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Abstract. In this paper, we study normal surface triple points branched over

analytically irreducible singular plane curves. We calculate the fundamental gen-

era of these triple points. Also, we obtain a necessary and sufficient condition for

these triple points to be Kodaira singularities.

1. Introduction

In [Oyua], it was proved that for normal surface singularities defined by

z3 = f(x, y), if f(x, y) ∈ C{x, y} is irreducible and ord(f) ≥ 2, then the max-

imal ideal cycle and the fundamental cycle coincide on the minimal resolution.

In this paper, we continue to study this type of singularities. We will compute

the fundamental genera and give a necessary and sufficient condition for these

singularities to be Kodaira singularities. As we will see later, it makes sense to

compute the fundamental genus for a given normal surface singularity since it

is useful in the classification of singularities. Also, Kodaira singularities intro-

duced by Karras [Kar80], are an important class of normal surface singularities

since the maximal ideal cycle coincides with the fundamental cycle on the mini-

mal resolution while there are many cases where the two cycles do not coincide

([Lau78], [Oyub], [Tom]). Therefore, it is meaningful to consider whether a given
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singularity is Kodaira or not.

Before explaining our results, we prepare some terminology and facts. Let

φ : (Ṽ , A)→ (V, o) be a resolution of a normal surface singularity and A =
⋃
Aλ

the irreducible decomposition of the exceptional set. We call φ a good resolution

if the exceptional set A is a simple normal crossing divisor in Ṽ . Also, φ is

called the minimal resolution (resp. the minimal good resolution) if for any

resolution (resp. good resolution) φ′ : (Ṽ ′, A′) → (V, o) there exists a unique

morphism π : Ṽ ′ → Ṽ such that φ′ = φ ◦ π. A divisor D =
∑

λ dλAλ (dλ ∈ Z)
on Ṽ supported in A is called a cycle. We denote dλ by cffAλ

(D). For a cycle

D =
∑

λ dλAλ, we define Dred :=
∑

Aλ⊂Supp(D) Aλ. Let m be the maximal ideal

of the local ring OV,o of V at o. For an element h ∈ m \ {0}, let (h ◦ φ) be

the divisor defined by h ◦ φ on Ṽ . The exceptional part of (h ◦ φ) is defined by

(h◦φ)A :=
∑

λ vAλ
(h◦φ)Aλ, where vAλ

(h◦φ) indicates the vanishing order of h◦φ
on Aλ. The maximal ideal cycle MA on A is defined by MA := min{(h◦φ)A | h ∈
m \ {0}} ([Yau80, Definition 2.11]). The fundamental cycle ZA on A is defined

by ZA := min{D =
∑

aλAλ | aλ > 0 and D ·Aλ ≤ 0 for any λ} ([Art66, p.132]).
The arithmetic genus pa(ZA) = 1−χ(OZA

) of ZA is called the fundamental genus

and denoted by pf (V, o). It can be calculated by the following formula:

pf (V, o) =
Z2

A + ZA ·KṼ

2
+ 1 (1.1)

Here, KṼ is the canonical divisor of Ṽ ([Ish14, Definition 7.2.10]). It is well-

known that the fundamental genus is independent of a choice of resolution of

(V, o) ([Ish14, Proposition 7.2.9]) and useful in the classification of singularities.

For example, if pf (V, o) = 0, then (V, o) is a rational singularity ([Ish14, Theorem

7.3.1]), and the definition of minimally elliptic singularities requires pf (V, o) = 1

([Ish14, Definition 7.6.5]). Also, the case of pf (V, o) ≥ 2 has been studied by

Tomaru [Tom95] and Konno [Kon12]. Furthermore, for a Kodaira singularity, it is

known that the arithmetic genus of the associated pencil equals the fundamental

genus ([Kar81]). Kodaira singularities are defined as follows: Let S be a non-

singular complex surface and ∆ ⊂ C a small open disc around the origin. If

Φ : S → ∆ is a proper surjective holomorphic map with connected fibers and

the generic fiber St := Φ−1(t) (t ̸= 0) is a smooth curve of genus g, it is called a

pencil of curves of genus g.
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Definition 1.1 ([Kar80, Definition 2.2]). A normal surface singularity (V, o) is

called a Kodaira singularity if there exists a pencil of curves Φ : S → ∆ such that,

after a finite number of blowing-ups at finite non-singular points in non-multiple

components of the singular fiber S0, σ : S ′ → S, there is a holomorphic map

π : M → X from an open neighborhood M of the proper transform of Supp(S0)

in S ′ which defines a resolution of (V, o). Further, if the pencil is of genus g, then

we call (X, o) a Kodaira singularity associated to a pencil of curves of genus g.

