine learning model (ML Model #2, Figure 4.2) with
random forest (Section 4.3.1). We use the training model to predict the binary
classification (malicious or non-malicious UGC) for each input UGC obtained
from the search results on the four UGC platforms. We then output the identified
malicious UGC on multiple platforms as the final output.

4.4 FEvaluation

We evaluated the performance of each step of the proposed system. Here, we first
describe the dataset used in the evaluation. We then describe the results of each
step of the evaluation.

4.4.1 Datasets

We prepared the UGC Dataset with the ground truth labels required to evaluate
the performance of the proposed system.

Twitter Stream Dataset. We collected 63 million UGC with external URLs
in English from Twitter for the period from 09/15/2019 to 10/14/2019 (30 days),
which we refer to as All Twitter. Then, we evaluated the collected UGC again
on 10/21/2019 using the two criteria described in Section 4.3.1. We found that
73,164 UGC were removed by Twitter and included at least one trending word
from Google Trends or Twitter Trends for the collection period, and we labeled
them Malicious Twitter. We then labeled 165,813 UGC from the remaining UGC
as Non-malicious Twitter in the same manner described in Section 4.3.1.
Search Result Dataset. We split the UGC string of Malicious Twitter in the
Twitter Stream Dataset using line breaks, and we obtained 136,243 different word
combinations. Then, we randomly selected 10,000 search queries from 136,243
different strings to search for similar UGC. Here, we collected UGC from Twit-
ter, Facebook, YouTube, and Reddit covering the period from 10/22/2019 to
10/23/2019 (2 days) using the 10,000 selected queries. As shown in Table 4.2,
we collected 5,729 Twitter UGC, 2,487 YouTube UGC, 886 Facebook UGC, and
2,886 Reddit UGC. We assigned ground truth labels to the collected UGC. First,
we checked on 10/30/2019 to determine whether the collected UGC was removed
on each UGC platform, resulting in 432 Twitter UGC, 214 Facebook UGC, 405
YouTube UGC, and 312 Reddit UGC being labeled as malicious UGC. We manu-
ally clicked on the URLs in the UGC to confirm that the URLSs were related to the
SE attack rather than misinformation, pornography or cyberbullying. Second,

38

Table 4.3: Evaluation

Method TPR TNR Precision
Step 1 of Proposed System (C+T) 0.969 0.989 0.975
Step 1 of Proposed System (C) 0.940 0.955 0.904
Step 1 of Proposed System (T) 0.905 0.931 0.967
Existing System 1 [52] 0.879 0.941 0.874
Existing System 2 [53] 0.712 0.930 0.889
Method Coverage Toxicity
Step 2 of Our System (F4C) 0.823 0.785
Step 2 of Proposed System (F) 0.552 0.771
Step 2 of Proposed System (C) 0.784 0.604
Google Trends 0.312 0.285
Twitter Trends 0.293 0.223
Features Platforms TPR TNR Precision
Step 3 of Proposed System (C+W+I) All Platforms 0.980 0.972 0.983
Step 3 of Proposed System (C+W) Twitter 0.967 0.955 0.966
Facebook 0.955 0.950 0.975

YouTube 0.967 0.962 0.963

Reddit 0.967 0.968 0.964

All Platforms 0.961 0.951 0.971

Step 3 of Proposed System (C) Twitter 0.898 0.882 0.929
Facebook 0.900 0.822 0.923

YouTube 0.773 0.830 0.881

Reddit 0.884 0.889 0.903

All Platforms 0.809 0.792 0.920

C: UGC Context Features, T: UGC Timing Features, I: Infrastructure Features
F: Frequency Based Query Generation, C: Context Based Query Generation

from the remaining collected UGC, we labeled the UGC as malicious if the IP
address of the destination site matched any of the labeled malicious UGC. Third,
from the remaining collected UGC, we labeled UGC whose website’s screenshot
was visually similar to that of any of the labeled malicious UGC as malicious
UGC. Finally, we labeled the UGC as non-malicious UGC. As shown in Ta-
ble 4.2, we prepared a dataset with a minimum of 369 and maximum of 4,343
labeled malicious and non-malicious UGC for the four UGC platforms.

4.4.2 Detection Accuracy of Malicious UGC on Twitter

We compared the accuracy of Step 1 of the proposed system and two existing
systems [53, 52] in terms of the binary classification of UGC on Twitter (mali-
cious and non-malicious). We prepared two versions of Step 1, i.e., one version
only used the UGC context features, and the other versions used both the UGC
context features and UGC timing features (Section 4.3.1). Note that the existing
systems [52, 53] are not open source; thus we reimplemented these systems in
reference to the literature. We used Malicious Twitter and Non-malicious Twit-
ter from the Twitter Stream Dataset to perform 10-fold cross-validation. Here,
we considered three evaluations metrics, i.e., the true positive rate (TPR), true
negative rate (TNR), and precision. The TPR is the ratio of correctly detected
malicious UGC among all malicious UGC. TNR is the ratio of correctly detected
non-malicious UGC among all non-malicious UGC. Precision is defined as the
ratio of those detected as malicious UGC that actually is malicious UGC. Ta-
ble 4.3 shows the results. The proposed system achieved a TPR value of 0.969,
a TNR value of 0.985, and a precision value of 0.975, which are all higher than
both existing systems using either feature set. These results demonstrate that
our feature sets were more effective in terms of detecting malicious UGC than
existing systems and features using one of feature sets (UGC context features
and UGC timing features).

39

4.4.3 Collection Performance of Malicious UGC Candidates

We compared how efficiently each method collected malicious UGC on each plat-
form with Step 2 of the proposed system and a baseline system that uses trending
words on the web. Here, we prepared three versions of Step 2 of the proposed
systems. The first version used context-based query gemeration, the second ver-
sion used frequency-based query generation, and the third version used a com-
bination of the two methods. For all three versions, we selected 1,000 queries
generated using the Search Results Dataset, each in order of score. We also
prepared two systems as baselines for using trending words on the web based
on Google Trends, Twitter Trends, respectively. The Google Trends [73] base-
line was obtained daily from the top 10 keywords trending in the United States
from 09/15/2019 to 10/14/2019, and 1,000 keywords were selected randomly.
The Twitter Trends [74] baseline was also obtained daily from the top 10 key-
words trending in the United States from 09/15/2019 to 10/14/2019, and 1,000
keywords were selected randomly. We prepared two criteria, i.e.,coverage and
toxicity to evaluate the collection efficiency of malicious UGC for search queries
generated by each system. Coverage is defined as the number of prespecified
malicious UGC among the collected UGC divided by the number of prespecified
malicious UGC, and toxicity is the number of prespecified malicious UGC divided
by the number of collected UGC. Here, greater values for these criteria indicate
more efficient collection of malicious UGC. In this evaluation, the malicious UGC
for each platform in the Search Result Dataset was considered to be prespecified
malicious UGC. The criterion for prespecified malicious UGC is that all words in
the search query are included in the text of the UGC. We defined coverage and
toxicity this way because TPR, TNR and precision are not applicable in this case.
Coverage and toxicity are suitable criteria because they allow us to calculate how
leakproof the systems are and how much of an entire set of search queries is truly
malicious, respectively. Table 4.3 shows the results. As can be seen, the proposed
system achieved a coverage value of 0.823 and a toxicity value of 0.785, which
indicates the best efficiency among the compared systems.

4.4.4 Detection Accuracy of Malicious UGC on Multiple UGC Plat-
forms

We evaluated the accuracy of malicious UGC detection using the Search Result
Dataset. Sections 4.4.2 and 4.4.3 compared parts of the proposed system and
their baselines; however, here, we did not have a baseline to compare because, to
the best of our knowledge, this is the first study to develop a system to detect ma-
licious UGC of multiple UGC platforms in event-synced navigation attacks, which
is the output of the proposed system. In this section, we evaluate the proposed
system from two perspectives using the prelabeled Search Result Dataset. First,
we prepared three versions of the three feature sets discussed in Section 4.3.3.
The first version used only UGC context features, the second version used web
content features and context features, and the third version used all feature sets,
including the infrastructure features. Then, we prepared two versions of training
data. One version used only the UGC of each individual platform, and the other
version used all UGC of the four platforms. We combined them and compared
them in terms of features and training data for all systems. Here, we use the
Search Result Dataset to perform 10-fold cross-validation in addition to TPR,
TNR, and precision. Table 4.3 shows the results. As can be seen, the proposed
system achieved the best accuracy of 0.980 TPR, 0.972 TNR, and 0.983 precision

40

Table 4.4: Results of Detected Malicious UGC

Nov. 2019 Feb. 2020 Total
Collected UGC on Twitter 55,144,729 52,312,433 107,457,162
Malicious Twitter UGC Seeds 73,218 85,895 159,133
Context Based Search Queries 88,234 95,432 171,545
Frequency Based Search Queries 92,321 99,623 182,467
Selected Search Queries 52,867 59,431 105,423
Malicious Twitter UGC 7,715 8,816 16,531
Malicious Facebook UGC 5,840 6,710 12,550
Malicious YouTube UGC 2,152 2,344 4,496
Malicious Reddit UGC 3,124 2,945 6,069
Unique Landing URLs 8,123 7,948 15,855
Unique Malicious URLs 6,688 6,164 11,844
Unique Malicious FQDNs 850 746 1,439

for both feature sets and the training data. We found that the infrastructure fea-
tures improved the detection accuracy when the same attacker spreads attacks
from multiple UGC platforms because these features can capture the character-
istics of simultaneous postings of attacks. In addition, using the entire platform
as training data, if the collected UGC was dissimilar to the malicious UGC in
the training data for the given UGC platform but was similar to the malicious
UGC in the training data of another platform, it could be classified as malicious

UGC.

4.5 Measurement

We performed a measurement study to explore malicious UGC on four UGC plat-
forms in the wild using the proposed system. Here, we continuously detected and
collected malicious UGC with the proposed system for a total of 40 days during
two different time periods (11/01/2019 to 11/20/2019 (20 days) and 02/08/2020
to 02/27/2020 (20 days)). The results are summarized in Table 4.4. We collected
107,457,162 UGC written in English and with external URLs from Twitter for
40 days. Then, Step 1 of the proposed system detected 159,133 malicious Twit-
ter UGC seeds. In addition, Step 2 of the proposed system generated 105,423
search queries and retrieved UGC from each UGC platform. Step 3 of the pro-
posed system successfully detected 16,531 malicious UGC on Twitter, 12,550 on
Facebook, 4,496 on YouTube, and 6,069 on Reddit. These malicious UGC had
15,855 unique external URLs, and the final website had 11,844 unique URLs and
1,439 unique FQDNs. We found that 157 FQDNs of malicious websites were
common for November 2019 and February 2020, and 139 (88.5%) of them showed
no change in IP addresses linked to the FQDN even after three months. We
also found that the proposed system detected malicious UGC within two hours
after it was posted and before UGC platform providers took measures against
the malicious UGC.

4.5.1 Analysis of Platforms

Abused Platforms. We aggregated malicious UGC whose final FQDNs were
the same, and the number of FQDNs per UGC platform in Table 4.5. The number
of FQDNs that originated from each UGC platform was 446 on Twitter, 531 on
Facebook, 476 on YouTube, and 522 on Reddit. The number of FQDNs that
originated from a single UGC platform was 210 on Twitter, 236 on Facebook,
164 on YouTube, and 338 on Reddit. In addition, the number of FQDNs that

41

Table 4.5: Number of FQDNs Distributed Each Platform

Sets Description # of FQDNs
TUFUYUR Al 1,439 (100%)
T Originated from T 446 (31.0%)
F Originated from F 531 (36.9%)
Y Originated from Y 476 (33.1%)
R Originated from R 522 (36.3%)
T—-—F—-Y —-R Included only in T 210 (14.6%)
F—-T-Y —-R Included only in F 236 (16.4%)
Y —-T—-F —R Included only in Y 164 (11.4%)
R—T—-F —Y Included only in R 338 (23.5%)
TNF Shared on two platforms 60 (4.17%)
TNY Shared on two platforms 2 (5.70%)
TNR Shared on two platforms 1 (3.54%)
FNy Shared on two platforms 154 (10.7%)
FNR Shared on two platforms 51 (3.54%)
YNR Shared on two platforms 45 (3.13%)
TNEFNY Shared on three platforms 11 (0.76%)
TNFNR Shared on three platforms 2 (0.14%)
TNYNR Shared on three platforms 3 (0.21%)
FNYNR Shared on three platforms 5 (0.35%)
TNFNYNR Shared on four platforms 12 (0.83%)

T: # of FQDNs on Malicious Twitter UGC, F: # of FQDNs on Malicious Facebook UGC,
Y: # of FQDNs on Malicious YouTube UGC, R: # of FQDNs on Malicious Reddit UGC

originated from two UGC platforms was 60 on Twitter and Facebook, 82 on
Twitter and YouTube, 51 on Twitter and Reddit, 154 on Facebook and YouTube,
51 on Facebook and Reddit, and 45 on YouTube and Reddit. The number of
FQDNs that originated from three UGC platforms was 11 on Twitter, Facebook,
and YouTube; two on Twitter, Facebook, and Reddit; three on Twitter, YouTube,
and Reddit, and five on Facebook, YouTube, and Reddit. The number of FQDNs
that originated from all four UGC platforms was 12. Note that 491 (34.1%) of
the 1,439 FQDNSs of the malicious websites we found were spread from at least
two UGC platforms, which agrees with our expectations. In addition, by focusing
on each UGC platform, we found that the number of FQDNs originating from
multiple UGC platforms was 236 (52.9%) of 446 on Twitter, 295 (55.6%) of 531
on Facebook, 312 (65.5%) of 476 on YouTube, and 184 (35.2%) of 476 on Reddit.
While 65.6% of the attacks on YouTube were also found on other UGC platforms,
only 35.2% of the attacks on Reddit were found on other UGC platforms. Among
the four UGC platforms, YouTube was most commonly found to allow the same
attacker to spread attacks on multiple platforms, and Reddit was the least used
UGC platform for attacks on multiple platforms. Reddit has fewer users than the
other UGC platforms [45], and it is assumed that attackers do not often target
Reddit when selecting multiple UGC platforms to spread attacks. In addition,
the UGC platform combination with the highest co-occurrence of the same FQDN
was Facebook and YouTube with 154 (10.7%) FQDNs. In terms of the number
of users, Facebook and YouTube are the world’s largest and second largest UGC
platforms, respectively; thus, we assume they are likely to be targeted by attackers
when selecting multiple UGC platforms to spread attacks. We found a few attacks
that originated from three and four UGC platforms, most attacks originated from
only one or two UGC platforms and were spread at specific times.

Deleted by Platform Providers. We also investigated whether malicious UGC
detected by the proposed system was removed by the UGC platform providers
after a certain period. Here, we analyzed how differently each UGC platform

42

Table 4.6: Number of Malicious UGC Deleted by Providers

Platform One week later One month later Three months later

Twitter 2,992 (18.1%) 9,241 (55.9%) 10,298 (62.3%)
Facebook 1,144 (9.12%) 5,032 (40.1%) 5,271 (42.0%)
YouTube 4,104 (91.3%) 4,185 (93.1%) 4,298 (95.6%)
Reddit 4,035 (66.5%) 4,855 (80.0%) 4,928 (81.2%)

responds to malicious UGC and how this changes over time. Here, the criterion
used to determine if UGC was removed was if its URL was replaced with a page
that contains a freeze or deletion string after a certain period. Note that such
pages are not displayed if they are deleted by the authors themselves; thus, we
can distinguish between deletion by the UGC platform and deletion by attacker.
In addition, malicious UGC does not appear in the search results after it is re-
moved by a UGC platform; thus, its existence in the search results of the proposed
system means that it was correctly detected earlier than it would have been by
the UGC platform. Table 4.6 shows the percentage of UGC removed from each
UGC platform one week, one month, and three months after being posted. For
example, after three months, the UGC platform providers had removed 62.3%
(Twitter), 42.0% (Facebook), 95.6% (YouTube), and 81.2% (Reddit) of the mali-
cious UGC detected by the proposed system. From the results, we found that the
percentage of malicious UGC removed differed greatly among UGC platforms. In
particular, we found that one week after the malicious UGC was posted, 91.3%
were removed on YouTube, while only 9.12% were removed on Facebook, which
indicates a significant difference in the platforms’ responses. One reason for this
difference among UGC platforms is the difference in characteristics between ma-
licious and non-malicious UGC posted to each UGC platform. For example, on
YouTube, content is generated mainly from videos; however, malicious UGC has
distinctive characteristics, e.g., low playback time (i.e., the videos are meaning-
less), a large amount of text in the description, and URLs to external websites.
Therefore, we consider that malicious UGC can be detected more efficiently on
YouTube compared to other UGC platforms because malicious UGC on YouTube
has more indicators that can be assessed as malicious. In addition, focusing on
the transitional period, we found that the number of deletions increased from
18.1% to 55.9% on Twitter and 9.12% to 40.1% on Facebook, although most
malicious UGC was not deleted within one week of being posted. However, we
can confirm that the percentage of deletions one month and three months after
being posted did not change significantly on any UGC platform compared to
the percentage of deletions one week after being posted. This means that UGC
that had passed through the detection logic of each UGC platform was no longer
supported, and the UGC platform provider may check again when the same at-
tacker account remains active and newly generated content is detected. Thus,
we conclude that no UGC platforms respond sufficiently to threats related to the
event-synced navigation attack (Section 4.2.2), considering there is a high prob-
ability that a user will reach a malicious website if the threats are not responded
to during the period of a given event or within a few hours.

4.5.2 Analysis of Detected FQDNs

Lifetime. We analyze the lifetime of FQDNs found in this experiment. Here,
we used the passive DNS database [79] to investigate how long the combination
of FQDNs and IP addresses obtained during the crawl by the proposed system

43

1.0 100 days
0sgl 7 365 days
L 0.6
a
O
0.44
0.2
0.0 10! 102 103
Lifetime (log scale)
Figure 4.3: Lifetime of Detected FQDNs
Table 4.7: FQDN Accesses
Platform # FQDNs Mean Median Max Total
Single 948 1,040 212 52,356 985,598
Multiple 491 4,184 654 453,282 2,054,232

survived. The passive DNS database [79] allows us to obtain the period of time
and number of name resolutions of each FQDN. Note that this investigation was
limited to the combination of FQDNs and IP addresses obtained from crawling
and did not consider other IP addresses to which the FQDNs were linked in the
past. Therefore, we define the survival period as the period during which the
FQDN was linked to a single IP address. Figure 4.3 shows the results of the
survival analysis where the x-axis is the log-scale lifetime (in days), and the y-
axis is the value of the cumulative distribution function of FQDNs. The yellow
line shows that 1,264 (87.8%) of the FQDNs survived for more than 100 days,
and the red line shows that 133 (10.8%) of the FQDNs survived for more than
365 days. These results demonstrate that FQDNs associated with a single IP
address survived for a long time and were not being taken-down.

Accesses. We analyzed the impact of FQDNs on users we found in our measure-
ment. Here, we used the passive DNS database in the same manner. The number
of user accesses was defined as the number of name resolutions for a combination
of FQDNs and IP addresses obtained by crawling the UGC at the time it was
posted. As shown in Table 4.7, in FQDNs derived from multiple platforms, the
mean accesses was 4,184, the median was 654, the maximum was 453,282, and
the total was 2,054,232. We found that FQDNs derived from multiple platforms
had more than four times as many accesses as those derived from a single plat-
form. Note that these accesses are based on the passive DNS database; thus, it is
assumed that the actual number of accesses is much higher because passive DNS
is the number of accesses for some access routes.

4.5.3 Analysis of Detected Website Categories

We investigated how the malicious websites that we detected behaved in relation
to users. First, we used VirusTotal [80] to check if malicious websites’ URLs
were positive for any type of malware in any of the scanning engines and found
only 9.2% (1,090 URLs) to be positive. The SE attack does not show clear
malicious behavior; thus, automatically detecting them early with high accuracy
is difficult. Then, we randomly sampled 1,439 URLs, one from each of the FQDNs

44

0202/82/20
0202/L2/Z0
0202/92/20
020¢/s2/zo
020z/ve/zo
0z0z/€2/20
0z0¢/zz/zo
0202/12/20
020z/02/20
0202/61/20
0202/81/20
0202/L1/20

Bl Twitter
m Facebook
B YouTube
B Reddit

Case#2

0202/91/20
020¢/S1/20
020¢/v1/20
020zZ/€T/20
020¢/Zt/zo
0202/11/20
0202/01/20
0202/60/20
0202/80/20
610¢/T2/T1T
6102/02/T1T
610Z/6T/T1T

6T0Z/8T/TT
el 6T0Z/LT/TT

Case#4 Case#2

Case#3

6T102/9T/T1
6T102/ST/TT
6T0C/VT/TT
6T0C/ET/TT
6102/2T/T1
6T0C/TT/TT
6T0C/0T/TT
6102/60/TT
6102/80/T1
6102/L0/TT
6102/90/1T
6102/S0/TT

Case#2

6102/¥0/TT

==y 5107011
6102/20/11

6T0C/T0/TT

Case#1
lCase#Z

3500
3000
2500

o o
o o
o n
o~ —
p

& 1000
0O 500

J9N shobIeW Pa3da31Rq #

Figure 4.4: Transition in the Number of Detected Malicious UGC Every 6 Hours

we detected in this study and checked how a malicious website behaves toward
users by manually reviewing screenshots and clicking on buttons in the malicious
website. As a result, it was found that the sites could be classified into seven
different categories. Note that there are cases where a single FQDN has multiple
malicious behaviors. For example, there were malicious websites that request
users to enter both residential address and credit card information on a single

45

web page.

