
Yokohama Mathematical
Journal Vol. 69, 2023

DIFFERENTIAL FORMS ON THE CURVES
ASSOCIATED TO APPELL-LAURICELLA

HYPERGEOMETRIC SERIES AND THE CARTIER
OPERATOR ON THEM

By

Ryo Ohashi and Shushi Harashita

(Received December 27, 2021; Revised November 25, 2023)

Abstract. The curve C over C associated to Appell-Lauricella hypergeomet-
ric series and regular differential forms on its desingularization were previously
studied by Archinard. In this paper, we first generalize Archinard’s results for
a field K under a mild condition on its characteristic. Second, we describe a
partial desingularization of C and the space of global sections of its dualizing
sheaf, especially we give an explicit basis of it. Finally, when the characteristic
is positive, we show that the Cartier operator on the space can be defined and
describe it in terms of Appell-Lauricella hypergeometric series.

1. Introduction

Appell-Lauricella hypergeometric series is defined as a period of a family
of degenerations of superelliptic curves, see Section 2 for the details. We are
interested in relations between the geometry of the associated family of the (pos-
sibly singular) curves and the analysis of Appell-Lauricella hypergeometric series.
Among them, we shall describe Cartier-Manin matrices of these curves in terms
of Appell-Lauricella hypergeometric series (Theorem 6.5). To achieve this, we
need to find explicit bases of the spaces of regular differential forms on the curves.

Let us start with recalling the most classical case: a relation between elliptic
curves and Gauss’ hypergeometric series. Gauss’ hypergeometric series is defined
to be

F (a, b, c ; z) :=
∞∑
n=0

(a ;n)(b ;n)

(c ;n)(1 ;n)
zn,

with a, b, c ∈ C and −c /∈ N, where (x ;n) = x(x + 1) · · · (x + n − 1). It is
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well-known [23, Section 14.2] that F (a, b, c ; z) satisfies the differential equation
DF (a, b, c ; z) = 0 with

D = z(1− z)
d2

dz2
+
(
c− (a+ b+ 1)z

) d

dz
− ab. (1.1)

It is also well-known [19, Theorem V.4.1] that the elliptic curve E : y2 = x(x −
1)(x−z) in positive characteristic p > 0 is supersingular if and only if Hp(z) = 0,
where

Hp(z) :=

(p−1)/2∑
i=0

(
(p− 1)/2

i

)2
zi.

In [12], Igusa proved that Hp(z) is a separable polynomial, by using the fact that
Hp(z) satisfies the differential equation D′Hp(z) = 0 with

D′ = z(1− z)
d2

dz2
+ (1− 2z)

d

dz
− 1

4
. (1.2)

Remark that (1.2) coincides with (1.1) for (a, b, c) = (1/2, 1/2, 1), and Hp(z) is
obtained by truncating Gauss’ hypergeometric series F (1/2, 1/2, 1 ; z) at degree
(p−1)/2. Also over C, periods of the elliptic curve y2 = x(x−1)(x−λ) are known
[10, Chapter 9, Theoerm 6.1] to be described in terms of the hypergeometric
series F (1/2, 1/2, 1 ;λ). Some variants of hypergeometric series have sporadically
been applied in situations involving higher genera; you can find examples in [11,
Section 1.4], [3, Section 2], [22] and [17, Section 3].

In this paper, we study the curve C associated to Appell-Lauricella hyperge-
ometric series (see Definition 2.3), which is a generalization of Gauss’ hypergeo-
metric series. The curve C is defined by the affine equation

C : yN = f(x) :=
r∏

i=0

(x− λi)
Ai , i 6= j ⇒ λi 6= λj, λ0, . . . , λr ∈ K, (1.3)

with (N,A0, . . . , Ar) = 1. Here, the condition (N,A0, . . . , Ar) = 1 is necessary
and sufficient for C to be irreducible (cf. Theorem 2.4).

The central purpose of this paper is to generalize the above result for elliptic
curves to that for C and for (partial) desingularizations of C. When A0 = · · · =
Ar = 1 and N ≥ 3, the desingularization of C as in (1.3) is called superelliptic.
As an extension of hyperelliptic curves, superelliptic curves have been important
research objects (cf. González [5] and Sutherland [21] and so on). In general,
for a study of a class of curves, one often need to explore degenerations of those
curves. Consequently, it would be valuable to study curves in the form of (1.3),
as they are degenerations of superelliptic curves.
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On the other hand, the desingularization of C, say X, or partial desingu-
larizations of C are worth studying not only as curves related to C but also as
important examples of curves. Note that X is often called a cyclic cover of P1, as
it is the nonsingular model whose function field is a cyclic cover of the function
field of P1, see Bouw [2], Archinard [1] and Elkin [4] for related works.

Archinard [1, Section 2] described the desingularization X, especially over C
and studied the space of regular differential forms on X. For our purpose, we
first generalize Archinard’s results to the case of a field K whose characteristic
is not a divisor of N . The same statement without complete proof is found in
Elkin [4, Section 2] and a similar result for the dual space (the first cohomology
of X) is found in Bouw [2, Lemma 5.1]. In Section 2, we review fundamental
properties of the curve C associated to Appell-Lauricella hypergeometric series,
and construct the explicit desingularization map π : X → C. In Section 3, we
describe the space of regular differential forms on X. In the following, we choose
a primitive N -th root ζ of unity.

Main Theorem A. The regular differential module Ω[X] has a basis consisting
of elements of the form

ω(s,a) :=

∏r
i=0(x− λi)

ai

ys
dx, 0 ≤ s ≤ N − 1,

where a = (a0, . . . , ar) with ai ≥ 0. Moreover, assume that K contains λ0, . . . , λr

and ζ. For each 0 ≤ s ≤ N − 1, let Vs be the ζ−s-eigenspace of the action on
Ω[X] induced from the automorphism (x, y) 7→ (x, ζy) on X. Then xmω(s,es) for
0 ≤ m ≤ ds − 1 form a basis of Vs, where

ds = max

{
0,

⌊
s
∑

Ak − (N,N −
∑

Ak)

N

⌋
−

r∑
j=0

⌈
sAj + (N,Aj)

N
− 1

⌉}
,

es,j =

⌈
sAj + (N,Aj)

N
− 1

⌉
with es = (es,0, es,1, . . . , es,r).

As well as nonsingular curves, we often need to study singular curves. We
shall deal with the curve C itself in Section 4 and the partial desingularization C̃

only at∞ in Section 5. In particular, the latter objects appear when we consider
degenerations of hyperelliptic curves or superelliptic curves. The following two
theorems provide explicit bases of the regular differential modules Ω[C] and Ω[C̃]

on C and C̃ respectively, where the notion of regular differential forms of singular
curves was defined by Serre [18, Section IV.3], see Section 4 for more details.

Main Theorem B. Assume that K contains {ζ, λ0, . . . , λr}. For 0 ≤ s ≤ N−1,
let Wsbe the ζ−s-eigenspace of the action on Ω[C] induced from the automorphism
(x, y) 7→ (x, ζy) on C is given for each 0 ≤ s ≤ N − 1.
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(1) If N −
∑

Ak ≥ 0, then xidx/ys for 0 ≤ i ≤ s− 2 form a basis of Ws.
(2) If N −

∑
Ak < 0, then xiy(j−1)Ndx/ys for 0 ≤ i ≤ s− 2− jN +

∑
Ak and

for 1 ≤ j ≤
⌊
s− 2 +

∑
Ak

N

⌋
form a basis of Ws.

Main Theorem C. Assume that K contains {ζ, λ0, . . . , λr}. For 0 ≤ s ≤ N−1,
let W̃s be the ζ−s-eigenspace of the action on Ω[C̃] induced from the automorphism
(x, y) 7→ (x, ζy) on C̃ is given for each 0 ≤ s ≤ N − 1. Then xj−1dx/ys for

1 ≤ j ≤ s
∑

Ak − (N,N −
∑

Ak)

N
form a basis of W̃s.

As an application, in Section 6 we introduce the modified Cartier operator
on the regular differential modules on X, C and C̃ (Theorem 6.2). The last aim
of this paper is to describe a relation between Appell-Lauricella hypergeometric
series and the modified Cartier operator:

Main Theorem D. Every component of Cartier-Manin matrices of X,C and
C̃ can be described by a truncation of Appell-Lauricella hypergeometric series.
For the explicit formula, see Theorem 6.5.

This result is a generalization of the fact that the xp−1-coefficient of {x(x −
1)(x−z)}(p−1)/2 is equal to the truncation of (−1)(p−1)/2F (1/2, 1/2, 1 ; z) at degree
m = (p − 1)/2. The research of Cartier-Manin matrices (or their dual notion:
Hasse-Witt matrices) has a long history. Among them, Sutherland provided a
fast algorithm for computing Cartier-Manin matrices of superelliptic curves [21],
also see [8] and [9] for hyperelliptic curves. This paper gives a formula of Cartier-
Manin matrices whose entries are considered as polynomials in λi of (1.3). This
result may not contribute to speeding up the computation if λi are constants,
but it would have many applications if λi are indeterminates. In fact, Cartier-
Manin matrices with polynomial entries are used in papers such as [13] and [14],
for enumerating superspecial curves and proving the existence of supersingular
curves.

This paper is organized as follows: In Section 2, we study the fundamentals of
curves C associated to Appell-Lauricella hypergeometric series and provide the
explicit desingularizations (we denote by X). Sections 3, 4 and 5 are dedicated
to describing the spaces of regular differential forms on X,C and C̃, where C̃ is
the partial desingularization only at ∞. Finally in Section 6, we show that the
modified Cartier operator stabilizes the spaces of regular differential forms on C̃

and so on, and we elucidate the relation between the modified Cartier operator
and Appell-Lauricella hypergeometric series.
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2. The curves associated to Appell-Lauricella hypergeometric series

In this section, we recall the definition of the curves associated to Appell-
Lauricella hypergeometric series and some of their properties. Let K be a field.