Finally, in order to describe our result, we need to recall the definition of the

characteristic exponents of irreducible f(x, y) ∈ C{x, y} with ord(f) ≥ 2. By

coordinate changes in x and y, we can always assume that the irreducible curve

singularity (C, o) = {f(x, y) = 0} has a parametrization x = tm, y =
∑

i≥m bit
i,

which is called the Puiseux expansion of f(x, y) ([BK86, p.385]). Then the

characteristic exponents are defined as follows.

Definition 1.2 ([dP00, Definition 5.2.14]). We define

k0 := m,

kj := min{i | ai ̸= 0, gcd(i, k0, . . . , kj−1) < gcd(k0, . . . , kj−1)} for j ≥ 1.

We obviously obtain finitely many kj, say k0, k1, . . . , kl. We call them the charac-

teristic exponents of f(x, y). Note that k0 < k1 < · · · < kl, gcd(k0, k1, . . . , kl) =

1, and l ≥ 1.

From now on, let us describe our motivation and background for our research.

For a normal surface singularity defined by zn = f(x, y), where f(x, y) ∈ C{x, y},
there are several results for the fundamental genus and a condition to be a Ko-

daira singularity. For example, Tomaru proved that if n divides ord(f) (the order

of f(x, y)), then it is a Kodaira singularity associated to a pencil of curves of

genus (= the fundamental genus) (n− 1)(ord(f)− 2)/2 ([Tom01, Theorem 4.1]).

Also, he proved that if n is sufficiently large, then the singularity is a Kodaira

singularity associated to a pencil of curves of genus (µ(C)− r(f) + 1)/2, where

r(f) is the number of irreducible components of f(x, y) and µ(C) is the Milnor

number of the curve singularity defined by f(x, y) = 0 ([Tom01, Theorem 4.5]).

For a Brieskorn-type singularity defined by xa0
0 +xa1

1 +xa2
2 = 0 (2 ≤ a0 ≤ a1 ≤ a2),
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the method for computing the fundamental genus from the exponents a0, a1, a2

was shown by Tomaru [Tom07] for the special case (lcm(a0, a1) ≤ a2), and later

completed by Konno and Nagashima [KN12] for the all cases. Also, Konno and

Nagashima obtained a necessary and sufficient conditions for a Brieskorn-type

singularity to be a Kodaira singularity. Meng and Okuma [MO14] extended

Konno and Nagashima’s result to isolated complete intersection singularities of

Brieskorn-type.

In the following, we will describe our results of this paper. Let (X, o) be

a normal surface singularity defined by z3 = f(x, y), where f(x, y) ∈ C{x, y}
is irreducible and ord(f) > 3. Our goal is to calculate the fundamental genus

pf (X, o) and to prove a necessary and sufficient condition to be a Kodaira sin-

gularity. Since the case of gcd(ord(f), 3) = 3 can be seen immediately from

Tomaru’s results, so we assume gcd(ord(f), 3) = 1. In [Oyua], we showed that

the self-intersection numbers M2
0 and Z2

0 of the maximal ideal cycle M0 and the

fundamental cycle Z0 on the minimal resolution were determined by k0 and k1.

In the process of calculating M0 and Z0, we were able to learn more about the

resolution of (X, o). Therefore, in this paper, we first compute the fundamental

genus pf (X, o) using that resolution.

Theorem 1.3. Let (X, o) ⊂ C3 be a normal surface singularity defined by z3 =

f(x, y), where f(x, y) ∈ C{x, y}, ord(f) > 3, and f(x, y) is irreducible, and let

k0, k1, . . . , kl be the characteristic exponents of f(x, y).

1. If k1 > 3k0, then pf (X, o) = ord(f)− 1.

2. If 3k0 > k1 ≥ 3k0/2, then pf (X, o) = ord(f)− 2.

3. If 3k0/2 ≥ k1 > k0, then pf (X, o) = ord(f)− 3.

Consequently, since we assume ord(f) > 3, we can say that (X, o) is not a

rational singularity.

This is proved by Theorems 4.1, 4.2, and 4.3. In Example 4.6 and 4.7, we

explicitly calculate the fundamental genera by a different method from that in

the proof of main theorems, in order to confirm that our results are correct.

Furthermore, we prove the following theorem.

Theorem 1.4. Let (X, o) be the same as in Theorem 1.3. Then (X, o) is a
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Kodaira singularity if and only if k1 > 3k0. If this is the case, it is associated to

a pencil of curves of genus ord(f)− 1.

Our results for normal surface singularities defined by z3 = f(x, y), where

f(x, y) is irreducible are summarized as follows:

M2
0 (= Z2

0) pf (X, o) Kodaira singularity

gcd(ord(f), 3) = 3 −3 ord(f)− 2 Yes

k1 > 3k0 −1 ord(f)− 1 Yes

gcd(ord(f), 3) = 1 3k0 > k1 ≥ 3k0/2 −2 ord(f)− 2 No

3k0/2 > k1 > k0 −3 ord(f)− 3 No

(1.2)

Note that the case of gcd(ord(f), 3) = 3 comes from [Tom01, Theorem 4.1].