Steal credit card information. We found 411 (28.6%) FQDNs that asked
users to enter credit card information. Many sites attempted to steal informa-
tion by saying that they do not charge a fee but are required to verify personal
information.

Steal street address information. We found 53 (3.68%) FQDNs that asked
users to enter residential address information. Attackers entice users with dis-
counted goods to convince them to enter personal information on fake shopping
sites.

Steal email address and password. We found 525 (36.5%) FQDNs requested
users to enter a combination of an email address and password. If the user enters
a combination that they use frequently, the attacker will succeed in stealing user
credentials. In this study, the most common pattern was to deceive people into
entering this information by imitating a legitimate video streaming website.
Install browser extensions. We found 98 (6.81%) FQDNs prompting users
to install a Google Chrome extension plugin. There are reports that a large
number of extended plug-ins threaten the security and privacy of users [81]. Since
malicious FQDNs can be detected by VirusTotal, it is highly likely that the
extension plugin contains embedded code that steals information.

Complete surveys. We found 102 (7.09%) FQDNs that are more likely to be
related to survey scams. There are reports [48] of malicious websites that trick
users with the phrase “answer a number of questions posted and get an iPhone.”
We confirmed that none of the FQDNs contain any well-known survey sites (e.g.,
Google Forms [82] and Survey Monkey [83]).

Allow web notifications. We found 84 (5.84%) FQDNs that requested web
notification permission. It has been reported that if users allow such notifications,
they will receive numerous malicious advertisements [84]. As the detected FQDNs
do not include popular websites (i.e., Alexa Top 10,000 sites), it is possible that
suspicious push notifications will be delivered to users who have authorized web
notification if user continues to observe push notifications for a long period of
time.

No obvious malicious behaviors. We found 198 (13.8%) FQDNs that did
not show any malicious behavior. Many sites were adult sites, and the attacker’s
objective is to increase traffic and generate advertising revenue. In addition, it
is possible that the attacker has removed the malicious behavior or that a valid
referrer or user-agent is needed to trigger the attack.

4.5.4 Case Study: Abused Events

We investigated what real-world events are used in the context of inducement
and to what extent the attacks are spread on each platform. Figure 4.4 shows
the number of malicious UGC detected by our proposed system. The x-axis is
the date and time at 6-hour intervals, and the y-axis is the number of malicious
UGC detected on each platform in 6 hours. We can confirm that when a lot
of malicious UGC is detected on one UGC platform, a lot of malicious UGC is
also detected on other UGC platforms. The amount of malicious UGC increases
when attacks by the same attacker, attacks with the same target, and attacks
that reach the same malicious websites are spread from multiple UGC platforms.
We now focus our analysis on four real-life events (Case#1, Case#2, Case#3,
and Case#4). Note, each case has a different period or periods.

Case#1 (11/02/2019 12:00 — 11/02/2019 24:00) involved the 2019 Rugby
World Cup Final between England and South Africa. The number of malicious

46

UGC detections increased significantly on all UGC platforms, and more than
3,000 malicious UGC were detected on all UGC platforms within 6 hours. We
investigated malicious UGC containing the strings “rugby,” “world cup,” “Eng-
land,” or “South Africa” and found 1,014 on Twitter, 928 on Facebook, 495 on
YouTube, and 412 on Reddit. We found malicious websites created specifically
for the Rugby World Cup. These websites had FQDNs such as watchrugby-
worldcup/.Jcom and rugbyworldcuplive2019/.Jcom. In addition, we found cases of
malicious websites that mimic general sports websites, such as sporti.sportplay-
live[.Jclub and espn.officialpage/.Jus These websites used different destinations
in the same FQDN depending on the context, such as rugby-worldcup[.]php?
live=england+uvs+south+africa in the path section.

Case#2 (11/03/2019 00:00 - 11/03/2019 24:00, 11/10/2019 00:00 - 11/10/2019
24:00, 02/14/2020 18:00 — 02/17/2020 06:00, 02/23/2020 00:00 — 02/23/2020
18:00) considered the period when soccer matches in the English Premier League
were being held. We found that the number malicious UGC detected increased
periodically on all UGC platforms, although the amount of malicious UGC de-
tected is not as high as in Case#1. We investigated malicious UGC containing
the strings “premier” and/or “league” and found 1,854 on Twitter, 1,725 on
Facebook, 412 on YouTube, and 988 on Reddit. Among the detected UGC, we
observed 88 FQDNs of malicious websites in general sports-related contexts such
as sportl.sportplay-live/.Jclub and sportivi-play/.[club in both Nov. 2019 and Feb.
2020. In other words, the same FQDN is used and continues to be spread as an
actual attack without countermeasures.

Case#3 (11/16/2019 18:00 — 11/17/2019 18:00) involved periods when NCAA
Football and High School Football games in the United States occurred at the
same time. We investigated malicious UGC containing the strings “ncaa,” “high
school,” or “league,” and found 982 on Twitter, 789 on Facebook, 55 on YouTube,
and 289 on Reddit. There were 83 FQDNs with “ncaa” in the UGC text and
77 FQDNs with “high school” in UGC text, with 53 FQDNs in common. These
results reveal that the same attacker disseminates attacks in similar contexts for
similar events. In this context, the spread on YouTube is relatively low, and it
is inferred that the UGC platform on which attacks are spread varies depending
on the attacker or the characteristics of the context.

Case#4 (02/09/2020 18:00 — 02/10/2020 18:00) focused on the Academy
Awards, also known as The Oscars. We investigated malicious UGC contain-
ing the strings “academy,” “awards,” or “oscars” and found 1,432 on Twitter,
1,123 on Facebook, 205 on YouTube, and 242 on Reddit. These results indicate
that the attackers will use any event that is likely to attract a large number of
people.

4.5.5 Case Study: Directory Listings

We found 49 FQDNs for which directory listings could be viewed by anyone due
to a misconfiguration on the attacker’s server side. UGC represents a part of the
entire attack; however, to clarify the actual situation and consider countermea-
sures the scale of the attack must be understood from the infrastructure side.
Therefore, we regularly monitored the information in the directory listings to in-
vestigate the attack ecosystem. The monitoring procedure is as follows. First, we
accessed “http://[detected FQDN]/”. Next, we determined if the string “Index
of /7 is in the HTML title tag (i.e., <title>). Finally, when directory listings
were available, we monitored changes in web structure by retrieving web content
every hour. Here, we consider the website to have been updated if a new date

47

and time for the last modification have been added. When the website has been
updated, the interval between the newly added date and the previous date is
defined as the update interval.

As a result of monitoring changes for the 49 FQDNs, we observed a total
of 1,361 website updates from the time each FQDN was initially found until
it could no longer be found. First, we investigated the update interval. The
minimum value of the update interval was one minute, the maximum value was
1,439 minutes, the mean was 388.1 minutes, the median was 170.0 minutes, and
the standard deviation was 441.0. Specifically, the attacker updated 467 times
within 60 minutes, and the maximum update interval was 1,439 minutes. In
other words, we found that the attacker frequently updated the content of the
malicious website within a few hours of the original posting and updated it at
least once a day. We assume that malicious website are updated frequently to
change the content in accordance with the context in order to lead users to the
malicious website, and the attack is carried out with the content in accordance
with the target of the attack.

Next, we monitored the web structure every hour and investigated the number
of directories shown in each FQDN’s website. The minimum value of the number
of directories for each FQDN was one, the maximum value was 89, the mean was
17.14, the median was 11, and the standard deviation was 20.0. Considering the
fact that one path is one induction context, we found that one FQDN was able
to induce users with up to 89 different contexts of malicious websites. Specif-
ically, we found that 89 different directory sections existed for the two FQDNs
among the 49 FQDNs available for directory listing. However, the observation
periods differed between Nov. 2019 and Feb. 2020, and the same FQDN led users
to malicious websites in various contexts. Furthermore, since the average num-
ber of directory parts is 17.14 per FQDN, it is evident that the attacker reuses
their server resources to lead users to malicious websites in various contexts. In
other words, we conclude that early detection of these websites is effective for
eradicating attacks.

4.6 Discussion

In this section, we outline limitations of our method and experiment, ethical
considerations related to our experimental setting, and possible countermeasures
for stakeholders against event-synced navigation attacks.

4.6.1 Limitations

Detection evasion. The key idea of the proposed system is to focus on attacker
activity: to direct users to malicious websites, an attacker produces UGC related
to a specific context and synchronizes the distribution of malicious UGC with an
actual event. However, if an attacker generates UGC in a context where it has not
appeared in previous attacks or distributes UGC at a time other than the time
of the actual event, the proposed system will overlook the attack. However, if an
attacker uses such strategies to evade detection, the chances of malicious UGC
attracting user attention will be reduced and the attack will be less efficient. In
addition, attackers can employ techniques to evade our website crawling process:
i.e., IP cloaking and user interaction. Because the proposed system is assigned
a single specific IP address for crawling external websites linked by UGC, mali-
cious websites owned by the same attacker can cloak themselves against an IP
address that accesses several of them. Our system for website crawling manipu-

48

lates HTTP protocol-level redirects (e.g., HTTP 301 status code), HTML-level
redirection (e.g., iframe and meta tags), and JavaScript-level redirection auto-
matically; however, a user-interaction-based website transition (e.g., clicking a
button or link) is beyond the scope of our crawling. Although the proposed sys-
tem has the aforementioned limitations, our measurement procedure enables us
to estimate a lower bound for the number of event-synced navigation attacks.
Changes over time. We generated a training model on the basis of malicious
UGC features and corresponding malicious websites collected as of October 2019.
Our measurement study demonstrates that the proposed system can detect a large
number of malicious UGC for at least several months (i.e., the end of February
2020). However, if the strategy of event-synced navigation attacks changes in
the future (e.g., changing trends in writing style used for navigation or using
images), the training model will need to be retrained. We leave the evaluation of
the robustness of training and retraining the model as future work.

4.6.2 Ethical Considerations

We were aware that there were ethical considerations related to collecting a large
amount of UGC from various UGC platforms. We searched for and collected UGC
as an end user of UGC platforms because there is no alternative way to do so. To
respect the acceptable use policies of UGC platforms and reduce potential harm
to such platforms, we followed the best practices of related studies to conduct our
experiment. We believe our experiment never affected the availability of platforms
(i.e., production services) because our system throttled the requests to each UGC
platform (100 requests per hour at most). To send requests in a relevant manner,
we utilized the UGC platforms’ public application programming interfaces or
commonly used open-source tools for accessing UGC platforms. Among the four
UGC platforms we investigated, only Facebook requires an account to access
UGC. Thus, we used our own legitimately registered accounts for Facebook.

4.6.3 Countermeasures

UGC Platform Providers. Although UGC platform providers are making
efforts to detect and eliminate malicious UGC, we have shown that they fail
to detect a lot of it. The features leveraged by the proposed method can help
UGC platform providers detect malicious UGC. We found that numerous attacks
originate from multiple UGC platforms and lead to the same malicious website.
To counter such attacks, if UGC platform providers share the incomplete mali-
cious UGC lists that each platform has individually, they may be able to expand
detection coverage and improve the security of each other’s platforms.

End Users. End users on UGC platforms can take measures to protect them-
selves. First, users should consider the risks involved in clicking on URLs in
UGC. Users can reduce the chances of being victimized by simply checking that
the account posting the UGC is official before clicking. Not all links are malicious;
the option to connect to an external website, e.g., video feeds related to sports
events, are often presented by official accounts. Second, users should proactively
report suspicious content they come across to the point of contact provided by
each UGC platform. In fact, many attacker accounts have been deleted on user
notifications [85].

49

4.7 Related Work

In this section, we summarize previous studies related to UGC, attack scenarios,
and efficient malicious URL detection.

User-generated Content (UGC). A significant number of studies have ana-
lyzed malicious UGC from various perspectives [52, 53, 54, 55, 56, 57, 58, 59, 60,
61, 62, 63, 64, 65, 66]. For example, Gao et al. analyzed Facebook for malicious
UGC and reported that 70% of the posts that include a URL led to phishing web-
sites and 97% of the accounts that posted them were compromised [59]. Gao et al.
also proposed a system that enables real-time detection of malicious UGC using
features common to Twitter and Facebook [52]. Lee et al. proposed a method,
specifically for Twitter, to detect malicious UGC and pointed out that, unless
they are accessed with a real browser, many URLs in malicious UGC redirect
to legitimate websites rather than malicious websites [53]. However, all previous
studies were based on the analysis and detection in individual UGC platforms;
the relationship between UGC on multiple UGC platforms has not been analyzed.
Attack Scenario. Attackers lead users to malicious websites in various contexts.
Kharraz et al. developed a classifier to accurately distinguish between legitimate
surveys and survey scams that lead users to malicious websites under the guise of
receiving a benefit from answering a questionnaire [48]. They reported that 40%
of the pages that led to malicious survey scams were in the top 30,000 Alexa sites.
Rafique et al. created a classifier that accurately identified free live streaming
services, which are commonly used to spread deceptive advertisements [78]. They
observed attacks that led to malicious browser extensions or fraudulent sites and
reported that those websites were hosted in Europe and Belize. Miramirkhani
et al. conducted a large-scale analysis of technical support scams that defraud
users of exorbitant amounts of money by imitating a malware infection on their
computers. They actually contacted 60 fraudulent technical support groups and
were able to identify the tools and scenarios that were used in the attacks [49].
However, neither the attacks induced in relation to real events nor the malicious
websites related to specific events were analyzed.

Efficient Malicious URL Detection. Invernizzi et al. showed that malicious
pages related to drive-by download attacks can be efficiently collected by gener-
ating search queries from known malicious pages [68]. Thomas et al. designed
a feature selection method to detect email and Twitter-derived spam with high
accuracy [86]. They found that the characteristics of these spams differ signifi-
cantly, and that using the opposite characteristics, for example, detecting email
spam using the characteristics of Twitter spam detection, does not improve the
accuracy. These studies primarily focus on search engines and compare email and
UGC. To the best of our knowledge, no studies have analyzed attacks on multiple
UGC platforms using the search function of UGC platforms.

4.8 Conclusion

In this paper, we defined a threat model in which an attacker leads users to a
malicious website from multiple UGC platforms using real-life events to which
people pay attention at specific times (i.e., event-synced navigation attacks). We
proposed an innovative three-step system to collect and analyze event-synced
navigation attacks from UGC platforms in real time. We evaluated the collec-
tion efficiency and detection accuracy of malicious UGC in the three steps of the
proposed system and confirmed that the system can classify malicious and non-
malicious UGC with 97% accuracy [67]. In addition, we investigated event-synced

50

navigation attacks using the proposed system and found that 39,646 malicious
UGC were spread over a period of 40 days in the wild. We found that 34.1%
of the malicious UGC were spread from multiple UGC platforms and that at-
tacks originating from multiple platforms were accessed more than four times
as frequently as attacks originating from a single platform. We also found that
87.8% of FQDN associated with malicious websites survive for more than 100
days and that countermeasures taken by the UGC platform only covered 31.0%
of the malicious UGC we detected in this study even though the malicious web-
sites were accessed frequently. In this study, we conducted experiments under
specific conditions (a single IP address), thus our system may not be able to
reach the malicious website due to cloaking when the user is not the target of the
attack. In addition, we cannot guarantee the detection accuracy of the proposed
system against new attacks that will appear in the future because we conducted
experiments on data from a specific period of time. We selected four UGC plat-
forms with many users and conducted experiments on them. The features of the
proposed system are agnostic to UGC platforms and can be applied to new ones
that may appear in the future. We hope that the results of these investigations
will be useful for future research and the development of countermeasures to
event-synced navigation attacks.

o1

Chapter 5

Understanding Characteristics of Phishing
Reports from Experts and Non-experts on
Twitter

5.1 Introduction

A phishing attack involves an attempt by an attacker to deceive a user into
believing that a harmful website is authentic, with the aim of acquiring valuable
information like account credentials or credit card details. Recently, phishing
attacks have increased globally [87, 88, 89, 90], especially attacks targeting mobile
devices, with a 3.28-fold increase from 2020 Q2 to 2020 Q3 [89]. In addition
to the traditional phishing attacks via e-mail and short message service (SMS)
have been especially on the rise [91]. Smishing, a portmanteau of “SMS” and
“phishing,” refers to phishing attacks that specifically exploit smartphone SMSs
to deceive users into providing sensitive information or clicking on malicious links.
Attackers are exploiting SMS features for phishing: it can be sent with a phone
number, with a much smaller namespace than an email address; it can be reliably
pushed to cell phone subscribers when they are in range; and SMS is used for
legitimate notifications and two-factor authentication, making it impossible to
ignore completely.

The first step in timely combatting this ever-increasing number of phishing
attacks is to collect a wider range of phishing cases that reach end users and
continue understanding their characteristics. In fact, to that end, numerous
studies have been conducted to measure and analyze phishing attacks [92, 93,
94, 95]. The facts about phishing and the weaknesses of the countermeasures
revealed by these studies at that time have helped improve the coverage of spam
filters in email services (e.g., Gmail and Outlook), web browser blocklists (e.g.,
Google Safe Browsing [96] and Microsoft Defender SmartScreen [97], threat feeds
(e.g., PhishTank [98] and OpenPhish [99]), and security analysis engines (e.g.,
VirusTotal [80] and urlscan.io [100]).

However, existing countermeasures are still insufficient when phishing mes-
sages reach end users and users encounter phishing sites. This raises the following
question for us. How can we collect phishing that reaches users bypassing existing
countermeasures?

In this study, we propose an approach that uses Twitter as a new observa-
tion point to immediately collect actual phishing situations encountered by users
that have bypassed existing countermeasures and to understand the characteris-
tics of such phishing. Some previous studies have also used Twitter as a source
to extract mon-phishing cyberattack information (e.g., vulnerability information
and malware behavior information) [101, 102, 103, 104] and limited phishing cy-

52

berattack information (e.g., search by fixed keywords or monitor only specific
users) [105, 103, 106]. Specifically, these previous studies used Twitter posts
of the cyberattack information by security experts, which allowed them to iden-
tify vulnerability information and indicator of compromises (IOCs) before they
were published on databases that share vulnerability information (e.g., Common
Vulnerabilities and Exposures numbers) and threat information (e.g., malicious
URLSs) such as the National Vulnerability Database [107] and VirusTotal [80].
While at first glance these studies appear to be close to what our study aims
to do, they differ significantly in that our goal is to extract and analyze phish-
ing-related information even from the actual situations that reach non-experts.
Indeed a large number of non-experts have posted suspicious phishing attack-
related cases on Twitter as alerts [108]. We are eager to immediately analyze the
content of alerts they report as cases where phishing has reached users because
existing countermeasures have been bypassed. These reports have the benefit of
being more victim-centered and comprehensive than posts by security experts
and potentially being used as new information for anti-phishing technology. Our
challenge is to extract only phishing attack reports from a large number of irrel-
evant tweets in their everyday lives.

To this end, we propose CrowdCanary, a system capable of structurally and
accurately extracting phishing information (e.g., URLs and domains) from tweets
of experts and non-experts who have actually discovered or encountered phish-
ing. CrowdCanary is a system that employs pre-selected keywords (e.g., phishing
and scam) as input to identify and output phishing attack-related user reports.
Additionally, CrowdCanary can collect a diverse set of tweets by automatically
identifying and extracting new keywords that are often seen in such reports and
adding them to the system. We evaluate the effectiveness of our malicious URL
collection in CrowdCanary against security engines [80], as well as existing sys-
tems that collect attack information from Twitter [105, 109]. We also analyzed
the differences between experts and non-experts and considered what approach
should be taken to collect the information shared by non-experts. Finally, we
discussed how the phishing information extracted by CrowdCanary could be an-
alyzed to help protect actual end users.

Our primary contributions are as follows.

e We proposed CrowdCanary, a system that identifies reports of phishing
attacks by both English and Japanese Twitter users with a high accuracy
rate of 95% for evaluation data.

e We operated CrowdCanary for three months and were able to identify
38,935 phishing reports out of 19 million tweets and extract 35,432 phish-
ing URLs. We confirmed that 31,960 (90.2%) of these phishing URLs were
later detected by anti-virus engines, demonstrating the high accuracy of
CrowdCanary’s threat intelligence extraction

e We analyzed users who shared phishing reports and discovered that the
majority of phishing reports detected by CrowdCanary were shared by non-
experts. We showed that the threat intelligence reported by non-experts
includes many URLs not included in the intelligence shared by experts,
making it useful as a new observation point for phishing attacks from a
more victim-friendly perspective.

