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Abstract. In this paper, we consider Szegedy’s walk, a type of discrete time
quantum walk, and corresponding continuous time quantum walk related to the
birth and death chain. We show that the scaling limit of time averaged distri-
bution for the continuous time quantum walk induces that of Szegedy’s walk if
there exists the spectral gap on so-called the corresponding Jacobi matrix .

1. Introduction

Quantum walks, a quantum counterpart of random walks have been exten-

sively developed in various fields during the last two decades. Since quantum

walks are very simple models therefore they play fundamental and important

roles in both theoretical fields and applications. There are good review articles

for these developments such as Kempe [6], Kendon [7], Venegas-Andraca [14,15],

Konno [8], Manouchehri and Wang [9], and Portugal [11].

We investigate the time averaged distribution of a variant of discrete time

quantum walk (DTQW) so-called Szegedy’s walk [13]. On the path graph, the

spectral properties of Szegedy’s walk are directly connected to the theory of

(finite type) orthogonal polynomials. There are studies of the distribution of

Szegedy’s walk on the path graph for example [1–3,5, 10,12].

In this paper, we focus on scaling limit of the time averaged distributions

of both Szegedy’s walk and corresponding continuous time quantum walk on

the path graph related to the random walk with reflecting walls. According to

our main theorem (Theorem 4.1), if there exists the spectral gap, i.e., the limit

superior in the size of the path graph tends to infinity of the second largest
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eigenvalue of the Jacobi matrix is less than one (the largest eigenvalue), then the

scaling limit of Szegedy’s walk is the same as that of corresponding continuous

time quantum walk. We should note that existence of the spectral gap of the

Jacobi matrix is equivalent to that of the transition matrix of corresponding

random walk. A typical example of this case is space homogeneous random walk

with pRj = p case (the second largest eigenvalue is 2
√
p(1− p) cosπ/n) treated

in [5] except for the symmetric random walk with pRj = 1/2. Unfortunately we

have not been covered with non-spectral gap cases including symmetric random

walk and the Ehrenfest model (the second largest eigenvalue is 1− 2/n) treated

in [3]. To reveal non-spectral gap case is one of interesting future problems. Also

the inverse problem, i.e., the problem that whether the scaling limit of Szegedy’s

walk causes that of continuous time or not?, can be an interesting future problem.

The rest of this paper is organized as follows. In Sec. 2, we define our setting

of discrete time random walk, continuous time quantum walk and discrete time

quantum walk on the path graph. Sec. 3 is devoted to show relationships between

the time averaged distribution of Szegedy’s walk and continuous time quantum

walk. In the last section, we state our main theorem (Theorem 4.1) and prove

it.

2. Definition of the models

In this paper, we consider the path graph Pn+1 = (V (Pn+1), E(Pn+1)) with

the vertex set V (Pn+1) = {0, 1, . . . , n} and the (undirected) edge set E(Pn+1) =

{(j, j + 1) : j = 0, 1, . . . , n − 1}. On the path graph Pn+1, we define a discrete

time random walk (DTRW) with reflecting walls as follows:

Let pLj be the transition probability of the random walker at the vertex j ∈
V (Pn+1) to the left (j − 1 ∈ V (Pn+1)). Also let pRj = 1 − pLj be the transition

probability of the random walker at the vertex j ∈ V (Pn+1) to the right (j+1 ∈
V (Pn+1)). For the sake of simplicity, we assume 0 < pLj , p

R
j < 1 except for

j = 0, n. We put the reflecting walls at the vertex 0 ∈ V (Pn+1) and the vertex

n ∈ V (Pn+1), i.e., we set pR0 = pLn = 1. We also call this type of DTRW as the

birth and death chain.

Let a positive constant Cπ be

Cπ := 1 +
n∑

j=1

pR0 · pR1 · · · pRj−1

pL1 · pL2 · · · pLj
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then we can define the stationary distribution {π(0), π(1), . . . , π(n)} as

π(j) =


1
Cπ

if j = 0,

1
Cπ

· pR0 ·pR1 ···pRj−1

pL1 ·pL2 ···pLj
if j = 1, 2, . . . , n.

Note that π(j) > 0 for all j ∈ V (Pn+1) and the stationary distribution is satisfied

with so-called the detailed balance condition,

π(j) · pRj = pLj+1 · π(j + 1),

for j = 0, 1, . . . n− 1.

