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Preface

This thesis is written on the subject “Coloring of planar graphs and its relations to

hypergraph coloring” and it is to be submitted to get the degree of Doctor of Science at

Yokohama National University.

I like history and arts along with mathematics. Long time ago, when I was at Shiraz

University, I visited many historical places in Persian province, beautiful gardens and

architectures, from close distance. At Shiraz University, I also started to practice Kong

Fu TOA, an Iranian branch of Kong Fu, and kept doing it for many years to have healthy

body and mind. I also interested in wood carving that enables us to make beautiful

designs on woods. This skill helped me several times to draw graphs more professionally.

I selected Japan for my Ph.D. period for several reason. This choice originally comes

form old time, more than twenty years ago, when I watched a Japanese traditional movie

and promised myself to visit this place one day. After many years, time led me to have

common researches with some Japanese graph theorists. Meanwhile, I found out there

is a book called Asuka and Persia, written by a Japanese author (Noichi Emoto), that

explains about a strong historical relation of Iran and Japan.

I found there are something between two cultures look very similar. For example,

Omizutori (Japan) and Charshanbe-Suri (Iran), Hanami (Japan) and Sizdabedar (Iran),

Kotatsu (Japan) and Korsi (Iran).

These increased my motivation to visit some places of Japan; for example, Nara city.

A beautiful city with kind people. In this city, there is a museum that shows historical

gifts from several old countries and it was a reason for me how much old people liked to

visit here. (I already visited a similar place of Iran, Persepolis, depicted pictures on stone,

showing people from many ancient countries coming to Iran with their presents).

In the celebration of Iranian new year (Nowruz), I also succeeded to meet Hisako
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Tsunoda, a prominent Japanese artist who has been working in the field of calligraphy

for about 35 years and teaches Persian language and literature. From initial time coming

to Japan, I also joined to Karate club of YNU and kept learning a new martial art. Many

thanks to the members.

During being in Japan, I met many new people. I would like to thank Yaping Mao

who was a close friend and provided nice time for me even in difficult times. Thanks to my

close friends Ali Talebi-Anaraki, Alireza Soleymanipoor, Park Seyong, Andrea Binotto,

Gemechu Yilikal, and Okada Ryutaro. Also, thank Kenta Ozeki for his advice to write

this thesis. Thanks to Seiya Negami, Atsuhiro Nakamoto, Yumiko Ohno, Shinya Fujita,

Masahiro Sanka, Remiko Lida; in particular for having discussion times on graph theory.

Finally, I would like to appreciate my Math Olympiad teacher, Ahmad Peivandi, for his

kindness and assistance during a long time. He also made the world of Math for me more

fascinating and beautiful.

The author

Morteza Hasanvand
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Introduction

A graph consists of finitely many points (called vertices) and finitely many unordered pairs

of them (called edges). The sets of vertices and edges of a graph G are usually denoted by

V (G) and E(G), respectively. The degree dG(v) of a vertex v refers to the number of edges

incident with v. The maximum degree ∆(G) of a graph G is the maximum degree of all

vertices v of G. A k-coloring of a graph G referes to a function c : V (G) → {1, . . . , k} such

that any two adjacent vertices v and u receive different colors, which means c(v) ̸= c(u).

The chromatic number χ(G) is the minimum number k such that there is a k-coloring for

G.

Graph coloring has much attraction in graph theory. For example, consider coloring a

map such that every region colored by one color and any two regions with a common border

have different colors. It is natural to ask how many colors are enough for finding such a

coloring for an arbitrary map. (Note that we can translate this problem in terms of vertex

coloring by replacing each region by a vertex and joining two vertices if corresponding

regions have a common border). This problem was given by Francis Guthrie in 1852 and

had not been solved for more than 100 years. Finally, Appel and Haken (1976) used a

special technique, called discharging method along with a computer assistance to prove

this theorem (The Four-Color Theorem).

Theorem 0.1. (Appel and Haken [3]) If G is a planar graph, then χ(G) ≤ 4.

This theorem has many applications for planar graphs. In addition, coloring of planar

graphs has been studied extensively during a long time. In this thesis, we study two types

of such colorings, called distance coloring and facial coloring, and we use the second one

for hypergraph coloring as well.

Recently, Thomassen (2018) used the four-color theorem to prove that the square of

any planar graph has the chromatic number at most 7. This result is also proved by
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Hartke, Jahanbekam, Thomas (2016) [13] based on a direct computer assistance. This

assertion was originally conjectured by Wegner (1977) [25]. The square G2 of a graph G

is the graph obtained from G by connecting any two vertices with distance at most two,

and a subcubic graph referes to a graph with maximum degree at most three.