This paper is an extended version of our paper presented at ARES 2023 [110].
Our previous paper proposed a system to detect reports of phishing attacks on

93

Twitter by both experts and non-experts, evaluated its ability to detect them
with high accuracy, and analyzed the differences between expert and non-expert
reports. However, we did not perform a comprehensive analysis on the intelligence
within the detected reports, such as comparing the extracted useful information
to actual phishing-specific data feeds, examining the actual attack infrastructure
based on the detected phishing attacks. In this study, we analyzed information
on phishing attack reports from a new perspective and uncovered previously
unidentified insights (Section 5.7). The new contributions of this paper are as
follows.

e We compared the phishing URLs detected by CrowdCanary to those from
two data feeds specialized in phishing attacks and found that more than
half of the phishing URLs detected by CrowdCanary represented unique
threat intelligence. Furthermore, we discovered that CrowdCanary was
able to identify about 80% of the common URLs more rapidly than the
other two feeds, demonstrating its superior detection speed compared to
existing technologies.

o We conducted an analysis of the domain names and hosting providers that
attackers typically use to deploy phishing sites, using the collected phishing
URLs. We found that the phishing sites in our study have a bias toward
certain top level domains that are generally regarded as malicious, and that
the hosting providers to which they are deployed are biased toward a small
number of IP addresses, many of which are controlled by organizations in
the United States.

5.2 Motivating Examples

In this section, we discuss examples of user-reported phishing attacks and the
challenges of extracting URLs and domain names related to phishing attacks.

5.2.1 Reports on Phishing Message

With the increased usage of social media platforms and smartphones, people post
phishing emails and SMSs content they discover or encounter [108]. Figures 5.1
(1), (2), and (3) show reports of phishing attacks posted by users on Twitter,
which we refer to as cases (1), (2), and (3), respectively. These are examples
where Twitter users discover or encounter a phishing email or SMS and share
that information along with the tweet’s text or a screenshot taken with their
smartphone.

In case (1), a user discovered Google phishing emails. He/she used hashtags
and mentions to alert Twitter users to the email title, the sender’s email address,
and the phishing URL. It’s relatively easy for us to collect reports and extract
information if the report includes alerting hashtags or mentions the company’s
official account, and if the threat intelligence is in the body of the tweet. In
case (2), a user clicks on a URL in a phishing email, understands that he/she
has arrived at a phishing site, and shares a screenshot of the email and his/her
browser. You can find the URL and domain name related to the phishing site
in the information. In case (3), a user shares a phishing SMS he/she received
to get feedback because he/she are unsure if the information is real or fake. In
addition to the URL in the SMS, the text of the tweet and SMS contains the
company string “Amazon,” which was abused in the phishing attack. Compared
to case (2), this case lacks keywords such as “PHISHING”. Therefore, to collect

54

@User A (Expert) (1)

Google Phishing Alert |
#CyberSecurity #Infosec

@Google #Google

Subject: Your account has been locked.
From: notification@scaml.]test

Link: hXXps://scam[.]test/verify

O @User B (Non-expert)
Q ﬁ This is PHISHING MAIL. (2)

Don’t click on these links.

From: Admin malicious.test/verify
To: Me
We’ve disabled your ID Email

Today at 10:02 AM

For your protection, your ID
is automatically locked.
Please verify your ID
information at URL. Sign in
https://malicious.test/verify

Password

@User C (Non-expert)
Anyone else get this?
m Can | get a gift from Amazon?
+ 12345678901

[Add to contacts] [Block number]
Friday, May 2, 2023
Amazon Free Msg: April bill is paid.
Thanks, Here’s a little gift for you:
evil.example/giftforyou

5:03 PM

Figure 5.1: Reports on Phishing Messages

such phishing reports, we need to monitor Twitter at the right time and with the
relevant keywords. Specifically, we need a system that can extract the keyword
“Amazon” when phishing attacks with context related to “Amazon” are prevalent
and promptly collect phishing reports from Twitter using that keyword. We
will have important information about phishing attacks if we can extract URLs,
domain names, and exploited company brand names as character strings from
collected reports. Because this information is based on live phishing attacks
that bypassed existing countermeasure technologies and reached end users, it is
valuable to consider better countermeasure technologies to detect and prevent
phishing attacks before they reach users.

5.2.2 Challenges

Collecting phishing-related posts from users and extracting only phishing-related
information from them presents three challenges.

Collection of posts from various users on Twitter. There are a lot of tweets
on Twitter, including phishing reports from security experts and non-experts. To
examine them realistically, we need to collect the tweets as narrowly as possible.
However, keywords commonly used by security experts in their reports, such as
“#phishing.”, are not always included in the reports of security non-experts.
Therefore, we need to dynamically determine keywords to include in phishing
reports and collect tweets at the right time to collect reports from a wide range
of users.

95

1
Co-occurrence
Keywords
Security
Keywords

Potentially Phishing Sites

Potentially

Phishing
. . Non- Sites
| Legitimate Sites reports Legitimate Sites Legitimate Sites |
\‘\ @ Collecting Tweets (2 Extracting URLs and Domain Names /)

Data Collection

Features Ground-Truth Dataset
(_Content Features) Phishing m
Screened| | (URL Features Reports eport
Toge || [oCR Featwes) || ["Feature | | [[ochine
isual Features Vect
(Image) ectors
: (_Context Features Model
\‘\\ @) Feature Engineering @ Offline Training ® Online Classificatior]/‘

Reports Classification

Figure 5.2: Overview of CrowdCanary

Extraction of information from collected user posts. Phishing reports
from non-experts are often presented in more diverse formats than those used
by security experts. For example, phishing-related information may only be in-
cluded in the image of a tweet, not in the body of the tweet. Without human
intervention, it is difficult to determine whether the tweet is a report related to
sharing information about phishing attacks from texts and images. Since we can-
not manually analyze all tweets, we need a mechanical way to extract information
from both the texts and images of a large set of tweets.

Validation of extracted information. It is necessary to extract only infor-
mation about URLs and domain names related to phishing attacks from user
reports. Some of the information we collect may be user-generated misinforma-
tion about legitimate sites or entirely unrelated to phishing attacks. As a result,
we need to confirm the accuracy of the information extracted from the texts and
images of the collected reports.

5.3 Proposed System: Data Collection

We propose CrowdCanary, a system that collects large-scale reports of phish-
ing attacks in English and Japanese from Twitter users, including experts and
non-experts, and allows for structured and accurate extraction of phishing in-
formation. We selected English and Japanese as the languages for our analysis
because they are the top two languages used by Twitter users and thus likely
to share information on phishing attacks using those languages [111]. Figure 5.2
shows an overview of CrowdCanary. CrowdCanary has two core components,
Data Collection and Reports Classification. In this section, we describe the first
component of CrowdCanary, Data Collection. This component takes keywords
as input for searching tweets, collects data for Report Classification, and outputs
them at one-hour intervals. The one-hour collection interval is a customizable
system parameter. This component is designed to collect a wide range of tweets
related to phishing attacks from different users. In addition, this component
extracts information about URLs and domain names that are candidates for
phishing sites from the collected tweets, and excludes information that is in a no-

o6

Table 5.1: Selected Security Keywords (English)

Keywords Related Cyber Attack, Fake Site, Fraud, Scam, Malicious Site,
to Security Threats Phishing, Opendir, Spam, Social Engineering, Smishing

Keywords with Frequent
Shared Security Threats

#CyberCrime, #CyberSecurity, #CyberThreat,
#ldentity Theft, #InformationSecurity, #InfoSec,
#EmailSecurity, #ThreatHunting, #Threat, #Security

tationally invalid form or related to legitimate sites. This component consists of
the following steps: Collecting Tweets and FEztracting URLs and Domain Names

5.3.1 Collecting Tweets

In this step, we collect tweets using two types of keywords, Security Keywords,
which are often used to share security information, and Co-occurrence Keywords,
which co-occur with Security Keywords only at certain times. We use the T'witter
Search API [112] as a means of collecting tweets. Otherwise, equivalent analysis
can be performed using a stream of tweets as input, such as the firehose API [113]
or the Decahose API [114] (10% random sampling of the firehose API). Since a
large number of users on Twitter routinely post tweets that are unrelated to
phishing reports, we considered that a search approach using appropriate key-
words would be more efficient in collecting candidate reports of phishing attacks
than an analysis of all such tweets or a random sampling of tweets.

Security Keywords. Security Keywords in this paper refers to keywords that
are regularly posted on Twitter for cybersecurity-related information. Security
Keywords allows us to collect tweets from security experts and tweets from non-
security experts sharing phishing attacks they have discovered. Specifically, we
select multiple keywords from two perspectives: related to the attack type (e.g.,
phishing) and information sharing (e.g., #infosec). The keyword defined as attack
type (e.g., phishing) is sometimes used as a hashtag (e.g., #phishing), which is
also included in the search. Finally, we selected the 20 security keywords in
Table 5.1 for the following experiments. Based on previous researches [103, 104]
and our preliminary study, we selected keywords most likely to be shared on
Twitter for information about phishing sites. We also selected the same number
of Security Keywords in Japanese as those translated from English.

In our preliminary study, we collected and analyzed 100,000 tweets using these
common keywords (e.g., “attack” and “email,”) and found that more than 95%
of the tweets were unrelated to phishing attacks. On the other hand, we also
found that most tweets related to phishing attacks contained 20 selected security
keywords. Specifically, 4,921 tweets, or 4.92% of the 100,000 tweets mentioned
above, contained information about phishing attacks that had one of Security
Keywords. Therefore, the security keywords selected in this study are reasonable
for collecting and analyzing as many reports of phishing attacks as possible from
many tweets on Twitter while reducing the number of false positives.
Co-occurrence Keywords. Co-occurrence Keywords in this paper are not
directly security-related keywords, but keywords (e.g., Amazon and ATT) that
co-occur with Security Keywords at certain times and are included in non-expert
tweets. The purpose of designing Co-occurrence Keywords is to collect as many
phishing report attacks as possible that would otherwise be missed by Security
Keywords. Specifically, Co-occurrence Keywords are extracted using the following
procedure. First, we consider the tweets collected during the last period when
the system is running as the Co-occurrence Keywords extraction target. The

57

strength of association (SoA) is then calculated using the idea of pointwise mutual
information (PMI). We define P(X) and P(Y) as the probability of the occurrence
of a proper noun X and a type of tweet Y, respectively, in a given tweet. The
probability that X and Y co-occur is P(X, Y). In this case, PMI is represented
by the following:
P(X,Y)

PIX)P(Y))
Next, we use positive pointwise mutual information (PPMI) as in the following

equation to avoid the case where PMI goes to negative infinity (i.e., where P(X,Y)
= 0).

PMI(X,Y) = log((5.1)

PPMI(X,Y) = max(0, PMI(X,Y)) (5.2)

If X and Y do not occur at all in a single tweet, the PPMI will be 0. If X
and Y are likely to occur in a single tweet, the PPMI will be positive or negative.
Then, given a pair of proper nouns W in a tweet and a binary label L in the
tweet (i.e., a phishing report or non-report), the SoA is given by the following
equation:

SoA(W,L) = PPMI(W,L) — PPMI(W,-L) (5.3)

If W appears only in phishing reports or non-reports, PPMI(W,—L) is zero,
then SoA is equal to PPMI (SoA(W,L) = PPMI(W,L)). Furthermore, W,
which appears frequently in phishing and non-reports, has PPMI(W, L) and
PPMI(W,-L) almost equal. As a result, SoA(W, L) takes on a value close to
zero. In other words, given a proper noun in a tweet for a given time period and
a binary label of a phishing report or not, it is possible to extract keywords that
are frequently found only in the user’s report for that time period. Since the
common duration of the same phishing attack is 21 hours [115], we calculate the
PMI for tweets within the previous 21 hours in our study. For the proper noun
extraction task, we use the English model [116] and the Japanese model [117],
which have been pre-trained on a large amount of data and confirmed to be highly
accurate for this task. We evaluated whether we could extract as many brand
names (e.g., Amazon, ATT, Microsoft 365) as possible from the aforementioned
100,000 tweets, and finally set the SoA threshold to 4. Then, the top 10 keywords
that exceed the threshold are selected as Co-occurrence Keywords. The default
state is no Co-occurrence Keywords, and Co-occurrence Keywords will be selected
each time this step is performed.

5.3.2 Extracting URLs and Domain Names

This step extracts URLs and domain names potentially associated with phishing
attacks from the collected tweets. The extraction targets include both the texts
and images contained in the tweets.

Image Analysis. We extract URLs and domain names from the images in the
collected tweets by identifying the body area of the SMS or email. Specifically,
we used YOLOv5S [118] as in the previous study [105], to identify body text
areas in email or SMS screenshots, annotated with 3,000 images in the dataset
described in Section 5.4.3. For the 3,000 images used for training, we analyzed
valid thresholds with confidence scores ranging from 0.0 to 1.0 for the body text
areas extracted by YOLOvV5. As a result, all areas with a confidence score of 0.8
or higher corresponded to the body text area in the image. Therefore, in this
study, if YOLOvV5 extracts an area with a confidence score of 0.8 or higher, it
is considered to be the body text area. Then, we use Tesseract [119] to extract
character strings from the body text areas in both English and Japanese. If the

o8

body text area is not identified, we apply Tesseract to the entire image. We
extracted text from English tweets using models pre-trained in English, while we
extracted text from Japanese tweets using models pre-trained in both English and
Japanese. This is because Japanese phishing emails/SMSs also contain English
words.
Text Analysis. Next, we extract URLs and domain names from the text of im-
ages and tweets. Our study focuses on URLs and domain names that non-experts
are likely to post as phishing attack information. Using regular expressions, we
retrieved only the matches of URLs and domain names as candidate phishing
sites from both the text of tweets related to the reports and the text derived
from images. In particular, if there are defanged strings (e.g., example.com to
example[.Jcom and http to hXXp) in a text, we refang the text (e.g., exam-
ple[.Jcom to example.com and hXXp to http) and extract the URL and domain
name matched by the regular expression.
Screening Phishing-related URLs and Domain Names. Finally, we ex-
clude URLs and domain names that are incorrectly formatted or related to le-
gitimate sites. Specifically, we check that it conforms to the format specified by
RFC 3986 [120] and RFC 1035 [121]. If the URL or domain name that passed
format validation is not included in both the image and the text, the tweet will
be excluded from further analysis.

Then, we also exclude as legitimate sites any domain name in the top 10,000
on the Tranco list [122] and that does not match the shortened URL list [123].
Existing research [115] has shown that the registration of a domain name and
the execution of a phishing attack can occur within a few days or tens of days at
most. Therefore, we obtain domain name information from WHOIS and eliminate
legitimate sites registered more than 365 days ago. CrowdCanary focuses on
fresher domain names to detect newer phishing attacks, thus phishing sites that
are more than one year old are excluded from our study. Furthermore, we exclude
from our analysis false reports due to attackers sharing obviously legitimate sites
or users mistakenly sharing legitimate sites. We output any tweets with at least
one or more domain names that remain after the screening as screened tweets.

5.4 Proposed System: Reports Classification

We describe the second component of CrowdCanary, Reports Classification, in
this section. For the screened tweets obtained in the first component, we extract
features in the tweets. Using supervised learning, we train a classifier to identify
highly relevant reports of phishing attacks with high accuracy. From the created
features, we select some features for training to achieve highly accurate and effi-
cient classification. This step includes the following steps: Feature Engineering,
Training and Classification, and Fvaluation of Classification Accuracy.

5.4.1 Feature Engineering

We extract features from the screened tweets that help us identify user reports.
This component classifies a single tweet as either a phishing report or a non-
report. Specifically, we generated vectorizable features from Twitter user infor-
mation, tweet body text, and images. Then, we selected helpful features from
the generated features that improve the classification accuracy of phishing re-
ports and non-reports using Boruta SHAP [126]. Boruta SHAP is a method that
uses Shapley values for feature selection in Boruta, allowing for more accurate
calculation of feature contributions and increasing the robustness of the Boruta

99

Table 5.2: List of Features

Feature Type No. Features Name Vector Type Dimensions
Content 1 # of characters Integer 1
2 # of words Integer 1
3 # of hashtags Integer 1
4 # of images Integer 1
5 Defanged type Category 9
URL 6 Total # of characters Integer 1
7 # of characters in domain name Integer 1
8 # of digits Integer 1
9 Top level domain Category 10
OCR 10 Number of characters Integer 1
11 # of words Integer 1
12 # of symbols Integer 1
13 # of digits Integer 1
Visual 14 EfficientNet Vector [124] Embedding 16
Context 15 BERT Vector [125] Embedding 58
Total 104

algorithm [127]. Finally, we use the five types of features shown in Table 5.2:
Content Features, URL Features, OCR Features, Visual Features and Context
Features.

Content Features. From the content of the tweets collected in the previous
component, we extract features relevant to identifying sharing related to phishing
attacks, focusing mainly on the text. Our idea is straightforward: identify the
actual content of the user’s tweet. We extract five features from the information
in a user’s tweet. Specifically, we designed the following six types: number of
characters (No. 1), number of words (No. 2), number of hashtags (No. 3), number
of images (No. 4), and defanged type (No. 5).

Features No. 1 to No. 4 are each a vector of integer values obtained from

tweets. Defanged type (No. 5) is a 9-dimensional feature vector with the one-
hot encoding of 9 types of defanged types (“example .com”, “example[.]Jcom”,
“example(.)com”, “example{.}com”, “example\.com”, “hxxp://example.com”,
“hXXp://example.com”, “http[:]//example.com” and “http://example.com][/]”).
We believe that the number of characters and words in a warning-only post is
relatively small. In addition, when users post reports, they often include numer-
ous screenshots of emails and SMSs, and these features can efficiently identify
user reports. Related studies [103, 128] have shown that these similar features
can effectively determine whether a string contains warning information.
URL Features. We extract phishing site-specific features from the URLs con-
tained in the texts and images of the screened tweets. Phishing sites often include
characteristic strings in the domain name or path portion of the URL (e.g., abuse
of subdomain names and long domain names) compared to legitimate sites [90].
It is possible to classify whether URLs are associated with phishing attacks by
capturing the differences between the strings in the URLs of phishing sites and
legitimate sites. Specifically, we designed the following four types: total number
of characters (No. 6), number of characters in the domain name (No. 7), number
of digits (No. 8) and top level domain (TLD) (No. 9).

No. 6 to No. 8 are the respective vectors of integer values calculated from
the URLs (domain names) contained in the texts or images of the tweets. We
conducted a preliminary survey of the TLDs in the ground-truth dataset (Sec-
tion 5.4.3) and found 841 different TLDs. We investigated whether TLDs con-
tribute to the identification of phishing sites using Boruta SHAP and identified

60

” [43 ”

10 TLDs (“com”, “org”, “top”, “info”, “xyz”, “online”, “net”, “shop”, “cn
and “vip”) as important. TLD (No. 10) is a 10-dimensional feature vector
with the one-hot encoding of 10 types of TLD, as mentioned above. For ex-
ample, the fully qualified domain names (FQDNSs) of phishing sites have more
characters than those of legitimate sites, indicating subdomain abuse (e.g., lo-
gin.security.account.example.com). In addition, Spamhaus reports that in 2023,
TLDs such as “cn” and “top” have many cases of abuse [129] and may not be
reviewed by registrars. As a result, TLDs abused by phishing sites tend to cluster
in the same TLD.

OCR Features. We use Tesseract [119] to extract texts from the images in
screened tweets. Reports of phishing attacks shared by people in images are
typically screenshots of people’s smartphones, significantly different from other
images commonly posted on Twitter. We can determine if the images in the
tweets are related to the report of a phishing attack by performing OCR on the
images and capturing differences in the extracted strings. If there is no image in
a tweet, all OCR features are set to 0. If a tweet has multiple images, split it,
create OCR features for each image, and classify all split tweets using the same
other features.

Specifically, we designed the following four types: number of characters (No. 10),

number of words (No. 11), number of symbols (e.g., !, 7 and &) (No. 12) and
number of digits (No. 13). No. 10 to No. 13 are the respective integer vectors
calculated from the texts extracted by applying OCR to the tweet images. In
addition to the URL and domain name, the image that the user shares as a phish-
ing report includes the email or SMS text. In other words, texts and words that
deceive users into clicking on URLs are also included in the extracted strings.
Phishing SMSs and emails that deceive people have a predetermined amount of
characters in a similar context (e.g., Your account has been suspended! Verify
now [URL]), and hence the features differ significantly from strings extracted
from other images.
Visual Features. We construct a fixed dimensional feature vector if the tweets
obtained in the previous component contain images. Then, if there is no image
in a tweet, the visual features vectors are set to 0. If a tweet has multiple images,
split it, create visual features for each image, and classify all split tweets using
the same other features. This feature captures the similarity in appearance of
common phishing emails and SMSs.

Specifically, because emails, SMSs, and browser screenshots are usually images
with a specific appearance, this feature is useful for classifying such images from
other images. These images are essential for distinguishing phishing reports from
non-reports, as they are included when users post information in the form of
images. We use EfficientNet [124] as our visual feature generation model. We
selected EfficientNet as the model for generating visual features since it is one
of the state-of-the-art methods in image classification [130, 131]. We fine-tuned
the model pre-trained on ImageNet (EfficientNet model) in English and Japanese
with images related to the report (e.g., phishing email images and SMS phishing
images) and images unrelated to the report (e.g., food images and landscape
images). We successfully improved the feature generation to decide whether or
not to include images related to the report.

We generate a 1,280-dimensional image feature vector from tweets using a
retrained model. Then, we compressed the dimensions to achieve a cumulative
contribution rate of 99% using TruncatedSVD [132], and the result was 16 di-
mensions for both English and Japanese. Here, we employ a fixed-dimensional
vector, a compressed version of the vector created by the optimized EfficientNet

61

model (No. 14).