This paper is organized as follows: In Section 2, we recall the construction

of the covering resolution of (X, o). In Section 3, we recall the results of [Oyua],

and consider the negative components of the fundamental cycle on the covering

resolution. In Section 4, we will prove the main theorems.

Acknowledgement. The author would like to thank Professors Masa-

taka Tomari and Tadashi Tomaru for their helpful comments, suggestions, and

support. He also thanks the referees for their careful review and valuable feed-

back. This work was partially supported by the Institute for Environment and

Information Studies Joint Research Promotion Program of Yokohama National

University.

2. Resolution of singularities

In this section, we will construct the covering resolution ϕ : (X̃, Ẽ)→ (X, o)

of a normal surface singularity (X, o) = {z3 = f(x, y)} ⊂ C3, where x, y, and

z are coordinates of C3 and f(x, y) ∈ C{x, y} is irreducible with ord(f) ≥ 2

and gcd(ord(f), 3) = 1. It is obtained by using the triple cyclic covering of the

minimal embedded resolution of the irreducible plane curve singularity (C, o) =

{f(x, y) = 0} ⊂ C2. To this purpose, we recall the minimal embedded resolution

of irreducible curve singularities in Section 2.1, and we recall the construction of
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the covering resolution in Section 2.2

2.1 Minimal embedded resolution of irreducible curve singularities

First, we will construct the minimal embedded resolution of (C, o).

Definition 2.1 ([dP00, Definition 5.3.7]). Let σ1 : V1 → V0 := C2 be the

blowing-up of C2 at the originQ0 := o, the singular point of C. We define E(1) :=

σ−1
1 (Q0) and the strict transform C(1) of C by the closure of σ−1

1 (C \{Q0}). For
i ≥ 1, assuming the composite σ1 ◦ · · · ◦ σi : Vi → V0 of blowing-ups is obtained,

take the blowing-up σi+1 : Vi+1 → Vi at the unique intersection point Qi of the

strict transform C(i) of C with the exceptional set E(i) := (σ1 ◦ · · ·σi)
−1(Q0)

while the following (1) or (2) does not hold.

(1) C(i) is non-singular at Qi.

(2) C(i) meets only one irreducible component of E(i) transversally at Qi.

Note that the uniqueness of Qi follows from the irreducibility of C, and note that

Qi lies on at most two irreducible components of E(i). Thus for some i = s, (1)

and (2) holds and we obtain a sequence of blowing-ups

C2 σ1←− V1
σ2←− · · · σs←− Vs. (2.1)

We call σ := σ1 ◦ · · · ◦ σs the minimal embedded resolution of (C, o). Let ei ⊂ Vi

be the exceptional curve of σi and by the same ei we denote the strict transform

of ei by σi+1 ◦ · · · ◦ σs (i = 1, 2, . . . , s− 1). Therefore, we have E(s) =
⋃s

i=1 ei.

Note that the minimal embedded resolution always exists and is determined

by the characteristic exponents k0, k1, . . . , kl of f(x, y). For examples of the

minimal embedded resolution, see [dP00, Example 5.3.9] or [Har77, Example

3.9.1]. In this paper, the strict transform of ei (i = 1, . . . , s− 1) on Vj (j ≥ i) is

also denoted by ei.

Let Lx, Ly ⊂ C2 be the lines defined by x = 0, y = 0, respectively. We denote

the strict transform of Lx, Ly on Vi by the same Lx, Ly for any i. We put

f̄i := vei(f ◦ σ), x̄i := vei(x ◦ σ), ȳi := vei(y ◦ σ), (2.2)

which are the orders of the total transforms of C, Lx, and Ly along ei. Thus, we
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have

f̄1 = multQ0(C) = ord(f), x̄1 = ȳ1 = h̄1 = 1, (2.3)

where multQ0(C) is the multiplicity of C at Q0. For each i = 2, . . . , s, if the

intersection point Qi−1 of C(i − 1) and E(i − 1) lies on ej for some j ≤ i − 2,

then 
f̄i = f̄i−1 + f̄j +multQi−1

(C(i− 1)),

x̄i = x̄i−1 + x̄j +multQi−1
(Lx),

ȳi = ȳi−1 + ȳj +multQi−1
(Ly),

(2.4)

otherwise 
f̄i = f̄i−1 +multQi−1

(C(i− 1)),

x̄i = x̄i−1 +multQi−1
(Lx),

ȳi = ȳi−1 +multQi−1
(Ly).

(2.5)

Therefore, we have f̄i+1 ≥ f̄i, x̄i+1 ≥ x̄i, and ȳi+1 ≥ ȳi for i = 1, . . . , s− 1. Also,

since C is irreducible, x̄i ≤ ȳi for any i.

Let Γf be the resolution graph of (C, o), i.e., the weighted dual graph of

E(s)
⋃

C(s) ([dP00, Definition 5.3.10]). Then Γf is a tree consisting of l Puiseux

chains P1, . . . , Pl as follows:

•
e1

P1 : · · · • · · · •

•P2 : · · · • · · · •

...

