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ABSTRACT

In finite-volume methods, monotonic upstream-centered schemes for conservation laws (MUSCL) offer second-order spatial accuracy but
tend to produce highly dissipative solutions for density discontinuity and weak shock waves. To address this limitation within a second-order
framework, a novel strategy for hybridizing MUSCL with the tangent of the hyperbola interface capturing technique for both steady and
unsteady compressible flows is presented. This hybridization optimizes the process based on the degree of nonlinearity and discontinuity
around the target cells, providing a novel method to sharply resolve weak shock waves and robustly compute strong shock waves within the
hybrid scheme. The proposed scheme sharply captures exceedingly weak shock waves that conventional MUSCL fails to resolve accurately
due to excessive numerical dissipation. Furthermore, for resolving small vortices induced by instability at slip lines, computational results
demonstrate high-resolution surpassing fifth-order spatial accuracy schemes within this second-order spatial accuracy framework with less
computational cost. Moreover, the scheme exhibits commendable convergence and robustness when applied to steady-state problems featur-
ing strong shock waves. This scheme offers a more precise and high-resolution alternative to conventional MUSCL for compressible flow
computations, as it requires no additional stencil for reconstruction, unlike conventional fifth-order schemes.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0198163

I. INTRODUCTION

Compressible fluid computations employing shock-capturing
schemes within finite-volume methods (FVM) have found widespread
use across various applications. The most commonly employed shock-
capturing method is the monotonic upstream-centered scheme for con-
servation laws (MUSCL) with slope limiters,1 typically providing
second-order spatial accuracy. MUSCL is particularly favored in aero-
space engineering2–4 due to its straightforward mathematical expression
and accuracy in fundamental flows featuring shock waves. However, it
often yields dissipative solutions for complex flows. Even in cases involv-
ing shock wave computations, when the shock wave is extremely weak
(e.g., shock Mach number� 1.01), it is resolved as a continuous wave-
like shape, losing its discontinuous profile.5 In multiphase flow simula-
tions, gas–liquid interfaces suffer from excessive dissipation.6 There is a
lack of widely accepted second-order schemes capable of effectively and
accurately handling density discontinuities and weak shock waves.

One approach to achieve accurate solutions is through the utiliza-
tion of higher-order methods that incorporate multiple surrounding
cells for reconstructing target cells. For instance, the weighted essen-
tially non-oscillatory (WENO)7 scheme provides less dissipative
numerical solutions, achieving a maximum fifth-order spatial accuracy
by assessing stencil smoothness, typically considering five cell values.
Recent developments have seen various methods based on the WENO
scheme emerge.8–11 In an alternative approach, a fifth-order spatial
accuracy shock-capturing scheme based on the boundary variable
diminishing (BVD) principle12,13 has been developed.14 This scheme
selectively incorporates cell boundary values through a fourth-degree
polynomial and the tangential hyperbolic interface capturing
(THINC) function.15–17 Numerical tests using these higher-order
schemes have yielded promising results; however, they entail greater
complexity and expense compared to the widely used second-order
spatial accuracy schemes. We maintain that second-order spatial
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accuracy remains the most suitable choice for broad acceptance in
practical applications due to its simplicity, typically relying on neigh-
boring cells for reconstruction. Furthermore, extending the second-
order framework to discretization using unstructured grids requires
less effort compared to higher-order schemes. From this perspective,
our study introduces a novel second-order scheme based on MUSCL.

To address the limitations of the dissipative nature of MUSCL in
multiphase flow computations, THINC has been utilized. THINC is a
method used to express a density interface in the volume-of-fluid
method.15 Its distinct feature, which can express discontinuity by the
tangent hyperbola function, is also effective for the reconstruction pro-
cess in the FVM. Nonomura et al.6 introduced THINC for multiphase
computations using a two-fluid model18 within a finite-volume
MUSCL framework. They used THINC only in the reconstruction of
the volume fraction and obtained sharp gas–liquid and gas–gas interfa-
ces. Deng et al. proposed the MUSCL-THINC-BVD scheme,19 deter-
mining cell boundary values based on the BVD principle to minimize
numerical dissipation. More recently, Chiu et al.20 introduced a hybrid
MUSCL-THINC scheme in which the volume fraction is recon-
structed using THINC, while other primitive variables are recon-
structed by weighting cell boundary values computed through both
MUSCL and THINC. This scheme displayed low-dissipation results
for single-phase unsteady flows and two-phase problems.

Given the success of THINC in multiphase flow computations,
its application appears promising for single-phase compressible flow
simulations aiming to accurately capture density discontinuities and
weak shock waves. However, prior research on schemes combining
MUSCL and THINC for solving single-phase steady and unsteady
compressible flows remains limited, despite the prevalence of applica-
tions involving multiphase flow computations, which often involve
unsteady flows. The only prior study on this hybrid approach was the
original hybrid MUSCL-THINC scheme by Chiu et al.20 While it has
been reported that this scheme can provide low-dissipative solutions
in single-phase compressible flows, the numerical examples examined
in Ref. 20 were limited to a few unsteady flow cases (shock-tube and
double-Mach reflection problems). Furthermore, its performance in
terms of convergence for steady-state problems, crucial for practical
applications, was not discussed. In fact, as we will later report in this
paper, the original hybrid MUSCL-THINC scheme exhibited severe
oscillations in steady problems with strong shock waves. Additionally,
the scheme suffered from shock anomalies in the presence of strong
shock waves, known as, the carbuncle phenomenon.21–24 Therefore,
the original approach in Ref. 20 may not be universally suitable for
single-phase steady and unsteady compressible flow computations. As
such, we believe that the hybridization strategy of MUSCL and
THINC for single-phase compressible flow computations needs to be
thoroughly investigated and reformulated.

It should be noted that the BVD principle15–17 is another possible
way to effectively incorporate THINC. However, schemes relying on
the BVD principle tend to be intricate, as they require a selection
procedure after calculating cell boundary values. This complexity was
confirmed in prior research,20 where the hybrid MUSCL-THINC
scheme was found to be more efficient than the MUSCL-THINC-
BVD scheme. Therefore, for the sake of simplicity and efficiency, we
did not employ the BVD principle in this study.

In this paper, we propose a novel hybridization strategy of MUSCL
and THINC aimed at achieving a high-resolution and robust second-

order scheme for single-phase steady and unsteady compressible flows.
Specifically, the weights assigned to cell boundary values computed using
MUSCL and THINC have been optimized based on the degree of nonlin-
earity and discontinuity within the stencil. This framework is implemented
through the introduction of the “nonlinearity-weighted parameter” and
the “slope ratio-weighted parameter.”The former is sensitive to themagni-
tude of nonlinearity in the phenomenon, reflecting its self-sharpening
characteristics. This parameter is newly introduced in this study and plays
a crucial role in obtaining stable solutions for strong shock waves. The lat-
ter, sensitive to discontinuities, was initially proposed in the original hybrid
MUSCL-THINC scheme.20 While the slope ratio-weighted parameter is
borrowed from the original hybrid MUSCL-THINC scheme,20 the pro-
posed method primarily relies on the idea that the scheme automatically
attains a physically consistent balance between the phenomenon’s self-
sharpening nature and the reconstruction process. This feature is crucial
for achieving accurate computations across a broad spectrum of single-
phase steady and unsteady compressible flow conditions. Thus, the pro-
posed scheme can be viewed as distinct from the original hybrid MUSCL-
THINC scheme, in which the weight is determined primarily based on the
slope ratio, and the primary focus is on unsteady multiphase flows.

The remainder of this paper is structured as follows: Sec. II pro-
vides an overview of the calculation method employed in this study,
outlining the reconstruction methods and presenting the proposed
scheme. Section III details the results of accuracy validation and numer-
ical experiments for both steady and unsteady problems, including a
discussion of computational costs. Finally, Sec. IV concludes this study.

II. NUMERICAL SETUP
A. Governing equations

The governing equations are the two-dimensional compressible
Euler equations or the Navier–Stokes equations, as follows:
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3
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@un
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dlk;

(1)

where Q represents the vector of conservation variables, q denotes the
density, ui stands for the velocity component in Cartesian coordinates,
E denotes the total energy, p represents the pressure, H denotes the
total enthalpy (H¼ Eþ p/q), and T denotes the temperature. Fk and
Fvk signify the inviscid and viscous numerical fluxes, respectively. If
Fvk¼ 0, Eq. (1) becomes the Euler equations (inviscid). The working
gas was assumed to be air, which is a calorically perfect gas with a
specific heat ratio c¼ 1.4. The Prandtl number, Pr, was 0.72.
The molecular viscosity l (given by Sutherland’s law) and thermal
conductivity j are related by j¼ cpl/Pr, where cp denotes the specific
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heat at constant pressure. dlk represents the Kronecker delta. The sub-
scripts k, l,m¼ 1 and 2 are in 2D.