Context Features. The contextual information from the tweet sentences ob-
tained in the previous component is represented as a fixed-dimensional feature
vector. When people share reports of phishing attacks, they often include alarm-
ing and angry statements, and are usually in a specific context. We cannot
adequately capture these contexts based on the number of characters or words
in a tweet. To this end, we use vectors created by a model trained on a large
amount of text to capture the context of a tweet’s text.

Specifically, we use BERT [125] as the context feature generation model.
BERT and BERT-based methods are state-of-the-art for several natural lan-
guage processing tasks [133, 134, 135]. We fine-tuned the sentences of tweets
related to reports in both English and Japanese using the ground-truth dataset
(Section 5.4.3). We optimized feature generation for a pre-trained model with
many words to determine whether a tweet is related to user reports or not. In
certain scenarios, a user who receives a phishing attack alerts, suspects, or incites
the attacker. As a result, the contextual characteristics are different from other
people’s daily posts.

We create a 768-dimensional context feature vector from tweets using a re-
trained model. Then we also compressed the dimensions to achieve a cumulative
contribution rate of 99% using TruncatedSVD [132], and the result was 58 dimen-
sions for both English and Japanese. Here, we use a fixed-dimensional vector,
a compressed version of the vector generated by the optimized BERT model
(No. 15).

5.4.2 Training and Classification

Using the many features we have created so far, we train a model for binary
classification of whether a tweet is a report of a phishing attack or not.
Method. Given labeled positive or negative training data, a supervised learning
model can be trained that uses the characteristics of each tweet to predict the
binary value of tweets associated with phishing reports or non-reports. We then
aim to predict with a high degree of accuracy whether new tweets are similar
to previous phishing reports or non-reports. We compared and evaluated eight
commonly used supervised learning algorithms: Random Forest, Neural Network,
Decision Tree, Support Vector Machine, Logistic Regression, Naive Bayes, Gra-
dient Boosting, and Stochastic Gradient Descent. To account for the influence of
some algorithms on accuracy loss, all feature vectors were preprocessed to set the
mean to 0 and the variance to 1. Here, we train and evaluate using a ground-truth
dataset labeled with phishing or non-phishing reports, which will be explained
later in Section 5.4.3.

Results. We adopted Random Forest as the training and classification algo-
rithm for the following three reasons. (1) Random Forest showed the best binary
classification accuracy for the ground-truth data among the eight algorithms. (2)
Random Forest performed consistently well with stable speed in both the training
and inference phases for large amounts of data. (3) The importance of the features
in the Random Forest was distributed among Content Features, URL Features,
OCR Features, Visual Features, and Contexrt Features, thus the classifier does
not depend on any particular feature in its decision. We perform a classification
accuracy evaluation on the ground-truth datasets (Section 5.4.3) and, in the live
operation using CrowdCanary (Section 5.5), a model trained with the Random
Forest algorithm, to perform the binary classification of phishing reports and
non-reports.

62

Table 5.3: Ground-truth Dataset for Evaluating the Accuracy of Machine Learn-
ing Models

Language Collected Time Label # of Tweets
English May. 1, 2021 — Jul. 19, 2021 Phishing Reports 5,000
(80 days) Non-Reports 15,000
Japanese May. 1, 2021 — Jul. 19, 2021 Phishing Reports 5,000
(80 days) Non-Reports 15,000

Table 5.4: Classification Accuracy Evaluation Results

Language Features Accuracy TPR TNR Precision F-measure
English All Features 0.957 0.952 0.962 0.962 0.957
Content+URL+OCR 0.838 0.829 0.847 0.845 0.837
Japanese All Features 0.949 0.948 0.960 0.951 0.943
Content+URL+OCR 0.798 0.754 0.843 0.827 0.789

5.4.3 Evaluation of Classification Accuracy

Before taking measurements with CrowdCanary in live operation, we evaluated
the classification accuracy of phishing reports and non-reports in CrowdCanary.
Ground-truth Datasets. Table 5.3 shows the dataset used for the evaluation.
First, we used the 20 English keywords from Table 5.1 and the 20 translated
Japanese keywords. Then, we searched on Twitter using the keywords for 80
days from May. 1, 2021 — Jul. 19, 2021, and collected 1,543,245 and 1,023,368
tweets in English and Japanese, respectively. Existing studies or publicly avail-
able datasets do not provide ground-truth datasets for the correct answers to
phishing reports and non-reports, which are our research goals. As a result, we
have to annotate them ourselves. Therefore, we randomly sampled the collected
tweets and manually labeled them with a binary value of either phishing reports
or non-reports. We excluded from our annotations tweets that do not have a
URL or domain name in the text or image of the tweet. We then accessed the
URLs and domain names in the text and images of the collected tweets from the
experimental environment, examined the collected web content, and performed a
similarity analysis with legitimate sites. Four security engineers conducted this
annotation, and we labeled each of the tweets that we all agreed were reports of
phishing attacks and non-reports. As a result of the annotations, we labeled the
tweets as “phishing reports” when we determined they were related to phishing
attacks and “non-reports” when they were not. Finally, we created 5,000 “phish-
ing reports” and 15,000 “non-reports” in English and Japanese, respectively. To
account for the effect of temporal bias, we split the training and testing data 7:3
in time order for the evaluation experiment.

Evaluation Results. The evaluation results are shown in Table 5.4. When
combining all features (Content+URL+OCRA4-Visual+Context) for the English
case, Accuracy was 0.957, True Positive Rate (TPR) was 0.952, True Negative
Rate (TNR) was 0.962, Precision was 0.962, and F-measure was 0.957. The
results show that the accuracy is sufficient to classify phishing reports from the
large volume of tweets collected. We also found that it is difficult to detect
user reports of phishing attacks with high accuracy using only simple features
generated from meta information on Twitter. The same result is obtained for the
Japanese case. We conclude that feature vectors with information embedded in a
fixed dimension, pre-trained on many languages and images, significantly improve
classification accuracy. To summarize, in subsequent evaluations for Section 5.5,

63

Table 5.5: Overview of Datasets for Evaluation

System Period Datasets #
CrowdCanary Nov. 1, 2022 — Jan. 31, 2023 Collected Tweets 18,765,699
(3 months) Screened Tweets 324,589

Phishing Reports 38,935

Detected Threats 42,987

Detected URLs 35,432

SpamHunter Jan. 1, 2018 — Aug. 31, 2022 Detected Threats 15,553
(56 months) Detected URLs 15,269

Twitter IOC Hunter Aug. 1, 2021 — Jul. 31, 2022 Detected Threats 10,092
(12 months) Detected URLs 9,344

we will use a machine learning model trained by combining five types of features:
Content+URL+OCR+Visual4Context.

5.5 [Evaluating User Reports in the Wild

We used CrowdCanary, which was confirmed to detect user reports with high
accuracy in Section 5.4.3, to classify unknown tweets in the wild. We then per-
formed a comparative evaluation with two existing systems [109, 105] that collect
and publish malicious URLs and domain names from Twitter.

5.5.1 Operating Environment

We operated the proposed system in a virtual machine (VM) on Azure. Specif-
ically, we used the Linux OS Ubuntu 20.04 on a Standard D32as v4 (32 vCPU,
128GB Memory) VM. We used twscrape [136], an open source tool, as the means
of data retrieval from Twitter, and scikit-learn [137] for the analysis process re-
lated to machine learning. We employed luigi [138], a Python-based pipeline
framework, to ensure that each task can be efficiently scheduled and processed in
all sub-steps. With the operational environment described above, the proposed
system operated without error during all the experimental periods in this study.

5.5.2 Datasets for Evaluation

A summary of the datasets for CrowdCanary and the two existing systems for
comparison is shown in Table 5.5. These two existing systems collect information
from Twitter, but the information they collect is not limited to phishing attacks.
Although CrowdCanary focuses specifically on phishing attacks, we demonstrate
that the quantity and quality of information collected by CrowdCanary outper-
forms the two existing systems. While CrowdCanary is a newly implemented
system that works perfectly on the current version of Twitter, the existing sys-
tems rely heavily on older Twitter APIs and are unable to analyze the latest
tweets. Therefore, we used datasets [139, 109] from when these systems were
publicly available for our evaluation.

Proposed System (CrowdCanary). We ran CrowdCanary continuously every
hour for three months, from Nov. 1, 2022 — Jan. 31, 2023. We set the Security
Keywords to 20 English and 20 Japanese words in Table 5.1, and the initial
state of the Co-occurrence Keywords to none. CrowdCanary selected new Co-
occurrence Keywords every hour from the collected user reports. During the two-
month experiments, we collected 18,765,699 tweets, screened 324,589 tweets, and
identified 38,935 phishing reports. For domain names included in user reports,

64

Table 5.6: Overview of Comparison Results between CrowdCanary and Existing
Systems

System ‘ VT21 VT=5 Total ‘ VTz1 /day VT=5 /day
CrowdCanary 31,960 15,768 35,432 347 171
(I+T, E+J) (90.2%) (44.5%) (100.0%)
CrowdCanary 17,633 7,267 19,205 187 83.2
(I, E+J) (84.2%) (37.8%) (100.0%)
CrowdCanary 15,260 8,452 17,231 164 88.5
(T, E+J) (88.6%) (49.1%) (100.0%)
CrowdCanary 17,126 7,558 18,779 186 82.2
(I4+T, E) (91.2%) (40.2%) (100.0%)
CrowdCanary 14,834 8,210 16,653 161 89.2
(I+T, J) (89.1%) (49.3%) (100.0%)
CrowdCanary 7,528 4,107 9,026 81.8 44.6
1, J) (83.4%) (45.5%) (100.0%)
CrowdCanary 7,081 4,014 8,093 77.0 43.6
(T, J) (87.5%) (49.6%) (100.0%)
CrowdCanary 9,048 3,583 10,178 98.3 38.9
(I, E) (88.9%) (35.2%) (100.0%)
CrowdCanary 8,286 4,244 9,126 90.1 46.1
(T, E) (90.8%) (46.5%) (100.0%)
SpamHunter 8,266 1,718 15,269 4.85 1.01
(I, E) [105] (59.8%) (10.9%) (100.0%)
Twitter IOC Hunter 5,228 2,172 9,344 14.3 5.95
(T, E) [109] (56.0%) (23.2%) (100.0%)

I: Image analysis, T: Text analysis, E: English analysis, J: Japanese analysis

we considered them to be URLs by appending the protocol “https” to the domain
name. Finally, we merged these URLs with the extracted URLs to obtain 35,432
unique URLs extracted by CrowdCanary.

Existing System (SpamHunter). We selected the dataset of the previous
study [105] as our existing system for comparison. Their “SpamHunter” system
collects tweets with SMS-related keywords, performs image analysis, and extracts
phishing-related URLs. Spam

Hunter comes closest to our motivation in terms of the information we want to
collect, however their method of collecting tweets is very limited. This is because
SpamHunter only analyzes tweets when the keyword “sms” is included in the
body of the tweet, which results in a large number of non-expert tweets that
should be analyzed being missed. They published the collected URLs [139], and
obtained 15,553 threats from Jan. 1, 2018 — Aug. 31, 2022. In addition, we
added “https” to threats that lacked protocol information, excluded URLs with
formatting deficiencies, and finally prepared 15,269 detected URLs.

Existing System (Twitter IOC Hunter). Next, we selected the existing
system [109] for comparison because it extracts cybersecurity-related information
(e.g., malicious URLs, IP addresses, etc.) from Twitter and allows us to obtain
data for a specified time period through its API. We obtained 10,092 threats using
the API of Twitter IOC Hunter [109] from Aug. 1, 2021 — Jul. 31, 2022. Similar
to SpamHunter, we added “https” to threats that lacked protocol information,
excluded URLs with formatting deficiencies, and finally prepared 9,344 detected
URLs.

5.5.3 Comparison of Maliciousness using VirusTotal

We analyzed how VirusTotal(VT) [80] flags the URLs detected by CrowdCanary
and the two existing systems [105, 109]. When we request VirusTotal to scan

65

a URL, it evaluates the maliciousness of about 90 different types of anti-virus
software and returns the results to us. Several studies [140, 141, 103, 142, 143]
used VirusTotal as a metric for evaluation. Then it is appropriate for our study
to evaluate how much of the information collected from Twitter are actually
malicious URLs.

VirusTotal provides five types of results for scanned URLs: malicious, sus-
picious, harmless, undetected and timeout. Because CrowdCanary immediately
collects/outputs phishing attacks shared by Twitter users, sometimes VirusTotal
does not detect them even though the URLs are malicious. We then requested
scans and obtained results at least one week after detection in CrowdCanary.
Since the URLs of the existing systems had already mainly been analyzed by
VirusTotal, we obtained the results of the scans. If VirusTotal had no previous
scan results, we requested a scan and obtained the scan results. VirusTotal has
also seen cases of false positives from anti-virus vendors [141]; therefore, URLs
identified as malicious/suspicious by one anti-virus vendor are not necessarily
phishing URLs. As a result, in our study, we compared CrowdCanary and the two
existing systems in terms of the number of URLs flagged as malicious/suspicious
by at least one and as many as five anti-virus vendors in VirusTotal.

The comparison results are shown in Table 5.6. We conducted the analysis
with images and text as the threat information extraction targets, and with En-
glish and Japanese as the tweet collection languages. Focusing on URLs that were
flagged as positive by five or more antiviruses in VirusTotal, 15,768 (44.5%) were
positive for CrowdCanary (Image+Text), 7,267 (37.8%) were positive for Crowd-
Canary (Only Image), 8,452 (49.1%) were positive for CrowdCanary (Only Text),
1,718 (10.9%) were positive for SpamHunter and 2,172 (23.2%) were positive for
Twitter IOC Hunter. We confirmed that CrowdCanary was superior to the pro-
posed and existing systems in terms of both the absolute number and detection
rate of URLs later detected by multiple antiviruses in VirusTotal. Early detection
of URLs that will later be detected by VirusTotal is important for the future de-
velopment of countermeasure technology. SpamHunter is a system that extracts
information from tweet images, and Twitter [OC Hunter is a system that extracts
threats from tweet texts. Even if we target only images and texts for CrowdCa-
nary’s threat extraction, we can see that it can extract more URLs detected by
VirusTotal. Due to the different experimental periods of the proposed system
and the two existing systems, we compared the average per day of URLs de-
tected by VirusTotal. In this case as well, the results showed that CrowdCanary
was superior to the existing systems. When CrowdCanary’s threat information
extraction is limited to images and English (equivalent to SpamHunter’s analysis
target with CrowdCanary (I, E) in Table 5.6), CrowdCanary extracted 20 times
and 39 times the amount of malicious URLs for VT'21/day and VT 2=5/day, re-
spectively, compared to SpamHunter. Additionally, when CrowdCanary’s threat
information extraction is limited to texts and English (equivalent to Twitter IOC
Hunte’s analysis target with CrowdCanary (T, E) in Table 5.6), CrowdCanary
extracted 6 times and 8 times the amount of malicious URLs for VT'21/day and
VT25/day, respectively, compared to Twitter IOC Hunter.

In addition, we manually investigated the remaining 3,472 (35,432-31,960)
URLs that VirusTotal did not detect during the experimental period. We iden-
tified malicious URLs that could be identified as phishing sites based on the
content of tweets, website content, screenshots, WHOIS information, etc. As in
Section 5.4.3, this investigation was conducted by four security engineers and took
a total of 30 hours to check for undetected URLs in VirusTotal. As a result, we
found that 2,635 (7.44%) URLSs were truly phishing sites (false negatives by Virus-

66

5000 H 4794

4000 - 100

-0.75
B # of users

—— CDF

3000 +

2000 ~ - 0.50

1000 | 101 -025

502
198
._2216744842012330

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
of times users shared reports

-0.00

Figure 5.3: Correlation between Users and Number of Times Reports Were
Shared

Table 5.7: User Categorization Results

Shared

Users # Reports min median mean max

25 15,263 1 280 610 3,900
9,000 17,577 1 1 1.95 73

User Type

Expert
Non-expert

Total). Most of these URLs were used for redirects under the domain names of
duckdns.org, which abused the dynamic DNS provider, and cutt.ly, which abused
the URL shortening service and made it difficult to determine the maliciousness
of the URLs mechanically. On the other hand, 482 (1.36%) URLs were incorrect
information due to OCR misidentification (e.g., misidentifying “I” as “1”), 160
(0.45%) URLs were not phishing site URLSs included in the user’s report (e.g.,
minor legitimate sites that users cannot accurately determine whether they are
phishing or not), and 195 (0.56%) URLs were misclassified by the machine learn-
ing model (e.g., legitimate SMSs or emails). The next Section 5.6 analyzes a
total of 34,595 (31,960+2,635) URLs detected by VT or manually identified as
malicious URLs.

5.6 Comparison of Experts and Non-experts

We analyze the reports collected by CrowdCanary with a focus on the charac-
teristics of the users (i.e., security experts or non-experts). In this section, we
use 34,595 URLs (32,813 phishing reports) containing malicious information re-
lated to phishing attacks identified by VirusTotal and manual investigation in
Section 5.5.3.

5.6.1 Analysis of Users who Shared Reports

Of the 32,813 phishing reports, the number of unique users was 9,025. We identify
the users who shared these reports as experts or non-experts. Specifically, users
who satisfy either of the following two conditions are considered experts, and
users who satisfy neither of the two conditions are considered non-experts. (1)
The user has security-related keywords (e.g., phishing, threat hunter) in their
Twitter profile. (2) The user has posted more than half of their last 10 tweets
related to cybersecurity.

67

16000 15645

14000 - 1.00

12000

10000 - # of URLs with Non-Expert [0-7°
of URLs with Expert

— CDF - 0.50

8000 +

6000 +

4000 -
2688 - 0.25

2000 +

681

27230175 77 68 51 48 26 23 14 15 14 12 9 10 5 7

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
of times URLs were shared

0- = 0.00

Figure 5.4: Correlation between Users Types and Number of Times URLs Were
Shared

Table 5.8: Comparison of URLs Characteristics

User Type ‘ # URLs # Shortened URLs # Services

Expert 16,778 102 (0.61%) 7
Non-expert | 18,654 2,896 (15.5%) 13

As a result, we categorized users in the method described above, resulting in
25 users (2.77%) as experts and 9,000 users (97.23%) as non-experts, as shown
in Table 5.7. We reviewed the results as a manual and verified that they were
categorized as intended. We found that experts share phishing reports an average
of 610 times, while non-experts share phishing reports an average of 1.95 times.
In particular, we confirmed that many expert shares appeared to be mechanical,
with some accounts only posting phishing attack threats up to 3,900 times during
the experimental period. Most non-experts shared phishing emails and SMS
messages they received only a few times. However, in rare cases, we found some
non-experts who shared phishing emails and SMS messages they received 73 times
during the experimental period.

Additionally, Figure 5.3 shows the correlation between users and the number
of times reports are shared. The x-axis represents the number of times a user
shared a report, the blue bar on the y-axis represents the number of reports
based on the number of times the report was shared, and the red line on the y-
axis represents the cumulative distribution function (CDF) value of the reports.
From Figure 5.3, users who shared only one report accounted for 53.1% of the
total, while users who shared two reports accounted for 78.6% of the total. In
other words, if we collect information from Twitter limited to accounts of users
who frequently share, as in existing studies [102, 103], we would miss phishing
reports from numerous users. We demonstrated that CrowdCanary can collect
not only the limited information shared by security experts, but also information
posted by a large number of users, including reports of phishing attacks by non-
experts.

5.6.2 Analysis of the Detected URLs’ Characteristics

We analyzed the value of the URLs included in the phishing reports. Specifically,
we analyzed the number of times each URL was shared as a phishing report. The
correlation between user types (i.e., experts or non-experts) and the number of

68

Table 5.9: Comparison of FQDNs Characteristics

User Type ‘ # FQDNs # Dynamic DNSs # Providers

6,530 668 (10.2%) 1
8,699 3,612 (41.5%) 3

Expert
Non-expert

Table 5.10: Comparison of Report Sharing Methods

#Hashtags #Mentions
User Type |# URLs in Images # URLs in Texts | median mean | median mean
Expert 1,523 (10.0%) 13,740 (90.0%) 4 3.83 0 0.21
Non-expert 16,659 (94.8%) 918 (5.22%) 0 0.73 0 0.15

times reports containing that URL were shared is shown in Figure 5.4. The x-axis
represents the number of times a URL has been shared, the green and orange
bars on the y-axis represent the number of URLs found that match, and the
red line represents the CDF value of the unique URLs. From Figure 5.4, URLs
extracted from phishing reports shared only once by users accounted for 77.5% of
the total, while URLSs extracted from user reports shared twice by users accounted
for 90.8%. As shown in our results, we found that extracting information from
the tweets of a fixed set of users with a limited observation target would miss the
majority of high-value malicious URLs that are shared a few times at most.