•Pl : · · · •
es

· · · •

∗

(2.6)

Here, • corresponds to the irreducible component ei of E(s) and ∗ corresponds
to C(s).
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To prove the main theorem, the first Puiseux chain P1 plays a key role, so

we will look at P1 in detail here. To construct P1, we perform the Euclidean

algorithm for k0 and k1 as follows:

k1 = q1k0 + r1 (q1 > 0, 0 ≤ r1 < k0)

k0 = q2r1 + r2 (q2 > 0, 0 ≤ r2 < k0)

...

rw−2 = qwrw−1 (qw > 0)

(2.7)

Note that w ≥ 2. Then P1 is determined as follows:

1. If w ≥ 3, then

P1 : •
e1

· · · •
eq1

•
eq1+q2+1

· · · •
eq1+q2+q3

· · · •
eq1+q2

· · · •
eq1+1

.

(2.8)

2. If w = 2, then

P1 : •
e1

· · · •
eq1

•
eq1+q2

· · · •
eq1+1

. (2.9)
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There are 4 possibilities based on how e1, e2, and e3 intersect.

Case 1. k1 > 3k0 (q1 ≥ 3) •
e1

1
1
k0

•
e2

2
1
2k0

•
e3

3
1
3k0

· · · •

Case 2. 3k0 > k1 > 2k0 (q1 = 2) •
e1

1
1
k0

•
e2

2
1
2k0

· · · •
e3

3
1
k1

Case 3. 2k0 > k1 ≥ 3k0/2 (q1 = q2 = 1) •
e1

1
1
k0

•
e3

3
2
3k0

· · · •
e2

2
1
k1

Case 4. 3k0/2 > k1 > k0 (q1 = 1, q2 ≥ 2) •
e1

1
1
k0

· · · •
e3

3
2
2k1

•
e2

2
1
k1

(2.10)

Here, the three numbers above each vertex are f̄i, x̄i, and ȳi, in that order from

top to bottom.

2.2 Covering resolution

For the normal surface singularity (X, o), consider the triple covering map

p : X → C2 induced from the projection map C3 → C2 : (x, y, z) 7→ (x, y). We

put X ′ := X ×C2 Vs and ϕ1 := id × σ|X′ . Then the surface X ′ has singularities

along p′−1(E(s)), which is of the form z3 = uavbg(u, v) (a, b ∈ Z≥0), where u, v

are local coordinates of Vs at an intersection point of irreducible components

of E(s) and g(u, v) is a unit. Let ϕ2 : X ′′ → X ′ be the normalization of X ′

([dP00]). Then X ′′ has only cyclic quotient singularities ([Tom01, Lemma 2.5]).

Let ϕ3 : X̃ → X ′′ be the minimal resolution of these cyclic quotient singularities.
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We put π = p′ ◦ ϕ2 ◦ ϕ3. Then we obtain the following diagram:

C3 C3 ×C2 Vs
p1oo

(X, o)

⊂

p

��

X ′

⊂

ϕ1oo

p′

��

X ′′ϕ2oo X̃
ϕ3oo

π

vv
(C2, o) (Vs, E(s))σoo

(2.11)

Here, p1 : C3 ×C2 Vs → C3 is the first projection. We put ϕ := ϕ1 ◦ ϕ2 ◦ ϕ3.

Let Ei be the strict transform of p′−1(ei)red on X̃ by ϕ2 ◦ ϕ3, and we put

E =
⋃s

i=1Ei. Note that Ei is not always irreducible. In fact, with reference

to Dixon’s method ([Dix79, Section 2]), we say the following: Suppose that ei

intersects only ej (resp. ei intersects ej and ek) in Vs. If gcd(f̄i, f̄j) = 3 (resp.

gcd(f̄i, f̄j, f̄k) = 3), then Ei splits into three disjoint copies of itself (see below).

If Ei is irreducible, we put

xi := vEi
(x ◦ ϕ), yi := vEi

(y ◦ ϕ), zi := vEi
(z ◦ ϕ) (2.12)

for i = 1, 2, . . . , s. If Ei is reducible, then Ei =
⋃3

j=1Ei,j, and vEi,1
(x ◦ ϕ) =

vEi,2
(x◦ϕ) = vEi,3

(x◦ϕ), vEi,1
(y◦ϕ) = vEi,2

(y◦ϕ) = vEi,3
(y◦ϕ), and vEi,1

(z◦ϕ) =
vEi,2

(z ◦ϕ) = vEi,3
(z ◦ϕ), and hence, we simply put them by xi, yi, zi. By [Tom01,

Lemma 3.1.] and its proof, we have

xi =
3x̄i

gcd(f̄i, 3)
, yi =

3ȳi
gcd(f̄i, 3)

, and zi =
f̄i

gcd(f̄i, 3)
. (2.13)

