FUNDAMENTAL GENERA FOR NORMAL SURFACE TRIPLE POINTS BRANCHED OVER ANALYTICALLY IRREDUCIBLE SINGULAR PLANE CURVES

By

Kodai Oyu

(Received November 15, 2023; Revised January 13, 2024)

Abstract

In this paper, we study normal surface triple points branched over analytically irreducible singular plane curves. We calculate the fundamental genera of these triple points. Also, we obtain a necessary and sufficient condition for these triple points to be Kodaira singularities.

1. Introduction

In [Oyua], it was proved that for normal surface singularities defined by $z^{3}=f(x, y)$, if $f(x, y) \in \mathbb{C}\{x, y\}$ is irreducible and $\operatorname{ord}(f) \geq 2$, then the maximal ideal cycle and the fundamental cycle coincide on the minimal resolution. In this paper, we continue to study this type of singularities. We will compute the fundamental genera and give a necessary and sufficient condition for these singularities to be Kodaira singularities. As we will see later, it makes sense to compute the fundamental genus for a given normal surface singularity since it is useful in the classification of singularities. Also, Kodaira singularities introduced by Karras [Kar80], are an important class of normal surface singularities since the maximal ideal cycle coincides with the fundamental cycle on the minimal resolution while there are many cases where the two cycles do not coincide ([Lau78], [Oyub], [Tom]). Therefore, it is meaningful to consider whether a given
singularity is Kodaira or not.
Before explaining our results, we prepare some terminology and facts. Let $\varphi:(\tilde{V}, A) \rightarrow(V, o)$ be a resolution of a normal surface singularity and $A=\bigcup A_{\lambda}$ the irreducible decomposition of the exceptional set. We call φ a good resolution if the exceptional set A is a simple normal crossing divisor in \tilde{V}. Also, φ is called the minimal resolution (resp. the minimal good resolution) if for any resolution (resp. good resolution) $\varphi^{\prime}:\left(\tilde{V}^{\prime}, A^{\prime}\right) \rightarrow(V, o)$ there exists a unique morphism $\pi: \tilde{V}^{\prime} \rightarrow \tilde{V}$ such that $\varphi^{\prime}=\varphi \circ \pi$. A divisor $D=\sum_{\lambda} d_{\lambda} A_{\lambda}\left(d_{\lambda} \in \mathbb{Z}\right)$ on \tilde{V} supported in A is called a cycle. We denote d_{λ} by $\operatorname{cff}_{A_{\lambda}}(D)$. For a cycle $D=\sum_{\lambda} d_{\lambda} A_{\lambda}$, we define $D_{\text {red }}:=\sum_{A_{\lambda} \subset \operatorname{Supp}(D)} A_{\lambda}$. Let \mathfrak{m} be the maximal ideal of the local ring $\mathcal{O}_{V, o}$ of V at o. For an element $h \in \mathfrak{m} \backslash\{0\}$, let $(h \circ \varphi)$ be the divisor defined by $h \circ \varphi$ on \tilde{V}. The exceptional part of $(h \circ \varphi)$ is defined by $(h \circ \varphi)_{A}:=\sum_{\lambda} v_{A_{\lambda}}(h \circ \varphi) A_{\lambda}$, where $v_{A_{\lambda}}(h \circ \varphi)$ indicates the vanishing order of $h \circ \varphi$ on A_{λ}. The maximal ideal cycle M_{A} on A is defined by $M_{A}:=\min \left\{(h \circ \varphi)_{A} \mid h \in\right.$ $\mathfrak{m} \backslash\{0\}\}$ ([Yau80, Definition 2.11]). The fundamental cycle Z_{A} on A is defined by $Z_{A}:=\min \left\{D=\sum a_{\lambda} A_{\lambda} \mid a_{\lambda}>0\right.$ and $D \cdot A_{\lambda} \leq 0$ for any $\left.\lambda\right\}([\operatorname{Art66}$, p.132]). The arithmetic genus $p_{a}\left(Z_{A}\right)=1-\chi\left(\mathcal{O}_{Z_{A}}\right)$ of Z_{A} is called the fundamental genus and denoted by $p_{f}(V, o)$. It can be calculated by the following formula:

$$
\begin{equation*}
p_{f}(V, o)=\frac{Z_{A}^{2}+Z_{A} \cdot K_{\tilde{V}}}{2}+1 \tag{1.1}
\end{equation*}
$$

Here, $K_{\tilde{V}}$ is the canonical divisor of \tilde{V} ([Ish14, Definition 7.2.10]). It is wellknown that the fundamental genus is independent of a choice of resolution of $(V, o)([$ Ish14, Proposition 7.2.9] $)$ and useful in the classification of singularities. For example, if $p_{f}(V, o)=0$, then (V, o) is a rational singularity ([Ish14, Theorem 7.3.1]), and the definition of minimally elliptic singularities requires $p_{f}(V, o)=1$ ([Ish14, Definition 7.6.5]). Also, the case of $p_{f}(V, o) \geq 2$ has been studied by Tomaru [Tom95] and Konno [Kon12]. Furthermore, for a Kodaira singularity, it is known that the arithmetic genus of the associated pencil equals the fundamental genus ([Kar81]). Kodaira singularities are defined as follows: Let S be a nonsingular complex surface and $\Delta \subset \mathbb{C}$ a small open disc around the origin. If $\Phi: S \rightarrow \Delta$ is a proper surjective holomorphic map with connected fibers and the generic fiber $S_{t}:=\Phi^{-1}(t)(t \neq 0)$ is a smooth curve of genus g, it is called a pencil of curves of genus g.

Definition 1.1 ([Kar80, Definition 2.2]). A normal surface singularity (V, o) is called a Kodaira singularity if there exists a pencil of curves $\Phi: S \rightarrow \Delta$ such that, after a finite number of blowing-ups at finite non-singular points in non-multiple components of the singular fiber $S_{0}, \sigma: S^{\prime} \rightarrow S$, there is a holomorphic map $\pi: M \rightarrow X$ from an open neighborhood M of the proper transform of $\operatorname{Supp}\left(S_{0}\right)$ in S^{\prime} which defines a resolution of (V, o). Further, if the pencil is of genus g, then we call (X, o) a Kodaira singularity associated to a pencil of curves of genus g.

Finally, in order to describe our result, we need to recall the definition of the characteristic exponents of irreducible $f(x, y) \in \mathbb{C}\{x, y\}$ with $\operatorname{ord}(f) \geq 2$. By coordinate changes in x and y, we can always assume that the irreducible curve singularity $(C, o)=\{f(x, y)=0\}$ has a parametrization $x=t^{m}, y=\sum_{i \geq m} b_{i} t^{i}$, which is called the Puiseux expansion of $f(x, y)$ ([BK86, p.385]). Then the characteristic exponents are defined as follows.