We then analyze the characteristics of the URLs and FQDNs shared by se-
curity experts and non-experts. The results are shown in Tables 5.8 and 5.9.
The unique URLs included in the expert and non-expert reports were 16,778 and
18,654, respectively. Attackers sometimes use redirects from the landing URL to
the phishing site where they ultimately want to direct the user [115, 144]. Specifi-
cally, we investigated how many URLs exploited the dynamic DNS providers [145]
and URL shortening services [123] used to redirect phishing attacks. Among dy-
namic DNS providers, duckdns.org was found to be abused 99.3% in total, and
among URL shortening services, cutt.ly and bit.ly were abused 70.5% in total.
Because these services and providers are free, can generate a large number of
URLs, and have no countermeasures to exploit for phishing attacks, it is be-
lieved that attackers use them to evade detection (i.e., spam emails and SMSs
detection) of phishing sites they have created. Many of the threats shared by
non-experts are URLs that are actually spread in phishing e-mails and SMSs.
These URLs can be used as a starting point for analyzing the full picture of
attacks, or as intelligence for block lists that automatically detect spam e-mails
and SMSs. Many experts share URLs after redirects, which sometimes cannot
be analyzed because they are inaccessible without the proper referrer [146], and
are not suitable information to prevent the spread of phishing emails and SMSs.

5.6.3 Analysis of Report Sharing Methods

We analyze the differences in the way experts and non-experts share information.
First, we compared experts and non-experts on how users share information about
phishing attacks. The results are shown in Table 5.10. We found a significant
difference in how information was shared: 90% of expert reports included URL
information in the text of their tweets. In contrast, 95% of non-expert reports
included URL information in the images of their tweets. Experts identify threats
through their own investigation rather than by encountering them, and they
often share the information in a formatted text (in the text of a tweet). On

69

Table 5.11: Top 10 Keywords Collected Phishing Reports

Rank‘Keywords (Expert) Type #‘Keywords (Non-expert) Type #
1 #phishing (E+1J) S 3,982 |#phishing (E+J) S 1,545
2 #scam (E+J) S 2,733 |National Tax Agency (J) C 1,175
3 #phishingmail (J) C 1,406 |Fraud (J) S 1,035
4 #infosec (E) S 1,283 |#Amazon (E+J) C 889
5 #cybersecurity (E) S 1,280|#scam (E+J) C 820
6 #Amazon (E+J) C 1,119 |Softbank (J) C 712
7 #phishingsite (J) C 1,079 |Docomo (J) C 688
8 National Tax Agency (J) C 1,022| American Express (E+J) C 653
9 [SMBC (J) C 894|Google (E+J) C 512
10 |#bank (E) C 822 |Please retweet (J) C 488

E: English only, J: Japanese only, E+J: Contains identical semantic words in both languages
S: Security Keywords, C: Co-occurrence Keywords

the other hand, non-experts often store the phishing attacks they encounter it
(receiving an email or SMS, or reaching the site with a browser) as screenshots
from their smartphones, etc., and attach the images directly to their tweets and
share them. Although it is difficult to collect a large number of these reports
from non-experts and extract information properly, CrowdCanary was able to
extract as many threats as experts and more, as shown in Figure 5.4.

We also found significant differences in features between experts and non-
experts in the context of the text when sharing reports. The median and the
mean number of hashtags and mentions in the phishing reports of experts and
non-experts are shown in Table 5.10. Hashtags are referred to as “#phishing”
and are primarily used by users on Twitter to share information. People looking
for information can find tweets containing the hashtag relatively easily using the
search function. In this case, the expert report shows an average of 3.83 hashtags
in the tweets, while the non-expert report shows an average of only 0.73 hashtags.
As a result, collecting non-expert reports with appropriate keywords is more
difficult than collecting expert reports shared using fixed hashtags. Similarly, we
examined user reports that included mentions that could be posted to a specific
user account on Twitter and found no significant differences between experts and
non-experts.

Finally, we discuss query keywords that were useful in collecting phishing
reports. The top 10 keywords that resulted in the collection of expert and non-
expert reports are listed in Table 5.11. Among the top 10 keywords for experts, 8
were hashtagged and 4 were security (as defined in Section 5.3.1) keyword types.
In particular, we found that a large number of experts shared their information
using the hashtags “#infosec” and “#cybersecurity”, which are not commonly
used by non-experts. On the other hand, only 3 of the top 10 non-expert key-
words were hashtagged. Although “#phishing” was sometimes the most effective
keyword for collecting phishing reports, as it was for experts, many of the non-
experts shared reports using the name of the company brand that was exploited in
the phishing attack. However, simply searching for a company’s brand name will
return a number of irrelevant tweets. Therefore, either a search using appropriate
keywords at the right time, as in this study, or a highly accurate detection mech-
anism from among the tweets continuously collected by company brand name is
required.

70

Table 5.12: Comparative Dataset of Phishing URLs

Datasets #
CrowdCanary’s Phishing URLs 34,595
OpenPhish’s Phishing URLs [99] 82,963
PhishTank’s Phishing URLs [98] 28,164
CrowdCanary N OpenPhish 11,589
CrowdCanary N PhishTank 9,213
OpenPhish N PhishTank 12,748

CrowdCanary N OpenPhish N PhishTank 4,620

5.7 Analyzing Phishing Attacks in User Reports

To deepen our understanding of phishing attack reports shared on Twitter, we
evaluate the effectiveness of information regarding countermeasure techniques
and analyze the actual phishing attack infrastructure.

5.7.1 Analysis of Common URLs with Existing Data Feeds

We collected two types of datasets for comparative evaluation, OpenPhish [99]
and PhishTank [98], both specialized for phishing attacks. OpenPhish is an open
feed of large-scale data on phishing, and various existing countermeasure tech-
nologies reference the OpenPhish dataset. PhishTank is a crowdsourcing service
that stores phishing data from users via URL submission and phishing verifica-
tion. PhishTank determines whether a URL submitted by one user is phishing
or not depending on the criteria of other users, and if the URL exceeds a spec-
ified PhishTank criterion, it is classified as a phishing site. In this comparative
evaluation, we used only data of PhishTank labeled as phishing sites.

These data feeds are widely used in existing researches [147, 115, 128, 142]
for the evaluation of phishing attacks as open threat intelligence that anyone
can use. The two data feeds are explicitly indicated as providing information to
APWG [148] and national CSIRTS; thus, when phishing URLs are published in
the data feeds, the CSIRT in each country moves to handle takedowns of them.
We continuously collected the latest data feeds from OpenPhish and PhishTank
hourly during the same three-month period of Nov. 1, 2022 — Jan. 31, 2023.
As a consequence, we collected 82,963 and 28,164 URLs from OpenPhish and
PhishTank, respectively.

We evaluated the ratio of common phishing URLs and the latency of the same
URLs across two data feeds using CrowdCanary. The target time for evaluation
is the posting time of the extracted user reports on Twitter for CrowdCanary,
the discover_time in the data available in the API for OpenPhish, and the verifi-
cation_time in the data available in the API for PhishTank.

Ratio of Common URLs. As shown in Table 5.12, CrowdCanary’s phish-
ing URLs and OpenPhish URLs have 11,589 URLs in common, CrowdCanary’s
phishing URLs and PhishTank URLs have 9,213 URLs in common, OpenPhish
and PhishTank URLs have 12,748 URLs in common, and all three types of data
have 4,620 URLs in common. We discovered that less than half of the phishing
URLs in each dataset had anything in common, and that the observed targets
differed greatly across them. Especially, among the phishing URLs extracted in-
dependently by CrowdCanary, only 13.4% of the total URLs were listed in both
OpenPhish and PhishTank. This comparison revealed that the phishing URLs
extracted by CrowdCanary had a large amount of unique information that was
not present in other data feeds. In other words, reports of phishing attacks by

71

8283
8000 CrowdCanary

» 7000 OpenPhish
-

% 6000

25000

£

% 4000

ey

23000

o

2000 1700

1000
2989920129 2680 5229 3424 2928 1726 310 9 8 1710 1719 2012 610 9 17 10156

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 >14
Latency [days]

Figure 5.5: Latency Comparison of Phishing URLs in CrowdCanary and Open-
Phish

7128
7000 CrowdCanary

«» 6000 PhishTank
z
> 5000

2
£ 4000
1%

< 3000
kS
4 2000

1000 2
25408 17870 2344 4416 3013 2515 1514 2 6 7 4 156 1510 176 5 6 7 9 94101

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 >14
Latency [days]

0

Figure 5.6: Latency Comparison of Phishing URLs in CrowdCanary and Phish-
Tank

users on Twitter are worth analyzing and extracting, and may be utilized as a
new data feed for countermeasure techniques in the future.

Latency Comparison with OpenPhish. We compared and evaluated 11,589
phishing URLs common to CrowdCanary and OpenPhish. A summary of the
results is shown in Figure 5.5. The x-axis is the difference in latency in days, and
the y-axis is the number of relevant phishing URLs. The blue bars represent the
number of phishing URLs collected faster by CrowdCanary, whereas the orange
bars represent the number of phishing URLs collected faster by OpenPhish. The
number of phishing URLs that were collected faster by CrowdCanary was 9,132,
which was 78.8% of the total common phishing URLs. From Figure 5.5, most
latency differences were less than one day. Because phishing sites have a short
survival time [115], it is possible to improve existing countermeasure techniques
with information from user reports, as the majority of common phishing URLs
were collected earlier by CrowdCanary.

Latency Comparison with PhishTank. We compared and evaluated 9,213
phishing URLs common to CrowdCanary and PhishTank. A summary of the
results is shown in Figure 5.6. The x-axis is the difference in latency in days,
whereas the y-axis is the number of relevant phishing URLs. The blue bars rep-
resent the number of phishing URLs collected faster by CrowdCanary, whereas
the green bars represent the number of phishing URLs collected faster by Phish-
Tank. The number of phishing URLs collected faster by CrowdCanary was 7,853,
which was 85.3% of the total common phishing URLs. From Figure 5.6, we found
that Twitter users more often report information about phishing attacks earlier
than security experts who use PhishTank routinely. These results mean more
users can be protected from phishing attacks by using CrowdCanary information

72

8724

8405

8000

6000
4 5208
o
D
5 4000
#:

2745
2000 1346
998 939 988 w8
486
. s a2 a2 2 22 20 s 2 s
A 4 A 4. 4; .
% @ 9 % TR % P By N R % % %Y
<
Top-level Domains
Figure 5.7: Distribution of Top Level Domains
21414

20000

17500

15000
9]
-
o 12500
)
G 10000
*

7500

5000
2764

2500 Lz
54
0 .--Eﬁ 388 259 259 253 253 219 172 163 160 156 142 111 70 63

I N T I 2 I T R R N I 2!

Locations

Figure 5.8: Distribution of IP Address Locations

as a countermeasure than by referring to PhishTank to detect phishing attacks.

5.7.2 Analysis of Phishing Infrastructure

We analyzed the structure of website infrastructure commonly used by attack-
ers for phishing sites by extracting URL and domain name information using
CrowdCanary. We focused on what trends exist in the web resources (e.g., do-
main names and web servers) that attackers use to deploy phishing sites.

Distribution of Top Level Domains. We aggregated the top level domains
(TLDs) of 34,595 phishing URLs detected by CrowdCanary. The top 20 most
frequently occurring TLDs and the number of URLs are shown in Figure 5.7. In
total, we found 279 TLDs. As shown, the TLD “org”, which was found in the
largest number this time, is often used as a domain name for organizations and
associations. In this case study, 8,591 URLs (98.5%) with a top level domain
of “org” were found to be exploited by “duckdns.org”, a dynamic DNS provider
described in Section 5.6.2. To address this issue, it is essential to collaborate with
the operators of these URLs. The top level domain “com” is the most commonly
registered domain name and was found to be frequently abused by numerous

43 b (14 7

phishing sites in this survey. The following TLDs, “top”, “cn”, “shop”, “cc”,
“icu”, and “xyz”, were reported to have a high rate of abuse [129], and were
shared on Twitter as many phishing attack reports as well. There is a clear
trend in the TLDs that are exploited in phishing attacks, and this information is
valuable in determining maliciousness.

Distribution of IP Addresses Locations. We analyzed the location informa-

tion of IP addresses by querying the GeolP2 database [149]. Out of 34,595 phish-

73

5000

4000

3000

of URLs

2000

1000

594

469 432 417

w
=5
©

343 311 311 298 291

N
@
®
N
@
o

352
0o o v & I P » ©w =z =z © B W B = 0 » @ c
s < @] Z b 3 5 o o <3 = o =z ¥ o § o o 3
5 2 S o 5 a 2 E2
2] Q - = Q. s Q. 3 5] =4 > Q] = Ky] 5
S o 3 = N & > 2 [t<] @ =3 N o [t<] o — [>
E - s 2 2 5 8 5 8 S T § 2 o g &> 9 3 o &
2 z s & > o 2 & s ~ - c m = » o © : e =
o) - o o a aQ o @ v [y @ iy = = = @ 2
L Lt = 9 & = o 4 3 g o . = o e > = @ 2
s » & 3 © ¢ 3 32 I g€ = @ I G § s & - 3 %
°F T 2 & 5 g 2 § © 5 5 = B =2 z ¢z
= = [Il - =3 3 — w
G 3 5 & : o = @ 3 2 2 g = 4 2
< Z = e = c < o > o o4 Iy
@ S S v = Q] 3 @
& o L = o < ¥ 2 3)
= = o) z c =
- [= o v
2 g o < g
g E
wn - _
Ll ~ 2
[a})
= -

Hosting Provider:

[

Figure 5.9: Distribution of Hosting Providers

ing URLs, we were able to analyze 31,385 URLs for which we were able to resolve
names. Figure 5.8 shows the top 20 country codes that occur most frequently,
along with their corresponding number of URLs. In total, there are 63 differ-
ent country codes, and we found that 68.2% of IP addresses were located in the
United States. Although CrowdCanary targeted phishing sites shared between
English and Japanese languages for analysis, the top-ranked English-speaking
countries were predominantly biased toward the United States. In other words,
many phishing site web servers targeting Japanese people were also located in
the United States.

Distribution of Hosting Providers. We analyzed the hosting providers that
manage the aforementioned range of IP addresses. The top 20 most frequently
occurring hosting providers with country codes and the number of URLs are
shown in Figure 5.9. Overall, there were 457 different hosting providers, and 15
of the top 20 were managed by United States organizations. Instead of exploiting
only specific hosting providers, attackers are deploying phishing sites across a
wide range of hosting providers. It is possible to reduce potential victimization
by collaborating with these higher-ranking providers and guiding them towards
taking down the malicious sites.

Distribution of Frequent IP Addresses and Hosting Providers. We an-
alyzed the number of TP addresses linked to unique URLs and their relevance
to hosting providers. We believe that if an attacker deploys a phishing attack
using the same IP address, we can find similar attacks when we detect a single
URL, even if the domain names are different. The hosting providers linked to the
top 20 IP addresses and the number of corresponding URLs are shown in Fig-
ure 5.10. We found that the top 20 IP addresses were managed by eight hosting
providers. In particular, 1,791 and 1,400 phishing URLs were linked to a single IP
address administered by “INTERNAP-BLK (US)” and “LG Uplus Corp (KR)”.

74

1791

1750

1500

1400

1250

1000

of URLs

300 397 390 379

302 298 279 261 261 252 3y

l l . i .]-94 T

250

N = = = w w = = = = = o N = — © = © = _
= w > w = = w o w N w o N > w ©o o w ~ w
~ & o & N N » b © N w = = w N o pH) o ©
= = © > e = © 2 = N =3 S = [N} N © 2 v N ©
& N =3 pr 5 & o ® I o = = =3 PN N = @ @ N IS
pr o 5 = w w = = IS w = S © = 3 o) IN 3 N 5
- = Q = _ = = I ke =
= [@ (a) o [a) [a) IS [v] o)§> =3 [=} > <] @© < = @
Z () o c 9]) c o @ < = 3 ® a] =Y 3] = o
m c 3 5 c c S © a o e Y Q o a = S Q. o E
1] S & o o a <3 ~ = o o =3 = — B o = 3 9 b
E S = c = = c o o] o = P 5 z = g o
= S EA pa E] pa <3 =3 = ~ = = o z 2 o z 2 2z
23 g s 8 9 £ 2 3 £ -2 7 g 2 5
© 9 s 5 5 =2 2 m oDoo2 s T4
= 3 o 3 3 o o Juy = 1] = = I
s Bz -~ 2 2 = 3 T ¢ 3 3 e 5
= = K] 7 ° E 3
2 =8 o o 5 ny 2
! Iy o} 0 a @]
-~ ® & = I a <@
@ - 5 - ‘;)
— [y =
- (g} ~ (g} o
o o e} <
s
e

IP Addresses

Figure 5.10: Distribution of Frequent IP Addresses and Hosting Providers

The three IP addresses (orange bars) managed by “LG Uplus Corp (KR)” have
a total of 2,333 phishing URLs linked to them, indicating that the operators’
anti-phishing site measures are insufficient. These results revealed that attackers
deployed phishing sites using a variety of domain names, but with a bias toward
specific IP addresses. As a criterion for determining whether a site is phishing or
not, information such as IP addresses close in range to those already abused, or
IP addresses managed by the same hosting provider, may be useful.

5.8 Discussion

We describes the potential for using CrowdCanary output information to defend
against phishing attacks, the limitations of CrowdCanary, and ethical considera-
tions of the experimental design.

5.8.1 Utilizing the Intelligence Collected for Phishing Attack Defense

We have demonstrated that CrowdCanary can collect threat intelligence on a
large number of phishing attacks with greater accuracy than existing technologies.
How can this collected intelligence be applied to actual defensive strategies? We
believe that intelligence can be used from two main perspectives.

First, the phishing information collected can add to the intelligence in the
block lists. It has been reported that the spread of phishing attacks does not
end with the first wave of attacks; the second and third waves of attacks are
sometimes spread using the same domain names [150]. By extracting information
about the attack as early as possible, such as during the first wave, and feeding it
into blocklists (e.g., email spam filters), it may be possible to protect users who
may become victims of the second and third waves. It was also reported that

75

among users who receive phishing emails, the average time difference between
the timing of the first user to click on the URL and the last user to click on the
URL is 21 hours [115]. By sharing information with the browser vendor’s block
list during this time difference, the browser can warn the user and protect them
from phishing attacks if they visit the same URL.

Second, the characteristics of phishing attacks contained in the collected in-
formation can be analyzed and used as countermeasure information for similar
attacks that may occur in the future. It has been reported that phishing sites
change domain names frequently, but may continue to be hosted at a particular
IP address [151]. For example, using passive DNS (e.g., Farsight DNSDB [79]),
it is possible to detect attacks early using CrowdCanary intelligence if the A
record of a newly appearing domain name is linked to the same IP address as
a domain name that has been exploited for phishing attacks in the past. In
addition, phishing sites created using phishing toolkits often have the identical
HTML source, images on the site, and scripts [152]. This information can be
useful in techniques such as content-based phishing site detection [153]. In addi-
tion, information about phishing attacks received by many users can be used to
understand trends in company brands being exploited in attacks and to keep an
eye on companies and industries that attackers will be targeting in the future.

5.8.2 Role as a Platform for Threat Information Sharing

As a platform for information sharing, UGC platforms such as Twitter have nu-
merous advantages over closed information reporting channels such as those of
government and academic institutions. First, when a new cyber threat arises, in-
formation may be shared immediately on UGC platforms. By properly discarding
and selecting such information, it is possible to immediately take countermea-
sures. In other words, the real-time exchange of information inherent in UGC
platforms facilitates early response to threats. In addition, because information
from users of various characteristics is gathered, the coverage of threat-related
information is superior. This will allow the entire community to exchange in-
formation on knowledge to counter threats, not just specific organizations or
individuals.

However, because it is an open forum, the threat information shared may
be misinformed or misinterpreted. Moreover, UGC platforms can be a source
of cybersecurity threats themselves, such as phishing attacks and the spread of
malware. Users may expose themselves to threats by clicking on the wrong links
or downloading from unreliable sources. Given these factors, it is extremely im-
portant for users to have appropriate knowledge and the ability to judge whether
their information is reliable or not in order to utilize the information on the UGC
platform.

Threat reporting channels established by specific organizations or companies
have existed for a long time and have contributed significantly to security mea-
sures in the past. These channels provide information that has been confirmed
and verified by experts and is considered reliable. However, delays in providing
and updating information may delay responses to new threats. Therefore, by
using threat information on UGC platforms, whose users have recently increased
and will continue to increase, as a complementary countermeasure, more robust
cybersecurity measures can be taken. It is important for the community to main-
tain incentives and motivation for users of the UGC platform to continue to share
useful threat information in the future.

76

5.8.3 Limitation

Our study has three limitations.

First, our study does not focus on extracting reports only from information
about the final destination of phishing sites that involve user interaction or redi-
rection. For example, some users may only share a screenshot on Twitter with
the URL of the final destination after the entry or redirect occurs. CrowdCanary
cannot properly extract reports in this case because it has no information about
the user’s input or redirection behavior on the browser. In particular, Crowd-
Canary is a system that collects URLs that are the seeds of phishing attacks.
CrowdCanary does not focus on phishing attacks that do not redirect without
an acceptable referrer or can only be reached by clicking. These attacks can
be handled by crawling URLs extracted by CrowdCanary as seeds in existing
researches [140, 147].

Second, the features designed in this paper are chosen to be invariant with
respect to user reporting of phishing attacks. However, the system’s accuracy will
inevitably decrease over time, and the system will need to be relearned each time.
For example, when trends in the appearance of shared images change, or when
phishing sites that look completely different become trending, it is necessary to
reannotate and relearn the classification model. Since we do not believe that
the way users share information on Twitter itself will change significantly, and
accuracy will not drop significantly immediately, evaluating how much accuracy
will decrease as trends change is one of the issues we will address in the future.