In order to define a continuous time quantum walk (CTQW) correspond-

ing to the DTRW, we introduce the normalized Laplacian matrix L. Let P be

the transition matrix of the DTRW. Also we define diagonal matrices D
1/2
π :=

diag
(√

π(0),
√

π(1), . . . ,
√
π(n)

)
and D

−1/2
π =

(
D

1/2
π

)−1

. Note that D
−1/2
π =

diag
(
1/
√
π(0), 1/

√
π(1), . . . , 1/

√
π(n)

)
by the definition. The normalized Lapla-

cian matrix L is given by

L := D1/2
π (In+1 − P )D−1/2

π = In+1 −D1/2
π PD−1/2

π ,

where In+1 be the (n+ 1)× (n+ 1) identity matrix. We should remark that the

matrix

J := D1/2
π PD−1/2

π ,

is referred as the Jacobi matrix. So we can rewrite L as L = In+1 − J .

By using the detailed balance condition, we obtain

Jj,k = Jk,j =


√
pRj p

L
j+1, if k = j + 1,

0, otherwise.

Thus L = In+1−J is an Hermitian matrix (real symmetric matrix). The CTQW

which is discussed in this paper is driven by the time evolution operator (unitary

matrix)

UCTQW (t) := exp (itL) :=
∞∑
k=0

(it)k

k!
Lk,

where i is the imaginary unit. Let XC
t (t ≥ 0) be the random variable represent-

ing the position of the CTQWer at time t. The distribution of XC
t is determined

by

P
(
XC

t = k|XC
0 = j

)
:= |⟨k|UCTQW (t)|j⟩|2 =

∣∣∣(UCTQW (t))k,j

∣∣∣2 ,
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where |j⟩ is the (n + 1)-dimensional unit vector (column vector) which j-th

component equals 1 and the other components are 0 and ⟨v| is the transpose of

|v⟩, i.e., ⟨v| = T |v⟩.
Hereafter we only consider XC

0 = 0 , i.e., the CTQWer starts from the left

most vertex 0 ∈ V (Pn+1), cases. The time averaged distribution p̄C of the CTQW

is defined by

p̄C(j) := lim
T→∞

1

T

∫ T

0

P
(
XC

t = j|XC
0 = 0

)
dt,

for each vertex j ∈ V (Pn+1). We define a random variable X̄C
n as P

(
X̄C

n = j
)
=

p̄C(j).

In this paper, we also deal with a type of discrete time quantum walk (DTQW)

corresponding to the DTRW so-called Szegedy’s walk. The time evolution op-

erator for the DTQW is defined by U = SC with the coin operator C and the

shift operator (flip-flop type shift) S. The coin operator C is defined by

C = |0⟩⟨0| ⊗ I2 +
n−1∑
j=1

|j⟩⟨j| ⊗ Cj + |n⟩⟨n| ⊗ I2,

where I2 is the 2× 2 identity matrix and ⊗ is the tensor product. The local coin

operator Cj is defined by

Cj = 2|ϕj⟩⟨ϕj| − I2, |ϕj⟩ =
√

pLj |L⟩+
√

pRj |R⟩,

where |L⟩ = T [1 0] and |R⟩ = T [0 1]. The shift operator S is given by

S (|j⟩ ⊗ |L⟩) = |j − 1⟩ ⊗ |R⟩, S (|j⟩ ⊗ |R⟩) = |j + 1⟩ ⊗ |L⟩.

Let XD
t (t = 0, 1, . . .) be the random variable representing the position of

the DTQWer at time t. In this paper, we only consider XD
0 = 0 cases. The

distribution of XD
t is defined by

P
(
XD

t = j|XD
0 = 0

)
: = ∥(⟨j| ⊗ I2)UDTQW (t) (|0⟩ ⊗ |R⟩)∥2

= |(⟨j| ⊗ ⟨L|)UDTQW (t) (|0⟩ ⊗ |R⟩)|2 + |(⟨j| ⊗ ⟨R|)UDTQW (t) (|0⟩ ⊗ |R⟩)|2 .

We also consider the time averaged distribution p̄D of the DTQW defined by

p̄D(j) := lim
T→∞

1

T

T−1∑
t=0

P
(
XD

t = j|XD
0 = 0

)
,
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for each vertex j ∈ V (Pn+1). We define a random variable X̄D
n as P

(
X̄D

n = j
)
=

p̄D(j).

3. Relations between X̄C
n and X̄D

n

Since the Jacobi matrix J is a real symmetric matrix with simple [4] and

symmetric [3] eigenvalues, we obtain eigenvalues 1 = λ0 > λ1 > · · · > λn−1 >

λn = −1 and corresponding eigenvectors {|vℓ⟩}nℓ=0 as an orthonormal basis of n-

dimensional complex vector space Cn. Thus we have the spectral decomposition

J =
n∑

ℓ=0

λℓ|vℓ⟩⟨vℓ|.

Noting that L = In+1 − J , the spectral decomposition of UCTQW (t) is given by

UCTQW (t) =
n∑

ℓ=0

exp [it (1− λℓ)] |vℓ⟩⟨vℓ| = eit
n∑

ℓ=0

e−itλℓ |vℓ⟩⟨vℓ|.