Theorem 0.2. ([13, 23]) If G is a planar subcubic graph, then χ(G2) ≤ 7.

Let turn our attention to coloring of all graphs. By an induction on the number of

vertices, it is easy to show that the chromatic number of a graph is less than or equal to

maximum degree plus one. This bound is sharp with respect to the complete graphs.

Observation 0.3. If G is a graph, then χ(G) ≤ ∆(G) + 1.

One may ask whether this bound can be pushed down by ignoring some exceptional

cases. Brooks characterized those exceptional graphs as the following theorem.

Theorem 0.4. (Brooks [6]) Let G be a connected graph. Then χ(G) ≤ ∆(G) if and only

if G is neither a complete graph nor an odd cycle.

For square graphs G2, it easy to check that ∆(G2) ≤ ∆(G)2. Thus we can apply

Brooks’ Theorem, and it is not difficult to check that χ(G2) ≤ ∆(G)2 provided that the

square of G is not complete. These exceptional graphs are called Moore graphs. Cranston

and Rabern (2016) also refined this upper bound a little as the following theorem.

Theorem 0.5. (Cranston and Rabern [8]) If G is not a Moore graph, then χ(G2) ≤

∆(G)2 − 1.

Surprisingly, for planar graphs this quadratic bound can be reduced to a linear bound.

Moreover, Wegner (1997) proposed the following sharp conjecture.

Conjecture 0.6. ([25]) If G is a planar graph and ∆(G) ≥ 8, then χ(G2) ≤ 3
2
∆(G) + 1.

This conjecture has been extensively investigated by many authors, see [18, Page 3].

For example, Molloy and Salavatipour (2005) [21] proved this conjecture by replacing the

upper bound with ⌈5
3
∆(G)⌉ + 25 provided that ∆(G) ≥ 241. The currently best known

bound is asymptotically ( 3
2
+ o(1))∆(G) which was proved by Havet, Heuvel, McDiarmid,

Reed (2007) [14] and Amini, Esperet, Heuvel (2013) [2].
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Similarly to the square chromatic number, distance coloring of graphs is a natural

generalization, which is studied extensively as well. For planar graphs, distance

coloring has interesting applications on the frequency assignment problem (radio channel

assignment); for example, see [16, 17, 21].

Let start with some definition. The k-th power Gk of a graph G is the graph obtained

from G by connecting any two vertices with distance at most k. The chromatic number of

Gk is called the k-distance chromatic number and is denoted by χk(G). It is not difficult

to check that this graph has maximum degree at most

∆(Gk) ≤ ∆(G)
k−1∑
i=0

(∆(G)− 1)i =
∆(G)

∆(G)− 2
((∆(G)− 1)k − 1) + 1.

Let us denote this upper bound by Dk. Fortunately, it was shown that if k ≥ 3, then

there is no graphs whose k-th power would be a complete graph of order Dk + 1. Thus

by applying Brooks’ Theorem, one can easily conclude that χk(G) ≤ Dk. Surprisingly,

this upper bound can be pushed further down as the following result due to Bonamy and

Bousquet (2014) [4].

Theorem 0.7. ([4]) If G is a graph and k ≥ 3, then χk(G) ≤ Dk − 1.

They also conjectured that this upper bound can be replaced by Dk + 1 − k except

for finitely many graphs. A weaker version of this conjecture is confirmed by Pierron

(2019) [22] by replacing the upper bound with Dk + 3− k.

Conjecture 0.8. ([4]) For all connected graphs G, except finitely many graphs, χk(G) ≤

Dk + 1− k.

As we have already stated, for planar graphs this upper bound can be pushed down to

around square root of it as the following result due to Agnarsson and Halldorsson (2003)

[1].

Theorem 0.9. ([1]) If G is a planar graph and ∆(G) ≥ 3, then χk(G) ≤

2k+13⌈k/2⌉∆(G)⌊k/2⌋.

For the case k = 3, Theorem 0.9 says that for every planar graph G, we have χ3(G) ≤

144∆(G). On the other hand, we know there are planar graphs with the maximum

degree ∆ and 3-distance chromatic number 4∆ minus a constant. For example, consider
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the complete graph of order 4 and attach ∆ − 3 pendant vertices to each vertex. In this

thesis, we improve their result to the following version by replacing a better coefficient

much closer to the sharp version.

Theorem 0.10. If G is a planar graph, then χ3(G) ≤ (6 + o(1))∆(G).

To investigate the sharpness, we will also restrict our attention to subcubic graphs.