Finally, depending on recent Twitter specification changes [154], equivalent
information may no longer be available via the API. Since CrowdCanary is a sys-
tem that extracts phishing attacks based on user reports, if the number of users
using Twitter decreases (i.e., fewer users share phishing reports), the number of
candidate phishing reports will decrease as tweets to be analyzed. Therefore,
both the quantity and quality of threat information related to phishing attacks
extracted by the proposed system will inevitably decline. Any social networking
service that allows users to post photos and text, as popular as Twitter, can be
used as a source of threat intelligence in the same way. In addition, CrowdCa-
nary is adaptable to changes in Twitter because it was designed based on the
characteristics of users sharing information about phishing attacks, rather than
using Twitter-dependent features.

5.8.4 Ethical Consideration

We took into account the ethical considerations of collecting data from Twitter
on a large scale. Although the collection and analysis targets contain massive
amounts of information about Twitter accounts, the content of their tweets is
public. In other words, since both expert and non-expert reports are shared with
other users in public webspace for the purpose of alerting them, our experiment
did not violate their intended use. Then, we believe there is no ethical issue
because we did not take any actions that directly harmed users (e.g., actions on
victims’ email addresses or Twitter accounts).

We used common open source tools to collect data from Twitter at scale
and send requests accordingly. We conducted the experiments according to the
best practices of related research on Twitter’s usage guidelines, minimizing the
influence on the platform. In this experiment, we sent only 40 requests to Twit-
ter (20 Security Keywords + 20 Co-occurrence keywords) per hour in English
and Japanese. Therefore, we believe that the availability of the platform was

77

unaffected.

5.9 Related Work

We describe the related research on identifying malicious tweets and generating
threat intelligence from Twitter.

Identification of “Malicious” Tweets. Numerous studies [53, 155, 71, 54, 67|
have analyzed phishing attacks that direct users to external malicious sites from
Twitter. Gao et al. proposed a system that can detect malicious posts in real
time using features common to Twitter and Facebook, such as user connections
and the number of characters in a post [52]. These studies analyze only malicious
tweets (i.e., those distributed by attackers with malicious intent). However, our
study extracts benign tweets (i.e., shared by users with good intentions), and the
information in the benign tweets, such as URLs or domain names, is phishing
information; thus, the analysis targets are completely different.

Threat Intelligence Extraction from Twitter. Research on threat intel-
ligence generation using Twitter information has been conducted from various
perspectives [101, 156, 102, 103, 104]. Shin et al. proposed a system to extract
four types of information from a text on Twitter and external blogs: URLs,
domain names, IP addresses, and hash values related to cyberattacks [103]. It
has been demonstrated that the proposed system can detect threats, especially
malware-related threats, earlier than other threat intelligence systems. Roy et al.
focused on defanging and phishing attack-related hashtag strings, extracted in-
formation about phishing attacks from Twitter, and analyzed the characteristics
of the accounts posting information [128]. It has been shown that information
that interacts with other accounts, such as replies and retweets to the information
posted on Twitter, is reflected more quickly in the block list. Unlike our studies,
tweets were collected from security experts by account names or limited keywords;
thus, only limited information on Twitter was analyzed.

5.10 Conclusion

This paper proposed CrowdCanary, a system that harvests phishing informa-
tion from tweets of users who have discovered or encountered phishing attacks.
The results suggest that reports from infrequent contributors (i.e., non-experts)
contain a lot of valuable information for countering phishing attacks that is not
included in the information posted by security experts. In addition, we identified
tendencies in the domain names and hosting providers to which phishing sites
were actually deployed, and indicated characteristics that are useful for detecting
new phishing sites. Since this research showed the usefulness of information about
new observation points on Twitter, we are ready to operate CrowdCanary in the
future and to provide the data obtained to the national CSIRTs. We hope that
the findings of this paper will be useful for future researches and countermeasure
developments. We plan to share anonymized sample datasets with interested
researchers upon request at https://crowdcanary.github.io/.

78

https://crowdcanary.github.io/

Chapter 6

Conclusion and Future Work

6.1 Conclusion

With the spread of UGC, it has become easier for anyone to disseminate infor-
mation in today’s society. Because UGC allows individuals and communities to
freely communicate their opinions and knowledge, the expertise and credibility
of information providers are often uncertain, and there is a risk of spreading
misinformation and prejudice. On the other hand, by selecting information and
making good use of UGC, individuals can quickly obtain useful information of
interest to them, and companies can use customer contributions to improve their
products and services. This thesis investigates and analyzes the impact of these
UGC in cybersecurity.

In Chapter 2, we categorized the platforms into five types based on the char-
acteristics of UGC and organized them with actual services. We also discussed
what kind of security threats may occur on those platforms and what kind of ap-
proaches have been analyzed and investigated in existing studies. Then, in order
to investigate the impact of UGC on cybersecurity, we summarized the current
situation that has not been clarified by existing studies and the issues that arise
in clarifying them, and discussed what we will address in this thesis.

In Chapter 3, we investigated the vulnerabilities hidden in the content shared
by ordinary users on the Q&A website. For this purpose, we proposed a method
to identify the same code by calculating the similarity between code snippets,
which are fragments of source code that exist on the web, and bytecode in apps.
Using the proposed method, we conducted a investigation of the actual situation
by matching the source code on Stack Overflow, a website used by many users
when developing applications, with the code in the Android application. As a
result, we found that the vulnerabilities in some Android applications used by a
large number of users were caused by the source code. Developers were not able
to select and discard appropriate information, and UGC had a negative impact
on the actual apps.

In Chapter 4, we investigated the activity of fake accounts created by attackers
on multiple UGC platforms. To this end, we defined an attack that directs a
large number of users to a malicious site in the context of a notable event, and
proposed a method to detect such attacks with high accuracy. Using the proposed
method, we conducted a comprehensive study of attacks across four prominent
UGC platforms: Twitter, Facebook, YouTube, and Reddit. The results revealed
that the same group of attackers directs users from multiple UGC platforms to
malicious sites for social engineering attacks targeting prominent events such as
the World Cup. UGC by attackers on prominent UGC platforms had a negative
impact on a large number of users.

79

In Chapter 5, we evaluated the usefulness of information about phishing at-
tacks shared on a social networking service. For this purpose, we proposed a
system to extract reports of attacks shared by well-meaning users in addition
to security experts from a large set of tweets. The proposed system detected a
large number of threat information on Twitter, and it was found that most of
these information were shared by well-meaning users. The system was also able
to extract the information more quickly than existing anti-phishing technologies.

6.2 The Future of UGC Platforms

UGC platforms are having a major impact on the way information is distributed.
These platforms have become places where the general public becomes a source
of information and where a wide range of perspectives and opinions are shared.
Recent technological advances have had a significant impact on the shape and
function of UGC platforms. In particular, the proliferation of mobile devices
and advances in Al technology have played a major role in platform transitions.
The proliferation of mobile devices has enabled users to create and share content
anytime and anywhere, resulting in the rapid adoption of short text and video
sharing platforms. Meanwhile, advances in Al technology have enabled personal-
ized content recommendations based on user preferences, contributing to a better
user experience.

However, these advancements bring with them new security threats. Due to
the nature of the content that users can freely create and share, the spread of
misinformation and false information is inevitable. Leakage of personal informa-
tion, invasion of privacy, and posting of inappropriate content are also serious
problems. To address these threats, platforms need to take appropriate mea-
sures, such as filtering content using Al and machine learning, monitoring user
behavior, and strengthening systems for reporting and removing inappropriate
content. At the same time, it is important for users themselves to learn how to
defend themselves.

In addition, legal and regulatory measures are also required. For example, reg-
ulations such as Europe’s GDPR (General Data Protection Regulation) have been
enacted in many countries to strengthen the protection of personal information.
However, on the other hand, this may also impede the free flow of information,
thus an appropriate balance must be struck. This shows the tension between in-
formation accessibility and privacy protection. Therefore, the evolution of UGC
platforms and countermeasures against the security threats associated with them
is an issue that requires a multifaceted approach. In addition to technical mea-
sures, legal regulations and user education are also important factors. And these
measures should aim to maintain an appropriate balance between the free distri-
bution of information and the protection of personal privacy.

6.3 Future Work

This thesis investigated and analyzed the impact of UGC on cybersecurity. We
investigated several scenarios in which cybersecurity threats could be generated
by UGC in the real world, and found that it affects a large number of users.
We also evaluated the use of cybersecurity countermeasure technologies for UGC
and found that UGC can contribute to the development of future countermeasure
technologies for attacks, as it can extract a range of information that is not cov-
ered by existing technologies. Based on this research, we would like to collaborate
with platform operators to develop countermeasures against malicious activities

80

of attackers on UGC platforms, which are currently insufficient. Furthermore, we
would like to contribute to the development of countermeasure technologies in
cooperation with security vendors by routinely collecting information necessary
to incorporate into actual countermeasure technologies.

81

Acknowledgements

First, I would like to express my sincere gratitude to my supervisor, Professor
Tsutomu Matsumoto, for his tremendous support, suggestions, and encourage-
ment throughout my research. In particular, I learned a great deal from the
advice from a broad perspective, looking at the overall research and the future.
His insights and valuable suggestions on my research have been a great encour-
agement and inspiration to me in my research pursuits. I am extremely grateful
to Professor Katsunari Yoshioka for teaching me how to conduct research and
write academic papers. I am also grateful for the support and guidance I have
received not only in research but also in job hunting and daily life over a total
of six years since I was assigned to the laboratory as an undergraduate student.
Without his help, I would not have been able to complete my dissertation. I
also gratefully acknowledge Professor Junji Shikata whose insightful comments
and advice significantly contributed to improving my dissertation. I appreciate
many comments from the viewpoint of cryptology, which will lead to the further
development of my research. I would like to thank Professor Tatsunori Mori and
Associate Professor Shinichi Shirakawa for serving on my dissertation committee.
Thank you very much for the valuable feedback on my research from the perspec-
tive of an expert in two different research fields, natural language processing and
machine learning.

Next, I would also like to express my sincere gratitude to Dr. Daiki Chiba,
Dr. Takashi Koide, Dr. Fumihiro Kanai, Dr. Yuta Takata, Mr. Naoki Fukushi,
Dr. Mitsuaki Akiyama, Dr. Takeshi Yagi, Mr. Takeo Hariu and my colleagues
at my former organization NTT Secure Platform Laboratories and NT'T Security
(Japan) KK for fruitful discussions, insightful comments, and a beneficial work
environment. I am grateful to Dr. Daiki Chiba for being my mentor since I joined
NTT Secure Platform Laboratories, giving me advice not only in my research but
also in my company life. Furthermore, I would like to thank him for leading me
as a team leader after I moved to NTT Security (Japan) KK. Likewise, I am
thankful to Dr. Takashi Koide for supporting my doctoral course from a close
perspective as a senior student from the same Yoshioka Laboratory at Yokohama
National University. I am also indebted to members of the Matsumoto Labora-
tory, especially Ms. Mio Narimatsu and Ms. Tomoko Ishidate. The assistance
with paperwork for the thesis submission and with materials and preparation for
the dissertation hearings was very helpful. T am also grateful to Dr. Rui Tan-
abe, Dr. Akira Fujita, and Mr. Hiroshi Mori, my seniors in the laboratory, for
their research instruction and mental support from the time I was assigned to
the laboratory, which continues to be very supportive. I would like to thank all
my friends who accompanied me to play games or go out for drinks when I was
tired from my research.

Finally, I would like to thank my family. Thanks to the support of my older
brothers (Mr. Fumiki, Mr. Yuki, Mr. Masaki, and Mr. Naoki), I was able to
complete my doctoral course and I am very thankful. My parents, Mr. Goro

82

and Ms. Fujiko, have given me a lot of trouble since I was preparing for the
university entrance examination, but they have taken care of me and I was able
to graduate from the doctoral course without any problems. Thank you very
much. The person I would like to thank the most is my wife, Ms. Miho, who has
been closest to me throughout my bachelor’s thesis, master’s thesis, and doctoral
dissertation, and without her support, I could not have completed them all. Also,
thanks to the presence of my unborn son, Mr. Haruto, I was able to do my best
every day, thank you very much. I appreciate that my beloved cats, Mr. Ren
and Ms. Kiki, gave me a lot of comfort by sleeping and playing with me every
day. I am grateful to everyone who got involved.

83

List of Publications

Reviewed Papers in Journals

e Hiroki Nakano, Daiki Chiba, Takashi Koide, Naoki Fukushi, Takeshi
Yagi, Takeo Hariu, Katsunari Yoshioka and Tsutomu Matsumoto, “Un-
derstanding Phishing Reports from Experts and Non-experts on Twitter,”
IEICE Transactions on Information and Systems, Vol.E107-D, No.17, 2024.

e Naoki Fukushi, Takashi Koide, Daiki Chiba, Hiroki Nakano and Mit-
suaki Akiyama, “Understanding Security Risks of Ad-Based URL Shorten-
ing Services Caused by Users’ Behaviors,” Journal of Information Process-
ing, Vol.30, 2022.

e Hiroki Nakano, Daiki Chiba, Takashi Koide, Mitsuaki Akiyama, Kat-
sunari Yoshioka and Tsutomu Matsumoto, “Exploring Event-synced Navi-
gation Attacks across User-generated Content Platforms in the Wild,” Jour-
nal of Information Processing, Vol.30, 2022.

e Hiroki Nakano, Fumihiro Kanei, Yuta Takata, Mitsuaki Akiyama and
Katsunari Yoshioka, “Towards Finding Code Snippets on a Question and
Answer Website Causing Mobile App Vulnerabilities,” IEICE Transactions
on Information and Systems, Vol.E101-D, No.11, 2018.

Reviewed Papers in International Conference Proceedings

e Naoki Fukushi, Toshiki Shibahara, Hiroki Nakano, Takashi Koide and
Daiki Chiba “Noisy Label Detection for Multi-labeled Malware,” TEEE
Consumer Communications & Networking Conference (CCNC 2024), 2024.

e Takashi Koide, Naoki Fukushi, Hiroki Nakano and Daiki Chiba “PhishRepli-
cant: A Language Model-based Approach to Detect Generated Squatting

Domain Names,” The 39th Annual Computer Security Applications Con-
ference (ACSAC 2023), 2023.

e Hiroki Nakano, Daiki Chiba, Takashi Koide, Naoki Fukushi, Takeshi
Yagi, Takeo Hariu, Katsunari Yoshioka and Tsutomu Matsumoto, “Ca-
nary in Twitter Mine: Collecting Phishing Reports from Experts and Non-
experts,” Proc. The 18th International Conference on Availability, Relia-
bility and Security (ARES 2023), 2023.

e Naoki Fukushi, Takashi Koide, Daiki Chiba, Hiroki Nakano and Mitsuaki
Akiyama, “Analyzing Security Risks of Ad-Based URL Shortening Services
Caused by Users’ Behaviors,” The 17th EAI International Conference,
SecureComm 2021 (SecureComm 2021), 2021.

84

e Hiroki Nakano, Daiki Chiba, Takashi Koide and Mitsuaki Akiyama, “De-
tecting Event-synced Navigation Attacks across User-generated Content

Platforms,” IEEE 45th Annual Computers, Software, and Applications
Conference (COMPSAC 2021), 2021.

e Yosuke Kikuchi, Hiroshi Mori, Hiroki Nakano, Katsunari Yoshioka, Tsu-
tomu Matsumoto and Michel van Eeten, “Evaluating Malware Mitigation
by Android Market Operators,” The 9th USENIX Workshop on Cyber Se-
curity Experimentation and Test (USENIX CSET 2016), 2016.

Reviewed Poster in International Conference

e Hiroki Nakano, Daiki Chiba, Takashi Koide and Mitsuaki Akiyama, “Find-
ing Social Engineering Attacks across User-generated Content Platforms,”
The 22th USENIX Security Symposium (USENIX Security 2019), Poster
session, 2019.

Technical Reports

o AREy JAIK, REF Sh, BRI ALAE, STh sk, IR #, “ZHD 2 —% D Web
7720 ZHhBRRANEEY A Pl 3 FE) BRLEYRa v
Va—&XtXal7 4RIV L2017, 2017.

o FEF BAEH, ©&H X, Bl #EHE, S WK, “Android 7 7V OMaggME &
Q&A ¥4 b Epa—Fr=xy b OBEEMEO S, B EREEYREHR
AT A F 2 YT 4 BI%EA vol. IEICE-116, no. 522, pp. 171 - 176, 2017
(B 2T LEF 1) FHEE).

o SREF 3L, B3 T, 7 MG, H A, KA B, %y F 2 ZH—ERITKD
R XNz 7 7) OEIPHFIFEE AV Android ¥ —4 v+ OSAEHRR,”
TG (32 AR 1055201626, pp. 71-76, 2016.

85

References

[1]

Number of worldwide social network users 2027 — statista. https://www.
statista.com/statistics/278414/number-of-worldwide-social-net
work-users/.

Anna Maria Jonsson and Henrik Ornebring. User-generated content and
the news. Journalism Practice, 5(2):127-144, 2011.

Oberiri Destiny Apuke and Bahiyah Omar. Fake news and COVID-19:
modelling the predictors of fake news sharing among social media users.
Telematics Informatics, 56:101475, 2021.

Parth Patwa, Shivam Sharma, Srinivas PYKL, Vineeth Guptha, Gitan-
jali Kumari, Md. Shad Akhtar, Asif Ekbal, Amitava Das, and Tan-
moy Chakraborty. Fighting an infodemic: COVID-19 fake news dataset.
In Tanmoy Chakraborty, Kai Shu, H. Russell Bernard, Huan Liu, and
Md. Shad Akhtar, editors, Combating Online Hostile Posts in Regional
Languages during Emergency Situation - First International Workshop,
CONSTRAINT 2021, Collocated with AAAI 2021, Virtual Event, Febru-
ary 8, 2021, Revised Selected Papers, volume 1402 of Communications in
Computer and Information Science, pages 21-29. Springer, 2021.

Katharine Sarikakis, Claudia Krug, and Joan Ramon Rodriguez-Amat.
Defining authorship in user-generated content: Copyright struggles in The
Game of Thrones. New Media Soc., 19(4):542-559, 2017.

Share a coke: The groundbreaking campaign from ’down under’. https:
//www.coca-colacompany.com/au/news/share-a-coke-how-the-groun
dbreaking-campaign-got-its-start-down-under.

Apple unveils the best photos from the shot on iphone macro challenge -
apple. https://www.apple.com/newsroom/2022/04/apple-unveils-the
-best-photos-from-the-shot-on-iphone-macro-challenge/.

Starbucks: White cup contest — storybox. https://storybox.io/blog
/2017/7/25/tourism-queensland-best-job-in-the-world-z3csp.

Kurt Thomas, Damon McCoy, Chris Grier, Alek Kolcz, and Vern Paxson.
Trafficking fraudulent accounts: The role of the underground market in
twitter spam and abuse. In Samuel T. King, editor, Proceedings of the 22th
USENIX Security Symposium, Washington, DC, USA, August 14-16, 2013,
pages 195-210. USENIX Association, 2013.

Md. Sazzadur Rahman, Ting-Kai Huang, Harsha V. Madhyastha, and
Michalis Faloutsos. Efficient and scalable socware detection in online social
networks. In Tadayoshi Kohno, editor, Proceedings of the 21th USENIX Se-
curity Symposium, Bellevue, WA, USA, August 8-10, 2012, pages 663-678.
USENIX Association, 2012.

86

https://www.statista.com/statistics/278414/number-of-worldwide-social-network-users/
https://www.statista.com/statistics/278414/number-of-worldwide-social-network-users/
https://www.statista.com/statistics/278414/number-of-worldwide-social-network-users/
https://www.coca-colacompany.com/au/news/share-a-coke-how-the-groundbreaking-campaign-got-its-start-down-under
https://www.coca-colacompany.com/au/news/share-a-coke-how-the-groundbreaking-campaign-got-its-start-down-under
https://www.coca-colacompany.com/au/news/share-a-coke-how-the-groundbreaking-campaign-got-its-start-down-under
https://www.apple.com/newsroom/2022/04/apple-unveils-the-best-photos-from-the-shot-on-iphone-macro-challenge/
https://www.apple.com/newsroom/2022/04/apple-unveils-the-best-photos-from-the-shot-on-iphone-macro-challenge/
https://storybox.io/blog/2017/7/25/tourism-queensland-best-job-in-the-world-z3csp
https://storybox.io/blog/2017/7/25/tourism-queensland-best-job-in-the-world-z3csp

[11]

[12]

[16]

[17]

Tulio C. Alberto, Johannes V. Lochter, and Tiago A. Almeida. Tubespam:
Comment spam filtering on youtube. In Tao Li, Lukasz A. Kurgan, Vasile
Palade, Randy Goebel, Andreas Holzinger, Karin Verspoor, and M. Arif
Wani, editors, 14th IEEE International Conference on Machine Learning
and Applications, ICMLA 2015, Miami, FL, USA, December 9-11, 2015,
pages 138-143. IEEE, 2015.