Definition 1.2 ([dP00, Definition 5.2.14]). We define

$$
\begin{aligned}
& k_{0}:=m \\
& k_{j}:=\min \left\{i \mid a_{i} \neq 0, \operatorname{gcd}\left(i, k_{0}, \ldots, k_{j-1}\right)<\operatorname{gcd}\left(k_{0}, \ldots, k_{j-1}\right)\right\} \quad \text { for } j \geq 1
\end{aligned}
$$

We obviously obtain finitely many k_{j}, say $k_{0}, k_{1}, \ldots, k_{l}$. We call them the characteristic exponents of $f(x, y)$. Note that $k_{0}<k_{1}<\cdots<k_{l}, \operatorname{gcd}\left(k_{0}, k_{1}, \ldots, k_{l}\right)=$ 1 , and $l \geq 1$.

From now on, let us describe our motivation and background for our research. For a normal surface singularity defined by $z^{n}=f(x, y)$, where $f(x, y) \in \mathbb{C}\{x, y\}$, there are several results for the fundamental genus and a condition to be a Kodaira singularity. For example, Tomaru proved that if n divides $\operatorname{ord}(f)$ (the order of $f(x, y)$), then it is a Kodaira singularity associated to a pencil of curves of genus ($=$ the fundamental genus) $(n-1)(\operatorname{ord}(f)-2) / 2([T o m 01$, Theorem 4.1]). Also, he proved that if n is sufficiently large, then the singularity is a Kodaira singularity associated to a pencil of curves of genus $(\mu(C)-r(f)+1) / 2$, where $r(f)$ is the number of irreducible components of $f(x, y)$ and $\mu(C)$ is the Milnor number of the curve singularity defined by $f(x, y)=0$ ([Tom01, Theorem 4.5]). For a Brieskorn-type singularity defined by $x_{0}^{a_{0}}+x_{1}^{a_{1}}+x_{2}^{a_{2}}=0\left(2 \leq a_{0} \leq a_{1} \leq a_{2}\right)$,
the method for computing the fundamental genus from the exponents a_{0}, a_{1}, a_{2} was shown by Tomaru [Tom07] for the special case $\left(\operatorname{lcm}\left(a_{0}, a_{1}\right) \leq a_{2}\right)$, and later completed by Konno and Nagashima [KN12] for the all cases. Also, Konno and Nagashima obtained a necessary and sufficient conditions for a Brieskorn-type singularity to be a Kodaira singularity. Meng and Okuma [MO14] extended Konno and Nagashima's result to isolated complete intersection singularities of Brieskorn-type.

In the following, we will describe our results of this paper. Let (X, o) be a normal surface singularity defined by $z^{3}=f(x, y)$, where $f(x, y) \in \mathbb{C}\{x, y\}$ is irreducible and $\operatorname{ord}(f)>3$. Our goal is to calculate the fundamental genus $p_{f}(X, o)$ and to prove a necessary and sufficient condition to be a Kodaira singularity. Since the case of $\operatorname{gcd}(\operatorname{ord}(f), 3)=3$ can be seen immediately from Tomaru's results, so we assume $\operatorname{gcd}(\operatorname{ord}(f), 3)=1$. In [Oyua], we showed that the self-intersection numbers M_{0}^{2} and Z_{0}^{2} of the maximal ideal cycle M_{0} and the fundamental cycle Z_{0} on the minimal resolution were determined by k_{0} and k_{1}. In the process of calculating M_{0} and Z_{0}, we were able to learn more about the resolution of (X, o). Therefore, in this paper, we first compute the fundamental genus $p_{f}(X, o)$ using that resolution.

Theorem 1.3. Let $(X, o) \subset \mathbb{C}^{3}$ be a normal surface singularity defined by $z^{3}=$ $f(x, y)$, where $f(x, y) \in \mathbb{C}\{x, y\}$, ord $(f)>3$, and $f(x, y)$ is irreducible, and let $k_{0}, k_{1}, \ldots, k_{l}$ be the characteristic exponents of $f(x, y)$.

1. If $k_{1}>3 k_{0}$, then $p_{f}(X, o)=\operatorname{ord}(f)-1$.
2. If $3 k_{0}>k_{1} \geq 3 k_{0} / 2$, then $p_{f}(X, o)=\operatorname{ord}(f)-2$.
3. If $3 k_{0} / 2 \geq k_{1}>k_{0}$, then $p_{f}(X, o)=\operatorname{ord}(f)-3$.

Consequently, since we assume $\operatorname{ord}(f)>3$, we can say that (X, o) is not a rational singularity.

This is proved by Theorems 4.1, 4.2, and 4.3. In Example 4.6 and 4.7, we explicitly calculate the fundamental genera by a different method from that in the proof of main theorems, in order to confirm that our results are correct. Furthermore, we prove the following theorem.

Theorem 1.4. Let (X, o) be the same as in Theorem 1.3. Then (X, o) is a

Kodaira singularity if and only if $k_{1}>3 k_{0}$. If this is the case, it is associated to a pencil of curves of genus $\operatorname{ord}(f)-1$.

Our results for normal surface singularities defined by $z^{3}=f(x, y)$, where $f(x, y)$ is irreducible are summarized as follows:

		$M_{0}^{2}\left(=Z_{0}^{2}\right)$	$p_{f}(X, o)$	Kodaira singularity
$\operatorname{gcd}(\operatorname{ord}(f), 3)=3$		-3	$\operatorname{ord}(f)-2$	Yes
	$k_{1}>3 k_{0}$	-1	$\operatorname{ord}(f)-1$	Yes
$\operatorname{gcd}(\operatorname{ord}(f), 3)=1$	$3 k_{0}>k_{1} \geq 3 k_{0} / 2$	-2	$\operatorname{ord}(f)-2$	No
	$3 k_{0} / 2>k_{1}>k_{0}$	-3	$\operatorname{ord}(f)-3$	No

Note that the case of $\operatorname{gcd}(\operatorname{ord}(f), 3)=3$ comes from [Tom01, Theorem 4.1].
This paper is organized as follows: In Section 2, we recall the construction of the covering resolution of (X, o). In Section 3, we recall the results of [Oyua], and consider the negative components of the fundamental cycle on the covering resolution. In Section 4, we will prove the main theorems.

Acknowledgement. The author would like to thank Professors Masataka Tomari and Tadashi Tomaru for their helpful comments, suggestions, and support. He also thanks the referees for their careful review and valuable feedback. This work was partially supported by the Institute for Environment and Information Studies Joint Research Promotion Program of Yokohama National University.