Conjecture 0.8 suggests the upper bound 19 for all connected subcubic graphs except

finitely many. In this thesis, we partially solves Conjecture 0.8, for k = 3, for planar

graphs with a better bound as follows (and so the exceptional ones must not be planar).

Theorem 0.11. If G is a subcubic planar graph, then χ3(G) ≤ 17.

We should note that to prove this result, we use a discharging method without

applying a computer assistance. In addition, we conjecture that for this family of planar

graphs, this upper bound can be reduced to 12 and show some examples that this

conjecture must be sharp.

Let turn our attention to the second type of coloring. For coloring problem, we usually

try to have different colors on both ends of each edge. There is another concept of coloring

that is necessary to have at least one pair of colors at both ends of all edges. More

precisely, a complete k-coloring refers to a function c : V (G) → {1, . . . , k} such that any

two adjacent vertices have different colors and for any two colors i, j ∈ {1, . . . , k}, there is

one edge uv such that c(v) = i and c(u) = j. The achromatic number of a graph G is the

maximum number k such that there is a complete k-coloring for G and is denoted by ψ(G).

Note that the gap of the chromatic number and the achromatic number can be arbitrary

large enough; for example, for paths P of size
(
k
2

)
we have χ(G) ≤ 2 ≤ k ≤ ψ(G), where

k is an odd integer with k ≥ 3. An interesting property of this kind of coloring is that if

we have a complete (k+1)-coloring of G, we can find a complete k-coloring provided that

k ≥ χ(G). This property is called the interpolation property of complete coloring and was

discovered by Harary, Hedetniemi, and Prins (1967) [12].

Theorem 0.12. ([12]) Every graph G admits a complete t-coloring for every t with

χ(G) ≤ t ≤ ψ(G).
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Graphs can be generalized to hypergraphs by removing size limitation of edges. In

fact, a hypergraph H consists of a set V (H) of vertices and a set E(H) of subsets of

V (H). Every element of E(H) is called a hyperedge. A hypergraph is called m-uniform,

if all hyperedges have the same size m. Note that graphs defined here are 2-uniform

hypagraphs. A complete k-coloring of an m-uniform hypergraph H refers to a function

c : V (H) → {1, . . . , k} such that any two vertices in the same hyperedge have different

colors and for any subsets of colors {1, . . . , k} with size m, there is at least one hyperedge

such that those colors appear on its vertices. The parameters χ(H) and ψ(H) can be

similarly defined for hypergraphs.

Recently, Edwards and Rza̧żewski (2020) [10] investigated complete coloring of graphs

and hypergraphs (they also defined another extention of complete coloring). In addition,

they showed that some basic properties of complete colorings of graphs do not carry over

to the case of hypergraphs. In particular, the interpolation property fails for hypergraphs

accoring to the following theorem.

Theorem 0.13. ([10]) Let k be a positive integer with k ≥ 9. There exists a k-uniform

hypergraph H which has a complete χ(H)-coloring, and a complete ψ(H)-coloring, but no

complete t-coloring for some t with χ(H) < t < ψ(H).

Moreover, they formulated the following two problems for generalizing Theorem 0.13

to 3-uniform hypergraphs, and for studying a weaker version of the interpolation property

of complete colorings of hypergraphs.

Problem 0.14. (Edwards and Rza̧żewski (2020) [10]) Does there exist a 3-uniform

hypergraph not satisfying the interpolation property?

Problem 0.15. (Edwards and Rza̧żewski (2020) [10]) Does there exist a uniform

hypergraph H with ψ(H) ≥ χ(H) + 2 such that H has a complete χ(H)-coloring and

a complete ψ(H)-coloring, but no complete t-coloring for any t with χ(H) < t < ψ(H)?

In this thesis, we generalize Theorem 0.13 to all integers k with k ≥ 3 by modifying

some parts of their proof. In Section 2.3, we answer Problem 0.15 positively by giving

several kinds of 3-uniform hypergraphs, which consequently shows that the answer of

Problem 0.14 is positive. In particular, we formulate the following stronger assertion.
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Theorem 0.16. There exists a 3-uniform hypergraph H with ψ(H) ≥ χ(H)+3 such that

H has a complete χ(H)-coloring and a complete ψ(H)-coloring, but no complete t-coloring

for any t satisfying χ(H) < t < ψ(H).

There is another concept that enables us to make hypergraphs from planar graphs.

A face hypergraph refers to a hypergraph obtained from a planar graph G whose vertices

are the same as G and there is a one-to-one correspondence between the faces of G and

hyperedges of H such that each hyperedge of H consists of all vertices of its corresponding

face. This concept was introduced by Kündgen and Ramamurthi [19]. In this thesis, we

deal with planar triangulations, planar graphs whose faces are triangular, and our face

hypergraphs are obtained from planar triangulations.