Definition 2.1. Let N be a positive integer which is not a multiple of the
characteristic of K. A curve associated to Appell-Lauricella hypergeometric series
is the 1-dimensional algebraic set defined by

C : yN = f(x)

for an f(x) ∈ K[x], which is possibly inseparable: the polynomial f(x) is factor-
ized as

f(x) =
r∏

i=0

(x− λi)
Ai , λ0, . . . , λr ∈ K,

where Ai ≥ 1 and λi 6= λj for i 6= j.

Remark 2.2. The curve C above (or more precisely, its desingularization) is
called superelliptic if Ai = 1 for all i ∈ {0, . . . , r}. If N = 2 and r > 3 in
addition, the curve C is clearly hyperelliptic. Hence, a curve associated to Appell-
Lauricella hypergeometric series is a certain generalization of these curves.

Definition 2.3. Appell-Lauricella hypergeometric series is defined to be

F(a, b1, . . . , bd, c ; z1, . . . , zd) :=
∞∑

n1=0

· · ·
∞∑

nd=0

(a ;
∑

nj)
∏
(bj ;nj)

(c ;
∑

nj)
∏
(1 ;nj)

d∏
j=1

z
nj

j ,

with a, b1, . . . , bd, c ∈ C and −c /∈ N.

It is obvious that F(a, b, c ; z) = F (a, b, c ; z) when d = 1, and therefore the
Appell-Lauricella hypergeometric series can be regarded as a certain generaliza-
tion of Gauss’ hypergeometric series. Moreover if 0 < Re(a) < Re(c), then it is
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known that F(a, b2, . . . , br, c ;λ2, . . . , λr) has the integral representation as below:

F(a, b2, . . . , br, c ;λ2, . . . , λr) =
Γ(c)

Γ(a)Γ(c− a)

∫ ∞

1

r∏
i=0

(x− λi)
−µidx, (2.1)

with λ0 = 0 and λ1 = 1, where µ0 = c−
∑r

j=2 bj, µ1 = 1 + a− c and µj = bj for
j = 2, . . . , r. In the case where all µi are positive rational numbers, by setting the
integrand of (2.1) as 1/y, we see that the hypergeometric function is associated
to the curve

yN =
r∏

i=0

(x− λi)
Ai ,

where we set N to be the least common multiple of the denominators of µ0, . . . , µr

and we set Ai = Nµi so that (N,A0, . . . , Ar) = 1 holds. We have a condition for
C in Definition 2.1 to be irreducible:

Theorem 2.4 ([15, Chapter VI, Theorem 9.1]). A curve C is irreducible over K
(and hence over K) if and only if (N,A0, . . . , Ar) = 1.

From now on, we assume that (N,A0, . . . , Ar) = 1, as we are specifically
interested in studying the case where C is irreducible. Now we counsider C as
a projective variety in P2 = ProjK[x0, x1, x2]. Set A∞ :=

∣∣N −∑r
k=0 Ak

∣∣. The
projective equation of C reads

• Case 1: N −
∑r

k=0Ak > 0. x2
N = x0

A∞
∏
(x1 − λix0)

Ai ;
• Case 2: N −

∑r
k=0Ak < 0. x2

Nx0
A∞ =

∏
(x1 − λix0)

Ai ;
• Case 3: N −

∑r
k=0Ak = 0. x2

N =
∏
(x1 − λix0)

Ai .
Here, put Pj = (1 : λj : 0) for j ∈ {0, . . . , r} and set Pfin := {P0, . . . , Pr}. Put
P∞ = (0 : 1 : 0) in Case 1 and P∞ = (0 : 0 : 1) in Case 2. We set P∞ := {P∞}
for Cases 1 and 2 and P∞ := ∅ for Case 3. Moreover, we set

P := Pfin ∪ P∞.

From the assumption that the characteristic of K is not a divisor of N , it is
straightforward to see where C has singularities by using the Jacobian criterion:

Lemma 2.5. Any singular point of C belongs to the set P . Moreover C is
singular at Pi for each i ∈ {0, . . . , r,∞} if and only if Ai > 1.

Next, we review the explicit description of the desingularization X of the
curve C, as obtained by Archinard [1, Section 3.1], which works also in posi-
tive characteristic. Let gi = (N,Ai) for each i ∈ {0, . . . , r,∞}. Consequently,
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Ni = N/gi and A′
i = Ai/gi are coprime non-negative integers. Thus, there exist

mi, ni ∈ Z such that miA
′
i + niNi = 1.

Proposition 2.6 ([1, Section 3.1.1]). Suppose that the characteristic of K is
equal to 0 or does not divide N . Let j ∈ {0, . . . , r} and define fj(x) :=

∏
i ̸=j(x−

λi)
Ai . Let D(fj) be the open subscheme obtained by excluding the part where

fj(x) = 0 from A3 = SpecK[x, u, z], and we set Xj to be the closed subscheme
of D(fj) defined by

Xj : z
Nj = (x− λj)u

mj , ugj = fj(x).

Then, one can verify the nonsingularity of Xj using the Jacobian criterion. There
exists a birational morphism

πj : Xj → C∖Pj ; (x, u, z) 7→ (1 : x : unjzA
′
j),

with Pj := P∖{Pj}. Moreover πj induces an isomorphism Xj∖π−1({Pj})
∼=−→

C∖P , whose inverse is given by

ρj : C∖P → Xj∖π−1({Pj}) ; (1 : x : y) 7→ (x, yNj(x− λj)
−A′

j , ymj(x− λj)
nj).

Proposition 2.7 ([1, Section 3.1.2]). Suppose that the characteristic of K is
equal to 0 or does not divide N . Put f∞(ξ) :=

∏r
i=0(1−λiξ)

Ai . We define X∞, π∞

in each case as follows. Then X∞ is nonsingular, and birationally equivalent to
C under a rational map π∞.

• Case 1: N −
∑

Ak > 0. In this case x∞ = x0/x1 and y∞ = x2/x1

are regular on P∞. Let D(f∞(x∞)) be the open subscheme obtained by
excluding the part where f∞(x∞) = 0 from A3 = SpecK[x∞, u, z], and we
set X∞ to be the closed subscheme of D(f∞(x∞)) defined by

X∞ : zN∞ = x∞um∞ , ug∞ = f∞(x∞).

Then, one can verify the nonsingularity of X∞ by using the Jacobian cri-
terion. There exists a birational morphism

π∞ : X∞ → C∖Pfin ; (x∞, u, z) 7→ (x∞ : 1 : un∞zA
′∞),

which induces an isomorphism X∞∖π−1(P∞)
∼=−→ C∖P , whose inverse is

ρ∞ : C∖P → X∞∖π−1(P∞) ; (x∞ : 1 : y∞) 7→ (x∞, x∞
−A′∞y∞

N∞ , x∞
n∞y∞

m∞).

• Case 2: N −
∑

Ak < 0. In this case x∞ = x0/x2 and y∞ = x1/x2 are
regular on P∞. Here, let D(f∞(u)) be the open subscheme obtained by
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excluding the part where f∞(u) = 0 from A4 = SpecK[u, v, w, z], and we
set X∞ to be the closed subscheme of D(f∞(u)) defined by

X∞ : u = wm∞zN∞ , zA
′∞ = vwn∞ , wg∞ = f∞(u).

Then, one can verify the nonsingularity of X∞ by using the Jacobian cri-
terion. There exists a birational morphism

π∞ : X∞ → C∖Pfin ; (u, v, w, z) 7→ (vwm∞zN∞ : v : 1),

which induces an isomorphism X∞∖π−1(P∞)
∼=−→ C∖P , whose inverse is

given by

C∖P → X∞∖π−1(P∞) ;

(x∞ : y∞ : 1) 7→ (x∞y∞
−1, y∞, x∞

A′∞y∞
−N∞−A′∞ , x∞

n∞y∞
m∞−n∞).

We note that in Case 3, the points at infinity (0 : 1 : ζ) with ζN = 1 are all
nonsingular as stated in Lemma 2.5. Hence, there is no need to consider X∞ as
Archinard excluded Case 3.

Remark 2.8. Note that Xi does not depend on the choice of mi, ni up to isomor-
phism. More precisely, suppose that (m′

i, n
′
i) is another pair of integers satisfying

m′
iA

′
i+n′

iNi = 1. Let X ′
i be the set obtained from (m′

i, n
′
i) in the same way, then

X ′
i is isomorphic to Xi. We give a proof of the case i ∈ {0, . . . , r}. Now, there

is a relation (ni − n′
i)Ni = −(mi −m′

i)A
′
i, then we have e := (ni − n′

i)/A
′
i ∈ Z

since Ni and A′
i are coprime non-negative integers. Therefore, consider the mor-

phism Xi → X ′
i ; (x, u, z) 7→ (x, u, uez), which has the obvious inverse. Thus,

we conclude that Xi
∼= X ′

i. The uniqueness of X∞ can also be proved similarly.

Remark 2.9. The action on C by the group µN of N -th roots of unity, defined
by (x, y) 7→ (x, ζy) for each ζ ∈ µN can be extended to Xj as (x, u, z) 7→
(x, ζNju, ζmjz). A similar extension applies to X∞.

Now, we define the desingularization X of the curve C obtained by gluing
X0, . . . , Xr, X∞ along Xi∖π−1({Pi}) and Xj∖π−1({Pj}) via the isomorphisms

Xi∖π−1({Pi})
πi−→ C∖P πj←− Xj∖π−1({Pj}).

By gluing maps πi : Xi → C, we also obtain a morphism π : X → C such that
π|Xi

= πi for all i ∈ {0, . . . , r,∞}. As can be found in [1, Section 3.2], this is
indeed the desingularization of C under π. Moreover, the genus formula of X,
as shown in the same manner as the case where K = C, [1, Theorem 4.1], is as
follows.



DIFFERENTIAL FORMS ON CURVES ASSOCIATED TO HYPERGEOMETRIC SERIES 9

Theorem 2.10. The genus of X is given by

g(X) = 1 +
1

2

(
rN −

r∑
j=0

(N,Aj)−
(
N,N −

r∑
k=0

Ak

))
.