The equations were discretized using cell-centered FVM. For
time integration, the four-stage Runge–Kutta25 method was employed
in this study. SLAU226 was utilized to compute the inviscid numerical
flux at the cell boundary. Viscous flux computations were performed
using a second-order central difference.

B. Reconstruction methods

This section provides an overview of the reconstruction methods
employed in this study. For simplicity, a one-dimensional equally dis-
cretized computational domain is considered. The target cell, denoted
as the ith cell, possesses a width defined as [xi�1/2, xiþ1/2], with the
mesh size represented as Dx¼ xiþ1/2 – xi�1/2. Figure 1 schematically
illustrates the reconstructed variables within the ith cell. The primitive
variable q, comprising density (q), velocities (u and v), and pressure (p),
within the ith cell is reconstructed by utilizing both its intrinsic informa-
tion and that of its neighboring cells; specifically, information from
three cells is considered. Consequently, a stencil [i – 1, i, iþ 1] is
employed to reconstruct the ith cell, resulting in the determination of
cell boundary values denoted as qR,i–1/2 and qL,iþ1/2. Here, the subscripts
i61/2 denote the cell boundaries between the ith cell and its adjacent
cells, with L and R signifying the left and right sides of the boundary,
respectively. The superscripts M and T denote the reconstructed cell
boundary values by MUSCL and THINC, respectively. In the proposed
approach, the cell boundary values computed by the two methods are
hybridized depending on flow characteristics. The specific reconstruc-
tion functions and cell boundary values will be described later.

1. MUSCL

First, MUSCL1 is introduced. MUSCL expresses the intercell
property distribution as27

q xð Þ ¼ qi þ 1
Dx

x � xið Þdiqþ 3g
2Dx2

x � xið Þ � Dx2

12

� �
d2i q; (2)

where

qi ¼
ðxþ1=2

x�1=2
q xð Þdx; diq ¼ qiþ1 � qi�1

2
;

d2i q ¼ qiþ1 � 2qi þ qi�1;
(3)

and g denotes the parameter of MUSCL. g¼ 1/3 was used in this
study. In this study, the minmod limiter,28

w rð Þ ¼ max 0;min 1; rð Þ½ �; r ¼ qiþ1 � qi
qi � qi�1

; (4)

was employed for slope limiting. Using Eqs. (2)–(4), we obtained the
cell boundary value to compute the numerical flux as follows:

qML; iþ1=2 ¼ qi þ 1
4

�
1� gð Þw rð Þ qi � qi�1ð Þ

þ 1þ gð Þw 1
r

� �
qiþ1 � qið Þ

�
;

qMR;i�1=2 ¼ qi � 1
4

�
1þ gð Þw rð Þ qi � qi�1ð Þ

� 1� gð Þw 1
r

� �
qiþ1 � qið Þ

�
:

(5)

Hereafter, the aforementioned MUSCL approach (MUSCL parameter
g¼ 1/3 and minmod limited) is denoted as MUSCL for simplicity of
notation. This combination (primitive variables reconstructions by
g¼ 1/3 MUSCL with the minmod limiter) has been widely used in
previous studies.2,20

2. THINC

THINC was originally developed to express an interface between
two fluids in the volume-of-fluid method15–17 and was extended to the
FVM.6,19,20 The formula for FVM was used in this study. In the FVM,
reconstruction using THINC can be defined if the local profile within
the stencil is monotonic. In the non-monotonic profile, the reconstruc-
tion by THINC is not considered. In the monotonic case, the profile
within the target cell is expressed as follows:

q xð Þ ¼ qmin þ Dq
2

1þ htanh b Xi � dið Þ½ �� �
; (6)

where
qmin ¼ min qi�1; qiþ1ð Þ;
Dq ¼ qiþ1 � qi�1j j;
h ¼ sgn qiþ1 � qi�1ð Þ;

Xi ¼
x � xi�1=2

xiþ1=2 � xi�1=2
;

di ¼ 1
2b

ln
1� A
1þ A

;

A ¼ B=cosh bð Þ � 1
tanh bð Þ ;

B ¼ exp hb
2 qi � qmin þ eð Þ

Dqþ e
� 1

� �� 	
;

(7)

where di denotes the center of the jump location, e represents a small
real number to prevent division by zero and e¼ 10�20 in this paper.
b denotes the sharpness parameter in THINC. The THINC function
can imitate a steep profile of the variables by taking a large value of b.
This is a user-defined parameter in THINC and the proposed hybrid
approach. To eliminate this degree of freedom, a suitable value of b forFIG. 1. Illustration of reconstruction and cell boundary values.
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compressible flow simulations is discussed later. The THINC function
can only be defined if the local profiles of the variables in the stencil
are monotonic. THINC provides the cell boundary value as

qTL;iþ1=2 ¼ qmin þ Dq
2

1þ h
tanh bð Þ þ A
1þ Atanh bð Þ

� �
;

qTR;i�1=2 ¼ qmin þ Dq
2

1þ hAð Þ:
(8)

3. Hybrid MUSCL-THINC scheme (for single-phase flows)

In the case of two-phase flows, the hybrid MUSCL-THINC
scheme20 reconstructs the volume fraction exclusively using THINC,
while the other primitive variables are reconstructed by weight-
averaging the minmod-limited MUSCL and THINC. However, for
single-phase flows where a volume fraction is absent, the reconstruc-
tion is solely performed using primitive variables. Subsequently, the
single-phase variant of the hybrid MUSCL-THINC scheme will be
referred to as the “original hybrid MUSCL-THINC scheme” to clearly
distinguish it from the proposed scheme. In the original hybrid
MUSCL-THINC scheme, the cell boundary values of MUSCL and
THINC are blended when the profile of the primitive variable is mono-
tonic, defined as

qiþ1 � qið Þ qi � qi�1ð Þ > �: (9)

Here, � represents a small real number �¼ (1� 10�15)2¼ 1� 10�30 to
prevent reconstruction by THINC in cases of non-monotonic variable
profiles. The cell boundary value in the original hybrid MUSCL-
THINC scheme is expressed as

qM�T
L;iþ1=2 ¼ 1 – fið ÞqML;iþ1=2 þ fiqTL;iþ1=2;

qM�T
R;i�1=2 ¼ 1 – fið ÞqMR;i�1=2 þ fiq

T
R;i�1=2;

(10)

where the superscript M–T represents the original hybrid MUSCL-
THINC. Subscripts L and R indicate the cell boundary values for each
method. The slope ratio-weighted parameter fi, which determines the
ratio of MUSCL to THINC, is defined as follows:

fi � 1 �min
qML;iþ1=2 � qMR;i�1=2

qiþ1 � qi þ e
;
qML;iþ1=2 � qMR;i�1=2

qi � qi�1 þ e

 !
: (11)

When the local profile of variables within the stencil remains continu-
ous, fi approaches a value close to 0, and the MUSCL method is
applied. Conversely, when the stencil exhibits a discontinuity, fi
approaches a value close to 1, leading to the utilization of THINC
reconstruction. The proposed scheme incorporates this slope-ratio-
weighted parameter to assess the discontinuity in the variable profile
within the stencil. In cases where the profile is non-monotonic, the cell
boundary values obtained by MUSCL are employed. This reconstruc-
tion process is executed at each sub-time step using the Runge–Kutta
method.

4. Novel hybridization approach of MUSCL and THINC

Previous studies have indicated that the selection of the recon-
struction process should be contingent on the flow properties. For

instance, correctly resolving a very weak shock wave necessitates a
reconstruction process that minimizes numerical dissipation because
the nonlinearity inherent to a weak shock wave can be easily offset by
numerical dissipation.5 This requirement is also applicable to density
discontinuities.6,20 Conversely, a strong shock wave, being a strong
nonlinear phenomenon, maintains a discontinuous profile without
special reconstruction processes. Thus, we advocate avoiding a nonlin-
ear reconstruction process using the discontinuity sharpening tech-
nique to mitigate potential numerical oscillations. According to
literature,26 a moderate amount of numerical dissipation is preferable
to prevent shock anomalies. Consequently, the reconstruction process
must be optimized to align with the fluid properties within the stencil.
Notably, this approach has not been previously implemented within a
second-order FVM framework.

This paper introduces a numerical scheme built upon the concept
of adjusting the balance of nonlinearity between the phenomenon itself
and the reconstruction function to highly resolve weak nonlinear phe-
nomena and robustly compute strong shock waves. To realize this idea
within a second-order framework, we have devised a new hybrid scheme
combining MUSCL and THINC, guided by the following principles.

(A) MUSCL is employed for continuous flows, while THINC is
reserved for discontinuities.

(B) For weak nonlinear phenomena, such as weak shock waves,
density discontinuities, and entropy waves, which can be easily
smoothed by numerical dissipations of conventional MUSCL,
the reconstruction by THINC is used to oppose the numerical
dissipation.