2. Resolution of singularities

In this section, we will construct the covering resolution $\phi:(\tilde{X}, \tilde{E}) \rightarrow(X, o)$ of a normal surface singularity $(X, o)=\left\{z^{3}=f(x, y)\right\} \subset \mathbb{C}^{3}$, where x, y, and z are coordinates of \mathbb{C}^{3} and $f(x, y) \in \mathbb{C}\{x, y\}$ is irreducible with $\operatorname{ord}(f) \geq 2$ and $\operatorname{gcd}(\operatorname{ord}(f), 3)=1$. It is obtained by using the triple cyclic covering of the minimal embedded resolution of the irreducible plane curve singularity $(C, o)=$ $\{f(x, y)=0\} \subset \mathbb{C}^{2}$. To this purpose, we recall the minimal embedded resolution of irreducible curve singularities in Section 2.1, and we recall the construction of
the covering resolution in Section 2.2

2.1 Minimal embedded resolution of irreducible curve singularities

First, we will construct the minimal embedded resolution of (C, o).
Definition 2.1 ([dP00, Definition 5.3.7]). Let $\sigma_{1}: V_{1} \rightarrow V_{0}:=\mathbb{C}^{2}$ be the blowing-up of \mathbb{C}^{2} at the origin $Q_{0}:=o$, the singular point of C. We define $E(1):=$ $\sigma_{1}^{-1}\left(Q_{0}\right)$ and the strict transform $C(1)$ of C by the closure of $\sigma_{1}^{-1}\left(C \backslash\left\{Q_{0}\right\}\right)$. For $i \geq 1$, assuming the composite $\sigma_{1} \circ \cdots \circ \sigma_{i}: V_{i} \rightarrow V_{0}$ of blowing-ups is obtained, take the blowing-up $\sigma_{i+1}: V_{i+1} \rightarrow V_{i}$ at the unique intersection point Q_{i} of the strict transform $C(i)$ of C with the exceptional set $E(i):=\left(\sigma_{1} \circ \cdots \sigma_{i}\right)^{-1}\left(Q_{0}\right)$ while the following (1) or (2) does not hold.
(1) $C(i)$ is non-singular at Q_{i}.
(2) $C(i)$ meets only one irreducible component of $E(i)$ transversally at Q_{i}.

Note that the uniqueness of Q_{i} follows from the irreducibility of C, and note that Q_{i} lies on at most two irreducible components of $E(i)$. Thus for some $i=s$, (1) and (2) holds and we obtain a sequence of blowing-ups

$$
\begin{equation*}
\mathbb{C}^{2} \stackrel{\sigma_{1}}{\leftarrow} V_{1} \stackrel{\sigma_{2}}{\leftarrow} \cdots \stackrel{\sigma_{s}}{\leftarrow} V_{s} \tag{2.1}
\end{equation*}
$$

We call $\sigma:=\sigma_{1} \circ \cdots \circ \sigma_{s}$ the minimal embedded resolution of (C, o). Let $e_{i} \subset V_{i}$ be the exceptional curve of σ_{i} and by the same e_{i} we denote the strict transform of e_{i} by $\sigma_{i+1} \circ \cdots \circ \sigma_{s}(i=1,2, \ldots, s-1)$. Therefore, we have $E(s)=\bigcup_{i=1}^{s} e_{i}$.

Note that the minimal embedded resolution always exists and is determined by the characteristic exponents $k_{0}, k_{1}, \ldots, k_{l}$ of $f(x, y)$. For examples of the minimal embedded resolution, see [dP00, Example 5.3.9] or [Har77, Example 3.9.1]. In this paper, the strict transform of $e_{i}(i=1, \ldots, s-1)$ on $V_{j}(j \geq i)$ is also denoted by e_{i}.

Let $L_{x}, L_{y} \subset \mathbb{C}^{2}$ be the lines defined by $x=0, y=0$, respectively. We denote the strict transform of L_{x}, L_{y} on V_{i} by the same L_{x}, L_{y} for any i. We put

$$
\begin{equation*}
\bar{f}_{i}:=v_{e_{i}}(f \circ \sigma), \bar{x}_{i}:=v_{e_{i}}(x \circ \sigma), \bar{y}_{i}:=v_{e_{i}}(y \circ \sigma), \tag{2.2}
\end{equation*}
$$

which are the orders of the total transforms of C, L_{x}, and L_{y} along e_{i}. Thus, we
have

$$
\begin{equation*}
\bar{f}_{1}=\operatorname{mult}_{Q_{0}}(C)=\operatorname{ord}(f), \bar{x}_{1}=\bar{y}_{1}=\bar{h}_{1}=1 \tag{2.3}
\end{equation*}
$$

where $\operatorname{mult}_{Q_{0}}(C)$ is the multiplicity of C at Q_{0}. For each $i=2, \ldots, s$, if the intersection point Q_{i-1} of $C(i-1)$ and $E(i-1)$ lies on e_{j} for some $j \leq i-2$, then

$$
\left\{\begin{array}{l}
\bar{f}_{i}=\bar{f}_{i-1}+\bar{f}_{j}+\operatorname{mult}_{Q_{i-1}}(C(i-1)) \tag{2.4}\\
\bar{x}_{i}=\bar{x}_{i-1}+\bar{x}_{j}+\operatorname{mult}_{Q_{i-1}}\left(L_{x}\right) \\
\bar{y}_{i}=\bar{y}_{i-1}+\bar{y}_{j}+\operatorname{mult}_{Q_{i-1}}\left(L_{y}\right)
\end{array}\right.
$$

otherwise

$$
\left\{\begin{array}{l}
\bar{f}_{i}=\bar{f}_{i-1}+\operatorname{mult}_{Q_{i-1}}(C(i-1)) \tag{2.5}\\
\bar{x}_{i}=\bar{x}_{i-1}+\operatorname{mult}_{Q_{i-1}}\left(L_{x}\right) \\
\bar{y}_{i}=\bar{y}_{i-1}+\operatorname{mult}_{Q_{i-1}}\left(L_{y}\right)
\end{array}\right.
$$

Therefore, we have $\bar{f}_{i+1} \geq \bar{f}_{i}, \bar{x}_{i+1} \geq \bar{x}_{i}$, and $\bar{y}_{i+1} \geq \bar{y}_{i}$ for $i=1, \ldots, s-1$. Also, since C is irreducible, $\bar{x}_{i} \leq \bar{y}_{i}$ for any i.

Let Γ_{f} be the resolution graph of (C, o), i.e., the weighted dual graph of $E(s) \bigcup C(s)\left(\left[\mathrm{dP} 00\right.\right.$, Definition 5.3.10]). Then Γ_{f} is a tree consisting of l Puiseux chains P_{1}, \ldots, P_{l} as follows:

Here, • corresponds to the irreducible component e_{i} of $E(s)$ and $*$ corresponds to $C(s)$.

To prove the main theorem, the first Puiseux chain P_{1} plays a key role, so we will look at P_{1} in detail here. To construct P_{1}, we perform the Euclidean algorithm for k_{0} and k_{1} as follows:

$$
\begin{align*}
k_{1} & =q_{1} k_{0}+r_{1} \quad\left(q_{1}>0,0 \leq r_{1}<k_{0}\right) \\
k_{0} & =q_{2} r_{1}+r_{2} \quad\left(q_{2}>0,0 \leq r_{2}<k_{0}\right) \\
\quad & \tag{2.7}\\
\quad & \\
r_{w-2} & =q_{w} r_{w-1} \quad\left(q_{w}>0\right)
\end{align*}
$$

Note that $w \geq 2$. Then P_{1} is determined as follows:

1. If $w \geq 3$, then

2. If $w=2$, then

$$
\begin{equation*}
P_{1}: \underset{e_{1}}{\bullet}-\cdots-e_{q_{1}}^{\bullet}-\overline{e_{q_{1}+q_{2}}} \bullet-\cdots-e_{q_{1}+1}^{\bullet} . \tag{2.9}
\end{equation*}
$$

There are 4 possibilities based on how e_{1}, e_{2}, and e_{3} intersect.