Proof. Let C → P1 be the projection (x0 : x1 : x2) 7→ (x0 : x1) except for
(0 : 0 : 1) 7→ (0 : 1) in Case 2. Composing this projection and π : X → C, we
obtain a finite separable morphism X → P1.

point P of C # of π-preimages Q of P ramification index at Q

(1 : λj : 0) (N,Aj) N/(N,Aj)

∞ (N,N −
∑

Ak) N/(N,N −
∑

Ak)

other points 1 1

The genus of the projective line P1 is 0, so we can directly see that 2g(X)− 2 is
equal to

−2N +
r∑

j=0

(N,Aj)

(
N

(N,Aj)
− 1

)
+
(
N,N −

∑
Ak

)( N

(N,N −
∑

Ak)
− 1

)

= rN −
(
N,N −

∑
Ak

)
−

r∑
j=0

(N,Aj).

This is the desired conclusion.

3. The space of regular differential forms on X

Let C be a curve over a field K as defined in Definition 2.1. In this section,
for the desingularization map π : X → C constructed as in Section 2, we describe
the regularity condition of rational differential forms on X. This enables us to
provide an explicit basis of the space Ω[X] of regular differential forms on X,
where “regular” is often called “of first kind”. Note that Ω[X] is realized as a
subspace of the space Ω(C) of rational differential forms on C.

A general idea to describe the space of differential forms on plane curves
and the Cartier operator on it is found in Stöhr-Voloch [20]. As explained there,
Gorenstein [6, Theorem 12] provides a description of regular differential forms
on the projective smooth model of a plane curve Γ . However, our case does not
satisfy his assumption: y is an integral element over K(x). This would imply that
the Zariski closure of Γ in P2 is regular at every infinite place. In the following,
we formulate a lemma that works in our case. First, let us review the result by
Gorenstein:
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Theorem 3.1 ([6, Theorem 12]). Let Γ be a plane curve SpecR with R =

K[x, y]/(F ) where F is an irreducible element of degree m. Let L be the function
field of Γ , and X be the nonsingular projective curve having the same function
field L. Assume that x, considered as an element of L is transcendental over
K and y, considered as an element of L, is separable over K(x). A rational
differential form ω is regular on X if and only if it can be written in the form

ϕ(x, y)

(∂F/∂y)(x, y)
dx

such that ϕ(x, y) is an adjoint element of degree h, whose precise meaning is
(i) ϕ(x, y) ∈ C, where C is the conductor of R = K[x, y]/(F ) in the integral

closure R of R in L (i.e. C := {z ∈ R ; zR ⊂ R}).
(ii) ϕ′(x′, y′)(x′)m−3−h∈ C′, where ϕ′ be the polynomial in x′ and y′ defined by

ϕ(x, y) = ϕ′(x′, y′)/(x′)h with (x′, y′) = (1/x, y/x) and C′ is the conductor
of R′ = K[x′, y′]/(F ′) with F (x, y) = F ′(x′, y′)/(x′)m in the integral closure
R′ of R′ in L.

(iii) ϕ′′(x′′, y′′)(y′′)m−3−h∈ C′′, where ϕ′′ be the polynomial in x′′ and y′′ defined
by ϕ(x, y) = ϕ′′(x′′, y′′)/(y′′)h with (x′′, y′′) = (x/y, 1/y) and C′′ is the
conductor of R′′ = K[x′′, y′′]/(F ′′) with F (x, y) = F ′′(x′′, y′′)/(y′′)m in the
integral closure R′′ of R′′ in L.

Remark 3.2. Here ϕ(x, y) ∈ C is equivalent to ϕ(x, y) ∈ CP := {z ∈ RP ; zRP ⊂
RP} for maximal ideal P of R, where RP is the integral closure of RP in L.
Moreover CP = CP

∗ ∩ RP , where C∗
P is the conductor of (RP )

∗ in (RP )
∗ (cf. [6,

Theorem 2]). Here ∗ means taking the completion. If the Zariski closure of Γ in
P2 is regular at every infinite place, (i) and (ii) in Theorem 3.1 can be replaced
by h ≤ m− 3.

Now, let us return to our case F = yN − f(x). Our aim is to find a basis of
the regular differential module Ω[X]. Our method consists of three steps: The
first step (Lemma 3.3) demonstrates that Ω[X] can be generated by differential
forms of a specific form. However, these forms may not be regular at some specific
points of X. Therefore, in the second step (Propositions 3.4 and 3.5) we give
a criterion for determining whether a differential form of this kind is regular at
those points. In the final step (Theorem 3.6), by combining these results we will
derive an explicit basis of Ω[X]. In the following, let µN be the subgroup of K×

consisting of N -th roots of unity. We assume that K contains µN and the set
{λ0, . . . , λr}.

Lemma 3.3. The regular differential module Ω[X] is generated over K by ele-
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ments of the form

ω(s,a) :=

∏r
i=0(x− λi)

ai

ys
dx,

where 0 ≤ s ≤ N − 1 and a = (a0, . . . , ar) with ai ≥ 0.

Proof. We use the notation from Theorem 3.1: R = K[x, y]/(F ) with F =

yN − f(x). Let ϕ(x, y) be an adjoint element as defined in Theorem 3.1. By
using yN = f(x), one can write

ϕ(x, y) = ϕ0(x) + ϕ1(x)y + · · ·+ ϕN−1(x)y
N−1,

with ϕj(x) ∈ K[x]. Consider the action of the group µN on R given by (x, y) 7→
(x, ζy) for ζ ∈ µN . Since this action stabilizes C, C′ and C′′, we obtain that
ϕ(x, ζy) is also an adjoint element for all ζ ∈ µN . This implies that each
term ϕj(x)y

j is an adjoint element. Clearly ϕj(x) can be uniquely written as
φ(x)

∏r
i=0(x − λi)

ai , where φ(x) is coprime to x − λi for i = 0, 1, . . . , r. As
we can check that ϕj(x)y

j ∈ C by looking at whether ϕj(x)y
j ∈ CP for all

P ∈ {P0, . . . , Pr}, we conclude that φ(x)
∏r

i=0(x − λi)
aiyj ∈ C if and only if∏r

i=0(x − λi)
aiyj ∈ C. At an infinite place, the condition (ii) and (iii) of The-

orem 3.1 can be described as the degree of ϕj being less than or equal to a
certain constant depending only on C (see Proposition 3.5 below). Hence, if
φ(x)

∏r
i=0(x− λi)

aiyj is an adjoint element, then
∏r

i=0(x− λi)
aiyj ∈ C is also an

adjoint element. Thus, we have the lemma.

Note that π∗ω(s,a) is regular at every finite place except Qi ∈ π−1({Pi}) for
i = 0, . . . , r. Let us find the condition for π∗ω(s,a) to be regular at Qi ∈ π−1({Pi}).

Proposition 3.4. For each j ∈ {0, . . . , r}, the pull-back π∗ω(s,a) ∈ Ω(X) is
regular at the place Qj ∈ π−1({Pj}) if and only if

aj ≥
sAj + (N,Aj)

N
− 1.

Proof. The equations defining Xj gives other equations

Njz
Nj−1dz = umjdx+mj(x− λj)u

mj−1du,

gju
gj−1du = (dfj/dx)dx.

By π∗(x) = x and π∗(y) = unjzA
′
j with π∗(x−λj) = u−mjzNj , a direct calculation

shows that

π∗ω(s,a) =
Nugj−snj−(1+aj)mjz−sA′

j+(1+aj)Nj−1
∏

i ̸=j(x− λi)
ai

gjfj(x) +mj(x− λj)(dfj/dx)
dz. (3.1)

Hence π∗ω(s,a) is regular at Qj if and only if −sA′
j + (1 + aj)Nj − 1 ≥ 0.
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Similarly, the regularity at the infinite place is described as below:

Proposition 3.5. The pull-back π∗ω(s,a) ∈ Ω(X) is regular at the place Q∞ ∈
π−1({P∞}) in Cases 1 and 2 and at the place Q∞ ∈ π−1({(0 : 1 : ζ) ; ζN = 1})
in Case 3 if and only if

r∑
k=0

ak ≤
s
∑

Ak − (N,N −
∑

Ak)

N
− 1.

Proof. In each case, we can write ω(s,a) = x0
s−

∑
ak−2x2

−s
∏
(x1−λix0)

ai(x0dx1−
x1dx0).

• Case 1: N −
∑

Ak > 0. In this case, recall that x∞ = x0/x1 and
y∞ = x2/x1; one can check that

ω(s,a) = −xs−
∑

ak−2
∞ y−s

∞

∏
(1− λix∞)aidx∞.

The equations defining X∞ give other equations

N∞zN∞−1dz = um∞dx∞ +m∞x∞um∞−1du,

g∞ug∞−1du = (df∞/dx∞)dx∞.

By using π∗(x∞) = x∞ and π∗(y∞) = un∞zA
′∞ , we see that π∗ω(s,a) is equal

to
−Nug∞−s(m∞+n∞)+(1+

∑
ak)m∞zs(N∞−A′∞)−(1+

∑
ak)N∞−1

∏
(1− λix∞)ai

g∞f∞(x∞) +m∞x∞(df∞(x∞)/dx∞)
dz.

(3.2)
Hence π∗ω(s,a) is regular at Q∞ if and only if s(N∞−A′

∞)−(1+
∑

ak)N∞−
1 ≥ 0.

• Case 2: N −
∑

Ak < 0. In this case, recall that x∞ = x0/x2 and
y∞ = x1/x2; one can check that

ω(s,a) = xs−
∑

ak−2
∞

∏
(y∞ − λix∞)ai(x∞dy∞ − y∞dx∞).

The equations defining X∞ give other equations

A′
∞uA′∞−1du = N∞vN∞−1wdv + vN∞dw,

A′
∞zA

′∞−1dz = wn∞dv + n∞vwn∞−1dw,

g∞wg∞−1dw = (df∞(u)/du)du.

A tedious computation with these equations show that π∗ω(s,a) is equal to

Nwg∞+s(m∞−n∞)−(1+
∑

ak)m∞zs(N∞+A′∞)−(1+
∑

ak)N∞−1
∏
(1− λiu)

ai

m∞u(df∞(u)/du)− g∞f∞(u)
dz.