Dhruv Kuchhal and Frank Li. A view into youtube view fraud. In
Frédérique Laforest, Raphaél Troncy, Elena Simperl, Deepak Agarwal, Aris-
tides Gionis, Ivan Herman, and Lionel Médini, editors, WWW ’22: The
ACM Web Conference 2022, Virtual Event, Lyon, France, April 25 - 29,
2022, pages 555-563. ACM, 2022.

Felix Fischer, Huang Xiao, Ching-yu Kao, Yannick Stachelscheid, Ben-
jamin Johnson, Danial Razar, Paul Fawkesley, Nat Buckley, Konstantin
Bottinger, Paul Muntean, and Jens Grossklags. Stack overflow considered
helpful! deep learning security nudges towards stronger cryptography. In
Nadia Heninger and Patrick Traynor, editors, 28th USENIX Security Sym-
posium, USENIX Security 2019, Santa Clara, CA, USA, August 14-16,
2019, pages 339-356. USENIX Association, 2019.

Eshwar Chandrasekharan, Mattia Samory, Shagun Jhaver, Hunter Char-
vat, Amy S. Bruckman, Cliff Lampe, Jacob Eisenstein, and Eric Gilbert.
The internet’s hidden rules: An empirical study of reddit norm violations
at micro, meso, and macro scales. Proc. ACM Hum. Comput. Interact.,
2(CSCW):32:1-32:25, 2018.

Malwarebytes Labs. Malvertising on blogspot: Scams, adult content, and
exploit kits, 2023. https://www.malwarebytes.com/blog/news/2016/05
/malvertising-on-blogspot-scams-adult-content-and-exploit-kit
S.

Revengerat distributed via bit.ly, blogspot, and pastebin ¢2 infrastructure,
2023. https://www.bleepingcomputer.com/news/security/revengera
t-distributed-via-bitly-blogspot-and-pastebin-c2-infrastruct
ure/.

Arjun Mukherjee, Vivek Venkataraman, Bing Liu, and Natalie S. Glance.
What yelp fake review filter might be doing? In Emre Kiciman, Nicole B.
Ellison, Bernie Hogan, Paul Resnick, and Ian Soboroff, editors, Proceed-
ings of the Seventh International Conference on Weblogs and Social Me-
dia, ICWSM 2013, Cambridge, Massachusetts, USA, July 8-11, 2013. The
AAAI Press, 2013.

Himangshu Paul and Alexander G. Nikolaev. Fake review detection on
online e-commerce platforms: a systematic literature review. Data Min.
Knowl. Discov., 35(5):1830-1881, 2021.

Google Play. https://play.google.com/store.

How to address WebView SSL Error Handler alerts in your apps. - Google
Help. https://support.google.com/faqs/answer/7071387.

How to resolve Insecure Hostnameverifier - Google Help. https://suppor
t.google.com/faqs/answer/7188426.

87

https://www.malwarebytes.com/blog/news/2016/05/malvertising-on-blogspot-scams-adult-content-and-exploit-kits
https://www.malwarebytes.com/blog/news/2016/05/malvertising-on-blogspot-scams-adult-content-and-exploit-kits
https://www.malwarebytes.com/blog/news/2016/05/malvertising-on-blogspot-scams-adult-content-and-exploit-kits
https://www.bleepingcomputer.com/news/security/revengerat-distributed-via-bitly-blogspot-and-pastebin-c2-infrastructure/
https://www.bleepingcomputer.com/news/security/revengerat-distributed-via-bitly-blogspot-and-pastebin-c2-infrastructure/
https://www.bleepingcomputer.com/news/security/revengerat-distributed-via-bitly-blogspot-and-pastebin-c2-infrastructure/
https://play.google.com/store
https://support.google.com/faqs/answer/7071387
https://support.google.com/faqs/answer/7188426
https://support.google.com/faqs/answer/7188426

[22]

[23]

[24]

[25]

[33]

How to address OpenSSL vulnerabilities in your apps - Google Help. https:
//support.google.com/faqs/answer/6376725.

Vulnerable apps on Google Play put millions of users at risk of an attack.
https://www.digitaltrends.com/mobile/google-play-open-port-attacks/.

Over 400 Apps On Google’s Play Store Found To Be Vulnerable To Open
Port Attacks. http://www.ibtimes.com/over-400-apps-googles-play-store-
found-be-vulnerable-open-port-attacks-2534541.

Google launched a new bug bounty program to root out wvul-
nerabilities in third-party apps on Google Play - The Verge.
https://www.theverge.com/2017/10/22/16516670/google-play-security-
rewards-program-vulnerabilities-bug-bounty.

Stack Overflow - Where Developers Learn, Share, & Build Careers. http:
//stackoveflow.com/.

Mobile Operating System Market Share Worldwide — Statcounter Global
Stats. https://gs.statcounter.com/os-market-share /mobile/worldwide.

Projects/OWASP Mobile Security Project - Top Ten Mobile Risks -
OWASP. https://www.owasp.org/index.php/Projects/0WASP_Mob
ile_Security_Project_-_Top_Ten_Mobile_Risks.

Github - Androbugs. https://github.com/AndroBugs/AndroBugs_Fra
mework.

Qihoo 360 Mobile Assistant. http://zhushou.360.cn/.

Google play unofficial python api. https://github.com/egirault/googleplay-
api.

Sascha Fahl, Marian Harbach, Thomas Muders, Lars Baumgartner, Bernd
Freisleben, and Matthew Smith. Why eve and mallory love android: An
analysis of android ssl (in) security. In Proceedings of the 2012 ACM confer-
ence on Computer and communications security, pages 50-61. ACM, 2012.

Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher
Kruegel. An empirical study of cryptographic misuse in android appli-
cations. In Proceedings of the 2013 ACM SIGSAC conference on Computer
& communications security, pages 73-84. ACM, 2013.

Ryoya Furukawa, Tatsuya Nagai, Hiroshi Kumagai, Masaki Kamizono,
Yoshiaki Shiraishi, Yasuhiro Takano, Masami Mohri, Yuji Hoshizawa, and
Masakatu Morii. A vulnerability analysis of android applications from the
view of third-party-libraries. In IPSJ Journal, volume 58, pages 1843-1855,
2017.

Yasemin Acar, Michael Backes, Sascha Fahl, Doowon Kim, Michelle L
Mazurek, and Christian Stransky. You get where you're looking for: The
impact of information sources on code security. In Security and Privacy
(SP), 2016 IEEE Symposium on, pages 289-305. IEEE, 2016.

Haoyu Wang, Zhe Liu, Yao Guo, Xiangqun Chen, Miao Zhang, Guoai
Xu, and Jason Hong. An explorative study of the mobile app ecosystem
from app developers’ perspective. In Proceedings of the 26th International

88

https://support.google.com/faqs/answer/6376725
https://support.google.com/faqs/answer/6376725
http://stackoveflow.com/
http://stackoveflow.com/
https://www.owasp.org/index.php/Projects/OWASP_Mobile_Security_Project_-_Top_Ten_Mobile_Risks
https://www.owasp.org/index.php/Projects/OWASP_Mobile_Security_Project_-_Top_Ten_Mobile_Risks
https://github.com/AndroBugs/AndroBugs_Framework
https://github.com/AndroBugs/AndroBugs_Framework
http://zhushou.360.cn/

[37]

[39]

[40]

[41]

[42]

[44]

Conference on World Wide Web, pages 163-172. International World Wide
Web Conferences Steering Committee, 2017.

Kai Chen, Peng Liu, and Yingjun Zhang. Achieving accuracy and scalabil-
ity simultaneously in detecting application clones on android markets. In
Proceedings of the 36th International Conference on Software Engineering,
pages 175-186. ACM, 2014.

Jonathan Crussell, Clint Gibler, and Hao Chen. Attack of the clones: De-
tecting cloned applications on android markets. In ESORICS, volume 12,
pages 37-54. Springer, 2012.

Jonathan Crussell, Clint Gibler, and Hao Chen. Andarwin: Scalable detec-
tion of semantically similar android applications. In European Symposium
on Research in Computer Security, pages 182—199. Springer, 2013.

Iman Keivanloo, Chanchal K Roy, and Juergen Rilling. Sebyte: Scalable
clone and similarity search for bytecode. Science of Computer Program-
ming, 95:426-444, 2014.

Steve Hanna, Ling Huang, Edward Wu, Saung Li, Charles Chen, and Dawn
Song. Juxtapp: A scalable system for detecting code reuse among android
applications. In International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment, pages 62-81. Springer, 2012.

Wu Zhou, Yajin Zhou, Michael Grace, Xuxian Jiang, and Shihong Zou.
Fast, scalable detection of piggybacked mobile applications. In Proceedings
of the third ACM conference on Data and application security and privacy,
pages 185-196. ACM, 2013.

Yuli Liu, Yiqun Liu, Ke Zhou, Min Zhang, and Shaoping Ma. Detecting
collusive spamming activities in community question answering. In Pro-
ceedings of the 26th International Conference on World Wide Web, pages
1073-1082. International World Wide Web Conferences Steering Commit-
tee, 2017.

Felix Fischer, Konstantin B "¢3" "b6ttinger, Huang Xiao, Christian Stran-
sky, Yasemin Acar, Michael Backes, and Sascha Fahl. Stack overflow con-
sidered harmful? the impact of copy&paste on android application security.
In 88th IEEE Symposium on Security and Privacy (SE6P ’17), 2017.

DATAREPORTAL. Digital 2020: Global digital overview. https://da
tareportal.com/reports/digital-2020-global-digital-overview,
2020.

John Seymour and Philip Tully. Weaponizing data science for social engi-
neering: Automated e2e spear phishing on twitter. In Black Hat USA 37,
pages 1-39, August 3-4 2016.

Terry Nelms and Roberto Perdisci. Webwitness: Investigating, catego-
rizing, and mitigating malware download paths. In Proceedings of the
24th USENIX Security Symposium (USENIX Security), pages 1025-1040.
USENIX Association, August 12-14 2015.

Amin Kharraz, William Robertson, and Engin Kirda. Surveylance: Auto-
matically detecting online survey scams. In IEFEE Symposium on Security
and Privacy (SP), pages 70-86. IEEE, May 21-23 2018.

89

https://datareportal.com/reports/digital-2020-global-digital-overview
https://datareportal.com/reports/digital-2020-global-digital-overview

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[58]

Najmeh Miramirkhani, Oleksii Starov, and Nick Nikiforakis. Dial one for
scam: A large-scale analysis of technical support scams. In Proceedings
of the 24th Network and Distributed System Security Symposium (NDSS).
The Internet Society, February 26 - March 1 2017.

Kaspersky. Spam and phishing in q1 2019 — securelist. https://secure
list.com/spam-and-phishing-in-q1-2019/90795/, 2019.

Fortinet. Free rugby world cup streaming service can be a foul play. https:
//www.fortinet.com/blog/threat-research/free-rugby-world-cup
-streaming-foul-play.html, 2019.

Hongyu Gao, Yan Chen, Kathy Lee, Diana Palsetia, and Alok N Choud-
hary. Towards online spam filtering in social networks. In Proceedings of the
19th Annual Network and Distributed System Security Symposium (NDSS),
pages 1-16. The Internet Society, February 5-8 2012.

Sangho Lee and Jong Kim. Warningbird: Detecting suspicious urls in
twitter stream. In Proceedings of the 19th Network and Distributed System
Security Symposium (NDSS). The Internet Society, February 5-8 2012.

Kurt Thomas, Chris Grier, Dawn Song, and Vern Paxson. Suspended ac-
counts in retrospect: an analysis of twitter spam. In Proceedings of the
11th ACM SIGCOMM conference on Internet measurement (IMC), pages
243-258. ACM, July 23-29 2011.

Chris Grier, Kurt Thomas, Vern Paxson, and Michael Zhang. @ spam: the
underground on 140 characters or less. In Proceedings of the 17th ACM
conference on Computer and communications security (CCS), pages 27-37.

ACM, October 4-8 2010.

Kurt Thomas, Damon McCoy, and Chris Grier. Trafficking fraudulent
accounts: The role of the underground market in twitter spam and abuse. In
Proceedings of the 22nd USENIX Security Symposium (USENIX Security),
pages 195-210. USENIX Association, August 14-16 2013.

Enrico Mariconti, Jeremiah Onaolapo, Syed Sharique Ahmad, Nicolas Niki-
forou, Manuel Egele, Nick Nikiforakis, and Gianluca Stringhini. What’s in a
name?: Understanding profile name reuse on twitter. In Proceedings of the
26th International Conference on World Wide Web (WWW), pages 1161
1170. The International World Wide Web Conference Committee, April 3-7
2017.

Payas Gupta, Roberto Perdisci, and Mustaque Ahamad. Towards measur-
ing the role of phone numbers in twitter-advertised spam. In Proceedings of
the 2018 on Asia Conference on Computer and Communications Security

(AsiaCCS), pages 285-296. ACM, June 4-8 2018.

Hongyu Gao, Jun Hu, Christo Wilson, Zhichun Li, Yan Chen, and Ben Y
Zhao. Detecting and characterizing social spam campaigns. In Proceedings
of the 10th ACM SIGCOMM conference on Internet measurement (IMC),
pages 35—47. ACM, July 24-30 2010.

Gianluca Stringhini, Pierre Mourlanne, Gregoire Jacob, Manuel Egele,
Christopher Kruegel, and Giovanni Vigna. Evilcohort: detecting commu-
nities of malicious accounts on online services. In Proceedings of the 24th

90

https://securelist.com/spam-and-phishing-in-q1-2019/90795/
https://securelist.com/spam-and-phishing-in-q1-2019/90795/
https://www.fortinet.com/blog/threat-research/free-rugby-world-cup-streaming-foul-play.html
https://www.fortinet.com/blog/threat-research/free-rugby-world-cup-streaming-foul-play.html
https://www.fortinet.com/blog/threat-research/free-rugby-world-cup-streaming-foul-play.html

[63]

[64]

[65]

[66]

[69]

USENIX Security Symposium (USENIX Security), pages 563-578. USENIX
Association, August 12-14 2015.

Bimal Viswanath, Muhammad Ahmad Bashir, Mark Crovella, Saikat Guha,
and Krishna P Gummadi. Towards detecting anomalous user behavior in
online social networks. In Proceedings of the 23rd USENIX Security Sym-
posium (USENIX Security), pages 223-238. USENIX Association, August
20-22 2014.

Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. What is
twitter, a social network or a news media? In Proceedings of the 19th in-
ternational conference on World wide web (WWW), pages 591-600. ACM,
April 26-30 2010.

Gianluca Stringhini, Christopher Kruegel, and Giovanni Vigna. Detecting
spammers on social networks. In Proceedings of the 26th annual computer
security applications conference (ACSAC), pages 1-9. ACM, December 6-7
2010.

Chao Yang, Robert Harkreader, Jialong Zhang, Seungwon Shin, and Guofei
Gu. Analyzing spammers’ social networks for fun and profit: a case study of
cyber criminal ecosystem on twitter. In Proceedings of the 21st international
conference on World Wide Web (WWW), pages 71-80. ACM, April 16-20
2012.

Md Sazzadur Rahman, Ting-Kai Huang, Harsha V Madhyastha, and
Michalis Faloutsos. Efficient and scalable socware detection in online so-
cial networks. In Proceedings of the 21st USENIX Security Symposium
(USENIX Security), pages 663—678. USENIX Association, August 8-10
2012.

Hongyu Gao, Yi Yang, Kai Bu, Yan Chen, Doug Downey, Kathy Lee, and
Alok Choudhary. Spam ain’t as diverse as it seems: throttling osn spam
with templates underneath. In Proceedings of the 30th Annual Computer
Security Applications Conference (ACSAC), pages 76-85. ACM, December
8-12 2014.

Hiroki Nakano, Daiki Chiba, Takashi Koide, and Mitsuaki Akiyama. De-
tecting event-synced navigation attacks across user-generated content plat-
forms. In Intelligent and Resilient Computing for a Collaborative World
45th Anniversary Conference (COMPSAC). IEEE, July 12-16 2021.

Luca Invernizzi, Paolo Milani Comparetti, Stefano Benvenuti, Christopher
Kruegel, Marco Cova, and Giovanni Vigna. Evilseed: A guided approach to
finding malicious web pages. In IEEE Symposium on Security and Privacy
(SP), pages 428-442. IEEE, May 20-23 2012.

Bharat Srinivasan, Athanasios Kountouras, Najmeh Miramirkhani, Monjur
Alam, Nick Nikiforakis, Manos Antonakakis, and Mustaque Ahamad. Ex-
posing search and advertisement abuse tactics and infrastructure of techni-
cal support scammers. In Proceedings of the 27th International Conference
on World Wide Web (WWW), pages 319-328. The International World
Wide Web Conference Committee, April 23-27 2018.

91

[70]

[71]

[72]

[77]

[78]

Matteo Pagliardini, Prakhar Gupta, and Martin Jaggi. Unsupervised learn-
ing of sentence embeddings using compositional n-gram features. In Pro-
ceedings of the 2018 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies
(NAACL), pages 528-540. Association for Computational Linguistics, June
1-6 2018.

Srishti Gupta, Abhinav Khattar, Arpit Gogia, Ponnurangam Kumaraguru,
and Tanmoy Chakraborty. Collective classification of spam campaigners on
twitter: A hierarchical meta-path based approach. In Proceedings of the
2018 World Wide Web Conference (WWW), pages 529-538. The Interna-
tional World Wide Web Conference Committee, April 23-27 2018.

Nick Nikiforakis, Federico Maggi, Gianluca Stringhini, M Zubair Rafique,
Wouter Joosen, Christopher Kruegel, Frank Piessens, Giovanni Vigna, and
Stefano Zanero. Stranger danger: exploring the ecosystem of ad-based url
shortening services. In Proceedings of the 23rd international conference on

World Wide Web (WWW), pages 51-62. ACM, April 7-11 2014.
Google. Google trends. https://trends.google.com/trends/, 2020.

Twitter. Twitter trends. https://help.twitter.com/ja/using-twitt
er/twitter-trending-fags, 2020.

Alexa Internet, Inc. Alexa - top sites. https://www.alexa.com/topsites,
2020.

Kamil Bennani-Smires, Claudiu Musat, Andreea Hossmann, Michael
Baeriswyl, and Martin Jaggi. Simple unsupervised keyphrase extraction us-
ing sentence embeddings. In Proceedings of the 22nd Conference on Compu-
tational Natural Language Learning (CoNLL), pages 221-229. Association
for Computational Linguistics, October 31 - November 1 2018.

Jean-Paul van Brakel. algorithm - peak signal detection in realtime time-
series data - stack overflow. https://stackoverflow.com/questions/22
583391/peak-signal-detection-in-realtime-timeseries-data, 2019.

M Zubair Rafique, Tom Van Goethem, Wouter Joosen, Christophe Huy-
gens, and Nick Nikiforakis. It’s free for a reason: Exploring the ecosystem
of free live streaming services. In Proceedings of the 23rd Network and
Distributed System Security Symposium (NDSS), pages 1-15. The Internet
Society, February 23-26 2016.

Farsight Security Inc. Dnsdb. https://www.dnsdb.info/, 2020.
VirusTotal. Virustotal. https://www.virustotal.com/, 2020.

Duo Security. Security researchers partner with chrome to take down
browser extension fraud network affecting millions of users. — duo security.
https://duo.com/labs/research/crxcavator-malvertising-2020,
2020.

Google. Google forms: Free online surveys for personal use. https://ww
w.google.com/forms/about/, 2021.

Momentive. Surveymonkey: The world ~ s most popular free online survey
tool. https://www.surveymonkey.com/, 2021.

92

https://trends.google.com/trends/
https://help.twitter.com/ja/using-twitter/twitter-trending-faqs
https://help.twitter.com/ja/using-twitter/twitter-trending-faqs
https://www.alexa.com/topsites
https://stackoverflow.com/questions/22583391/peak-signal-detection-in-realtime-timeseries-data
https://stackoverflow.com/questions/22583391/peak-signal-detection-in-realtime-timeseries-data
https://www.dnsdb.info/
https://www.virustotal.com/
https://duo.com/labs/research/crxcavator-malvertising-2020
https://www.google.com/forms/about/
https://www.google.com/forms/about/
https://www.surveymonkey.com/

[84]

[87]

8]

[94]

Karthika Subramani, Xingzi Yuan, Omid Setayeshfar, Phani Vadrevu,
Kyu Hyung Lee, and Roberto Perdisci. When push comes to ads: Mea-
suring the rise of (malicious) push advertising. In Proceedings of the 10th
ACM SIGCOMM conference on Internet measurement (IMC), New York,
NY, USA, 2020.

Twitter. Twitter rules enforcement. https://transparency.twitter.c
om/en/twitter-rules-enforcement.html, 2019.

Kurt Thomas, Chris Grier, Justin Ma, Vern Paxson, and Dawn Song. De-
sign and evaluation of a real-time url spam filtering service. In IEEE Sym-
posium on Security and Privacy (SP), pages 447-462. IEEE, May 22-25
2011.

Mingxuan Liu, Yiming Zhang, Baojun Liu, Zhou Li, Haixin Duan, and
Donghong Sun. Detecting and characterizing sms spearphishing attacks. In
Proceedings of the 37th Annual Computer Security Applications Conference
(ACSAC), pages 930-943. Association for Computing Machinery, 2021.

Bradley Reaves, Nolen Scaife, Dave Tian, Logan Blue, Patrick Traynor,
and Kevin RB Butler. Sending out an sms: Characterizing the security of
the sms ecosystem with public gateways. In Proceedings of the 37th IEEE
Symposium on Security and Privacy (SP), pages 339-356. IEEE, December
6-10 2016.