Because of simple eigenvalues of the Jacobi matrix J , the time averaged distri-

bution p̄C is expressed by

p̄C(j) =
n∑

ℓ=0

|⟨j|vℓ⟩|2 |⟨vℓ|0⟩|2 =
n∑

ℓ=0

|vℓ(j)|2 |vℓ(0)|2 ,

where vℓ(j) is the jth component of |vℓ⟩.
On the other hand, the spectral decomposition of UDTQW (t) is given (see

e.g. [3, 5, 12,13]) by

UDTQW (t) = µ0|u0⟩⟨u0|+
n−1∑
ℓ=1

(
1

2(1− λ2
ℓ)

∑
±

µ±ℓ|u±ℓ⟩⟨u±ℓ|

)
+ µn|un⟩⟨un|,

where 
µ0 = λ0 = 1, |u0⟩ = |v0⟩,
µ±ℓ = exp (±i cos−1 λℓ) , |u±ℓ⟩ = |vℓ⟩ − µ±ℓ S|vℓ⟩,
µn = λn = −1, |un−1⟩ = |vn−1⟩,

with

|vℓ⟩ = vℓ(0)|0⟩ ⊗ |R⟩+
n−1∑
j=1

vℓ(j)|j⟩ ⊗ |ϕj⟩+ vℓ(n)|n⟩ ⊗ |L⟩.
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All the eigenvalues of UDTQW (t) are also simple, the time averaged distribution

p̄D is expressed by

p̄D(j)

=
{
|(⟨j| ⊗ ⟨L|) |u0⟩|2 + |(⟨j| ⊗ ⟨R|) |u0⟩|2

}
|⟨u0| (|0⟩ ⊗ |R⟩)|2

+
n−1∑
ℓ=1

[
1

2(1− λ2
ℓ)

∑
±

{
|(⟨j| ⊗ ⟨L|) |u±ℓ⟩|2 + |(⟨j| ⊗ ⟨R|) |u±ℓ⟩|2

}
|⟨u±ℓ| (|0⟩ ⊗ |R⟩)|2

]
+
{
|(⟨j| ⊗ ⟨L|) |un⟩|2 + |(⟨j| ⊗ ⟨R|) |un⟩|2

}
|⟨un| (|0⟩ ⊗ |R⟩)|2 .

More concrete expression of p̄D in terms of eigenvalues and eigenvectors of the

Jacobi matrix J is given as follows (rearrangement of Eq.(10) in [3]):

p̄D(j) =
1

2
|v0(j)|2 |v0(0)|2 +

1

2
|vn(j)|2 |vn(0)|2

+
1

2

n∑
ℓ=0

|vℓ(j)|2 |vℓ(0)|2

+
1

2

n−1∑
ℓ=1

1

1− λ2
ℓ

{
pRj−1 |vℓ(j − 1)|2 − λ2

ℓ |vℓ(j)|
2 + pLj+1 |vℓ(j + 1)|2

}
|vℓ(0)|2 ,

with conventions pR−1 = vℓ(−1) = pLn+1 = vℓ(n+ 1) = 0.

Now we consider the distribution functions F̄C
n (x) := P

(
X̄C

n ≤ x
)
=
∑

j≤x p̄C(j)

of X̄C
n and F̄D

n (x) := P
(
X̄D

n ≤ x
)

=
∑

j≤x p̄D(j) of X̄D
n . For each integer

0 ≤ k ≤ n− 1, we have

F̄C
n (k) =

k∑
j=0

p̄C(j) =
k∑

j=0

{
n∑

ℓ=0

|vℓ(j)|2 |vℓ(0)|2
}
.

We also obtain the following expression by using pLj + pRj = 1, pR0 = 1 and
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pL1 |vℓ(1)|
2 = λ2

ℓ |vℓ(0)|
2:

F̄D
n (k) =

k∑
j=0

p̄D(j)

=
1

2

k∑
j=0

|v0(j)|2 |v0(0)|2 +
1

2

k∑
j=0

|vn(j)|2 |vn(0)|2

+
1

2

k∑
j=0

{
n∑

ℓ=0

|vℓ(j)|2 |vℓ(0)|2
}

+
1

2

k∑
j=1

{
n−1∑
ℓ=1

|vℓ(j)|2 |vℓ(0)|2
}

+
1

2

n−1∑
ℓ=1

1

1− λ2
ℓ

{
pR0 |vℓ(0)|2 − pL1 |vℓ(1)|

2 − pRk |vℓ(k)|2

+ pLk+1 |vℓ(k + 1)|2
}
|vℓ(0)|2

=
k∑

j=0

{
n∑

ℓ=0

|vℓ(j)|2 |vℓ(0)|2
}

+
1

2

n−1∑
ℓ=1

1

1− λ2
ℓ

{
−pRk |vℓ(k)|2 + pLk+1 |vℓ(k + 1)|2

}
|vℓ(0)|2

= F̄C
n (k) +

1

2

n−1∑
ℓ=1

1

1− λ2
ℓ

{
−pRk |vℓ(k)|2 + pLk+1 |vℓ(k + 1)|2

}
|vℓ(0)|2 .