(C) For strong shock waves, only MUSCL is employed.

Criterion (A) is achieved by borrowing the slope-ratio-
weighted parameter fi, a feature from the original hybrid MUSCL-
THINC scheme described in Sec. II B 3, which is effective in detect-
ing discontinuities.20 To satisfy requirements (B) and (C), novel
aspects of the proposed method, we have introduced a straightfor-
ward parameter designed to limit the use of THINC near strongly
nonlinear regions. This parameter is termed the “nonlinearity-
weighted parameter” and is employed to assign additional weight
to both MUSCL and THINC. The parameter assumes values close
to 1 in the vicinity of regions with weak nonlinearity and
approaches 0 only near strongly nonlinear regions, thereby dimin-
ishing the weight assigned to THINC.

Here, the calculation procedure of the nonlinearity-weighted
parameter at the cell boundary iþ 1/2 is described as an example.
Pressure and density are the key variables used to compute the
nonlinearity-weighted parameter at the cell boundary. Specifically, the
relevant following variables are computed:

dp=dx ¼ piþ1 � pið Þ=Dx;
dq=dx ¼ qiþ1 � qið Þ=Dx;

/p
iþ1=2 ¼

max pi; piþ1ð Þ
min pi; piþ1ð Þ ;

/q
iþ1=2 ¼

max qi; qiþ1ð Þ
min qi; qiþ1ð Þ ;

(12)

where dp=dx; dq=dx; /p
iþ1=2, and /

q
iþ1=2 denote the pressure gradient,

density gradient, pressure ratio, and density ratio at the cell boundary
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of iþ 1/2, respectively. These variables are used to ascertain whether
the cell boundary represents a shock or a density discontinuity. The
relationship between pressure and density gradients, specifically the
sign of ðdp=dxÞðdq=dxÞ, is utilized, with multiplication used to pre-
vent division by zero.

If ðdp=dxÞðdq=dxÞ is positive, this indicates that the cell bound-
ary may exhibit various states, including continuous flow, shock waves,
or density discontinuities. In Fig. 2, the example of a shock wave case
[Fig. 2(a)] and a density discontinuity or entropy wave component
case [Fig. 2(b)] are illustrated. In such cases, the value of the pressure
ratio over the density ratio,

/pq
iþ1=2 ¼ /p

iþ1=2=/
q
iþ1=2; (13)

is calculated. This value, /pq
iþ1=2, gives the temperature ratio, and in the

case of isentropic flow or shock wave, it takes a value higher than 1.
According to the Rankine–Hugoniot relations, the stronger the shock
wave, the larger /pq

iþ1=2 becomes. Thus, if the stencil includes a large

/pq
iþ1=2, the nonlinearity-weighted parameter should be small to avoid

the use of THINC. This fulfills requirement (C). On the other hand, if
the density ratio /q

iþ1=2 is larger than the value expected from isentropic

flow or shock waves as shown in Fig. 2(b), /pq
iþ1=2 takes the value around

1 or smaller. In such cases, the cell boundary is likely dominated by
weak nonlinear phenomena, such as weak shock waves, density disconti-
nuities, or entropy wave components. In these stencils, THINC should
be employed to achieve a less dissipative solution to fulfill requirement
(B). Consequently, the nonlinearity-weighted parameter should approxi-
mate one. In instances where ðdp=dxÞðdq=dxÞ is negative, the field rep-
resents an unphysical state. However, it is worth noting that this field is
observed around density discontinuities and entropy waves, typically
arising due to numerically generated transitional states. Thus, in these

regions, THINC reconstruction is applied to minimize numerical
dissipation.

Based on the above considerations, we can conclude that only if
/pq
iþ1=2 takes a higher value, the cell boundary corresponds to the

strong shock wave. Thus, we define an exponential function that
approaches zero near strong shock waves and approaches approxi-
mately one near weak shock waves, isentropic flows, density disconti-
nuities, and entropy wave components by using the variable /pq

iþ1=2, as

follows:

niþ1=2 ¼
1 dp=dxð Þ dq=dxð Þ< 0;

exp �C max 1;/pq
iþ1=2


 �
� 1Þ

h in o
dp=dxð Þ dq=dxð Þ � 0;

8<
:

(14)

where niþ1=2 is the nonlinearity weighted parameter of the cell bound-
ary at xiþ1/2. C is the constant that controls the nonlinearity-weighted
parameter. In this paper, C¼ 25 was adopted: we confirmed that this
value showed good performance for shock wave computations through
numerical tests. The nonlinearity-weighted parameter value as a func-
tion of /pq

iþ1=2 and the shock Mach numberMs is shown in Fig. 3. The

plot against Ms was obtained by assuming that the cell boundary
expressed a shock wave without thickness. That is, the following rela-
tionship from the Rankine–Hugoniot relations was applied to convert
/pq
iþ1=2 toMs:

29,30

/pq
iþ1=2 ¼

2cM2
s � cþ 1

� 
c� 1ð ÞM2

s þ 2
� �

cþ 1ð Þ2M2
s

: (15)

According to Fig. 3(b), we can observe the behavior of the
nonlinearity-weighted parameter against Ms, which is a universal

FIG. 2. Schematic explanation of distinguishing strong shock waves from weak ones, density discontinuity, and entropy wave components at cell boundary using pressure and
density. Example cases for (a) shock wave and (b) density discontinuity or entropy wave components are shown.
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indicator of shock wave strength. If the cell boundary expresses a shock
wave without internal points, the nonlinearity-weighted parameter
becomes almost zero for a shock wave stronger than Ms � 1.3. The
shock wave usually has a certain thickness and thus has a smaller
/pq
iþ1=2 at the internal cell boundaries than the value computed from

Ms. We confirmed that stopping usage of THINC for the shock wave
stronger than this level is effective through preliminary numerical
tests.

There are two choices of the nonlinearity-weighted parameter for
the ith cell: ni�1=2 and niþ1=2. To ensure a safer value, a smaller value
was adopted. Thus, the nonlinearity-weighted parameter in the ith cell
ni is expressed as

ni ¼ min ni�1=2; niþ1=2
� 

: (16)

A flow chart outlining the proposed scheme is presented in Fig. 4.
Prior to the primitive variable reconstruction loop, a loop for calculat-
ing the nonlinearity-weighted parameter ni is implemented.
Subsequently, following the computation of ni, cell boundary values
are determined using MUSCL [Eq. (5)] and THINC (if the variable
profile in the stencil is monotonic) [Eq. (8)], along with the slope
ratio-weighted parameter fi [Eq. (11)], as inherited from the original
hybrid MUSCL-THINC scheme. These values are then hybridized via
weighted averaging. In the proposed scheme, the slope ratio-weighted
parameter fi, which is sensitive to discontinuity in the stencil is

FIG. 3. Output of nonlinearity weighted parameter as a function of (a) /pq
iþ1=2 and (b) Ms. (b) is obtained assuming that the variables follow Rankine–Hugoniot relations.

FIG. 4. Flowchart of the proposed scheme.

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 36, 046110 (2024); doi: 10.1063/5.0198163 36, 046110-6

VC Author(s) 2024

 19 M
ay 2024 23:36:00

pubs.aip.org/aip/phf


multiplied by the nonlinearity-weighted parameter ni, and fini serves
as the weight. Consequently, if the variable profile within the stencil is
monotonic, the cell boundary values can be computed as follows:

qM�T�pq
L; iþ1=2 ¼ 1 – finið ÞqML; iþ1=2 þ finiq

T
L;iþ1=2;

qM�T�pq
R;i�1=2 ¼ 1 – finið ÞqMR;i�1=2 þ finiqTR;i�1=2:

(17)

MUSCL alone was employed when the variable profile within the sten-
cil exhibited non-monotonic behavior. The proposed scheme is
designated as the “hybrid MUSCL-THINC-pq” (abbreviated as
“T-MUSCL”) scheme, where “pq” denotes the usage of pressure (p)
and density (q) for computing the nonlinearity-weighted parameter ni.
The scheme name is denoted by the superscript “M-T-pq” in Eq. (17).
According to this formulation, the reconstruction reflecting disconti-
nuity characteristics is achieved: THINC is exclusively applied to dis-
continuous and weakly nonlinear flow components; otherwise,
MUSCL is utilized. As such, the scheme satisfies all the outlined
requirements (A)–(C). The functionality of the weight parameter ni in
the numerical example will be discussed in detail in Sec. III.

III. NUMERICAL TEST

In Secs. III A–III J, we present the numerical results of the
benchmark tests. To facilitate a clear distinction between the origi-
nal hybrid MUSCL-THINC scheme by Chiu et al.20 and the newly
introduced hybrid MUSCL-THINC-pq scheme, we will refer to
these schemes as “MUSCL-THINC” and “MUSCL-THINC-pq,”
respectively.