Next, we see how to resolve singularities along p′−1(E(s)) ⊂ X ′. Suppose

that ei and ej (i ̸= j) intersect in Vs. We have ei = {u = 0} and ej = {v = 0}
in an open neighborhood U at ei ∩ ej. We put a = f̄i and b = f̄j. From

[Ish14, Section 4.2], we can assume that p′−1(U) is analytically isomorphic to

a singularity X(a, b) = {z3 = uavb}. If gcd(a, b, 3) = 3, then X(a, b) has 3

connected components, each of them are non-singular. On the other hand, if

gcd(a, b, 3) = 1, putting

r0 := gcd(a, b), r1 := gcd(b, 3), r2 := gcd(a, 3),

n′ :=
3

r1r2
, a′ :=

a

r0r2
, b′ :=

b

r0r1
,

(2.14)

we have the following proposition.
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Proposition 2.2 ([Tom07, Lemma 4.2]). The normalization of (X(a, b), o) with

gcd(a, b, 3) = 1 is a cyclic quotient singularity Cn′,µ = (C2/Gn′,µ, o), where µ is

an integer defined by a′µ + b′ ≡ 0 mod n′, 0 < µ < 3, and Gn′,µ is the cyclic

group generated by (en′ , eµn′) ∈ GL(2,C), where en′ = exp(2π
√
−1/n′).

Note that the normalization is non-singular if n′ = 1, i.e., either r1 = 3 or

r2 = 3. Hence, in the following, we assume n′ = 3. It is well-known that the

configuration of the exceptional set of the minimal resolution of C3,µ is given by

the Hirzebruch-Jung string of 3/µ. The configuration of the minimal resolution

of C3,µ is as follows.

Corollary 2.3. 1. If µ = 1, i.e., a′ ̸≡ b′ mod 3, then

Ei

−3
F1

Ej
,

where
−c

implies the corresponding exceptional curve is rational and the

self-intersection number equals −c. Furthermore, we have vF1(x ◦ ϕ) =

(xi + xj)/3, vF1(y ◦ ϕ) = (yi + yj)/3, and vF1(z ◦ ϕ) = (zi + zj)/3.

2. If µ = 2, i.e., a′ ≡ b′ mod 3, then

Ei F1 F2
Ej

,

where implies the corresponding exceptional curve is rational and the

self-intersection number equals −2. Furthermore, we have vF1(x ◦ ϕ) =

(2xi + xj)/3, vF1(y ◦ ϕ) = (2yi + yj)/3, vF1(z ◦ ϕ) = (2zi + zj)/3, and

vF2(x◦ϕ) = (xi+2xj)/3, vF2(y◦ϕ) = (yi+2yj)/3, vF2(z ◦ϕ) = (zi+2zj)/3.

Note that the valuations are calculated by the equation (x◦ϕ)·Fi = (y◦ϕ)·Fi =

(z◦ϕ) ·Fi = 0. Let F be the union of all exceptional curves obtained by resolving

all cyclic quotient singularities on X ′′ in this way.

We put Ẽ = E ∪ F . Then ϕ : (X̃, Ẽ)→ (X, o) is a good resolution of (X, o)

and we call it the covering resolution over the minimal embedded resolution.

From the above results, we obtain the weighted dual graph ΓẼ of Ẽ. We

put E2
i = −ci. Then the necessary part of ΓẼ to prove the main theorem is as
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follows:

Case 1 (k1 > 3k0).

ΓẼ: −1
E1

−3
F1

−1
E2

−c3
E3

· · ·

We have (x1, x2, x3) = (3, 3, 1), (y1, y2, y3) = (3, 6, 3), (z1, z2, z3) = (k0, 2k0, k0).

Furthermore, by Corollary 2.3, we have (vF1(x ◦ ϕ), vF1(y ◦ ϕ), vF1(z ◦ ϕ)) =

(2, 3, k0).

Case 2 (3k0 > k1 > 2k0).

ΓẼ: −1
E1

−3
F1

−c2
E2

· · ·

We have (x1, x2) = (3, 3), (y1, y2) = (3, 6), and (z1, z2) = (k0, 2k0). Furthermore,

we have (vF1(x ◦ ϕ), vF1(y ◦ ϕ), vF1(z ◦ ϕ)) = (2, 3, k0).

Case 3 (2k0 > k1 ≥ 3k0/2).

ΓẼ: −1
E1

−c3
E3

· · ·

We have (x1, x3) = (3, 2), (y1, y3) = (3, 3), and (z1, z3) = (k0, k0).

Case 4 (2k0 > k1 ≥ 3k0/2).

ΓẼ: −c1
E1

· · ·

We have x1 = y1 = 3 and z1 = k0.