(3.3)
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Hence π∗ω(s,a) is regular at Q∞ if and only if

s(N∞ + A′
∞)− (1 +

∑
ak)N∞ − 1 ≥ 0.

• Case 3: N −
∑

Ai = 0. In this case, we put y∞ = x2/x1 and z = x0/x1.
Then, one can check that π∗(ωs,a) is given as

π∗ω(s,a) =
−zs−

∑
ai−2

∏
(1− λiz)

ai

ys∞
dz.

Hence π∗(ωs,a) is regular at Q∞ ∈ π−1({(0 : 1 : ζ) ; ζN = 1}) if and only if
s−

∑
ai − 2 ≥ 0.

Thus the proposition holds in every case.

With the discussions above, we can characterize the regular differential mod-
ule Ω[X].

Theorem 3.6. Assume that K contains µN and {λ0, . . . , λr}. For 0 ≤ s ≤
N − 1, let Vs be the subspace of Ω[X] with the character ζ 7→ ζs under the
action (x, y)→ (x, ζy) of µn on the regular differential module Ω[X]. Note that
Ω[X] = V0 ⊕ · · · ⊕ VN−1. Put

ds = max

{
0,

⌊
s
∑

Ak − (N,N −
∑

Ak)

N

⌋
−

r∑
j=0

⌈
sAj + (N,Aj)

N
− 1

⌉}
,

es,j =

⌈
sAj + (N,Aj)

N
− 1

⌉
with es = (es,0, es,1, . . . , es,r).

Then, we have dimVs = ds. Moreover, a basis of Vs is given by

xmω(s,es) = xm

∏r
j=0(x− λj)

es,j

ys
dx

for 0 ≤ m ≤ ds − 1.

Proof. It is obvious that xmω(s,es) ∈ Vs for all 0 ≤ m ≤ ds−1, since xm is a linear
combination of (x − λ0)

k for 0 ≤ k ≤ m and for a = es + (k, 0, . . . , 0), so we
have ω(s,a) ∈ Ω[X] by Proposition 3.4 and Proposition 3.5. For the converse, any
element of Vs is a linear combination of ω(s,a) with aj ≥ es,j for all j ∈ {0, . . . , r}
and

r∑
k=0

ak ≤
⌊
s
∑

Ak − (N,N −
∑

Ak)

N

⌋
− 1.

By rewriting ω(s,a) = φ(x)ω(s,es) with degφ ≤ ds − 1, the space of such φ(x) is
spanned by {1, x, . . . , xds−1}. It is clear that xmω(s,es) for m = 0, . . . , ds − 1 are
linearly independent.
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Summarizing the discussions above, we obtain Main Theorem A in Section
1.

Remark 3.7. If K is a perfect field and contains µN consisting of N -th roots of
unity, then each member of the basis obtained above is defined over K. In fact,
since ω(s,es) is the unique “monic” element with the lowest-degree, it is stable
under the action of Gal(K/K).

4. The space of regular differential forms on C

In this section, we consider regular differential forms on C. As we have seen
in Lemma 2.5, the curve C has singularities. We refer to [18, Chapter IV, §3.9]
for the regular differential forms of singular curves. Let us give a brief review of
it. We set Ω[C] :=

⋂
P∈C Ω[C]P with

Ω[C]P :=

{
ω ∈ Ω(X);

∑
π(Q)=P

resQ(π
∗(h)ω) = 0, for all h ∈ OC,P

}
, (4.1)

where π : X → C is the desingularization map constructed in Section 2. We
note that Ω[C]P is an OC,P -module, and furthermore Ω[C] is the space of global
sections of the sheaf U 7→

⋂
P∈U Ω[C]P , which turns out to be the dualizing

sheaf on C. First, we examine Ω[C]Pj
for j = 0, . . . , r. We use the notations

introduced in Proposition 2.6.

Lemma 4.1. For j ∈ {0, . . . , r}, we set d ≥ 0 and e ∈ {1, . . . , gj}. A differential
form ugj−edz/zd+1 belongs to Ω[C]Pj

if and only if any pair (a, b) of non-negative
integers does not satisfy {

aNj + bA′
j = d,

−amj + bnj ≡ e (mod gj).

Proof. Any element of OC,Pj
can be written as αh where α ∈ O×

C,Pj
and h =

(x− λj)
ayb for non-negative integers a and b. Recall that π∗(x− λj) = u−mjzNj

and π∗(y) = unjzA
′
j . Thus, we have

π∗(h)ugj−edz/zd+1 = u−amj+bnj+gj−ezaNj+bA′
jdz/zd+1.

The sum of the residues at the point Qj = (λj, u, 0) ∈ π−1({Pj}), where u runs
among the gj-th roots of fj(λj), is non-zero if and only if aNj + bA′

j = d and
−amj + bnj ≡ e (mod gj).
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According to Lemma 4.1 and Proposition A.4, we directly obtain the follow-
ing:

(i) if d ≥ gjNjA
′
j − Nj − A′

j + 1, then ugj−edz/zd+1 /∈ Ω[C]Pj
for all e ∈

{1, . . . , gj}.
(ii) for d0 = gjNjA

′
j − Nj − A′

j and e0 ≡ mj − nj (mod gj), we see that
ugj−e0dz/zd0+1 belongs to Ω[C]Pj

. Since ugj = fj(x) ∈ O×
C,Pj

, there is no
need to be concerned about the choice of e0.

Moreover, we have the following:
(iii) the differential form ugj−e0dz/zd0+1 in (ii) is a generator of Ω[C]Pj

. In-
deed, according to Lemma 4.1 and Proposition A.5, any differential form
ugj−edz/zd+1 ∈ Ω[C]Pj

can be written as (x − λj)
a′yb

′
ugj−e0dz/zd0+1 for

non-negative integers a′ and b′, up to a multiple of an element of O×
C,Pj

.
Let us rewrite a generator of Ω[C]Pj

.

Lemma 4.2. For j ∈ {0, . . . , r}, the pull-back π∗(dx/yN−1) is a generator of
Ω[C]Pj

.

Proof. By (3.1), the pull-back π∗(dx/yN−1) = π∗ω(N−1,0) is equal to

ugj−(N−1)nj−mjz−(N−1)A′
j+Nj−1dz

up to a multiple of an element ofO×
C,Pj

. This is the same form as in (ii) above.

Next, we describe a generator of Ω[C]P∞. Here, we use the notation from
Proposition 2.7. In Case 1, Lemma 4.1 holds after replacing j by ∞. Therefore,
we similarly obtain the following:

(i) if d ≥ g∞N∞A′
∞ − N∞ − A′

∞ + 1, then ug∞−edz/zd+1 /∈ Ω[C]P∞ for all
e ∈ {1, . . . , g∞}.

(ii) for d0 = g∞N∞A′
∞ − N∞ − A′

∞ and e0 ≡ m∞ − n∞ (mod g∞), we have
that ug∞−e0dz/zd0+1 belongs to Ω[C]P∞.

(iii) the differential form ug∞−e0dz/zd0+1 in (ii) is a generator of Ω[C]P∞.

Lemma 4.3. In Case 1, the pull-back π∗ω(N−1,a) is a generator of Ω[C]P∞ if∑
ak = N − 3.

Proof. By (3.2), the pull-back π∗ω(N−1,a) with
∑

ak = N − 3 is equal to

ug∞−(N−1)n∞−m∞z(N−1)A′∞+N∞−1dz

up to a multiple of an element ofO×
C,P∞

. This is the same form as in (ii) above.
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In Case 2, we set N ′
∞ := N∞ + A′

∞. Then, Lemma 4.1 holds after replacing
Nj by N ′

∞ and j by ∞. We similarly obtain the following:
(i) if d ≥ g∞N ′

∞A′
∞ − N ′

∞ − A′
∞ + 1, then wg∞−edz/zd+1 /∈ Ω[C]P∞ for all

e ∈ {1, . . . , g∞};
(ii) for d0 = g∞N ′

∞A′
∞ −N ′

∞ − A′
∞ and e0 ≡ 2n∞ −m∞ (mod g∞), we have

that wg∞−e0dz/zd0+1 belongs to Ω[C]P∞;
(iii) the differential form wg∞−e0dz/zd0+1 in (ii) is a generator of Ω[C]P∞.

Lemma 4.4. In Case 2, the pull-back π∗ω(2−A∞,a) is a generator of Ω[C]P∞ if∑
ak = 0.

Proof. By (3.3), the pull-back π∗ω(2−A∞,a) with
∑

ak = 0 is equal to

wg∞−(2−A∞)n∞+(1−A∞)m∞z(2−A∞)(N∞+A′∞)−N∞−1dz

up to a multiple of an element ofO×
C,P∞

. This is the same form as in (ii) above.

We obtain the regularity of certain rational differential forms on C, which
will turn out to form a basis of the space of regular differential forms on C (cf.
Corollary 4.6).

Theorem 4.5. We have the following statements:
(1) Assume N −

∑
Ak ≥ 0. Then, for 0 ≤ s ≤ N − 1, we have ω(s,a) ∈ Ω[C] if

(i) aj ≥ 0 for all j ∈ {0, . . . , r} and
(ii) 0 ≤

∑
ak ≤ s− 2.

(2) Assume N −
∑

Ak < 0. Then, for 2− A∞ ≤ s ≤ N − 1, we have ω(s,a) ∈
Ω[C] if

(i) aj ≥ 0 for all j ∈ {0, . . . , r} and
(ii) 0 ≤

∑
ak ≤ s− 2 + A∞.

Proof. First of all, recall that the differential form dx/yN−1 and its products of
some x and y are regular at Pj for j ∈ {0, . . . , r}, by Lemma 4.2.