A. Weak shock formation problem (unsteady, accuracy
study)

Initially, we need to determine the suitable parameter value for
the THINC function. When dealing with a stencil containing a monot-
onous variable profile, THINC can be used to reconstruct the inner-
cell variable assuming a discontinuity expressed as a function of the
sharpness parameter b, as represented in Eq. (6). For density and vol-
ume fraction (appears in the two-fluid model) at an interface, a large
value of b is preferred.6,20 We believe that this is because the interface
did not exhibit self-sharpening. However, in the context of compress-
ible flows and shock waves, it is imperative to carefully select b because
shock waves have physically consistent sharpening characteristics.
Thus, as a first step, we must identify an adequate variable b in
MUSCL-THNC and MUSCL-THINC-pq. To achieve this, the weak
shock wave formation problem was solved. Figure 5 illustrates the
shock wave formation problem described in.30 This problem has been
used in experimental studies to estimate the shock formation dis-
tance;31,32 however, this is the first time it has been used in numerical
simulations. A certain state of the continuous compression waves at
t¼ 0 was considered. We define xa as the location of the trailing edge
of the compression wave, and xb as the leading edge. Because the wave
propagation velocity at the trailing edge of the compression wave is
greater than that at the leading edge, the trailing wave catches up at the
leading edge. Subsequently, a shock wave is formed at a certain point
xs.

29,30 By successfully addressing this process for a weak compression
wave, the scheme can accurately model weak, nonlinear, yet discontin-
uous fluid properties without introducing excessive numerical
dissipation.

The calculations were conducted within a one-dimensional space
ranging from [0, 2500], divided equally into 2500 cells (Dx¼ 1). Initially,
the compression wave was situated between xa¼ 135 and xb¼ 165,
resulting in an initial thickness of d0¼ xb � xa¼ 30. Because the cell size
is unity, the thickness corresponds to the number of cells. In this prob-
lem, the conditions behind the compression wave corresponded to those
behind the shock wave. The primitive variables within the compression
wave were determined by assuming a linear distribution of the shock
Mach number, ranging from 1 to Ms. This local shock Mach number
within the compression wave, denoted asM0

s, is defined as

M0
s ¼ Ms � Ms � 1ð Þ x � xa

xb � xa
xa � x � xbð Þ: (18)

The primitive variables within the compression wave can be expressed
as follows:

q; u; pð Þ ¼
�

cþ 1ð ÞM02
s

c� 1ð ÞM02
s þ 2

qR;
2aR
cþ 1

M0
s �

1
M0

s

� �

þ uR; 1þ 2c
cþ 1

M02
s � 1

� � �
pR

�
xa � x � xbð Þ; (19)

where a represents the speed of sound. In the other domain, the initial
conditions were given as follows:

q; u; pð Þ ¼
qL; uL; pLð Þ 0 � x < xað Þ
qR; uR; pRð Þ xb < x � 2500ð Þ ;

(

qL; uL; pLð Þ ¼
 

cþ 1ð ÞM2
s

c� 1ð ÞM2
s þ 2

qR;
2aR
cþ 1

Ms � 1
Ms

� �
þ uR;

1þ 2c
cþ 1

M2
s � 1

� � �
pR

!
;

qR; uR; pRð Þ ¼ 1; 0; 1ð Þ:

(20)

The shock Mach number was set asMs¼ 1.01. The sharpening param-
eter in THINC b varied from 1.6 to 3.2 in increments of 0.4. The CFL
number was set to 0.5 (Dt� 0.51) for time evolution.

FIG. 5. Schematics of shock formation problem.
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The shock formation distance Ls is defined as the distance from
the initial position of the leading edge to the point where the trailing-
edge wave overtakes the leading edge, that is Ls¼ xs � xb. We can esti-
mate Ls based on the relationship between the characteristic velocities
of the leading and trailing edges of the compression waves. Specifically,
Ls is expressed by the following equation:

30

Ls ¼ cþ; b

cþ;a � cþ; b
d0; (21)

where cþ,a denotes the right characteristic wave velocity at xa (cþ,a

¼ ua þ aa). In this setup, Ls¼ 1507. Thus, the shock wave was
assumed to form at xs¼ xb þ Ls¼ 1672. The thickness of the com-
pression waves was expected to decrease linearly before integration
and become zero at xs.

The space-time (x–t) diagram depicting density contours for
MUSCL and MUSCL-THINC-pq (with b¼ 2.4) is presented in Fig. 6.
In this case, the result for MUSCL-THINC is not shown because,
under these weak nonlinear conditions, the nonlinearity-weight

FIG. 6. Space (x) – time (t) diagram of shock formation problem solved using (a) MUSCL and (b) MUSCL-THINC-pq.
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parameter approaches 1, making no significant difference between
MUSCL-THINC-pq and MUSCL-THINC evident. The right panels
provide enlarged views. Since the contours were generated using
results every ten steps, the time resolution of the contours is approxi-
mately t¼ 5.1 (¼ Dt� 10 steps). The contour plots reveal the propaga-
tion of a compression wave from left to right. In the MUSCL case,
there is no transition from a compression wave to a shock wave, and
the compression wave profile remains unchanged during propagation,
as demonstrated in the enlarged views in Fig. 6(a). In contrast, a transi-
tion to a shock wave appears to occur in MUSCL-THINC-pq: the
thickness of the compression wave diminishes with propagation, even-
tually leading to the formation of a discontinuous profile. This process
is confirmed by the enlarged view in Fig. 6(b). The specific definition
of the formation of a “discontinuous shock front” will be discussed
later.

Now, turning to the discussion of the density profile for different
values of b. Figure 7 shows the density profiles at t¼ 500 and t¼ 1520
using MUSCL-THINC-pq and MUSCL. At t¼ 500 [Fig. 7(a)], the
compression wave reaches approximately x¼ 645–665, where a shock
wave has not yet formed. MUSCL-THINC-pq with b � 2.0 main-
tains the initial linear waveform and reduces the thickness of the
wave from its initial value. In contrast, MUSCL-THINC-pq with
b¼ 1.6 and MUSCL exhibit dissipative solutions, with the leading
and trailing edges of the compression wave becoming a smooth
profile. At t¼ 1520 [Fig. 7(b)], the compression wave reaches
approximately x¼ 1685 (> xs), where the formation of a shock
wave is expected. The results for b � 2.4 appear to display a dis-
continuous shock front. Conversely, b¼ 1.6, 2.0, and MUSCL
exhibit dissipative profiles. None of these methods account for the
coalescence of weakly compressed waves. In particular, MUSCL
exhibits excessive dissipation in this problem. Consequently, it is
evident that the use of THINC is necessary for accurately solving
the formation of weak shock waves.

Next, we determine the dependence of b by evaluating the thick-
ness of the compression or shock wave over time variation. The com-
pression or shock wave thickness d can be defined by using following
equation:29

d ¼ qL � qR
dq=dxð Þmax

¼ qL � qR
max

i
qi � qiþ1ð Þ=Dx

� � : (22)

Because we use the cell size Dx of unity in this problem, the thickness
d corresponds to the number of cells. Also, we confirmed that the
number of cells expressing the shock wave is consistent across coarse
and fine grids. Thus, the following discussion using the number of
internal points of the waves is applicable regardless of the grid
resolution.

A plot depicting d against wave position is presented in Fig. 8. d
was calculated and plotted every ten steps. The wave position is
defined as the location of the maximum slope of the wave. The red
solid line represents the theoretical value obtained from analysis using
the characteristic velocity. It is noteworthy that while d theoretically
reaches zero at the shock formation distance, d numerically reaches a
certain thickness due to the appearance of the internal structure of the
shock wave.

It was indeed challenging to judge the validity of the final d value
from both physical and numerical viewpoints. From a physical per-
spective, the shock wave is considered a nearly discontinuous surface
across which variables exhibit jumps. From a numerical perspective,

FIG. 7. Density profile in shock formation problem: (a) t¼ 500 and (b) t¼ 1520.

FIG. 8. Wave thickness and position history in weak shock formation problem.

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 36, 046110 (2024); doi: 10.1063/5.0198163 36, 046110-9

VC Author(s) 2024

 19 M
ay 2024 23:36:00

pubs.aip.org/aip/phf


on the contrary, a FVM inevitably requires at least one cell (typically a
few cells) to express a discontinuity, unless the discontinuity precisely
aligns with the gridline.33,34 In this study, we reconciled these differing
viewpoints by defining a “discontinuous shock wave” as “a thin zone
(d < 5 in this paper) established nearly at the theoretical shock forma-
tion instant” (in this numerical example, at t¼ 1520). This criterion
was consistently applied throughout all the numerical tests.