3. The negative component of the fundamental cycle

In this section, we briefly review the results of [Oyua] and consider the ZẼ-

negative components. Let (X, o) be the same as in Theorem 1.3 and ϕ : (X̃, Ẽ)→
(X, o) the covering resolution in (2.11). First, we prepare some notations.
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Definition and Notation. For an anti-nef cycleD =
∑

dλEλ on Ẽ (i.e., D·Eλ ≤
0 for any irreducible component Eλ of Ẽ), an irreducible component Eλ0 is called a

D-negative component (defined in [TT23]) if D · Eλ0 < 0. We denote the minimal

resolution (resp. the minimal good resolution) by ϕ0 : (X̃0, Ẽ0) → (X, o) (resp.

ϕ′
0 : (X̃ ′

0, Ẽ
′
0) → (X, o)). Also, we denote the maximal ideal cycle and the

fundamental cycle on ϕ0 (resp. ϕ′
0) by M0 and Z0 (resp. M ′

0 and Z ′
0).

By [Tom01, Proposition 3.3], the maximal ideal cycle MẼ satisfies MẼ =

((αx + βy) ◦ ϕ)Ẽ for general α, β ∈ C, M2
Ẽ

= −3, and E1 is the MẼ-negative

component, which satisfies MẼ · E1 = −1 and cffE1(MẼ) = 3. Note that since

(x ◦ ϕ)Ẽ ≤ (y ◦ ϕ)Ẽ, we have MẼ = (x ◦ ϕ)Ẽ. We proved M0 = Z0 by focusing

on the first Puiseux chain P1 of the resolution graph Γf of the irreducible curve

singularity defined by f(x, y) = 0. In the proof of Theorem 1.3, we will focus

on ZẼ-negative components. Hence, in the following, we describe ZẼ-negative

components in detail.

Case 1 (k1 > 3k0). In [Oyua, Theorem 5.1], we proved M2
0 = Z2

0 = −1.
Hence Z2

Ẽ
= Z2

0 = −1. Let E ′
3 be the strict transform of E3 by ϕ0. We can

see that E ′
3 is the Z0-negative component. Therefore, E3 is the ZẼ-negative

component, which satisfies ZẼ · E3 = −1 and cffE3(ZẼ) = 1.

Case 2 (3k0 > k1 > 2k0). In [Oyua, Theorem 5.3], we proved M2
0 = Z2

0 =

−2. Hence Z2
Ẽ
= −2. We see that the strict transform of F1 by ϕ0 is the Z0-

negative component. Therefore, F1 is the ZẼ-negative component, which satisfies

ZẼ · F1 = −1 and cffF1(ZẼ) = 2.

Case 3 (2k0 > k1 ≥ 3k0/2). In [Oyua, Theorem 5.3], we proved M2
0 =

Z2
0 = −2. Hence Z2

Ẽ
= −2. We see that the strict transform of E3 by ϕ0 is

the Z0-negative component. Therefore, E3 is the ZẼ-negative component, which

satisfies ZẼ · E3 = −1 and cffE3(ZẼ) = 2.

Case 4 (3k0/2 > k1 > k0). In [Oyua, Theorem 5.5], we proved Z2
Ẽ
= −3 and

E1 is the ZẼ-negative component, which satisfies ZẼ ·E1 = −1 and cffE1(ZẼ) =

3.
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4. Fundamental genera and a condition to be a Kodaira singularity

First, we will compute the fundamental genus pf (X, o) and prove Theorem

1.3.

Theorem 4.1. Let (X, o) be the same as in Theorem 1.3. If k1 > 3k0, then

pf (X, o) = ord(f)− 1.

Proof. Consider the covering resolution ϕ : (X̃, Ẽ)→ (X, o) of (X, o) in Section

2. By Case 1 of Section 3, the ZẼ-negative component is E3 and ZẼ ·E3 = −1.
Hence we have ZẼ ·KX̃ = cffE3(KX̃)(ZẼ · E3) = −cffE3(KX̃), where KX̃ is the

canonical divisor on X̃. By (1.1), we have pf (X, o) = −(cffE3(KX̃) + 1)/2 +

1. Therefore we need only to know cffE3(KX̃), so, as in the proof of [Tom01,

Theorem 4.1], we will compute the vanishing order vE3(ω ◦ϕ) = cffE3(KX̃) of the

pull-back of the canonical form ω = (dx ∧ dy)/z2 onto X̃.

We assume that E2 = {u = 0} and E3 = {v = 0} in an open neighborhood

U ⊂ X̃ of the intersection point of E2 and E3, where u, v are local coordinates

on U . Since (x2, x3) = (3, 1), (y2, y3) = (6, 3), and (z2, z3) = (2k0, k0), we obtain

x ◦ ϕ = u3v, y ◦ ϕ = u6v3, and z ◦ ϕ = u2k0vk0h(u, v) where h(u, v) is a unit.

Hence, we obtain

ω ◦ ϕ =
3

u4k0−8v2k0−3h(u, v)2
du ∧ dv (4.1)

on X̃. Since the local equation of E3 is v, we have vE3(ω ◦ ϕ) = −2k0 + 3.