(1) The differential form ω(N−1,a′) for
∑

a′k = N −3 and its products of some
1/x and y/x are regular at P∞, by Lemma 4.3 in Case 1. Then, the theorem in
this case follows from the fact that ω(s,a) for a satisfying (i) and (ii) is a linear
combination of (

1

x

)i(
y

x

)N−1−s
xN−3dx

yN−1

for 0 ≤ i ≤ s− 2. In Case 3, recall that P∞ are all nonsingular points, as noted
in Lemma 2.5. Consequently, Ω[C]P∞ is the set of regular differential forms at
the point Q∞ ∈ π−1({P∞}). Therefore, this case follows from (3.4).
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(2) The differential form ω(2−A∞,a′) where
∑

a′k = 0 and its products of some
1/y and x/y are regular at P∞, by Lemma 4.4 in Case 2. Then, the theorem in
this case follows from the fact that ω(s,a) for a satisfying (i) and (ii) is a linear
combination of (

1

y

)i(
x

y

)s−2+A∞−i
dx

y2−A∞

for 0 ≤ i ≤ s− 2 + A∞.

Let µN be the subgroup of K× consisting of N -th roots of unity. For each
ζ ∈ µN , we have the automorphism of C defined by (x, y) 7→ (x, ζy), which is
extended to an automorphism of X, denoted as ιζ . This induces an action of
µN on Ω[C]. Specifically, ιζ stabilizes the place Pj and induces a permutation of
π−1({Pj}). Moreover, we have resQ(ω) = resιζ(Q)(ιζ

∗ω) for each Q ∈ π−1({Pj}),
thanks to Remark 2.9.

Corollary 4.6. Assume that K contains µN and {λ0, . . . , λr}. For 0 ≤ s ≤ N−1,
let Ws be the subspace of Ω[C] consisting of ω ∈ Ω[C] on which µN acts by
ω 7→ ζsω for all ζ ∈ µN .

(1) If N −
∑

Ak ≥ 0, then

{xidx/ys ; 0 ≤ i ≤ s− 2} (4.2)

is a basis of Ws. In particular

dimWs = s− 1

with dimΩ[C] = (N − 1)(N − 2)/2.
(2) If N −

∑
Ak < 0, then{

xiy(j−1)Ndx/ys ; 0 ≤ i ≤ s−2− jN +
∑

Ak, 1 ≤ j ≤
⌊
s− 2 +

∑
Ak

N

⌋}
(4.3)

is a basis of Ws. In particular

dimWs =

⌊
s−2+

∑
Ak

N

⌋∑
j=1

(
s− 1− jN +

∑
Ak

)
(4.4)

with dimΩ[C] = (−1 +
∑

Ak)(−2 +
∑

Ak)/2.

Proof. (1) The differential forms in (4.2) belong to Ws by using Theorem 4.5 (1),
and they are linear independent. Using [7, Corollary III.9.10], we know that the
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arithmetic genus does not change among fibers of a flat family over a connected
Noetherian scheme; therefore, neither does the dimension of the space of global
sections of the dualizing sheaf [7, Chapter III, §7]. Here, consider the family

yN =
r∏

j=0

Aj∏
k=1

(x− γjkz) ·
A∞∏
l=1

(−alx+ z),

which has C as a special fiber (defined by γjk = λj and al = 0). Since its generic
fiber has the arithmetic genus (N − 1)(N − 2)/2 =

∑
(s − 1), the differential

forms in (4.2) span Ws.
(2) The differential forms in (4.3) belong to Ws by using Theorem 4.5 (2),

and they are linear independent. Similar to (1), consider the projective model of
C:

yNzA∞ =
r∏

j=1

(x− λjz)
Aj

deforms to a smooth curve of degree
∑

Ak, we have

dimΩ[C] =
(
−1 +

∑
Ak

)(
−2 +

∑
Ak

)
/2.

Hence, it suffices to show that the sum of the right hand side of (4.4) for s =

0, . . . , N − 1 is equal to (−1+
∑

Ak)(−2+
∑

Ak)/2 to prove (4.4). This follows
from the fact that the set{

s− 1− jN +
∑

Ak ; 0 ≤ s ≤ N − 1, 1 ≤ j ≤
⌊
s− 2 +

∑
Ak

N

⌋}
is equal to {1, . . . ,−2+

∑
Ak}, since 1 ≤ s− 1− jN +

∑
Ak ≤ −2+

∑
Ak.

Summarizing the discussions above, we obtain the Main Theorem B in Section
1. In the last part of this section, we provide an example of regular differential
forms on a singular curve:

Example 4.7. Let C : y3 = x(x−1)2(x−z)2 and let X be the desingularizaiton
of C. Then, {

dx,
dx

y
,
xdx

y
,
dx

y2
,
xdx

y2
,
x2dx

y2

}
forms a basis of Ω[C], while dx/y, x2dx/y2 ∈ Ω[X].
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5. The space of regular differential forms on C̃

One can consider partial desingularizations of C, i.e., the desingularization
only around a subset of P = {P0, . . . , Pr, P∞}. Avoiding the general setting, in
this section we focus on the desingularization C̃ only around P∞ of the curve C

in Cases 1 and 2, which is the most interesting case. We exclude Case 3, since
C̃ = C by using Lemma 2.5 in this case. Our aim in this section is to give
an explicit basis of the space of the regular differential forms on C̃. Now, C̃ is
described as follows:

Definition 5.1. Let C be a curve associated to Appell-Lauricella hypergeometric
series as in Definition 2.1. Then, we define C̃ by gluing X∞ and C∖{P∞}.

Next, let us construct the morphism π̃ : X → C̃ as follows: We recall that the
complete desingularization X was defined by gluing Xi in Section 2. Therefore,
it suffices to define the morphism π̃i : Xi → C̃ for each i ∈ {0, . . . , r,∞}.

• For j ∈ {0, . . . , r}, we define π̃j to be the composition of πj : Xi →

C∖{P0,
j
∨. . ., Pr, P∞} and the inclusion C∖{P0,

j
∨. . ., Pr, P∞} → C∖{P∞}.

• We define π̃∞ to be the inclusion X∞ → C̃.
Here is a description of the regularity of differential forms on C̃ and an explicit
basis of Ω[C̃].

Theorem 5.2. We have π̃∗ω(s,a) ∈ Ω[C̃] if
(i) aj ≥ 0 for all j ∈ {0, . . . , r} and

(ii) 0 ≤
∑

ak ≤
s
∑

Ak − (N,N −
∑

Ak)

N
− 1.

Proof. Since Q∞ ∈ π−1({P∞}) is not singular points of C̃, and therefore π̃∗ω(s,a)

is an element of Ω[C̃]Q∞ if and only if π̃∗ω(s,a) is regular at Q∞. By using Propo-
sition 3.5 and Lemma 4.2, the proof of the theorem is completed.

Let µN be the subgroup of K× consisting of N -th roots of unity as in previous
sections. As with the case of Ω[C] in Section 4, the automorphism (x, y) 7→
(x, ζy) for ζ ∈ µN induces an action of µN on Ω[C̃]. Let W̃s be the subspace of
Ω[C̃] consisting of ω ∈ Ω[C̃] on which µN acts by ω 7→ ζsω for all ζ ∈ µN .

Corollary 5.3. For 0 ≤ s ≤ N − 1, the set of ωs,j with

ωs,j :=
xj−1dx

ys
, 1 ≤ j ≤ s

∑
Ak − (N,N −

∑
Ak)

N
(5.1)
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is a basis of W̃s. In particular, we have

dim W̃s = max

{
0,

⌊
s
∑

Ak − (N,N −
∑

Ak)

N

⌋}
.

Proof. By Theorem 5.2, the differential forms ωs,j in (5.1) belong to W̃s and they
are linearly independent obviously. Let n =

∑
Ak and H be the family

yN =
r∏

j=0

Aj∏
k=1

(x− γjk),

where (γjk) ∈ An. Let H̃ be the family over An obtained as the fiberwise desin-
gularization only at ∞ of H. Note that Ω[C̃] is the space of global sections of
the dualizing sheaf of C̃. By the similar way as in Corollary 4.6, the dimension of
Ω[H̃] is equal to dimΩ[H̃(t)] for a smooth fiber H̃(t) with t ∈ An of H̃. Moreover
dimΩ[H̃(t)] is equal to the dimension which we have computed in Theorem 3.6
for Aj = 1 for j = 1, . . . , r, which is

N−1∑
s=0

max

{
0,

⌊
s
∑

Ak − (N,N −
∑

Ak)

N

⌋}
.

This implies that {ωs,j} has to span W̃s.

Summarizing the discussions the above, we obtain the Main Theorem C in
Section 1.

Example 5.4. We consider the curve C : y3 = x(x−1)2(x−z)2 in Example 4.7.
Then, {

dx

y
,
dx

y2
,
xdx

y2
,
x2dx

y2

}
forms a basis of Ω[C̃].

6. The modified Cartier operator on the regular differential module

In this section, we assume that K is a perfect field of positive characteristic
p > 0 which does not divide N . Let C be the projective model of

yN = xA0(x− λ1)
A1 · · · (x− λr)

Ar =: f(x),
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i.e., a curve associated to Appell-Lauricella hypergeometric series as defined in
Definition 2.1. We introduce the (modified) Cartier operator on the regular
differential modules on X, C and C̃, which were studied in the previous sections,
and we describe the operator in terms of Appell-Lauricella hypergeometric series.
Here, X is the desingularization of C, and C̃ is the partial desingularization of C
only at P∞ (see Definition 5.1). Now, we start with recalling [24, Definition 2.1]
the definition of the modified Cartier operator C ′ on the space Ω(C) of rational
differential forms on C.

Definition 6.1. For all differential forms ω ∈ Ω(C), there exist ϕ, η ∈ K(x, y)

uniquely such that ηp ∈ K(xp, yp) and

ω = dϕ+ ηpxp−1dx.

Then, the modified Cartier operator C ′ : Ω(C) −→ Ω(C) is defined as C ′(ω) =
ηdx.

It is well-known that the modified Cartier operator C ′ stabilizes Ω[X]. The
next theorem says that this also holds for Ω[C] and Ω[C̃].

Theorem 6.2. The modified Cartier operator C ′ stabilizes Ω[C] and Ω[C̃]. More
generally, C ′ stabilizes Ω[C]P for any closed point P ∈ C, where Ω[C]P is as
defined in (4.1).