The numerical results clearly indicate the existence of a physically
consistent value of b. For b¼ 1.6, the compression wave thickness did
not settle at a certain value. At x¼ 2000, the thickness was 8.6 cells,
indicating that b¼ 1.6 leads to excessive dissipation for shock forma-
tion with a shock Mach number of 1.01. With b¼ 2.0, d stabilized at
5.7 cells after the wave passed through the expected shock formation
point. b¼ 2.4 and 2.8 showed acceptable solutions: the thickness of
the compression waves decreased to a stable, thin value (4.4 and 3.6
cells, respectively). The point at which d reached a stable value was
close to the theoretical value for the shock formation distance.
Consequently, under these conditions, the shock wave formation was
accurately resolved. b¼ 3.2 exhibited peculiar behavior: the thickness
of the compression waves decreased more rapidly than the theoretical
trend, and a shock was formed at approximately x¼ 1250, much closer
to the origin than the theoretical distance. This indicates that the com-
pression wave underwent stronger sharpening than the physically
accurate compression under this b.

From the shock formation problem, we recommend b¼ 2.4 and
2.8 for MUSCL-THINC-pq (the proposed scheme in this paper) and
MUSCL-THINC (the original scheme20). However, as will be demon-
strated later in the Appendix, MUSCL-THINC with b¼ 2.8 exhibits
an anomalous shape of vortex in the two-dimensional viscous shock-
tube problem (which is not observed in MUSCL-THINC-pq). To
avoid any confusion, we adopt b¼ 2.4 as the recommended value
hereafter.

B. Isotropic vortex advection (unsteady, accuracy
study)

The advection of an isotropic vortex35 is solved to verify the accu-
racy of the proposed method. This is a widely used benchmark test for
the Euler equations. The exact solution of an isentropic vortex is given
by

u

v

 !
¼ r

2prc
exp 1� r=rcð Þ2

2

� � �y

x

 !
;

p ¼ qT;

T ¼ 1� c� 1ð Þr2
8cp2

exp 1� r
rc

� �2
" #

:

(23)

Here, r represents the distance from the center of the computational
domain in this section, while r and rc are constants that determine the
characteristics of the vortex. In this case, we used r¼ 5 and rc¼ 1. The
vortex was initially placed at the origin within the square two-
dimensional computational domain [�5, 5]� [�5, 5]. The mean flow
(u, v) is represented as (u, v)¼ (1, 1).

To quantitatively assess the accuracy of the numerical scheme for
a continuous flow, we compared the numerical results with the exact
solution. We obtained the exact solution by applying a Galilean trans-
formation to the initial conditions. Theoretically, when (u, v)¼ (1, 1),

the vortex reaches (x, y)¼ (2, 2) at t¼ 2. We quantitatively evaluated
the differences between the theoretical and numerical solutions using
both the L1 � norm and the L1 � norm. Each norm is defined as
follows:

L1 � normð Þ ¼
Ri;j qi;j � qi;j exactð Þ

imax � jmax
;

L1 � normð Þ ¼ max
i;j

qi;j � qi;j exactj j:
(24)

The computational domain was divided equally into grids of size
20� 20, 40� 40, 80� 80, 160� 160, and 320� 320. The boundary
conditions were set as periodic. The time increments varied from
Dt¼ 8� 10�2 (for 20� 20 grids) to 5� 10�3 (for 320� 320 grids),
while ensuring that the CFL number remained at approximately 0.5.

Graphs illustrating the L1� and L1 � norms plotted against the
mesh size are presented in Fig. 9. The results for MUSCL, MUSCL-
THINC, and MUSCL-THINC-pq are displayed. All methods demon-
strated second-order accuracy in this problem. This is because all the
methods employ minmod-limited MUSCL for continuous flow, which
provides second-order spatial accuracy with linear reconstruction
within the cells. MUSCL-THINC and MUSCL-THINC-pq exhibited
L1 � norm approximately 0.5 orders of magnitude smaller than
MUSCL. Consequently, it is found that using THINC reconstruction
yielded higher resolutions for continuous flow. MUSCL-THINC
showed smaller errors than MUSCL-THINC-pq on the coarse grid.
The former employs THINC depending on the slope ratio within the
stencil, and the latter restricts usage of THINC depending on nonline-
arity in addition to the slope ratio. Thus, it is implied that the aggres-
sive usage of THINC for continuous flows seems to enhance the
accuracy on low-resolution grids. In finer grids, there was not a signifi-
cant difference in accuracy between MUSCL-THINC and MUSCL-
THINC-pq.

C. Sod shock tube (unsteady, accuracy study)

The next step involves verifying the accuracy of computations for
shock waves. To achieve this, we solved Sod’s shock-tube problem,36

which features a strong shock wave and a moving density discontinu-
ity. In this study, the computational domain was one-dimensional,
ranging from [0, 1], and was divided into 200 equally spaced cells
(Dx¼ 0.005). The diaphragm, initially positioned at the center of the
computational domain, separates the driver and driven gases. The ini-
tial conditions on the left and right sides of the diaphragm are defined
as follows:

qL; uL; pLð Þ ¼ 1:0; 0; 1:0ð Þ; qR; uR; pRð Þ ¼ 0:125; 0; 0:1ð Þ: (25)

The diaphragm was removed instantaneously at the initiation of the
computation. The time increment Dt was 1� 10�3 (CFL
number� 0.45). We also prepared the reference solution solved in
2000 cells by MUSCL with the time increment of 1� 10�4.

The density profile at t¼ 0.2 (after 200 steps) is presented in
Fig. 10. The top-right panel provides an enlarged view of the moving
density discontinuity (contact surface), while the bottom-right panel
focuses on the region around the shock wave. Additionally, the weight
value of THINC (fi for MUSCL-THINC, and fini in the case of
MUSCL-THINC-pq) is displayed in the same figure. The density pro-
files generated by MUSCL-THINC and MUSCL-THINC-pq were
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nearly identical, with a slight but noteworthy difference. The shock
wave (0.84< x< 0.86) thickness for MUSCL-THINC-pq was slightly
broader than that of MUSCL-THINC, and the waveform closely
resembled that of MUSCL. This variation can be attributed to the
reduction in the influence of THINC around the shock wave in
MUSCL-THINC-pq, as evidenced by the smaller value of fini com-
pared to fi, as shown in the weight value plot. This slight broadening
of the strong shock wave is intended and acceptable because the shock
wave is still adequately represented within a few cells. This outcome
confirms that THINC reconstruction is unnecessary for strong shock
waves. Conversely, at the moving density discontinuity (0.67< x
< 0.7), MUSCL-THINC-pq accurately captured it, similar to the per-
formance of MUSCL-THINC. The weight of THINC was similar in
both cases. Therefore, in line with the intentions outlined in Sec. IIB 4,
the proposed scheme utilizes MUSCL for strong shock waves and

THINC for density discontinuities. As discussed later, this feature con-
tributes to the stability of steady-state flow simulations.

Before concluding this section, we discuss the unnecessary
activation of THINC behind the shock wave (0.82< x< 0.84), in
front of it (0.86< x< 0.89), and behind the density discontinuity
(0.63< x< 0.67). Although eliminating this unnecessary activa-
tion is challenging, it is crucial to note that the oscillation level in
this study was negligible. We also confirmed that such activations
did not appear within the smooth region (the expansion wave
region).

D. Moving shock (unsteady)

In this section, we present the computational results for a moving
shock wave withMs¼ 1.01 (very weak), 1.5 (moderate), and 3.0 (strong),
where Ms represents the shock Mach number. The computations were

FIG. 9. Errors of isotropic vortex advection problem: (a) L1 � norm and (b) L1 � norm.

FIG. 10. Density profile of Sod’s shock
tube. Right column shows enlarged view
of density and weight of THINC around
moving density discontinuity (top) and
shock wave (bottom).
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conducted in a domain spanning [0, 2000], with 2000 cells evenly
distributed in the x-direction (Dx¼ 1). The initial placement of the
moving shock wave was at the interface between the 100th and 101st
cells. We focus solely on one-dimensional results here, as our pre-
liminary survey did not reveal any two-dimensional shock anoma-
lies, e.g., the carbuncle phenomenon, in the corresponding test with
the computational domain extended in the y-direction of the
Cartesian coordinate. The initial conditions are defined by the
Rankine–Hugoniot equations for a moving shock wave, given as
follows:

qL; uL; pLð Þ ¼
 

cþ 1ð ÞM2
s

c� 1ð ÞM2
s þ 2

qR;
2aR
cþ 1

Ms � 1
Ms

� �
þ uR;

1þ 2c
cþ 1

M2
s � 1

� � �
pR

!
;

qR; uR; pRð Þ ¼ 1; 0; 1ð Þ:

(26)

The time increment Dt was 0.5, 0.4, and 0.2 (CFL number at the initial
state� 0.51, 0.74, and 0.77) forMs¼ 1.01, 1.5, and 3.0 respectively.