SafetyDetectives. 11 facts + stats on smishing (sms phishing) in 2021, 2021.
https://www.safetydetectives.com/blog/what-is-smishing-sms-p
hishing-facts/.

Bharat Srinivasan, Payas Gupta, Manos Antonakakis, and Mustaque
Ahamad. Understanding cross-channel abuse with sms-spam support in-
frastructure attribution. In Proceedings of the 21th FEuropean Symposium on
Research in Computer Security (ESORICS), pages 3-26. Springer, Septem-
ber 28-30 2016.

Proofpoint Inc. Smishing reports increase nearly 700% in first six months
of this year, 2021. https://news.sky.com/story/smishing-reports-increase-
nearly-700-in-first-six-months-of-this-year-12407504.

Kurt Thomas, Chris Grier, Justin Ma, Vern Paxson, and Dawn Song. Data
breaches, phishing, or malware? understanding the risks of stolen creden-
tials. In Proceedings of the Conference on Computer and Communications
Security (CCS), pages 1421-1434, October 30 - November 3 2017.

Yun Lin, Ruofan Liu, Dinil Mon Divakaran, Jun Yang Ng, Qing Zhou
Chan, Yiwen Lu, Yuxuan Si, Fan Zhang, and Jin Song Dong. Phishpedia:
A hybrid deep learning based approach to visually identify phishing web-
pages. In Proceedings of the 30th USENIX Security Symposium (USENIX
Security), pages 3793-3810, August 11-13 2021.

Grant Ho, Asaf Cidon, Lior Gavish, Marco Schweighauser, Vern Paxson,
Stefan Savage, Geoffrey M. Voelker, and David A. Wagner. Detecting and
characterizing lateral phishing at scale. In Proceedings of the 28th USENIX
Security Symposium (USENIX Security), pages 1273-1290, August 14-16
2019.

93

https://transparency.twitter.com/en/twitter-rules-enforcement.html
https://transparency.twitter.com/en/twitter-rules-enforcement.html
https://www.safetydetectives.com/blog/what-is-smishing-sms-phishing-facts/
https://www.safetydetectives.com/blog/what-is-smishing-sms-phishing-facts/

[95]

[102]

[103]

[104]

[105]

106

[107]
[108]

[109]

Doowon Kim, Haehyun Cho, Yonghwi Kwon, Adam Doupé, Sooel Son,
Gail-Joon Ahn, and Tudor Dumitras. Security analysis on practices of
certificate authorities in the https phishing ecosystem. In Proceedings of the
2021 ACM Asia Conference on Computer and Communications Security
(ASIACCS), pages 407420, June 7-11 2021.

Google. Google safe browsing, 2022. https://safebrowsing.google.co
m/.

Microsoft. Microsoft defender smartscreen, 2022. https://docs.microso
ft.com/en-us/windows/security/threat-protection/microsoft-def
ender-smartscreen/microsoft-defender-smartscreen-overview.

PhishTank. Phishtank, 2022. https://www.phishtank.com/.
OpenPhish. Openphish, 2022. https://openphish.com.
SecurityTrails. urlscan.io, 2022. https://urlscan.io/.

Fernando Alves, Ambrose Andongabo, Ilir Gashi, Pedro M Ferreira, and
Alysson Bessani. Follow the blue bird: A study on threat data published
on twitter. In Proceedings of the 25th Furopean Symposium on Research in
Computer Security (ESORICS), pages 217-236. Springer, September 14-18
2020.

Carl Sabottke, Octavian Suciu, and Tudor Dumitras. Vulnerability disclo-
sure in the age of social media: Exploiting twitter for predicting real-world
exploits. In Proceedings of the 24th USENIX Security Symposium (USENIX
Security), pages 1041-1056. USENIX Association, August 12-14 2015.

Hyejin Shin, WooChul Shim, Saebom Kim, Sol Lee, Yong Goo Kang, and
Yong Ho Hwang. #twiti: Social listening for threat intelligence. In Pro-
ceedings of the Web Conference 2021 (WWW), pages 92-104. ACM, April
12-16 2021.

Hyejin Shin, WooChul Shim, Jiin Moon, Jae Woo Seo, Sol Lee, and Yong Ho
Hwang. Cybersecurity event detection with new and re-emerging words. In

Proceedings of the 15th on Asia Conference on Computer and Communi-
cations Security (ASIACCS), pages 665—678. ACM, October 5-9 2020.

Siyuan Tang, Xianghang Mi, Ying Li, XiaoFeng Wang, and Kai Chen.
Clues in tweets: Twitter-guided discovery and analysis of sms spam. In
Proceedings of the Conference on Computer and Communications Security
(CCS), pages 27512764, November 7 - 11 2022.

Ryu Saeki, Leo Kitayama, Jun Koga, Makoto Shimizu, and Kazumasa
Oida. Smishing strategy dynamics and evolving botnet activities in japan.
IEEE Access, 10:114869-114884, 2022.

NIST. National vulnerability database, 2021. https://nvd.nist.gov/.

WeLiveSecurity. Why do we fall for sms phishing scams so easily? —
welivesecurity, 2021. https://www.welivesecurity.com/2021/01/22/wh
y-do-we-fall-sms-phishing-scams-so-easily/.

Twitter IOC Hunter. Twitter ioc hunter, 2022. http://tweettioc.com/.

94

https://safebrowsing.google.com/
https://safebrowsing.google.com/
https://docs.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-smartscreen/microsoft-defender-smartscreen-overview
https://docs.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-smartscreen/microsoft-defender-smartscreen-overview
https://docs.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-smartscreen/microsoft-defender-smartscreen-overview
https://www.phishtank.com/
https://openphish.com
https://urlscan.io/
https://nvd.nist.gov/
https://www.welivesecurity.com/2021/01/22/why-do-we-fall-sms-phishing-scams-so-easily/
https://www.welivesecurity.com/2021/01/22/why-do-we-fall-sms-phishing-scams-so-easily/
http://tweettioc.com/

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

18]

[119]

[120]

[121]

[122]

Hiroki Nakano, Daiki Chiba, Takashi Koide, Naoki Fukushi, Takeshi Yagi,
Takeo Hariu, Katsunari Yoshioka, and Tsutomu Matsumoto. Canary in
twitter mine: Collecting phishing reports from experts and non-experts. In
Proceedings of the 18th International Conference on Availability, Reliability
and Security, ARES 2023, Benevento, Italy, 29 August 2023- 1 September
2023, pages 6:1-6:12. ACM, 2023.

Statista. Twitter: most-used languages 2013 — statista, 2023. https:
//www.statista.com/statistics/267129/most-used-languages-on-t
witter/.

Twitter. Search api — twitter api — docs — twitter developer platform,
2023. https://developer.twitter.com/en/docs/twitter-api/enter
prise/search-api/overview.

Twitter. Compliance firehose api — twitter api — docs — twitter developer
platform, 2023. https://developer.twitter.com/en/docs/twitter-a
pi/enterprise/compliance-firehose-api/overview.

Twitter. Decahose api — twitter api — docs — twitter developer platform,
2023. https://developer.twitter.com/en/docs/twitter-api/enter
prise/decahose-api/overview/decahose.

Adam Oest, Penghui Zhang, Brad Wardman, Eric Nunes, Jakub Burgis, Ali
Zand, Kurt Thomas, Adam Doupé, and Gail-Joon Ahn. Sunrise to sunset:
Analyzing the end-to-end life cycle and effectiveness of phishing attacks at
scale. In Proceedings of the 29th USENIX Security Symposium (USENIX
Security), pages 361-377. USENIX Association, August 12-14 2020.

Alan Akbik, Duncan Blythe, and Roland Vollgraf. Contextual string em-
beddings for sequence labeling. In Proceedings of the 27th International
Conference on Computational Linguistics (COLING), pages 1638-1649,
August 20-26 2018.

Megagon Labs. megagonlabs/transformers-ud-japanese-electra-base-ginza
hugging face, 2021. https://huggingface.co/megagonlabs/transform
ers-ud-japanese-electra-base-ginza.

Glenn Jocher et al. ultralytics/yolovh: v3.1 - Bug Fixes and Performance
Improvements, 2020.

Tesseract OCR. Tesseract ocr, 2022. https://github.com/tesseract-o
cr/tesseract.

IETF Tools. RFC 3986, 2005. https://datatracker.ietf.org/doc/htm
1/rfc3986.

IETF Tools. RFC 1035, 1987. https://datatracker.ietf.org/doc/htm
1/rfc1035.

Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob, Maciej
Korczynski, and Wouter Joosen. Tranco: A research-oriented top sites
ranking hardened against manipulation. In Proceedings of the 26th Network
and Distributed System Security Symposium (NDSS). The Internet Society,
February 24-27 2019.

95

https://www.statista.com/statistics/267129/most-used-languages-on-twitter/
https://www.statista.com/statistics/267129/most-used-languages-on-twitter/
https://www.statista.com/statistics/267129/most-used-languages-on-twitter/
https://developer.twitter.com/en/docs/twitter-api/enterprise/search-api/overview
https://developer.twitter.com/en/docs/twitter-api/enterprise/search-api/overview
https://developer.twitter.com/en/docs/twitter-api/enterprise/compliance-firehose-api/overview
https://developer.twitter.com/en/docs/twitter-api/enterprise/compliance-firehose-api/overview
https://developer.twitter.com/en/docs/twitter-api/enterprise/decahose-api/overview/decahose
https://developer.twitter.com/en/docs/twitter-api/enterprise/decahose-api/overview/decahose
https://huggingface.co/megagonlabs/transformers-ud-japanese-electra-base-ginza
https://huggingface.co/megagonlabs/transformers-ud-japanese-electra-base-ginza
https://github.com/tesseract-ocr/tesseract
https://github.com/tesseract-ocr/tesseract
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc1035

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]
[134]
[135]
[136]

[137]

[138]

PeterDaveHello. Url shorteners, 2022. https://github.com/PeterDave
Hello/url-shorteners.

Mingxing Tan and Quoc Le. EfficientNet: Rethinking model scaling for
convolutional neural networks. In Proceedings of the 36th International
Conference on Machine Learning (ICML), pages 6105-6114. PMLR, June
09-15 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristin” Toutanova.
BERT: Pre-training of deep bidirectional transformers for language un-
derstanding. In Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics (NAACL), pages
4171-4186. Association for Computational Linguistics, June 3-5 2019.

Eoghan Keany. Borutashap : A wrapper feature selection method which
combines the boruta feature selection algorithm with shapley values., 2020.

Miron B. Kursa and Witold R. Rudnicki. Feature selection with the boruta
package. Journal of Statistical Software, 36(11):1-13, 2010.

Sayak Saha Roy, Unique Karanjit, and Shirin Nilizadeh. Evaluating the
effectiveness of phishing reports on twitter. In Proceedings of the APWG
Symposium on Electronic Crime Research (eCrime), December 1-3 2021.

The Spamhaus Project. The top 10 most abused tlds, 2022. https://ww
w.spamhaus.org/statistics/tlds/.

Haikel Alhichri, Asma S. Alswayed, Yakoub Bazi, Nassim Ammour, and
Naif A. Alajlan. Classification of remote sensing images using efficientnet-
b3 cnn model with attention. IEEE Access, 9:14078-14094, 2021.

Goncalo Marques, Deevyankar Agarwal, and Isabel de la Torre Diez. Au-
tomated medical diagnosis of covid-19 through efficientnet convolutional
neural network. Applied Soft Computing, 96:106691, 2020.

Per Christian Hansen. The truncatedsvd as a method for regularization.
BIT Numerical Mathematics, 1987.

Ashutosh Adhikari et al. Docbert: Bert for document classification, 2019.
Fangxiaoyu Feng et al. Language-agnostic bert sentence embedding, 2020.
Rodrigo Nogueira et al. Passage re-ranking with bert, 2019.

vladkens. Twitter api scrapper with authorization support., 2023. https:
//github.com/vladkens/twscrape.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-
learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825-2830, 2011.

Spotify. Luigi is a python module that helps you build complex pipelines
of batch jobs., 2023. https://github.com/spotify/luigi.

96

https://github.com/PeterDaveHello/url-shorteners
https://github.com/PeterDaveHello/url-shorteners
https://www.spamhaus.org/statistics/tlds/
https://www.spamhaus.org/statistics/tlds/
https://github.com/vladkens/twscrape
https://github.com/vladkens/twscrape
https://github.com/spotify/luigi

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

opmusic. Spamhunter_dataset, 2023. https://github.com/opmusic/Spa
mHunter_dataset/blob/main/sms_spam_urls/tweet_sms_url_latest
.txt.

Takashi Koide, Daiki Chiba, and Mitsuaki Akiyama. To get lost is to learn
the way: Automatically collecting multi-step social engineering attacks on
the web. In Proceedings of the 15th ACM Asia Conference on Computer
and Communications Security (ASIACCS), pages 394-408. ACM, October
5-9 2020.

Peng Peng, Limin Yang, Linhai Song, and Gang Wang. Opening the black-
box of virustotal: Analyzing online phishing scan engines. In Proceedings of
the Internet Measurement Conference (IMC), pages 478-485. Association
for Computing Machinery, October 21 - 23 2019.

Ke Tian, Steve T. K. Jan, Hang Hu, Danfeng Yao, and Gang Wang. Needle
in a haystack: Tracking down elite phishing domains in the wild. In Pro-
ceedings of the Internet Measurement Conference (IMC), pages 429-442.
Association for Computing Machinery, October 31 - November 2 2018.

Ziyun Zhu and Tudor Dumitras. Chainsmith: Automatically learning the
semantics of malicious campaigns by mining threat intelligence reports. In
Proceedings of the 3rd IEEE European Symposium on Security and Privacy
(EuroSP), pages 458-472. IEEE, April 24-26 2018.

Cisco Umbrella. On the trail of malicious dynamic dns domains - cisco
umbrella, 2023. https://umbrella.cisco.com/blog/on-the-trail-o
f-malicious-dynamic-dns-domains.

dynamic.domains. 25 dynamic dns (ddns) providers - dynamic.domains,
2022. https://dynamic.domains/dynamic-dns/providers-1list/defa
ult.aspx.

Penghui Zhang, Adam Oest, Haehyun Cho, Zhibo Sun, RC Johnson, Brad
Wardman, Shaown Sarker, Alexandros Kapravelos, Tiffany Bao, Ruoyu
Wang, et al. Crawlphish: Large-scale analysis of client-side cloaking tech-
niques in phishing. In Proceedings of the 42nd IEEE Symposium on Security
and Privacy (SP), pages 1109-1124. IEEE, May 24-27 2021.

Terry Nelms, Roberto Perdisci, Manos Antonakakis, and Mustaque
Ahamad. WebWitness: Investigating, categorizing, and mitigating malware
download paths. In Proceedings of the 24th USENIX Security Symposium
(USENIX Security), pages 1025-1040. USENIX Association, August 12-14
2015.

Anti-Phishing Working Group. Unifying the global response to cybercrime,
2022. https://apwg.org/.

MaxMind. Geoip2 databases, 2023. https://www.maxmind.com/en/geo
ip2-databases.

Chao Yang, Robert Harkreader, Jialong Zhang, Seungwon Shin, and Guofei
Gu. Analyzing spammers’ social networks for fun and profit: a case study
of cyber criminal ecosystem on twitter. In Proceedings of the 21st Interna-
tional Conference on World Wide Web (WWW), pages 71-80. The Inter-
national World Wide Web Conference Committee, April 16-20 2012.

97

https://github.com/opmusic/SpamHunter_dataset/blob/main/sms_spam_urls/tweet_sms_url_latest.txt
https://github.com/opmusic/SpamHunter_dataset/blob/main/sms_spam_urls/tweet_sms_url_latest.txt
https://github.com/opmusic/SpamHunter_dataset/blob/main/sms_spam_urls/tweet_sms_url_latest.txt
https://umbrella.cisco.com/blog/on-the-trail-of-malicious-dynamic-dns-domains
https://umbrella.cisco.com/blog/on-the-trail-of-malicious-dynamic-dns-domains
https://dynamic.domains/dynamic-dns/providers-list/default.aspx
https://dynamic.domains/dynamic-dns/providers-list/default.aspx
https://apwg.org/
https://www.maxmind.com/en/geoip2-databases
https://www.maxmind.com/en/geoip2-databases

[151]

[152]

153

[154]

[155]

[156]

Qian Cui, Guy-Vincent Jourdan, Gregor V. Bochmann, Russell Couturier,
and losif-Viorel Onut. Tracking phishing attacks over time. In Proceedings
of the 26th International Conference on World Wide Web (WWW), pages
667—676. The International World Wide Web Conference Committee, April
3-7 2017.

Hugo Bijmans, Tim Booij, Anneke Schwedersky, Aria Nedgabat, and Rolf
van Wegberg. Catching phishers by their bait: Investigating the dutch
phishing landscape through phishing kit detection. In Proceedings of the
30th USENIX Security Symposium (USENIX Security), pages 3757-3774.
USENIX Association, August 11-13 2021.

Guang Xiang, Jason Hong, Carolyn P Rose, and Lorrie Cranor. Cantina+:
A feature-rich machine learning framework for detecting phishing web
sites. ACM Transactions on Information and System Security (TISSEC),
14(2):21, 2011.

Twitter Dev. Twitter dev, 2023. https://twitter.com/TwitterDev/sta
tus/1615405842735714304.

Anupama Aggarwal, Ashwin Rajadesingan, and Ponnurangam Ku-
maraguru. Phishari: Automatic realtime phishing detection on twitter.
In Proceedings of the APWG Symposium on Electronic Crime Research
(eCrime), October 23-24 2012.

Rupinder Paul Khandpur, Taoran Ji, Steve Jan, Gang Wang, Chang-Tien
Lu, and Naren Ramakrishnan. Crowdsourcing cybersecurity: Cyber at-
tack detection using social media. In Proceedings of the 2017 ACM on
Conference on Information and Knowledge Management (CIKM), pages
1049-1057, November 6-10 2017.

98

https://twitter.com/TwitterDev/status/1615405842735714304
https://twitter.com/TwitterDev/status/1615405842735714304

	Introduction
	Background
	Motivation
	Contributions
	Outline

	User-generated Content
	Type of Platform
	Related Work on User-generated Content with a Focus on Cybersecurity
	Social Networking Service
	Video Sharing Service
	Online Forum Service
	Blogging Service
	User Review Service

	Challenges in Analyzing User-generated Content

	Towards Finding Code Snippets on a Question and Answer Website Causing Mobile App Vulnerabilities
	Introduction
	Background
	Code Snippets on Q&A Website
	Comparison of Android and iOS
	Android Apps Vulnerabilities

	Method
	Overview
	Method of Calculating Similarity between Code Snippets and Bytecode

	Experiments in Code Reuse Detection
	Datasets
	Evaluating Performance of Proposed Method
	Experimental Results
	Investigation of Application Updates

	Discussion
	Countermeasures by Market and Q&A Site Operators
	Enhancing Awareness for Developers
	Limitation

	Related Work
	Vulnerability Analysis
	Research on Mobile App Developers
	Code Clone Detection
	Research on Developer Community Website

	Conclusion

	Exploring Event-synced Navigation Attacks across User-generated Content Platforms in the Wild
	Introduction
	Guiding Users through UGC
	Type of Guidance
	Threat Model
	Attacker's Perspective
	Victim's Perspective

	Proposed System
	Step 1: Collecting Malicious Twitter UGC Seeds
	Step 2: Collecting Malicious UGC Candidates on Multiple UGC Platforms
	Step 3: Detecting Malicious UGC on Multiple UGC Platforms

	Evaluation
	Datasets
	Detection Accuracy of Malicious UGC on Twitter
	Collection Performance of Malicious UGC Candidates
	Detection Accuracy of Malicious UGC on Multiple UGC Platforms

	Measurement
	Analysis of Platforms
	Analysis of Detected FQDNs
	Analysis of Detected Website Categories
	Case Study: Abused Events
	Case Study: Directory Listings

	Discussion
	Limitations
	Ethical Considerations
	Countermeasures

	Related Work
	Conclusion

	Understanding Characteristics of Phishing Reports from Experts and Non-experts on Twitter
	Introduction
	Motivating Examples
	Reports on Phishing Message
	Challenges

	Proposed System: Data Collection
	Collecting Tweets
	Extracting URLs and Domain Names

	Proposed System: Reports Classification
	Feature Engineering
	Training and Classification
	Evaluation of Classification Accuracy

	Evaluating User Reports in the Wild
	Operating Environment
	Datasets for Evaluation
	Comparison of Maliciousness using VirusTotal

	Comparison of Experts and Non-experts
	Analysis of Users who Shared Reports
	Analysis of the Detected URLs' Characteristics
	Analysis of Report Sharing Methods

	Analyzing Phishing Attacks in User Reports
	Analysis of Common URLs with Existing Data Feeds
	Analysis of Phishing Infrastructure

	Discussion
	Utilizing the Intelligence Collected for Phishing Attack Defense
	Role as a Platform for Threat Information Sharing
	Limitation
	Ethical Consideration

	Related Work
	Conclusion

	Conclusion and Future Work
	Conclusion
	The Future of UGC Platforms
	Future Work

	References