Case 1. $k_{1}>3 k_{0} \quad\left(q_{1} \geq 3\right)$

Case 2. $3 k_{0}>k_{1}>2 k_{0} \quad\left(q_{1}=2\right)$

Case 3. $2 k_{0}>k_{1} \geq 3 k_{0} / 2 \quad\left(q_{1}=q_{2}=1\right)$

Case 4. $3 k_{0} / 2>k_{1}>k_{0} \quad\left(q_{1}=1, q_{2} \geq 2\right)$

Here, the three numbers above each vertex are \bar{f}_{i}, \bar{x}_{i}, and \bar{y}_{i}, in that order from top to bottom.

2.2 Covering resolution

For the normal surface singularity (X, o), consider the triple covering map $p: X \rightarrow \mathbb{C}^{2}$ induced from the projection map $\mathbb{C}^{3} \rightarrow \mathbb{C}^{2}:(x, y, z) \mapsto(x, y)$. We put $X^{\prime}:=X \times_{\mathbb{C}^{2}} V_{s}$ and $\phi_{1}:=\mathrm{id} \times\left.\sigma\right|_{X^{\prime}}$. Then the surface X^{\prime} has singularities along $p^{\prime-1}(E(s))$, which is of the form $z^{3}=u^{a} v^{b} g(u, v)\left(a, b \in \mathbb{Z}_{\geq 0}\right)$, where u, v are local coordinates of V_{s} at an intersection point of irreducible components of $E(s)$ and $g(u, v)$ is a unit. Let $\phi_{2}: X^{\prime \prime} \rightarrow X^{\prime}$ be the normalization of X^{\prime} ([dP00]). Then $X^{\prime \prime}$ has only cyclic quotient singularities ([Tom01, Lemma 2.5]). Let $\phi_{3}: \tilde{X} \rightarrow X^{\prime \prime}$ be the minimal resolution of these cyclic quotient singularities.

We put $\pi=p^{\prime} \circ \phi_{2} \circ \phi_{3}$. Then we obtain the following diagram:

Here, $p_{1}: \mathbb{C}^{3} \times_{\mathbb{C}^{2}} V_{s} \rightarrow \mathbb{C}^{3}$ is the first projection. We put $\phi:=\phi_{1} \circ \phi_{2} \circ \phi_{3}$.
Let E_{i} be the strict transform of $p^{\prime-1}\left(e_{i}\right)_{\text {red }}$ on \tilde{X} by $\phi_{2} \circ \phi_{3}$, and we put $E=\bigcup_{i=1}^{s} E_{i}$. Note that E_{i} is not always irreducible. In fact, with reference to Dixon's method ([Dix79, Section 2]), we say the following: Suppose that e_{i} intersects only e_{j} (resp. e_{i} intersects e_{j} and e_{k}) in V_{s}. If $\operatorname{gcd}\left(\bar{f}_{i}, \bar{f}_{j}\right)=3$ (resp. $\operatorname{gcd}\left(\bar{f}_{i}, \bar{f}_{j}, \bar{f}_{k}\right)=3$), then E_{i} splits into three disjoint copies of itself (see below). If E_{i} is irreducible, we put

$$
\begin{equation*}
x_{i}:=v_{E_{i}}(x \circ \phi), y_{i}:=v_{E_{i}}(y \circ \phi), z_{i}:=v_{E_{i}}(z \circ \phi) \tag{2.12}
\end{equation*}
$$

for $i=1,2, \ldots, s$. If E_{i} is reducible, then $E_{i}=\bigcup_{j=1}^{3} E_{i, j}$, and $v_{E_{i, 1}}(x \circ \phi)=$ $v_{E_{i, 2}}(x \circ \phi)=v_{E_{i, 3}}(x \circ \phi), v_{E_{i, 1}}(y \circ \phi)=v_{E_{i, 2}}(y \circ \phi)=v_{E_{i, 3}}(y \circ \phi)$, and $v_{E_{i, 1}}(z \circ \phi)=$ $v_{E_{i, 2}}(z \circ \phi)=v_{E_{i, 3}}(z \circ \phi)$, and hence, we simply put them by x_{i}, y_{i}, z_{i}. By [Tom01, Lemma 3.1.] and its proof, we have

$$
\begin{equation*}
x_{i}=\frac{3 \bar{x}_{i}}{\operatorname{gcd}\left(\bar{f}_{i}, 3\right)}, y_{i}=\frac{3 \bar{y}_{i}}{\operatorname{gcd}\left(\bar{f}_{i}, 3\right)}, \text { and } z_{i}=\frac{\bar{f}_{i}}{\operatorname{gcd}\left(\bar{f}_{i}, 3\right)} . \tag{2.13}
\end{equation*}
$$

Next, we see how to resolve singularities along $p^{\prime-1}(E(s)) \subset X^{\prime}$. Suppose that e_{i} and $e_{j}(i \neq j)$ intersect in V_{s}. We have $e_{i}=\{u=0\}$ and $e_{j}=\{v=0\}$ in an open neighborhood U at $e_{i} \cap e_{j}$. We put $a=\bar{f}_{i}$ and $b=\bar{f}_{j}$. From [Ish14, Section 4.2], we can assume that $p^{\prime-1}(U)$ is analytically isomorphic to a singularity $X(a, b)=\left\{z^{3}=u^{a} v^{b}\right\}$. If $\operatorname{gcd}(a, b, 3)=3$, then $X(a, b)$ has 3 connected components, each of them are non-singular. On the other hand, if $\operatorname{gcd}(a, b, 3)=1$, putting

$$
\begin{align*}
r_{0} & :=\operatorname{gcd}(a, b), r_{1}:=\operatorname{gcd}(b, 3), r_{2}:=\operatorname{gcd}(a, 3), \\
n^{\prime} & :=\frac{3}{r_{1} r_{2}}, a^{\prime}:=\frac{a}{r_{0} r_{2}}, b^{\prime}:=\frac{b}{r_{0} r_{1}} \tag{2.14}
\end{align*}
$$

we have the following proposition.

Proposition 2.2 ([Tom07, Lemma 4.2]). The normalization of $(X(a, b), o)$ with $\operatorname{gcd}(a, b, 3)=1$ is a cyclic quotient singularity $C_{n^{\prime}, \mu}=\left(\mathbb{C}^{2} / G_{n^{\prime}, \mu}, o\right)$, where μ is an integer defined by $a^{\prime} \mu+b^{\prime} \equiv 0 \bmod n^{\prime}, 0<\mu<3$, and $G_{n^{\prime}, \mu}$ is the cyclic group generated by $\left(e_{n^{\prime}}, e_{n^{\prime}}^{\mu}\right) \in \operatorname{GL}(2, \mathbb{C})$, where $e_{n^{\prime}}=\exp \left(2 \pi \sqrt{-1} / n^{\prime}\right)$.