Figure 11 displays the density profile, computed using MUSCL,
MUSCL-THINC, and MUSCL-THINC-pq. The results at time step
2000 are shown: t¼ 1000, 800, and 400 for Ms¼ 1.01, 1.5, and 3.0

respectively. MUSCL failed to sharply resolve the shock wave
(Ms¼ 1.01). In contrast to Sec. III A, the initial conditions were per-
fectly discontinuous in this case. Thus, MUSCL failed to solve the very
weak shock wave, regardless of the initial profile. In contrast, both
MUSCL-THINC and MUSCL-THINC-pq sharply captured the very
weak shock wave, signifying a considerable improvement over
MUSCL. This outcome underscores the necessity of nonlinear recon-
struction via THINC for accurately capturing a very weak, moving
shock wave.

For Ms¼ 1.5 and 3.0, MUSCL showed a discontinuous profile.
MUSCL-THINC and MUSCL-THINC-pq also showed a discontinu-
ous profile. The only difference was the number of cells expressing the
shock wave. MUSCL-THINC solved the shock wave with two cells for
Ms¼ 1.5 and 3.0, whereas MUSCL-THINC-pq solved it with four cells
(Ms¼ 1.5) or three cells (Ms¼ 3.0). As discussed in Sod’s shock-tube
problem (Sec. IIIC), suppressing THINC at the shock wave using the
nonlinearity-weighted parameter resulted in a slight increase in the
shock wave thickness.

E. Stationary shock (steady)

This section presents the computational results for the stationary
normal shock wave standing in the supersonic flow. The Mach

FIG. 11. Density profile of moving shock wave at time step of 2000: (a) Ms¼ 1.01, (b) 1.5, and (c) 3.0.
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number of the upstream flow M was 1.01, 1.5, and 3.0. The computa-
tion was performed in a one-dimensional space of [0, 100], where 100
cells were arrayed in the x-direction (Dx¼ 1). A normal shock
wave was installed at the interface between the 50th and 51st cells in
the x-direction. The left and right sides of the shock wave were super-
sonic and subsonic, respectively. A supersonic inlet was applied to the
left boundary (x¼ 0). The wall-like boundary used in Ref. 24 was
applied to the right-side boundary (x¼ 100); only the mass flux was
fixed (qu¼ 1) to stabilize the shock wave position, and the other varia-
bles were simply extrapolated (qimaxþ1¼ qimax). For a detailed descrip-
tion of this problem, refer to Ref. 24.

Figure 12 depicts the density profiles obtained using MUSCL,
MUSCL-THINC, and MUSCL-THINC-pq at 100000 time steps. It is
evident that MUSCL failed to sharply resolve the M¼ 1.01 stationary
shock wave due to significant numerical dissipation. In contrast, both
MUSCL-THINC and MUSCL-THINC-pq captured the shock wave
sharply. Although a slight post-shock oscillation was observed, the
implementation of THINC significantly improved the resolution for a
very weak shock wave.

MUSCL-THINC exhibited periodic post-shock oscillations at
M¼ 1.5 and 3.0. In contrast, MUSCL-THINC-pq yielded less oscilla-
tory results due to the improved hybrid balance between MUSCL and
THINC achieved through the nonlinearity-weighted parameter.

MUSCL provided sharp and stable solutions for the M¼ 1.5 and 3.0
stationary shock waves, indicating that THINC reconstruction is
unsuitable for moderate and strong stationary shock computations, a
scenario not previously explored in studies such as Ref. 20. Hence, it
was verified that reconstruction must be applied based on nonlinearity,
primarily determined by the shock wave strength. The proposed
scheme effectively adjusts the balance between MUSCL and THINC,
resulting in a high-resolution and stable solution. The qualitative con-
vergence performance is evaluated using the 2D blunt-body problem
described in Sec. III F.

F. Blunt body problem (steady)

Convergence performance to a steady state has rarely been dis-
cussed in the context of developing numerical schemes using THINC
reconstruction, despite its importance in application problems. In this
section, to evaluate the convergence performance of the proposed
scheme for a stationary problem, a two-dimensional bow shock
formed in front of a blunt body (so-called “blunt body problem”) was
solved. This problem serves as a benchmark to evaluate the perfor-
mance of computational schemes for strong steady shock waves.8,24

The focus here is clarifying the effect of THINC usage at strong shock
waves on the convergence performance. The uniform-flow Mach

FIG. 12. Density profile of stationary shock wave at time step of 100 000: (a) M¼ 1.01, (b) 1.5, and (c) 3.0.
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number was set to M¼ 3.0. We utilized the grid used by Jiang and
Shu.8 The computational plane can be expressed as follows:

x ¼ � Rx � Rx � 1ð Þi½ �cos h 2j� 1ð Þ� �
;

y ¼ Ry � Ry � 1ð Þi½ �sin h 2j� 1ð Þ� �
;

(27)

where Rx ¼ 3, Ry ¼ 6, h¼ 5p/12, and the number of cells was 60 in the
wall-normal direction (i-direction) and 80 in the tangential direction
(j-direction). A supersonic flow inlet (M¼ 3.0) was applied to the left
boundary (i¼ 0), and a slip wall condition was applied to the right
boundary (i¼ 60). Simple extrapolation was used for the edges of the
tangential wall directions (j¼ 0 and 80). In this grid setup, the bow
shock wave did not align perfectly with a grid line but was expected to
converge to a stationary state as the calculation progressed. We used a
time increment with a CFL number of 0.5.

Figure 13 displays the computational grid [Fig. 13(a)] and density
contours at 100 000 time steps for MUSCL [Fig. 13(b)], MUSCL-
THINC [Fig. 13(c)], and MUSCL-THINC-pq [Fig. 13(d)]. MUSCL
[Fig. 13(b)] and MUSCL-THINC-pq [Fig. 13(d)] successfully resolved
the bow shock and the downstream flow field without apparent anom-
alies. However, MUSCL-THINC [Fig. 13(c)] exhibited wrinkled lines
behind the shock wave compared to the other cases, roughly around
coordinates (x, y)¼ (�1, 62). The cause of this anomaly can be
understood by examining the THINC weight values. The weight values
of THINC (fi for MUSCL-THINC and fini for MUSCL-THINC-pq)
used in the density reconstruction in the i-direction, along with density
contour lines (in black), are illustrated in Fig. 14. The key difference
between MUSCL-THINC and MUSCL-THINC-pq in these figures is

the weight value of THINC around the shock wave. In MUSCL-
THINC [Fig. 14(a)], the weight value of THINC fi is close to 1 within
and behind the shock wave. In contrast, the weight value of THINC in
MUSCL-THINC-pq fini is suppressed within and behind the shock
wave, as shown in Fig. 14(b). (Although a large THINC weight value
was applied to two or three cells in front of the shock, this was due to a
slight density increase. This phenomenon was observed in both
MUSCL-THINC and MUSCL-THINC-pq.) As observed in previous
numerical tests of one-dimensional stationary shock waves (Sec. III E),
using THINC leads to numerical oscillations behind strong shocks.
Therefore, this test reveals that the weight value of MUSCL-THINC
for strong shock waves was inappropriate for this steady, two-
dimensional problem.

Figure 15 shows the density residuals, which represent the maxi-
mum value of the density changes between every time step in all com-
putational domains. In MUSCL-THINC, the residual reached
1� 10�2 at a time step of 5000 and then did not decrease further, indi-
cating poor convergence performance for steady computation with a
strong shock. Conversely, for MUSCL-THINC-pq, the density residual
converged to 1� 10�13 at a time step of approximately 15000.
Compared to MUSCL-THINC, the residual decreased by more than
10 orders of magnitude. As shown in Fig. 14, which illustrates the
weight value of THINC, the use of THINC in MUSCL-THINC-pq
was suppressed near the strong shock wave compared to MUSCL-
THINC. This suppression contributed to stabilizing the flow field
behind the shock wave, leading to convergence to a steady state.
MUSCL showed the best convergence performance, with the residual
reaching 1� 10�15. Although the residual of MUSCL-THINC-pq was

FIG. 13. Two-dimensional blunt body problem (M¼ 3.0): (a) Computational grid including ghost cells, (b)–(d) density contours ranging from 1.2 to 4.2 with 16 levels at the time
step is 100 000. (b) MUSCL, (c) MUSCL-THINC, and (d) MUSCL-THINC-pq.
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approximately two orders larger than that of MUSCL, MUSCL-
THINC-pq exhibited considerably improved convergence over
MUSCL-THINC.

In summary, this test revealed that the proposed hybridization
strategy successfully addressed steady-state problems involving strong
shock waves. This was achieved owing to successful tuning of the
THINC utilization at strong shock waves. The proposed approach,
MUSCL-THINC-pq, represents the first hybrid scheme combining
MUSCL and THINC with significantly improved convergence perfor-
mance for steady solutions of compressible flows with strong shock
waves maintaining a high-resolution feature for weak shock waves.