Proof. It suffices to show the second assertion. Let ω ∈ Ω[C]P . Let xP be the
x-coordinate of P . By replacing x by x− xP , we may assume that x takes 0 at
P . Note that the modified Cartier operator does not change by this replacement.
Write

ω = dϕ+ ηpxp−1dx. (6.1)

Let h be an arbitrary element of OC,P . Multiplying (6.1) by π∗(hp), we get

π∗(hp)ω = d(π∗(hp)ϕ) + (π∗(h)η)pxp−1dx.

We have( ∑
π(Q)=P

resQ(π
∗(h)ηdx)

)p

=
∑

π(Q)=P

resQ((π
∗(h)η)pxp−1dx)=

∑
π(Q)=P

resQ(π
∗(hp)ω).

The right hand side is zero since ω ∈ Ω[C]P . Hence, we have∑
π(Q)=P

resQ(π
∗(h)ηdx) = 0

and therefore C ′(ω) = ηdx ∈ Ω[C]P .
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Definition 6.3. The Cartier-Manin matrix A of X (resp. C, C̃) with respect
to a basis {ξi} of Ω[X] (resp. Ω[C], Ω[C̃]) is given by A = (aij) with C ′(ξj) =∑

i aij
1/p ξi.

In order to describe the Cartier-Manin matrix, it suffices to describe the
modified Cartier operator C ′ on

ωs,j =
xj−1

ys
dx

for each 1 ≤ s ≤ N − 1, since our basis of the space of regular differential forms
(obtained in the previous sections) is given by linear combinations of ωs,j. We
shall see that it can be described in terms of the Appell-Lauricella hypergeometric
series. Now, recall that p ∤ N . Hence, there uniquely exist integers m′

s, n
′
s with

1 ≤ m′
s ≤ N − 1, 0 ≤ n′

s < p such that

m′
s p− n′

sN = s

for 1 ≤ s ≤ N − 1 by Lemma A.6. We rewrite ωs,j as

ωs,j = y−sxj−1dx = y−m′
spxj−1ym

′
sp−sdx = (ym

′
s)
−p
xj−1f(x)n

′
sdx.

Let γs,e be the coefficient of xe in the polynomial f(x)n′
s , namely

f(x)n
′
s =

n′
s deg(f)∑
e=0

γs,ex
e.

Now we have

ωs,j = (ym
′
s)−p

∑
j+e̸≡0 (mod p)

γs,ex
j+e−1dx+

∑
l

γs,(l+1)p−j
x(l+1)p

ym′
sp

dx

x

= d

(
y−m′

sp

∑
j+e ̸≡0 (mod p)

γs,ex
j+e

j + e

)
+
∑
l

γs,(l+1)p−j
xlp

ym′
sp
xp−1dx,

where l runs from
⌈
j

p
− 1

⌉
to

⌊
n′

s deg(f) + j

p
− 1

⌋
.

Our final aim in this paper is to show Main Theorem D. As with elliptic
curves, we also need to introduce a truncation of Appell-Lauricella hypergeomet-
ric series. Here, we let F(a, b2, . . . , br, c ;λ2, . . . , λr) be the Appell-Lauricella hy-
pergeometric series associated to the curve C : yN = xA0(x−1)A1

∏r
k=2(x−λk)

Ak ,
namely

a = −1 +
r∑

k=0

(Ak/N), bi = Ai/N, c = a+ 1− (A1/N),

as mentioned after Definition 2.3.
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Definition 6.4 (The truncation of Appell-Lauricella hypergeometrix series). For
(σ, τ1, . . . , τr) ∈ Zr+1, we let F (σ; τ1,...,τr)(a, b2, . . . , br, c ;λ2, . . . , λr) be the polyno-
mial defined by the sum of the λe2

2 · · ·λer
r -terms of F(a, b2, . . . , br, c ;λ2, . . . , λr)

for (e2, . . . , er) satisfying ej ≤ τj for j = 2, . . . , r and

σ − τ1 ≤
r∑

k=2

ek ≤ σ.

We call this polynomial the truncation of F(a, b2, . . . , br, c ;λ2, . . . , λr) with re-
spect to (σ; τ1, . . . , τr).

Unfortunately, it is not true in general that one can describe C ′ in terms of the
Appell-Lauricella hypergeometric series F(a, b2, . . . , br, c ;λ2, . . . , λr) itself of C.
We will see that C ′ can be described in terms of Appell-Lauricella hypergeometric
series associated to a deformation of f(x) which is separable except for the factor
of x, see f0(x) in (6.2) below for the explicit form. The description is as follows:

Theorem 6.5. Let a′ be a positive rational number with a′ ≡ s deg(f)/N − j

(mod p) and set c′ = a′ + 1 − s/N and d′ = n′
s deg(f) − (l + 1)p + j. For⌈

j
p
− 1

⌉
≤ l ≤

⌊n′
s deg(f)+j

p
− 1

⌋
, we have that γs,(l+1)p−j is equal to

(c′; d′)

(a′; d′)
F (d′;n′

s,...,n′
s)(a′, s/N, . . . , s/N︸ ︷︷ ︸

−1+
∑

k≥1 Ak

, c′; 1, . . . , 1︸ ︷︷ ︸
A1−1

, λ2, . . . , λ2︸ ︷︷ ︸
A2

, . . . , λr, . . . , λr︸ ︷︷ ︸
Ar

),

where the right hand side (a priori belonging to Q[λ2, . . . , λr]) is considered as a
polynomial over Fp (note that the denominator of any coefficient is coprime to
p).

First, we see that it is enough to show the case of A1 = A2 = · · · = Ar = 1.

Reduction to the case of Ak = 1 for k = 1, . . . , r. Consider

f0(x) = xA0(x− 1)

A1∏
t=2

(x− λ1t)
r∏

k=2

Ak∏
t=1

(x− λkt). (6.2)

Write

f0(x)
n′

s =
∑
c

(δ0)s,cx
c.

Then

γs,c = (δ0)s,c|λkt=λkfor k=1,...,rand t=1,...,Ak, (k,t)̸=(1,1) (6.3)
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with λ1 = 1 holds. We shall see in Proposition 6.7 below that (δ0)s,(l+1)p−j is
equal to

F (d′;n′
s,...,n′

s)(a′, s/N, . . . , s/N︸ ︷︷ ︸
−1+

∑
k≥1 Ak

, c′;λ12, . . . , λ1A1 , λ21, . . . , λ2A2 , . . . , λr1, . . . , λrAr)

(6.4)
multiplied by (c′;d′)

(a′;d′)
, which is the result in the case of A1 = A2 = · · · = Ar = 1.

Then, the theorem follows from equations (6.3) and (6.4).

Lemma 6.6. Let a′ be a positive rational number with a′ ≡ s deg(f)/N − j

(mod p) and set c′ = a′ + 1 − sA1/N and d′ = n′
s deg(f) − (l + 1)p + j. For a

partition (d1, . . . , dr) of d′ (i.e., d′ =
∑r

k=1 dk) with 0 ≤ dk < p, the following is
true:

(−1)dk
(
n′
sAk

dk

)
= (−1)dk

(
−sAk/N

dk

)
=

(sAk/N ; dk)

(1 ; dk)

in Fp for k = 1, . . . , r. Moreover for k = 1, we have

(−1)d1
(
n′
sA1

d1

)
=

(c′; d′)

(a′; d′)

(a′; d′ − d1)

(c′; d′ − d1)

in Fp.

Proof. Recall that m′
s p − n′

sN = s, then we have n′
s = −s/N in Fp. Hence(

n′
sAk

dk

)
=

(−sAk/N
dk

)
for k = 1, . . . , r. The first equality follows from

(−1)dk
(
−sAk/N

dk

)
=(−1)dk−sAk/N(−sAk/N − 1) · · · (−sAk/N − dk + 1)

dk!

=
(sAk/N)(sAk/N + 1) · · · (sAk/N + dk − 1)

dk!
=

(sAk/N ; dk)

(1 ; dk)

for k = 1, . . . , r.
We prove the second equation by induction on d1. If d1 = 0, then the both

sides are equal to one. Assume that the equation holds for smaller d1. Then

(−1)d1
(
n′

sA1

d1

)
= −n′

sA1 − d1 + 1

d1
· (−1)d1−1

(
n′

sA1

d1 − 1

)
and

(c′; d′)

(a′; d′)

(a′; d′ − d1)

(c′; d′ − d1)
=

c′ + d′ − d1
a′ + d′ − d1

· (c
′; d′)

(a′; d′)

(a′; d′ − (d1 − 1))

(c′; d′ − (d1 − 1))
.

Then the equality for d1 follows from that

a′ + d′ − d1 = (s/N + n′
s)(deg f)− d1 = −d1
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in Fp and that by c′ = a′ + 1− sA1/N we have

c′ + d′ − d1 = −d1 + 1− sA1/N = n′
sA1 − d1 + 1

in Fp.

Proposition 6.7. Assume that Ak = 1 for all k = 1, . . . , r. We let a′ be a
positive rational number with a′ ≡ s deg(f)/N − j (mod p). Set b′k = sbk and
c′ = a′ + 1 − s/N . Moreover, set d′ = n′

s deg(f) − (l + 1)p + j. Consider a
polynomial in λ2, . . . , λr over Q

δs,(l+1)p−j :=
(c′; d′)

(a′; d′)
F (d′; τ1,...,τr)(a′, b′2, . . . , b

′
r, c

′;λ2, . . . , λr),

where τk := n′
s for all k = 1, . . . , r. Then, we have the following statements:

(1) The denominator of every coefficient of δs,(l+1)p−j is coprime to p. Hence
we can consider it as a polynomial over Fp, say δs,(l+1)p−j.

(2) We have the equality γs,(l+1)p−j = δs,(l+1)p−j.