Note that the normalization is non-singular if $n^{\prime}=1$, i.e., either $r_{1}=3$ or $r_{2}=3$. Hence, in the following, we assume $n^{\prime}=3$. It is well-known that the configuration of the exceptional set of the minimal resolution of $C_{3, \mu}$ is given by the Hirzebruch-Jung string of $3 / \mu$. The configuration of the minimal resolution of $C_{3, \mu}$ is as follows.

Corollary 2.3. 1. If $\mu=1$, i.e., $a^{\prime} \not \equiv b^{\prime} \bmod 3$, then

where $-c$ implies the corresponding exceptional curve is rational and the self-intersection number equals $-c$. Furthermore, we have $v_{F_{1}}(x \circ \phi)=$ $\left(x_{i}+x_{j}\right) / 3, v_{F_{1}}(y \circ \phi)=\left(y_{i}+y_{j}\right) / 3$, and $v_{F_{1}}(z \circ \phi)=\left(z_{i}+z_{j}\right) / 3$.
2. If $\mu=2$, i.e., $a^{\prime} \equiv b^{\prime} \bmod 3$, then

where \bigcirc implies the corresponding exceptional curve is rational and the self-intersection number equals -2. Furthermore, we have $v_{F_{1}}(x \circ \phi)=$ $\left(2 x_{i}+x_{j}\right) / 3, v_{F_{1}}(y \circ \phi)=\left(2 y_{i}+y_{j}\right) / 3, v_{F_{1}}(z \circ \phi)=\left(2 z_{i}+z_{j}\right) / 3$, and $v_{F_{2}}(x \circ \phi)=\left(x_{i}+2 x_{j}\right) / 3, v_{F_{2}}(y \circ \phi)=\left(y_{i}+2 y_{j}\right) / 3, v_{F_{2}}(z \circ \phi)=\left(z_{i}+2 z_{j}\right) / 3$.

Note that the valuations are calculated by the equation $(x \circ \phi) \cdot F_{i}=(y \circ \phi) \cdot F_{i}=$ $(z \circ \phi) \cdot F_{i}=0$. Let F be the union of all exceptional curves obtained by resolving all cyclic quotient singularities on $X^{\prime \prime}$ in this way.

We put $\tilde{E}=E \cup F$. Then $\phi:(\tilde{X}, \tilde{E}) \rightarrow(X, o)$ is a good resolution of (X, o) and we call it the covering resolution over the minimal embedded resolution.

From the above results, we obtain the weighted dual graph $\Gamma_{\tilde{E}}$ of \tilde{E}. We put $E_{i}^{2}=-c_{i}$. Then the necessary part of $\Gamma_{\tilde{E}}$ to prove the main theorem is as
follows:
Case $1\left(k_{1}>3 k_{0}\right)$.

We have $\left(x_{1}, x_{2}, x_{3}\right)=(3,3,1),\left(y_{1}, y_{2}, y_{3}\right)=(3,6,3),\left(z_{1}, z_{2}, z_{3}\right)=\left(k_{0}, 2 k_{0}, k_{0}\right)$. Furthermore, by Corollary 2.3, we have $\left(v_{F_{1}}(x \circ \phi), v_{F_{1}}(y \circ \phi), v_{F_{1}}(z \circ \phi)\right)=$ $\left(2,3, k_{0}\right)$.

Case $2\left(3 k_{0}>k_{1}>2 k_{0}\right)$.

We have $\left(x_{1}, x_{2}\right)=(3,3),\left(y_{1}, y_{2}\right)=(3,6)$, and $\left(z_{1}, z_{2}\right)=\left(k_{0}, 2 k_{0}\right)$. Furthermore, we have $\left(v_{F_{1}}(x \circ \phi), v_{F_{1}}(y \circ \phi), v_{F_{1}}(z \circ \phi)\right)=\left(2,3, k_{0}\right)$.

Case $3\left(2 k_{0}>k_{1} \geq 3 k_{0} / 2\right)$.

We have $\left(x_{1}, x_{3}\right)=(3,2),\left(y_{1}, y_{3}\right)=(3,3)$, and $\left(z_{1}, z_{3}\right)=\left(k_{0}, k_{0}\right)$.
Case $4\left(2 k_{0}>k_{1} \geq 3 k_{0} / 2\right)$.

$$
\Gamma_{\tilde{E}}:-_{E_{1}}^{-c_{1}} \cdots
$$

We have $x_{1}=y_{1}=3$ and $z_{1}=k_{0}$.

3. The negative component of the fundamental cycle

In this section, we briefly review the results of [Oyua] and consider the $Z_{\tilde{E}^{-}}$ negative components. Let (X, o) be the same as in Theorem 1.3 and $\phi:(\tilde{X}, \tilde{E}) \rightarrow$ (X, o) the covering resolution in (2.11). First, we prepare some notations.

Definition and Notation. For an anti-nef cycle $D=\sum d_{\lambda} \mathcal{E}_{\lambda}$ on \tilde{E} (i.e., $D \cdot \mathcal{E}_{\lambda} \leq$ 0 for any irreducible component \mathcal{E}_{λ} of \tilde{E}), an irreducible component $\mathcal{E}_{\lambda_{0}}$ is called a D-negative component (defined in [TT23]) if $D \cdot \mathcal{E}_{\lambda_{0}}<0$. We denote the minimal resolution (resp. the minimal good resolution) by $\phi_{0}:\left(\tilde{X}_{0}, \tilde{E}_{0}\right) \rightarrow(X, o)$ (resp. $\left.\phi_{0}^{\prime}:\left(\tilde{X}_{0}^{\prime}, \tilde{E}_{0}^{\prime}\right) \rightarrow(X, o)\right)$. Also, we denote the maximal ideal cycle and the fundamental cycle on ϕ_{0} (resp. ϕ_{0}^{\prime}) by M_{0} and Z_{0} (resp. M_{0}^{\prime} and Z_{0}^{\prime}).

By [Tom01, Proposition 3.3], the maximal ideal cycle $M_{\tilde{E}}$ satisfies $M_{\tilde{E}}=$ $((\alpha x+\beta y) \circ \phi)_{\tilde{E}}$ for general $\alpha, \beta \in \mathbb{C}, M_{\tilde{E}}^{2}=-3$, and E_{1} is the $M_{\tilde{E}}$-negative component, which satisfies $M_{\tilde{E}} \cdot E_{1}=-1$ and $\operatorname{cff}_{E_{1}}\left(M_{\tilde{E}}\right)=3$. Note that since $(x \circ \phi)_{\tilde{E}} \leq(y \circ \phi)_{\tilde{E}}$, we have $M_{\tilde{E}}=(x \circ \phi)_{\tilde{E}}$. We proved $M_{0}=Z_{0}$ by focusing on the first Puiseux chain P_{1} of the resolution graph Γ_{f} of the irreducible curve singularity defined by $f(x, y)=0$. In the proof of Theorem 1.3 , we will focus on $Z_{\tilde{E}}$-negative components. Hence, in the following, we describe $Z_{\tilde{E}}$-negative components in detail.