G. Shu–Osher’s shock-entropy wave interaction
(unsteady)

Here, we solved the Shu–Osher problem,37 where the interaction
between shock waves and entropy waves occurs in one dimension. The
computational domain was [�5, 5], discretized into N¼ 400 evenly
spaced cells. The initial conditions were specified as follows:

qL; uL; pLð Þ ¼ 3:857143; 2:629369; 10:33333ð Þ for x��4;

qR; uR; pRð Þ ¼ 1þ 0:2sin5x; 0; 1ð Þ for x >�4:
(28)

This configuration results in a moving shock wave withMs¼ 3.0 when
sin5x¼ 0. We utilized a time increment of 3.6� 10�3 (yielding a CFL
number of approximately 0.68) and conducted computations up to
t¼ 1.8 (500 steps).

Figure 16 presents the density profiles at t¼ 1.8. For comparison,
we also include the reference result obtained using MUSCL on a mesh
four times finer (1600 cells) with a time step of 9� 10�4. MUSCL
exhibited significant numerical dissipation in the entropy waves after
their interaction with the shock. In contrast, both MUSCL-THINC
and MUSCL-THINC-pq resolved the entropy waves after the interac-
tion, comparable to the reference result with four times the number of
cells. The difference between MUSCL-THINC and MUSCL-THINC-
pq was minimal in this problem, confirming that the nonlinearity-
weighted parameter does not obviously compromise the resolution of
entropy waves, as intended in Sec. IIB 4.

H. 2D Riemann problem (unsteady)

In this section, we address the two-dimensional Riemann prob-
lem, a widely recognized benchmark test for the Euler equations.38 In
this study, we initiated density and tangential velocity discontinuities.
As time progressed, the Kelvin–Helmholtz (KH) instability emerged,
particularly if the scheme exhibited minimal numerical dissipation.

FIG. 14. Contours showing weight value
of THINC in i-direction and density (lines)
at the time step of 100 000: (a) MUSCL-
THINC and (b) MUSCL-THINC-pq.

FIG. 15. Density residual in two-dimensional blunt body problem.
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The scheme’s resolution can be qualitatively assessed by examining the
appearance of small-scale flow structures of the KH instability. The
computational domain was defined as [0, 1] � [0, 1], equally divided
into 1000 cells in both the x- and y-directions. Initially, the square
computational domain was divided into smaller four-square domains
as follows:

q0; u0; v0; p0ð Þ ¼

1:0; 0:726; 0:0; 1:0ð Þ x � 0:5; y � 0:5;

0:8; 0:0; 0:0; 1:0ð Þ x � 0:5; y < 0:5;

0:5313; 0:0; 0:0; 0:4ð Þ x > 0:5; y � 0:5;

1:0; 0:0; 0:7276; 1:0ð Þ x > 0:5; y < 0:5:

8>>>><
>>>>:

(29)

Time integration was performed using CFL¼ 0.5.
The density contours obtained by each method at a time step of

2500 are presented in Fig. 17. In Fig. 17(a), MUSCL demonstrates a
dissipative density interface within the low-density region where
x< 0.5 and y< 0.5. MUSCL struggles to resolve the KH instability due
to significant numerical dissipation. In contrast, both MUSCL-THINC
[Fig. 17(b)] and MUSCL-THINC-pq [Fig. 17(c)] exhibit the KH insta-
bility at the density discontinuity along the initial slip lines near
(x, y)¼ (0.5, 0.4) and (0.4, 0.5). This is attributed to the THINC recon-
struction, which captures the density discontinuity with reduced
numerical dissipation. Additionally, instability is observed in the high-
density region with x< 0.5 and y< 0.5. Figure 17(d) presents the
results obtained using WENO8 reconstruction for comparison with
higher-order schemes. Reconstruction was carried out in a fifth-order
component-wise manner. Notably, MUSCL-THINC-pq exhibits supe-
rior resolution for density discontinuity compared to the WENO
reconstruction. This is because, for the discontinuity, the higher-order
scheme is not necessarily optimized: the higher-order result is obtained
for continuous flow components. The interface capturing by THINC
contributed to capturing the density discontinuity with less numerical
dissipation. Consequently, despite operating within a second-order
framework, MUSCL-THINC-pq achieves resolution surpassing that of
the approximately 26% more expensive higher-order scheme for

capturing slip lines, which is computationally more demanding due to
its reliance on information from a larger number of cells. The results
emphasize the effectiveness of the proposed method (see Sec. IIIK for
the specific numerical costs). This feature is highly advantageous for
practical simulations.

I. Double-Mach reflection (unsteady)

In this section, a hypersonic planar shock wave with a shock
Mach number Ms¼ 10 reflected by a 30	 ramp is simulated.39 This
problem, known as the double-Mach reflection problem, allows for the
evaluation of the scheme’s performance with regard to strong shock
waves and density discontinuities in the recirculation region behind
the Mach stem. Chiu et al.20 previously tested the performance of the
original hybrid MUSCL-THINC scheme using this problem and
reported that the scheme could resolve the small structure of the KH
instability in the recirculation region. They also reported that MUSCL-
THINC suffered slightly from a carbuncle phenomenon behind the
Mach stem. In this study, the proposed scheme, which switches to
MUSCL around a strong shock wave, was compared with MUSCL-
THINC.

The computation was performed in the [0, 4] � [0, 1] domain
and spaced at 1000 and 250 cells in the x- and y-directions, respec-
tively. The initial conditions were as follows:

q; u; v; pð Þ ¼
8:0; 7:145;�4:125; 116:5ð Þ
1:4; 0; 0; 1ð Þ

x < xs t ¼ 0ð Þ;
otherwise;

(

(30)

where xs t ¼ 0ð Þ was the initial shock wave position,

xs t ¼ 0ð Þ ¼ 1
6
þ 10
sin að Þ þ

y
tan að Þ ; (31)

where a ¼ 60	 was the angle of the shock wave from the bottom bound-
ary. The same boundary conditions as those used in 20 were employed.
The time increment was set to 2� 10�5 (CFL number� 6.4� 10�2),
and the computation was performed until t¼ 0.2 (10 000 steps).

FIG. 16. density profile of Shu–Osher’s shock/entropy wave interaction problem (t¼ 1.8): (a) �3� x� 5 and (b) �1� x� 3.
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The density contours obtained from the simulations using
MUSCL, MUSCL-THINC, and MUSCL-THINC-pq are illustrated in
Fig. 18. The enlarged views of the recirculation region and Mach stem
are presented in the right panels. In the results obtaining using
MUSCL [Fig. 18(a)], a dissipative solution is evident, with no vortex
observed in the recirculation region. In contrast, MUSCL-THINC
[Fig. 18(b)] exhibited the generation of vortices in the recirculation
region, consistent with previous findings.20 However, the Mach stem
displayed unnatural wrinkled density contour lines extending from (x,
y)¼ (2.8, 0) to (2.74, 0.4), accompanied by a two-dimensional instabil-
ity behind the shock wave in the vicinity of the bottom wall
(around 2.7< x< 2.8), indicative of an anomalous shock solution.

(This anomaly was previously termed the “carbuncle phenomenon”
in Ref. 20.) In the case of MUSCL-THINC-pq [Fig. 18(c)], the den-
sity contour of the Mach stem appears straighter without the shock
anomaly. In addition, the flow field behind the shock wave exhib-
ited fewer numerical oscillations, while successfully resolving the
KH instability in the recirculation region. Thus, the proposed
scheme mitigates the shock anomaly by considering the strength of
the shock wave while maintaining favorable performance in cap-
turing density discontinuities. This improvement in robustness
against strong shock waves is crucial for the practical application
of numerical methods, as shock anomalies frequently arise in real-
world scenarios.21–24

FIG. 17. Density contour of two-dimensional Riemann problem (2500 steps) solved by (a) MUSCL, (b) MUSCL-THINC, (c) MUSCL-THINC-pq, and (d) WENO.
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J. Viscous shock-tube (unsteady, viscous)

For the final numerical test, we tackled a two-dimensional shock
wave-boundary layer interaction problem within a shock tube (viscous
shock-tube problem).40 This problem involved solving the Navier–Stokes
equations to assess the performance of the scheme in handling viscous
effects. Viscous flux computations were carried out using a second-order
central difference. We adopted the setup described by Daru et al.,40 with
the computational domain spanning [0, 1] � [0, 0.5], divided equally
into 250� 125 cells. The initial condition was specified as

qL; uL; vL; pLð Þ ¼ 120; 0; 0; 120=cð Þ for x � 0:5;

qR; uR; vR; pRð Þ ¼ 1:2; 0; 0; 1:2=cð Þ for x > 0:5:
(32)

After evolution, a shock wave propagated toward the right boundary,
leading to the emergence of a boundary layer behind it due to viscosity.
Upon reflection at the right boundary, an interaction occurred between
the reflected shock wave and the boundary layer. Our focus was specif-
ically on evaluating the scheme’s capacity to resolve the primary vortex
formed after this interaction. The computations were conducted using
a time step of 5� 10�6 (yielding a CFL number of approximately 0.52)
for t¼ 1 (corresponding to 200000 time steps), with the Reynolds
number set at 200.