Therefore, we obtain pf (X, o) = k0 − 1.

Theorem 4.2. Let (X, o) be the same as in Theorem 1.3. If 3k0 > k1 ≥ 3k0/2,

then pf (X, o) = ord(f)− 2.

Proof. Case 2 (3k0 > k1 > 2k0). In this case, the ZẼ-negative component is

F1 is and ZẼ · F1 = −1, so we need to compute cffF1(KX̃). We assume that

E1 = {u = 0} and F1 = {v = 0} in an open neighborhood U ⊂ X̃ of the

intersection point of E1 and F1, where u, v are local coordinates on U . Since

x1 = 3, y1 = 3, z1 = k0, vF1(x ◦ ϕ) = 2, vF1(y ◦ ϕ) = 3, and vF1(z ◦ ϕ) = k0, we
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obtain x ◦ ϕ = u3v2, y ◦ ϕ = u3v3, and z ◦ ϕ = uk0vk0h(u, v). Hence, we obtain

ω ◦ ϕ =
3

u2k0−5v2k0−4h(u, v)2
du ∧ dv (4.2)

on X̃. Since the local equation of F1 is v, we have vF1(ω ◦ ϕ) = −2k0 + 4.

Therefore, we obtain pf (X, o) = k0 − 2.

Case 3 (2k0 > k1 ≥ 3k0/2). Since the ZẼ-negative component is E3 and

ZẼ · E3 = −1, we will compute cffE3(KX̃). We assume that E1 = {u = 0}
and E3 = {v = 0} in an open neighborhood U ⊂ X̃ of the intersection point

of E1 and E3, where u, v are local coordinates on U . Since (x1, x3) = (3, 2),

(y1, y3) = (3, 3), and (z1, z3) = (k0, k0), we obtain x ◦ ϕ = u3v2, y ◦ ϕ = u3v3, and

z ◦ ϕ = uk0vk0h(u, v). Hence, we obtain

ω ◦ ϕ =
3

u2k0−5v2k0−4h(u, v)2
du ∧ dv (4.3)

on X̃. Since the local equation of E3 is v, we have vE3(ω ◦ ϕ) = −2k0 + 4.

Therefore, we obtain pf (X, o) = k0 − 2.

Theorem 4.3. Let (X, o) be the same as in Theorem 1.4. If 3k0/2 > k1 > k0,

then pf (X, o) = ord(f)− 3.

Proof. From Case 4 of Section 3, the ZẼ-negative component is E1 and E1 ·ZẼ =

−1, so we will compute cffE1(KX̃).

Let P ∈ X̃ be the intersection point of E1 and the strict transform of y-axis

and U an open neighborhood of P . We assume that E1 = {v = 0}, where u, v

are local coordinates on U . Since x1 = y1 = 3 and z1 = k0, we obtain x ◦ ϕ = v3,

y ◦ ϕ = uv3, z ◦ ϕ = vk0h(u, v). Hence, we obtain

ω ◦ ϕ =
−3

v2k0−5h(u, v)2
du ∧ dv (4.4)

on X̃. Since the local equation of E1 is v, we have vE1(ω ◦ ϕ) = −2k0 + 5.

Therefore, we obtain pf (X, o) = k0 − 3.

Next, we will prove Theorem 1.4. For this purpose, we need the following

propositions.

Proposition 4.4 ([Kar80, Proposition 2.7], [Kar81]). Let π : (Ṽ , A)→ (V, o) be

the minimal good resolution of a normal surface singularity, ZA the fundamental



58 K. OYU

cycle on A, and m the maximal ideal of OV,o. Then (V, o) is a Kodaira singularity

if and only if cffAi
(ZA) = 1 holds for every ZA-negative component Ai and there

is an element g ∈ m such that the divisor (g ◦ π) is normal crossing and ZA =

(g ◦ π)A.

Proposition 4.5 ([Kar81]). Let (V, o) be a Kodaira singularity. Then the genus

of the associated pencil equals the fundamental genus pf (V, o).

Since we need to know the coefficients of the Z ′
0-negative component for the

minimal good resolution, we use the results of Section 3.

Proof of Theorem 1.4. In Case 1 of Section 3, we saw that Z2
Ẽ
= −1 and E3 is

the ZẼ-negative component, which satisfies cffE3(ZẼ) = 1. Let ϕ′ : (X̃ ′, Ẽ ′) →
(X, o) be a resolution of (X, o), which is obtained by blowing-down E1, E2, and F1

on the covering resolution (X̃, Ẽ). In the proof of [Oyua, Theorem 5.1], we proved

that MẼ′ = ZẼ′ = (x ◦ ϕ′)Ẽ′ . Hence we can conclude that M ′
0 = Z ′

0 = (x ◦ ϕ′
0)Ẽ′

0

on the minimal good resolution ϕ′
0 : (X̃ ′

0, Ẽ
′
0) → (X, o). Let E ′

3 be the strict

transform of E3 by ϕ′
0. Then E ′

3 is the Z
′
0-negative component and cffE′

3
(Z ′

0) = 1.