Remark 6.8. Setting a′0 := s deg(f)/N − j and c′0 := s(deg(f) − 1)/N − j +

1, the Appell-Lauricella hypergeometric series F(a′0, b′2, . . . , b′r, c′0 ;λ2, . . . , λr) is
associated to

xj−1

ys
dx =

1

xsA0/N−j+1(x− 1)sA1/N(x− λ2)sA2/N · · · (x− λr)sAr/N

with A1 = A2 = · · · = Ar = 1. Indeed, we have

a′0 = −1 + (sA0/N − j + 1) +
r∑

k=1

(sAk/N)

= s
(
−1 +

r∑
k=0

(Ak/N)
)
− j + s = sa− j + s

and

c′0 = a′0 + 1− (sA1/N) = s(a− A1/N + 1)− j + 1 = sc− j + 1.

In the theorem, we use a positive a′ instead of possibly non-positive a′0 so that
(a′; d′) (∈ Q) and the denominators (∈ Q) of coefficients of the hypergeometric
series are not zero.

Proof of Proposition 6.7. Assume that Ak = 1 for k = 1, . . . , r. Then

f(x) = xA0(x− λ1)(x− λ2) · · · (x− λr)



26 R. OHASHI AND S. HARASHITA

with λ1 = 1, and f(x)n
′
s is computed as

f(x)n
′
s = xn′

sA0(x− λ1)
n′

s · · · (x− λr)
n′

s

= xn′
sA0

r∏
k=1

n′
s∑

dk=1

(
n′

s

dk

)
(−1)dkλdkxn′

s−dk

=
∑

d1,...,dk

r∏
k=1

(−1)dk
(
n′

s

dk

)
λd1
1 · · ·λdr

r xn′
s deg(f)−(d1+···+dr).

The x(l+1)p−j-coefficient δs,(l+1)p−j of f(x)n′
s is∑

d1,...,dk

r∏
k=1

(−1)dk
(
n′

s

dk

)
λd1
1 · · ·λdr

r ,

where (d1, . . . , dr) runs the set of (d1, . . . , dr) satisfying 0 ≤ dk ≤ n′
s and

d1 + · · ·+ dr = n′
s deg(f)− (l + 1)p− j = d′.

By Lemma 6.6, this is equal to

(c′; d′)

(a′; d′)

∑
d1,...,dk

(a′ ;
∑r

k=2 dk)

(c′ ;
∑r

k=2 dk)

r∏
k=2

(s/N ; dk)

(1; dk)
λd1
1 · · ·λdr

r ,

which is equal to
(c′; d′)

(a′; d′)
F (d′;n′

s,...,n′
s)(a′, b′2, . . . , b

′
r, c

′;λ2, . . . , λr)

by λ1 = 1. Thus the proposition was proved.

We have described the modified Cartier operator C ′ on ωs,j =
xj−1

ys
dx. If we

want to describe it on other elements for example ω(s,a) :=

∏r
i=0(x− λi)

ai

ys
dx, we

first write it as a linear combination of ωs,j, use the formula of C ′ on ωs,j and
rewrite the obtained image as a linear combination of ω(s,a). Summarizing the
discussions the above, we obtain the Main Theorem D in Section 1. In Theorem
6.5, we have shown that Ω[C] and Ω[C̃] are closed under C ′. We can show more
as for the subspaces Ws (resp. W̃s) of Ω[C] (resp. Ω[C̃]).

Theorem 6.9. The following statements are true:
(1) The modified Cartier operator C ′ on Ω[C] sends Ws to Wm′

s . Moreover in
Case 1,

C ′ωs,j =
m′

s−2∑
l=0

γ
1/p
s,(l+1)p−j · ωm′

s, l+1.
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(2) The modified Cartier operator C ′ on Ω[C̃] sends W̃s to W̃m′
s . Moreover,

C ′ωs,j =

(m′
s deg(f)−(N, deg(f))/N−1∑

l=0

γ
1/p
s,(l+1)p−j · ωm′

s, l+1.

Proof. First of all, note that C ′ sends ωs,j to
∑

l γ
1/p
s,(l+1)p−j

xl

ym′s dx, where l runs
between

⌈
j
p
− 1

⌉
and

⌊n′
s deg(f)+j

p
− 1

⌋
. Hence, the space of the character ζ 7→ ζs

for each ζ ∈ µN is sent by C ′ to that of the character ζ 7→ ζm
′
s .

(1) Recall from Corollary 4.6 that ωs,j = xj−1dx/ys for 0 ≤ s < N and
1 ≤ j < s give a basis of Ω[C]. We have to show l + 1 < m′

s. This follows from

l + 1 ≤
⌊
n′

s deg(f) + j

p

⌋
≤

⌊
n′

sN + s− 1

p

⌋
≤

⌊
m′

s p− 1

p

⌋
< m′

s.

(2) The set of π̃∗ωs,j with

ωs,j =
xj−1dx

ys
, 1 ≤ s ≤ N − 1, 1 ≤ j ≤ s deg(f)− (N,N −

∑
Ak)

N

is a basis of Ω[C̃] by Corollary 5.3. By Corollary 5.3, we need to show that

1 ≤ m′
s ≤ N − 1, 1 ≤ l + 1 ≤ m′

s

∑
Ak − (N,N −

∑
Ak)

N
.

The former is clear. In addition m′
s p − n′

sN = s and jN ≤ s
∑

Ak − (N,N −∑
Ak), then we have⌊
n′

s

∑
Ak + j

p

⌋
≤

⌊
m′

s

∑
Ak − (N,N −

∑
Ak)

N
+

(N,N −
∑

Ak)

N

p− 1

p

⌋
.

Rewriting the first term of right side as the irreducible fraction, the denominator
is a divisor of N/(N,N −

∑
Ak), while the second term is strictly smaller than

(N,N −
∑

Ak)/N . Hence we obtain⌊
n′

s

∑
Ak + j

p

⌋
≤ m′

s

∑
Ak − (N,N −

∑
Ak)

N
.

This is the desired conclusion.

In the last of this section, we give some examples:

Example 6.10. We consider the case C is a (nonsingular) hyperelliptic curve of
genus g ≥ 1. Write C : y2 = f(x) := x(x− 1)(x−λ2) · · · (x−λ2g) with separable
f(x). Let us describe the modified Cartier operator on Ω[C̃]. By using Corollary



28 R. OHASHI AND S. HARASHITA

5.3, a basis is given by xj−1dx/y for j = 1, . . . , g. Note that a = g−1/2, bi = 1/2

and c = g. We get m′
1 = 1, n′

1 = (p−1)/2. Put a′ = (2g+1)/2− j = g+1/2− j

and c′ = g−j+1, then these number are positive, and set d′ = p−1
2

deg(f)−ip+j.
Then we have γ1,ip−j is equal to

(p(2g − 2i+ 1)− 1)!!

(p(2g − 2i+ 1)− 2)!!

(2g − 2j − 1)!!

(2g − 2j)!!
F (d′;n′

1,...,n′
1)(a′, 1/2, . . . , 1/2, c′;λ2, . . . , λ2g)

for each i, j. For example, for (g, p) = (2, 3) with f(x) = x(x − 1)(x − z1)(x −
z2)(x− z3), the Cartier-Manin matrix (γ1,ip−j) is(

2z1z2z3 + 2z1z2 + 2z1z3 + 2z2z3 z1z2z3
1 2z1 + 2z2 + 2z3 + 2

)
.

The series F(5/2 − j, 1/2, 1/2, 1/2, 3 − j; z1, z2, z3) truncated by zk-degree ≤ 1

with coefficients in Q is

1 +
3

8
(z1 + z2 + z3) +

5

32
(z1z2 + z1z3 + z2z3) +

35

512
z1z2z3for j = 1,

1 +
1

4
(z1 + z2 + z3) +

3

32
(z1z2 + z1z3 + z2z3) +

5

128
z1z2z3 for j = 2.

For further truncations, use d′ = 5− 3i+ j and n′
1 = 1 with Definition 6.4.

Example 6.11. We consider the curve C : y3 = x(x− 1)2(x− z)2 in Examples
4.7 and 5.4, i.e., (A0, A1, A2) = (1, 2, 2) and N = 3. Let us describe the Cartier
operator on Ω[C̃]. Recall from Example 5.4 that a basis is given by xj−1

ys
dx for

(s, j) = (1, 1), (2, 1), (2, 2), (2, 3).
• If p ≡ 1 (mod 3), we have m′

s = s and n′
s = (p− 1)s/3.

• If p ≡ 2 (mod 3), we have m′
1 = 2, n′

1 = (2p − 1)/3,m′
2 = 1 and n′

2 =

(p− 2)/3.
Put a′ = 5s/3−j and c′ = 4s/3−j+1, which are positive and set d′ = 5n′

s−ip+j.
Then

γs,ip−j =
(c′; d′)

(a′; d′)
F (d′;n′

s,n′
s,n′

s,n′
s)(a′, s/3, s/3, s/3, c′; 1, z, z)

for i = 1 if m′
s = 1 and i = 1, 2, 3 if m′

s = 2. For example for p = 7, then the
Cartier-Manin matrix M of C̃ with respect to {ω1,1, ω2,1, ω2,2, ω2,3} is given by

(z − 1)2(z2 + 4z + 1) 0 0 0

0 z7 −z8 − z7 z8

0 −z7 − 1 z8 + z7 + z + 1 −z8 − z

0 1 −z − 1 z

 .
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This implies that the a-number of C̃ is 3 or 2 depending on whether z2 + 4z + 1

is zero or not, since z 6= 1. Here, the a-number of C̃ is defined to be dimΩ[C̃]−
rank(M). For example for p = 5, then the Cartier-Manin matrix M of C̃ is given
by 

0 3z + 3 z2 + 4z + 1 3z2 + 3z

4z6 + 4z5 0 0 0

z6 + z5 + z + 1 0 0 0

4z + 4 0 0 0

 .

This implies that the a-number of C̃ is 3 or 2 depending on whether z is −1 or
not.

References

[ 1 ] Archinard, N.: Hypergeometric Abelian Varieties, Canad. J. Math. 55 (2003), 897–932.
[ 2 ] Bouw, I. I.: The p-rank of ramified covers of curves, Compos. Math. 126 (2001), 295–322.
[ 3 ] Brock, B. W.: Superspecial curves of genera two and three, Thesis (Ph. D.)–Princeton

University (1993).
[ 4 ] Elkin, A.: The rank of the Cartier operator on cyclic covers of the projective line, J. Al-

gebra 327 (2011), 1–12.
[ 5 ] González, J.: Hasse-Witt matrices for the Fermat curves of prime degree, Tôhoku Math.