The density contours at t¼ 1 are depicted in Fig. 19. Additionally,
we included a reference solution obtained with a grid resolution of
1000� 500 cells (i.e., 4� 4 times finer than the base resolution) using
MUSCL. High-resolution schemes are known to exhibit longitudinal

elongation of the primary vortex at approximately (x, y) ¼ (0.8, 0.05).40

The dissipative nature of the MUSCL scheme is evident from the hori-
zontally lengthened vortex shape in Fig. 19(a). In contrast, both
MUSCL-THINC [Fig. 19(b)] and MUSCL-THINC-pq [Fig. 19(c)], as
well as the reference solution [Fig. 19(d)], demonstrated characteristics
of a high-order scheme, particularly the longitudinal elongation of the
primary vortex. Remarkably, the results obtained with MUSCL-
THINC-pq closely resembled those of the reference solution.
Furthermore, we observed that the MUSCL-THINC-pq solution exhib-
ited fewer numerical oscillations compared to MUSCL-THINC. The
density profiles along the bottom wall are displayed in Fig. 20. We con-
firmed that the MUSCL-THINC-pq solution quantitatively resembled
the profile of the reference solution around the primary vortex (x� 0.8).
Consequently, our findings confirm that the proposed scheme yields
favorable results for handling viscous problems.

K. Computational costs

Finally, we discuss the computational costs associated with the
proposed method. The CPU time measurement results are summa-
rized in Table I. We conducted measurements for two types of numeri-
cal tests: Shu–Osher shock wave-entropy wave interactions (Sec. IIIG)
and the two-dimensional Riemann problem (Sec. IIIH). The entire
process, from the start of computation to completion, was included in
the measurement. The CPU time of MUSCL was used as the baseline,
and the ratio to MUSCL is presented in parentheses.

FIG. 18. Density contours of double-Mach reflection problem at t¼ 0.2: (a) MUSCL, (b) MUSCL-THINC, and (c) MUSCL-THINC-pq.
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In the case of the Shu–Osher’s problem, we observed a 13.7%
increase in computational time for MUSCL-THINC and a 29.1%
increase for MUSCL-THINC-pq compared to MUSCL under the
same grid conditions. It is important to note that MUSCL provided a
suboptimal solution due to excessive dissipation, and to achieve similar
high-resolution results with MUSCL, a significantly finer grid and a
fourfold reduction in the time increment were required, resulting in an
approximately 16-fold increase in computational time.

In the context of the two-dimensional Riemann problem,
MUSCL-THINC exhibited a 20.7% increase in computational time,
while MUSCL-THINC-pq showed a 31.5% increase compared to
MUSCL. Once again, MUSCL delivered a subpar solution for this
problem. Additionally, it is worth noting that the proposed scheme,
despite the increase in computational time, proved to be more efficient
than WENO, which exhibited a 66.0% increase fromMUSCL and pre-
sented a more dissipative solution than MUSCL-THINC andMUSCL-
THINC-pq at the density discontinuity.

In summary, MUSCL-THINC-pq resulted in a computational
time increase of 29.1%–31.5% compared to MUSCL and 8.87%–13.7%

FIG. 19. Density contours of viscous shock-tube problem at t¼ 1. Density ranges from 20 to 140 with 41 levels: (a) MUSCL, (b) MUSCL-THINC, (c) MUSCL-THINC-pq, and (d) reference.

FIG. 20. Density profiles of viscous shock tube problem along bottom wall at t¼ 1.
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compared to the original MUSCL-THINC. Considering the enhanced
convergence performance and robustness against strong shock waves,
this increase in computational time remains acceptable. This repre-
sents a significant advantage of the proposed method for practical
application problems.

IV. CONCLUSIONS

This paper introduced a novel hybrid scheme of MUSCL and
THINC, termed the “MUSCL-THINC-pq” scheme, or briefly, T-
MUSCL, for both steady and unsteady single-phase compressible flow
simulations. The design of this scheme revolved around achieving an
appropriate balance of nonlinearity between the physical phenomena
and the reconstruction process to solve weak shock waves sharply and
strong shock waves robustly. This concept was realized through the
utilization of two key parameters: a nonlinearity-weighted parameter
and a slope-ratio-weighted parameter. The proposed scheme offers the
following distinctive features.

• Enhanced accuracy for continuous flow simulations, providing
second-order spatial accuracy with smaller errors compared to
conventional MUSCL.

• Precise capturing of extremely weak moving and stationary shock
waves (Ms¼ 1.01 and M¼ 1.01, respectively). These cases were
previously challenging for the original MUSCL method due to
excessive dissipation.

• Improved convergence behavior in steady two-dimensional blunt
body problems. The density residual decreased significantly, sur-
passing ten orders of magnitude reduction when compared to the
original MUSCL-THINC hybrid scheme.

• Mitigation of shock anomalies in the presence of strong shock
waves while maintaining high-resolution computations for den-
sity discontinuities and entropy waves. Remarkably, the proposed
scheme achieved results with resolution exceeding that of a more
computationally intensive fifth-order reconstruction at slip lines
in the two-dimensional Riemann problem, despite being designed
within a second-order framework.

It is noteworthy that using THINC reconstruction for strong
shock waves resulted in undesirable numerical oscillations and conver-
gence issues, particularly in steady flows with intense shock waves.
This finding contributes valuable insights for the continued develop-
ment of numerical schemes in this field.

Despite these advanced features, the algorithm employed in this
scheme remains straightforward: after computing the nonlinearity-
weighted parameter based on pressure and density, it is multiplied by
the slope ratio-weighted parameter used in the original hybrid
MUSCL-THINC scheme. Additionally, the stencil size for reconstruc-
tion aligns with that of the second-order spatial accuracy MUSCL
approach. The proposed scheme has some drawbacks: higher

computational costs than that of MUSCL and the original hybrid
approach, slightly insufficient small-scale resolution, and somewhat
compromised convergence properties than MUSCL. Nevertheless, the
proposed scheme consistently delivers robust, high-resolution compu-
tational results in a wide variety of benchmark tests. Consequently, it
can be readily adopted in place of MUSCL in various practical applica-
tions without introducing unnecessary complexity to existing algo-
rithms. The potential extension of this scheme to unstructured grid
systems, which could enhance its applicability in more real-world sce-
narios, remains a promising avenue for future research.
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APPENDIX: EFFECT OF b IN VISCOUS SHOCK-TUBE
PROBLEM

As discussed in the one-dimensional weak shock formation
problem (Sec. III A), b values of 2.4 and 2.8 were found to yield

TABLE I. Comparison of CPU time.

MUSCL
MUSCL-THINC

(original)
MUSCL-THINC-pq

(proposed)

MUSCL
(four times
fine grid) WENO

Shu–Osher’s problem (Sec. III G) 0.300 (1) 0.341 (1.137) 0.357 (1.291) 4.910 (16.36) 
 
 

2D Riemann problem (Sec. III H) 2563 (1) 3096 (1.207) 3370 (1.315) 
 
 
 4256 (1.660)
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FIG. 21. Density contours of viscous shock tube problem at t¼ 1. Density ranges from 20 to 140 with 41 levels: (a) MUSCL-THINC b¼ 2.4, (b) MUSCL-THINC b¼ 2.8, (c)
MUSCL-THINC-pq b¼ 2.4, (d) MUSCL-THINC-pq b¼ 2.8, and (e) reference.
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physically consistent compression trends for MUSCL-THINC and
MUSCL-THINC-pq. In this Appendix, we further assess the impact
of b on the viscous shock-tube problem (Sec. III J). Figure 21 dis-
plays the density contours of the viscous shock-tube problem,
solved using MUSCL-THINC with b¼ 2.4 [Fig. 21(a)] and 2.8
[Fig. 21(b)], MUSCL-THINC-pq with b¼ 2.4 [Fig. 21(c)], and
b¼ 2.8 [Fig. 21(d)]. Notably, when b was set to 2.8 for MUSCL-
THINC, it resulted in an anomalous deformation of the primary
vortex, rendering it excessively thin compared to the other cases.
Moreover, numerical oscillations were evident throughout the
region behind the shock waves. This behavior stemmed from the
strong sharpening effect associated with the larger value of b.
Conversely, the results for the other cases did not exhibit anomalous
behavior and closely resembled the reference outcomes [Fig. 21(e)].
While MUSCL-THINC-pq with b¼ 2.8 did not produce anomalous
results, it is recommended to opt for b¼ 2.4 to simplify the user
experience, as this value can be effectively used for MUSCL-THINC
computations.
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