Case $1\left(k_{1}>3 k_{0}\right)$. In [Oyua, Theorem 5.1], we proved $M_{0}^{2}=Z_{0}^{2}=-1$. Hence $Z_{\tilde{E}}^{2}=Z_{0}^{2}=-1$. Let E_{3}^{\prime} be the strict transform of E_{3} by ϕ_{0}. We can see that E_{3}^{\prime} is the Z_{0}-negative component. Therefore, E_{3} is the $Z_{\tilde{E}}$-negative component, which satisfies $Z_{\tilde{E}} \cdot E_{3}=-1$ and $\operatorname{cff}_{E_{3}}\left(Z_{\tilde{E}}\right)=1$.

Case $2\left(3 k_{0}>k_{1}>2 k_{0}\right)$. In [Oyua, Theorem 5.3], we proved $M_{0}^{2}=Z_{0}^{2}=$ -2 . Hence $Z_{\tilde{E}}^{2}=-2$. We see that the strict transform of F_{1} by ϕ_{0} is the $Z_{0^{-}}$ negative component. Therefore, F_{1} is the $Z_{\tilde{E}}$-negative component, which satisfies $Z_{\tilde{E}} \cdot F_{1}=-1$ and $\operatorname{cff}_{F_{1}}\left(Z_{\tilde{E}}\right)=2$.

Case $3\left(2 k_{0}>k_{1} \geq 3 k_{0} / 2\right)$. In [Oyua, Theorem 5.3], we proved $M_{0}^{2}=$ $Z_{0}^{2}=-2$. Hence $Z_{\widetilde{E}}^{2}=-2$. We see that the strict transform of E_{3} by ϕ_{0} is the Z_{0}-negative component. Therefore, E_{3} is the $Z_{\tilde{E}}$-negative component, which satisfies $Z_{\tilde{E}} \cdot E_{3}=-1$ and $\operatorname{cff}_{E_{3}}\left(Z_{\tilde{E}}\right)=2$.

Case $4\left(3 k_{0} / 2>k_{1}>k_{0}\right)$. In [Oyua, Theorem 5.5], we proved $Z_{\tilde{E}}^{2}=-3$ and E_{1} is the $Z_{\tilde{E}}$-negative component, which satisfies $Z_{\tilde{E}} \cdot E_{1}=-1$ and $\operatorname{cff}_{E_{1}}\left(Z_{\tilde{E}}\right)=$ 3.

4. Fundamental genera and a condition to be a Kodaira singularity

First, we will compute the fundamental genus $p_{f}(X, o)$ and prove Theorem 1.3.

Theorem 4.1. Let (X, o) be the same as in Theorem 1.3. If $k_{1}>3 k_{0}$, then $p_{f}(X, o)=\operatorname{ord}(f)-1$.

Proof. Consider the covering resolution $\phi:(\tilde{X}, \tilde{E}) \rightarrow(X, o)$ of (X, o) in Section 2. By Case 1 of Section 3, the $Z_{\tilde{E}}$-negative component is E_{3} and $Z_{\tilde{E}} \cdot E_{3}=-1$. Hence we have $Z_{\tilde{E}} \cdot K_{\tilde{X}}=\operatorname{cff}_{E_{3}}\left(K_{\tilde{X}}\right)\left(Z_{\tilde{E}} \cdot E_{3}\right)=-\operatorname{cff}_{E_{3}}\left(K_{\tilde{X}}\right)$, where $K_{\tilde{X}}$ is the canonical divisor on \tilde{X}. By (1.1), we have $p_{f}(X, o)=-\left(\operatorname{cff}_{E_{3}}\left(K_{\tilde{X}}\right)+1\right) / 2+$ 1. Therefore we need only to know $\mathrm{cff}_{E_{3}}\left(K_{\tilde{X}}\right)$, so, as in the proof of [Tom01, Theorem 4.1], we will compute the vanishing order $v_{E_{3}}(\omega \circ \phi)=\operatorname{cff}_{E_{3}}\left(K_{\tilde{X}}\right)$ of the pull-back of the canonical form $\omega=(d x \wedge d y) / z^{2}$ onto \tilde{X}.

We assume that $E_{2}=\{u=0\}$ and $E_{3}=\{v=0\}$ in an open neighborhood $U \subset \tilde{X}$ of the intersection point of E_{2} and E_{3}, where u, v are local coordinates on U. Since $\left(x_{2}, x_{3}\right)=(3,1),\left(y_{2}, y_{3}\right)=(6,3)$, and $\left(z_{2}, z_{3}\right)=\left(2 k_{0}, k_{0}\right)$, we obtain $x \circ \phi=u^{3} v, y \circ \phi=u^{6} v^{3}$, and $z \circ \phi=u^{2 k_{0}} v^{k_{0}} h(u, v)$ where $h(u, v)$ is a unit. Hence, we obtain

$$
\begin{equation*}
\omega \circ \phi=\frac{3}{u^{4 k_{0}-8} v^{2 k_{0}-3} h(u, v)^{2}} d u \wedge d v \tag{4.1}
\end{equation*}
$$

on \tilde{X}. Since the local equation of E_{3} is v, we have $v_{E_{3}}(\omega \circ \phi)=-2 k_{0}+3$. Therefore, we obtain $p_{f}(X, o)=k_{0}-1$.

Theorem 4.2. Let (X, o) be the same as in Theorem 1.3. If $3 k_{0}>k_{1} \geq 3 k_{0} / 2$, then $p_{f}(X, o)=\operatorname{ord}(f)-2$.

Proof. Case $2\left(3 k_{0}>k_{1}>2 k_{0}\right)$. In this case, the $Z_{\tilde{E}}$-negative component is F_{1} is and $Z_{\tilde{E}} \cdot F_{1}=-1$, so we need to compute $\operatorname{cff}_{F_{1}}\left(K_{\tilde{X}}\right)$. We assume that $E_{1}=\{u=0\}$ and $F_{1}=\{v=0\}$ in an open neighborhood $U \subset \tilde{X}$ of the intersection point of E_{1} and F_{1}, where u, v are local coordinates on U. Since $x_{1}=3, y_{1}=3, z_{1}=k_{0}, v_{F_{1}}(x \circ \phi)=2, v_{F_{1}}(y \circ \phi)=3$, and $v_{F_{1}}(z \circ \phi)=k_{0}$, we
obtain $x \circ \phi=u^{3} v^{2}, y \circ \phi=u^{3} v^{3}$, and $z \circ \phi=u^{k_{0}} v^{k_{0}} h(u, v)$. Hence, we obtain

$$
\begin{equation*}
\omega \circ \phi=\frac{3}{u^{2 k_{0}-5} v^{2 k_{0}-4} h(u, v)^{2}} d u \wedge d v \tag{4.2}
\end{equation*}
$$

on \tilde{X}. Since the local equation of F_{1} is v, we have $v_{F_{1}}(\omega \circ \phi)=-2 k_{0}+4$. Therefore, we obtain $p_{f}(X, o)=k_{0}-2$.