J. 49 (1997), 149–163.
[ 6 ] Gorenstein, D.: An arithmetic theory of adjoint plane curves, Trans. Amer. Math. Soc.

72 (1952), No. 3, 414–436.
[ 7 ] Hartshorne, R.: Algebraic Geometry, GTM 52, Springer New York, 1977.
[ 8 ] Harvey, D. and Sutherland, A. V.: Computing Hasse-Witt matrices of hyperelliptic curves

in average polynomial time, LMS J. Comput. Math. 17 (2014), Special Issue A, 257–273.
[ 9 ] Harvey, D. and Sutherland, A. V.: Computing Hasse-Witt matrices of hyperelliptic curves

in average polynomial time, II, Contemporary Mathematics 663 (2016), 127–148.
[ 10 ] Husemöller, D.: Elliptic Curves, GTM 111. Springer New York, 1987.
[ 11 ] Ibukiyama, T., Katsura, T. and Oort, F.: Supersingular curves of genus two and class

numbers, Compositio Math. 57 (1986), No. 2, 127–152.
[ 12 ] Igusa, J.: Class number of a definite quaternion with prime discriminant, Proc. Nat.

Acad. Sci. U.S.A. 44 (1958), 312–314.
[ 13 ] Kudo, M. and Harashita, S.: Superspecial curves of genus 4 in small characteristic, Finite

Fields and Their Applications 45 (2017), 131–169.
[ 14 ] Kudo, M., Harashita, S. and Senda, H.: The existence of supersingular curves of genus

4 in arbitrary characteristic, Research in Number Theory 6 (2020) , Article number: 44.
[ 15 ] Lang, S.: Algebra, GTM 211, Springer New York, 2002.
[ 16 ] Manin, Yu. I.: The theory of commutative formal groups over fields of finite characteristic,

Russian Mathematical Survey 18 (1963), 1–80.
[ 17 ] Ohashi, R., Kudo, M. and Harashita, S.: The a-numbers of non-hyperelliptic curves of

genus three with large cyclic automorphism group, arXiv:2111.09777.
[ 18 ] Serre, J.-P.: Algebraic Groups and Class Fields, GTM 117, Springer New York, 1988.



30 R. OHASHI AND S. HARASHITA

[ 19 ] Silverman, J. H.: The Arithmetic of Elliptic Curves, GTM 106, Springer New York, 1986.
[ 20 ] Stöhr, K. -O. and Voloch, J. F.: A formula for the Cartier operator on plane algebraic

curves, J. Reine Angew. Math. 377 (1987), 49–64.
[ 21 ] Sutherland, A. V.: Counting points on superelliptic curves in average polynomial time,

Fourteenth Algorithmic Number Theory Symposium, The Open Book Series 4 (2020),
403–422.

[ 22 ] Varchenko, A.: Hyperelliptic integrals modulo p and Cartier-Manin matrices, Pure Appl.
Math. Q. 16 (2020), No. 3, 315-336.

[ 23 ] Whittaker, E. T. and Watson, G. N.: A Course of Modern Analysis, Cambridge Univer-
sity Press, 1927.

[ 24 ] Yui, N.: On the Jacobian varieties of hyperelliptic curves over fields of characteristic p
> 2, J. Algebra 52 (1978), No. 2, 378–410.

A. Results from elementary number theory

In this section, we prove some propositions used in Sections 4-6. Let p, q be
co-prime positive integers. Let g be a natural number.

Lemma A.1. Every integer d with d ≥ pq+1 can be written as d = pa+ qb for
some positive integers a, b.

Proof. Let r be the remainder of d ≥ pq + 1 divided by q. Now each remainder
of p, 2p, . . . , pq divided by q is different, and thus there exists 1 ≤ a ≤ q such
that the remainder of pa divided by q is r. Since d − pa is divided by q, then
d = pa+ qb, where b denotes its quotient.

Lemma A.2. Every integer d with d ≥ gpq + 1 can be written as d = pa + qb

for positive integers a, b in at least g ways.

Proof. Since d−(g−1)pq ≥ pq+1, we can write d−(g−1)pq = pa+qb (a, b ≥ 1)

by using Lemma A.1. Then we have d = p(a + iq) + q(b − (i − g + 1)p) where
i = 0, . . . , g − 1. Here, note that a+ iq, b− (i− g + 1)p ≥ 1 hold.

Corollary A.3. Every integer d with d ≥ gpq − p − q + 1 can be written as
d = pa+ qb for integers a, b ≥ 0 in at least g ways.

Proof. If d ≥ gpq − p− q + 1, then d+ p+ q ≥ gpq + 1 is written as d+ p+ q =

pa+qb (a, b ≥ 1) in different g ways by Lemma A.2. Thus d = p(a−1)+q(b−1),
so the proposition is true.

Proposition A.4. Let m,n be integers satisfying np + mq = 1. Then the
following are true:

(1) Let d be an integer with d ≥ gpq − p− q + 1. For any e ∈ {0, . . . , g − 1},
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there exists a pair (a, b) of non-negative integers such that d = pa+ qb and
e ≡ −ma+ nb (mod g).

(2) Let d = gpq−p−q. For any non-negative integers a, b satisfying d = pa+qb,
then we have −ma+ nb 6≡ m− n (mod g).

Proof. (1) Let a0 and b0 be positive integers with d− (g− 1)pq = pa0 + qb0. Set
ai := a0 + iq and bi := b0 + (g − 1 − i)p for each i = 0, . . . , g − 1. Let ei be
the element of {0, . . . , g − 1} with ei ≡ −mai + nbi (mod g). It suffices to show
ei 6≡ ej (mod g) for 0 ≤ i < j ≤ g − 1. This follows from

ei − ej = (−mai + nbi)− (−maj + nbj) = −m(ai − aj) + n(bi − bj)

= −mq(i− j)− np(i− j) = −(np+mq)(i− j) = j − i 6≡ 0 (mod g).

(2) Let a0 = −1 and b0 = p−1, then d−(g−1)pq = pa0+qb0. Set ai := a0+iq

and bi := b0+(g−1−i)p for each i = 0, . . . , g. Then any pair (a, b) of non-negative
integers such that d = pa+qb is given by (ai, bi) for an i = 1, . . . , g−1. Similarly
as the proof of (1), let ei be the element of {0, . . . , g − 1} with ei ≡ −mai + nbi
(mod g). It suffices to show that ei 6≡ m − n (mod g) for 1 ≤ i ≤ g − 1. This
follows from

ei − (m− n) = (−mai + nbi)− (m− n)

= −m(ai + 1) + n(bi + 1) = −m(ai − a0) + n(bi − b0 + p)

= −mqi+ np(g − i)

= −npg − (np+mq)i = −npg − i 6≡ 0 (mod g).

Hence, the proof is completed.

The next proposition is a generalization of [16, Lemma 3.8], where Manin
proved the case of g = 1. Put d0 = gpq − p− q and e0 = m− n.

Proposition A.5. Let d be an integer such that 0 ≤ d ≤ gpq−p−q, and e be an
integer such that 0 ≤ e ≤ g − 1. Then, there does not exist a pair (a, b) of non-
negative integers such that d = pa+ qb and e ≡ −ma+nb (mod g) if and only if
there exists a pair (a′, b′) of non-negative integers such that d = d0 − (pa′ + qb′)

and e ≡ e0 − (−ma′ + nb′) (mod g).

Proof. First, we show the “if”-part by contradiction. Assume that there exists
a pair (a′, b′) of non-negative integers such that d = d0 − (pa′ + qb′), e ≡ e0 −
(−ma′ + nb′) (mod g) and there is a pair (a, b) of non-negative integers such
that d = pa + qb, e ≡ −ma + nb (mod g). Then d0 = p(a + a′) + q(b + b′) and
e0 ≡ −m(a+ a′) + n(b+ b′) (mod g). This contradicts Proposition A.4 (2).
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Next we show the “only if”-part. Assume that there does not exist a pair
(a, b) of non-negative integers such that d = pa+qb and e ≡ −ma+nb (mod g).
We claim that there exists a pair (a′′, b′′) with 0 ≤ a′′ ≤ gq− 1, b′′ < 0 such that
d = pa′′ + qb′′ and e ≡ −ma′′ + nb′′ (mod g). Let a′′0 be the smallest non-
negative integer with d ≡ pa′′0 (mod q) and let b′′0 = (d − pa′′0)/q. We choose k

in {0, . . . , g− 1} such that e ≡ −ma′′0 + nb′′0 − k (mod g). We put a′′ = a′′0 + qk

and b′′ = b′′0 − pk. Then we have d = pa′′ + qb′′ and e ≡ −ma′′ + nb′′ (mod g).
By the assumption, we have b′′ < 0. Thus the claim was proved. The (a′′, b′′)

obtained in the claim satisfies

d0 − d = gpq − p− q − (pa′′ + qb′′) = p(gq − 1− a′′) + q(−b′′ − 1),

e0 − e ≡ −m(−a′′ − 1) + n(−b′′ − 1)

≡ −m(gq − 1− a′′) + n(−b′′ − 1) (mod g).

Put a′ := gq − 1− a′′ and b′ := −b′′ − 1, then a′ and b′ are non-negative integers
and must satisfy d = d0 − (pa′ + qb′) and e ≡ e0 − (−ma′ + nb′) (mod g).

Lemma A.6. Let p, q be co-prime positive integers and let d be an integer with
0 < d < q such that d can not be divided by p. Then, there uniquely exist a, b

such that d = pa− qb with 0 < a < q, 0 < b < p.

Proof. There exist a0, b0 ∈ Z such that pa − qb = d by Lemma A.1, so (a, b) =

(a0 + qk, b0 + pk) satisfy pa− qb = d for all k ∈ Z. Since a0 6≡ 0 (mod q), we can
choose k such that 0 < a < q. Now −d < qb < pq−d, then −d/q < b < p− (d/q)

and note that 0 < d/q < 1.
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