Therefore, (X, o) is a Kodaira singularity by Proposition 4.4. The genus of the

associated pencil is ord(f)− 1 by Proposition 4.5 and Theorem 4.1.

In Cases 2, 3, and 4, we saw that the coefficient of the ZẼ-negative compo-

nent is not 1, hence the same holds for the minimal good resolution. Therefore,

in these cases, (X, o) is not a Kodaira singularity by Proposition 4.4.

Finally, we compute the fundamental genera for two examples using the ad-

junction formula and confirm that our results are correct.

Example 4.6. Suppose that (k0, k1, k2) = (4, 18, 21). If we parameterize x = t4,

y = t18+t21, then we obtain f(x, y) = y4−2y2x9−4yx15+x18−x21 by eliminating

t. Note that these characteristic exponents satisfy the condition of Case 1 of

Section 3. Therefore, by Theorem 4.1, we have pf (X, o) = 3.

In the following, we compute the minimal good resolution of (X, o). First, the

resolution graph Γf of the minimal embedded resolution of (C, o) = {f(x, y) = 0}
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is as follows:

•
e1

1
1
4

•
e2

2
1
8

•
e3

3
1
12

•
e4

4
1
16

•
e6

9
2
36

•
e5

5
1
18

•
e7

9
2
38

•
e9

18
4
78

•
e8

9
2
39

∗

(4.5)

The weighted dual graph ΓẼ of the covering resolution is as follows:

−1
3

E1

−3
2

F1

−1
3

E2

−6
1

E3

−1
3

E4

−6
2

E6

1

E5,1

E5,2

E5,3

−1
6

E7

−3
4

E9

2

E8,1

E8,2

E8,3

∗

Here, the number above each vertex is the coefficient of the maximal ideal cycle

MẼ. We see that E1 is the MẼ-negative component with MẼ · E1 = −1, and
M2

Ẽ
= −3.
The weighted dual graph ΓẼ′

0
of the minimal good resolution ϕ′

0 : (X̃
′
0, Ẽ

′
0)→

(X, o) is as follows:

−3
1

E ′
3

−4
2

E ′
6

1

E ′
5,1

E ′
5,2

E ′
5,3

4

E ′
9

2

E ′
8,1

E ′
8,2

E ′
8,3

∗
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Note that this resolution is also the minimal resolution. We see that E ′
3 is the

M ′
0-negative component with M ′

0 · E ′
3 = −1, hence M ′2

0 = Z ′2
0 = −1. Let K ′

0 be

the canonical divisor of X̃ ′
0. Then, by adjunction formula, we obtain

K ′
0 · E ′

λ =


1 (λ = 3)

2 (λ = 6)

0 (otherwise).

(4.6)

Therefore, we obtain

pf (X, o) =
−1 + cffE′

3
(Z ′

0)(K
′
0 · E ′

3) + cffE′
6
(Z ′

0)(K
′
0 · E ′

6)

2
+ 1 = 3.

Example 4.7. Suppose that (X, o) is a Brieskorn-type singularity defined by

z3 = y10 − x13. Since we can parameterize x = t10 and y = t13, we have

(k0, k1) = (10, 13). Note that these characteristic exponents satisfy the condition

of Case 4 of Section 3. Therefore, by Theorem 4.1, we have pf (X, o) = 7.

The resolution graph Γf of the minimal embedded resolution of (C, o) =

{f(x, y) = 0} is as follows:

•
e1

1
1
10

•
e5

5
4
50

•
e6

9
7
90

•
e7

13
10
130

•
e4

4
3
39

•
e3

3
2
26

•
e2

2
1
13

∗

(4.7)

The weighted dual graph ΓẼ of the covering resolution is as follows:

3

E1

−3
5

F1

−1
12

E5

−6
7

E6

−1
30

E7

−12
3

E4

−1
6

E3

−3
2

F2

−1
3

E2

20

F3

10

F4

∗

The weighted dual graph ΓẼ′
0
of the minimal good resolution is as follows:
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3

E ′
1

5

F ′
1

−5
7

E ′
6

−1
30

E ′
7

−10
3

E ′
4

20

F ′
3

10

F ′
4

∗

We see that E ′
1 is the M ′

0-negative component with M ′
0 · E ′

1 = −1, hence M ′2
0 =

−3. We check that Z ′2
0 = −3. By adjunction formula, we obtain

K ′
0 · E ′

i =



8 (i = 4)

3 (i = 6)

−1 (i = 7)

0 (otherwise).

(4.8)

Also, we have K ′
0 · F ′

j = 0 for j = 1, 2, 3. Hence we obtain pf (X, o) = 7. Since

(X, o) is a Brieskorn-type singularity, we can also check this by using [KN12,

Theorem 1.7].
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