Case $3\left(2 k_{0}>k_{1} \geq 3 k_{0} / 2\right)$. Since the $Z_{\tilde{E}}$-negative component is E_{3} and $Z_{\tilde{E}} \cdot E_{3}=-1$, we will compute $\operatorname{cff}_{E_{3}}\left(K_{\tilde{X}}\right)$. We assume that $E_{1}=\{u=0\}$ and $E_{3}=\{v=0\}$ in an open neighborhood $U \subset \tilde{X}$ of the intersection point of E_{1} and E_{3}, where u, v are local coordinates on U. Since $\left(x_{1}, x_{3}\right)=(3,2)$, $\left(y_{1}, y_{3}\right)=(3,3)$, and $\left(z_{1}, z_{3}\right)=\left(k_{0}, k_{0}\right)$, we obtain $x \circ \phi=u^{3} v^{2}, y \circ \phi=u^{3} v^{3}$, and $z \circ \phi=u^{k_{0}} v^{k_{0}} h(u, v)$. Hence, we obtain

$$
\begin{equation*}
\omega \circ \phi=\frac{3}{u^{2 k_{0}-5} v^{2 k_{0}-4} h(u, v)^{2}} d u \wedge d v \tag{4.3}
\end{equation*}
$$

on \tilde{X}. Since the local equation of E_{3} is v, we have $v_{E_{3}}(\omega \circ \phi)=-2 k_{0}+4$. Therefore, we obtain $p_{f}(X, o)=k_{0}-2$.

Theorem 4.3. Let (X, o) be the same as in Theorem 1.4. If $3 k_{0} / 2>k_{1}>k_{0}$, then $p_{f}(X, o)=\operatorname{ord}(f)-3$.

Proof. From Case 4 of Section 3, the $Z_{\tilde{E}}$-negative component is E_{1} and $E_{1} \cdot Z_{\tilde{E}}=$ -1 , so we will compute $\mathrm{cff}_{E_{1}}\left(K_{\tilde{X}}\right)$.

Let $P \in \tilde{X}$ be the intersection point of E_{1} and the strict transform of y-axis and U an open neighborhood of P. We assume that $E_{1}=\{v=0\}$, where u, v are local coordinates on U. Since $x_{1}=y_{1}=3$ and $z_{1}=k_{0}$, we obtain $x \circ \phi=v^{3}$, $y \circ \phi=u v^{3}, z \circ \phi=v^{k_{0}} h(u, v)$. Hence, we obtain

$$
\begin{equation*}
\omega \circ \phi=\frac{-3}{v^{2 k_{0}-5} h(u, v)^{2}} d u \wedge d v \tag{4.4}
\end{equation*}
$$

on \tilde{X}. Since the local equation of E_{1} is v, we have $v_{E_{1}}(\omega \circ \phi)=-2 k_{0}+5$. Therefore, we obtain $p_{f}(X, o)=k_{0}-3$.

Next, we will prove Theorem 1.4. For this purpose, we need the following propositions.

Proposition 4.4 ([Kar80, Proposition 2.7], [Kar81]). Let $\pi:(\tilde{V}, A) \rightarrow(V, o)$ be the minimal good resolution of a normal surface singularity, Z_{A} the fundamental
cycle on A, and \mathfrak{m} the maximal ideal of $\mathcal{O}_{V, o}$. Then (V, o) is a Kodaira singularity if and only if $\operatorname{cff}_{A_{i}}\left(Z_{A}\right)=1$ holds for every Z_{A}-negative component A_{i} and there is an element $g \in \mathfrak{m}$ such that the divisor $(g \circ \pi)$ is normal crossing and $Z_{A}=$ $(g \circ \pi)_{A}$.

Proposition 4.5 ([Kar81]). Let (V, o) be a Kodaira singularity. Then the genus of the associated pencil equals the fundamental genus $p_{f}(V, o)$.

Since we need to know the coefficients of the Z_{0}^{\prime}-negative component for the minimal good resolution, we use the results of Section 3.

Proof of Theorem 1.4. In Case 1 of Section 3, we saw that $Z_{\tilde{E}}^{2}=-1$ and E_{3} is the $Z_{\tilde{E}}$-negative component, which satisfies $\operatorname{cff}_{E_{3}}\left(Z_{\tilde{E}}\right)=1$. Let $\phi^{\prime}:\left(\tilde{X}^{\prime}, \tilde{E}^{\prime}\right) \rightarrow$ (X, o) be a resolution of (X, o), which is obtained by blowing-down E_{1}, E_{2}, and F_{1} on the covering resolution (\tilde{X}, \tilde{E}). In the proof of [Oyua, Theorem 5.1], we proved that $M_{\tilde{E}^{\prime}}=Z_{\tilde{E}^{\prime}}=\left(x \circ \phi^{\prime}\right)_{\tilde{E}^{\prime}}$. Hence we can conclude that $M_{0}^{\prime}=Z_{0}^{\prime}=\left(x \circ \phi_{0}^{\prime}\right)_{\tilde{E}_{0}^{\prime}}$ on the minimal good resolution $\phi_{0}^{\prime}:\left(\tilde{X}_{0}^{\prime}, \tilde{E}_{0}^{\prime}\right) \rightarrow(X, o)$. Let E_{3}^{\prime} be the strict transform of E_{3} by ϕ_{0}^{\prime}. Then E_{3}^{\prime} is the Z_{0}^{\prime}-negative component and $\operatorname{cff}_{E_{3}^{\prime}}\left(Z_{0}^{\prime}\right)=1$. Therefore, (X, o) is a Kodaira singularity by Proposition 4.4. The genus of the associated pencil is $\operatorname{ord}(f)-1$ by Proposition 4.5 and Theorem 4.1.

In Cases 2, 3, and 4, we saw that the coefficient of the $Z_{\tilde{E}}$-negative component is not 1 , hence the same holds for the minimal good resolution. Therefore, in these cases, (X, o) is not a Kodaira singularity by Proposition 4.4.

Finally, we compute the fundamental genera for two examples using the adjunction formula and confirm that our results are correct.

Example 4.6. Suppose that $\left(k_{0}, k_{1}, k_{2}\right)=(4,18,21)$. If we parameterize $x=t^{4}$, $y=t^{18}+t^{21}$, then we obtain $f(x, y)=y^{4}-2 y^{2} x^{9}-4 y x^{15}+x^{18}-x^{21}$ by eliminating t. Note that these characteristic exponents satisfy the condition of Case 1 of Section 3. Therefore, by Theorem 4.1, we have $p_{f}(X, o)=3$.