4. Scaling limit

In this section, we state our main result and prove it.

Theorem 4.1 Assume that there exists the spectral gap, i.e., lim supn→∞ λ1 <

1 = λ0. If X̄C
n

n
converges weakly to the random variable X̄ as n → ∞ then X̄D

n

n

also converges weakly to the same random variable X̄.

Proof of Theorem 4.1

Let F̄ be the distribution function of the random variable X̄. We assume

that

lim
n→∞

P
(
X̄C

n

n
≤ x

)
= F̄ (x) (1)

for all points x at which F̄ is continuous. Hereafter we assume F̄ is continuous
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at x (0 ≤ x ≤ 1). Remark that from the definition, Eq. (1) means that

lim
n→∞

F̄C
n (nx) = lim

n→∞
F̄C
n (⌊nx⌋) = lim

n→∞

⌊nx⌋∑
j=0

{
n∑

ℓ=0

|vℓ(j)|2 |vℓ(0)|2
}

= F̄ (x), (2)

where ⌊a⌋ denotes the biggest integer which is not greater than a.

From Eq. (2) and the relation

P
(
X̄D

n

n
≤ x

)
= F̄D

n (nx) = F̄D
n (⌊nx⌋)

= F̄C
n (⌊nx⌋)

+
1

2

n−1∑
ℓ=1

1

1− λ2
ℓ

{
− pR⌊nx⌋ |vℓ(⌊nx⌋)|

2 + pL⌊nx⌋+1 |vℓ(⌊nx⌋+ 1)|2
}
|vℓ(0)|2 ,

if we can prove

lim
n→∞

n−1∑
ℓ=1

1

1− λ2
ℓ

|vℓ(⌊nx⌋)|2 |vℓ(0)|2 = lim
n→∞

n−1∑
ℓ=1

1

1− λ2
ℓ

|vℓ(⌊nx⌋+ 1)|2 |vℓ(0)|2 = 0,

(3)

then we can conclude

lim
n→∞

P
(
X̄D

n

n
≤ x

)
= F̄ (x),

for all points at which F̄ is continuous.

From Eq.(2), we obtain

0 ≤
⌊nx⌋∑
j=0

{
n−1∑
ℓ=1

|vℓ(j)|2 |vℓ(0)|2
}

≤ F̄C
n (⌊nx⌋) n→∞−−−→ F̄ (x).

Also we have

0 ≤
⌊nx⌋+1∑
j=0

{
n−1∑
ℓ=1

|vℓ(j)|2 |vℓ(0)|2
}

≤ F̄C
n

(⌊
n

(
x+

1

n

)⌋)
n→∞−−−→ F̄ (x),

from continuity of F̄ at x. These mean that

lim
n→∞

n−1∑
ℓ=1

|vℓ(⌊nx⌋)|2 |vℓ(0)|2 = lim
n→∞

n−1∑
ℓ=1

|vℓ(⌊nx⌋+ 1)|2 |vℓ(0)|2 = 0. (4)
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Therefore combining with Eq. (4), we obtain Eq. (3) as follows:

lim sup
n→∞

n−1∑
ℓ=1

1

1− λ2
ℓ

|vℓ(⌊nx⌋)|2 |vℓ(0)|2

≤ lim sup
n→∞

1

1− λ2
1

n−1∑
ℓ=1

|vℓ(⌊nx⌋)|2 |vℓ(0)|2

≤ 1

1− lim supn→∞ λ2
1

× lim
n→∞

n−1∑
ℓ=1

|vℓ(⌊nx⌋)|2 |vℓ(0)|2

= 0,

lim sup
n→∞

n−1∑
ℓ=1

1

1− λ2
ℓ

|vℓ(⌊nx⌋+ 1)|2 |vℓ(0)|2

≤ lim sup
n→∞

1

1− λ2
1

n−1∑
ℓ=1

|vℓ(⌊nx⌋+ 1)|2 |vℓ(0)|2

≤ 1

1− lim supn→∞ λ2
1

× lim
n→∞

n−1∑
ℓ=1

|vℓ(⌊nx⌋+ 1)|2 |vℓ(0)|2

= 0.

This completes the proof. 2
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