In the following, we compute the minimal good resolution of (X, o). First, the resolution graph Γ_{f} of the minimal embedded resolution of $(C, o)=\{f(x, y)=0\}$
is as follows:

The weighted dual graph $\Gamma_{\tilde{E}}$ of the covering resolution is as follows:

Here, the number above each vertex is the coefficient of the maximal ideal cycle $M_{\tilde{E}}$. We see that E_{1} is the $M_{\tilde{E}}$-negative component with $M_{\tilde{E}} \cdot E_{1}=-1$, and $M_{\tilde{E}}^{2}=-3$.

The weighted dual graph $\Gamma_{\tilde{E}_{0}^{\prime}}$ of the minimal good resolution $\phi_{0}^{\prime}:\left(\tilde{X}_{0}^{\prime}, \tilde{E}_{0}^{\prime}\right) \rightarrow$ (X, o) is as follows:

Note that this resolution is also the minimal resolution. We see that E_{3}^{\prime} is the M_{0}^{\prime}-negative component with $M_{0}^{\prime} \cdot E_{3}^{\prime}=-1$, hence $M_{0}^{\prime 2}=Z_{0}^{\prime 2}=-1$. Let K_{0}^{\prime} be the canonical divisor of \tilde{X}_{0}^{\prime}. Then, by adjunction formula, we obtain

$$
K_{0}^{\prime} \cdot E_{\lambda}^{\prime}= \begin{cases}1 & (\lambda=3) \tag{4.6}\\ 2 & (\lambda=6) \\ 0 & \text { (otherwise) }\end{cases}
$$

Therefore, we obtain

$$
p_{f}(X, o)=\frac{-1+\operatorname{cff}_{E_{3}^{\prime}}\left(Z_{0}^{\prime}\right)\left(K_{0}^{\prime} \cdot E_{3}^{\prime}\right)+\operatorname{cff}_{E_{6}^{\prime}}\left(Z_{0}^{\prime}\right)\left(K_{0}^{\prime} \cdot E_{6}^{\prime}\right)}{2}+1=3
$$

Example 4.7. Suppose that (X, o) is a Brieskorn-type singularity defined by $z^{3}=y^{10}-x^{13}$. Since we can parameterize $x=t^{10}$ and $y=t^{13}$, we have $\left(k_{0}, k_{1}\right)=(10,13)$. Note that these characteristic exponents satisfy the condition of Case 4 of Section 3. Therefore, by Theorem 4.1, we have $p_{f}(X, o)=7$.

The resolution graph Γ_{f} of the minimal embedded resolution of $(C, o)=$ $\{f(x, y)=0\}$ is as follows:

The weighted dual graph $\Gamma_{\tilde{E}}$ of the covering resolution is as follows:

The weighted dual graph $\Gamma_{\tilde{E}_{0}^{\prime}}$ of the minimal good resolution is as follows:

We see that E_{1}^{\prime} is the M_{0}^{\prime}-negative component with $M_{0}^{\prime} \cdot E_{1}^{\prime}=-1$, hence $M_{0}^{\prime 2}=$ -3 . We check that $Z_{0}^{\prime 2}=-3$. By adjunction formula, we obtain

$$
K_{0}^{\prime} \cdot E_{i}^{\prime}= \begin{cases}8 & (i=4) \tag{4.8}\\ 3 & (i=6) \\ -1 & (i=7) \\ 0 & \text { (otherwise) }\end{cases}
$$

Also, we have $K_{0}^{\prime} \cdot F_{j}^{\prime}=0$ for $j=1,2,3$. Hence we obtain $p_{f}(X, o)=7$. Since (X, o) is a Brieskorn-type singularity, we can also check this by using [KN12, Theorem 1.7].

References

[Art66] Michael Artin, On isolated rational singularities of surfaces, Amer. J. Math. 88 (1966), 129-136.
[BK86] Egbert Brieskorn and Horst Knörrer, Plane algebraic curves. transl. from the german by john stillwell, Birkhäuser Verlag Basel-Boston-Stuttgart, 1986.
[Dix79] David Joseph Dixon, The fundamental divisor of normal double points of surfaces, Pac. J. Math. 80 (1979), no. 1, 105-115.
[dP00] Theo de Jong and Gerhard Pfister, Local analytic geometry. basic theory and applications, Braunschweig Vieweg, 2000.
[Har77] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York, 1977.
[Ish14] Shihoko Ishii, Introduction to singularities, Springer, Tokyo, 2014.
[Kar80] Ulrich Karras, On pencils of curves and deformations of minimally elliptic singularities, Math. Ann. 247 (1980), 43-66.
[Kar81] __, Methoden zur berechnung von algebraischen invarianten und zur konstruktion von deformationen normaler flachensingularitaten, Habilitationschrift, Dortmund, 1981.
[KN12] Kazuhiro Konno and Daisuke Nagashima, Maximal ideal cycles over normal surface singularities of brieskorn type, Osaka J. Math. 49 (2012), no. 1, 225-245.
[Kon12] Kazuhiro Konno, On the yau cycle of a normal surface singularity, Asian J. Math. 16 (2012), no. 2, 279-298.
[Lau78] Henry B Laufer, On normal two-dimensional double point singularities, Israel J. Math. 31 (1978), no. 3, 315-334.
[MO14] Fan-Ning Meng and Tomohiro Okuma, The maximal ideal cycles over complete intersection surface singularities of brieskorn type, Kyushu J. Math. 68 (2014), no. 1, 121-137.
[Oyua] Kodai Oyu, The maximal ideal cycles over normal surface singularities defined by $z^{3}=$ $f(x, y)$, to appear in Kyushu J. Math.
[Oyub] , Normal surface singularities branched over analytically irreducible singular plane curves, Preprint.
[Tom] Masataka Tomari, Anti-nef cycles on the minimal good resolution of normal surface starshoaed singularities, Preprint.
[Tom95] Tadashi Tomaru, On gorenstein surface singularities with fundamental genus $p_{f} \geq 2$ which satisfy some minimality conditions, Pacific J. Math. 170 (1995), no. 1, 271-295.
[Tom01] _ , On Kodaira singularities defined by $z^{n}=f(x, y)$, Math. Z. 236 (2001), no. 1, 133-149.
[Tom07] , Pencil genus for normal surface singularities, J. Math. Soc. Japan 59 (2007), no. 1, 35-80.
[TT23] Masataka Tomari and Tadashi Tomaru, Comparison of fundamental cycles and maximal ideal cycles for normal surface double points - due to laufer decomposition -, Preprint, 2023.
[Yau80] Stephen Shing-Toung Yau, On maximally elliptic singularities, Trans. Am. Math. Soc. 257 (1980), 269-329.

Kodai Oyu
Graduate School of Environment and Information Sciences
Yokohama National University
Yokohama 240-8501 Japan
E-mail address: kodai.oyu@gmail.com