Recently, Matsumoto and Ohno (2020) [20] investigated complete colorings for a

special family of face hypergraphs using terms of facial complete colorings of planar

triangulations. They posed the following problem in their paper to study the interpolation

property of those hypergraphs. (For convenience, we write Problem 0.17 in terms of

hypergraphs which is equivalent to Problem 5 in [20].) They also remarked that the

answer is positive, if one replaces the weaker condition 4 ≤ t < ψ(H). Recall that by the

Four-Color Theorem, every planar triangulation is 4-colorable [3].

Problem 0.17. (Matsumoto and Ohno (2020) [20]) Does there exist a 3-uniform

face hypergraph H, obtained from a planar triangulation, such that H has a complete

ψ(H)-coloring, but no complete t-coloring for some t satisfying χ(H) ≤ 4 < t < ψ(H)?

Moreover, they put forward the following conjecture to suggest a family of hypergraphs

satisfying the interpolation property.

Conjecture 0.18. (Matsumoto and Ohno (2020) [20]) Let H be a 3-uniform face

hypergraph obtained from a planar triangulation. If H is 3-colorable, then it admits a

complete t-coloring for every t with χ(H) ≤ t ≤ ψ(H).

In this thesis, we disprove Conjecture 0.18 by a particular hypergraph of order 12,

which consequently shows that the answer of Problem 0.17 is positive. It is known that

a planar triangulation is 3-colorable if and only if the degree of every vertex is even [24].

Theorem 0.19. There exists a 3-uniform 3-colorable face hypergraph of order 12, obtained

from a planar triangulation, having a complete 6-coloring but with no complete 5-coloring.
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They also gave a sufficient condition for such a 3-colorable face hypergraph to admit a

complete k-coloring as the following theorm. Here, we denote by α′(H) is the maximum

number of vertex disjoint hyperedges of H.

Theorem 0.20. (Matsumoto and Ohno (2020) [20]) Let H be a 3-uniform face hypergraph

obtained from a planar triangulation. If H is 3-colorable and α′(H) ≥ 4
(
k
3

)
, then H admits

a complete k-coloring.

In addition, they characterized such hypergraphs with the achromatic number exactly

3, and posed the following related problem for the existence of a complete 4-coloring.

Moreover, they showed that the lower bound cannot be replaced by 1
4
(|V (H)| + 1) by

giving an infinite family of examples.

Problem 0.21. (Matsumoto and Ohno (2020) [20]) Does there exist a real number m

with 3 ≤ m < 4 such that if H is a 3-uniform face hypergraph obtained from a planar

triangulation with the chromatic number 4 satisfying α′(H) ≥ 1
m
|V (H)|, then H has a

complete 4-coloring.

In this thesis, we answer their problem negatively, as the following theorem, by showing

that the lower bound cannot also be replaced by 1
3
|V (H)| that is the largest bound which

can be examined.

Theorem 0.22. There are infinitely many 3-uniform face hypergraphs H obtained from

planar triangulations with the chromatic number 4 satisfying α′(H) ≥ 1
3
|V (H)| while H

has no complete 4-coloring.
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Chapter 1

3-Distance Coloring of Planar

Graphs

In 2018, Thomassen showed that every subcubic planar graph has the 2-distance chromatic

number at most 7, which was originally conjectured by Wegner (1977). In this chapter,

we consider 3-distance coloring of this family of graphs, and prove that every subcubic

planar graph has the 3-distance chromatic number at most 17 and conjecture that this

number can be pushed down to 12. In addition, we show that every planar graph G with

maximum degree at most ∆ has the 3-distance chromatic number at most (6 + o(1))∆.

1.1 Introduction

In this chapter, all graphs are considered to be simple (without loops and multiple edges).

The vertex set and the edge set of G are denoted by V (G) and E(G), respectively. The

degree dG(v) of a vertex v refers to the number of edges incident with v. A (proper)

coloring of a graph G refers to a function c : V (G) → Z such that any two adjacent

vertices receive different colors. The minimum number of needed colors is called the

chromatic number χ(G) of G. For a positive integer k, the k-th power Gk of G is the

graph obtained from G by connecting any two vertices with distance at most k. We write

χk(G) for the chromatic number ofGk, which is said to be the k-distance chromatic number

of G. A graph is called planar, if it can be embedded on the plane. A graph embedded

on the plane is a plane graph. Two faces of a plane graph are said to be adjacent, if they
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share a common edge. For a face f , we denote by d(f) the length of its boundary walk.

A face f is said to be k+-face (resp. k−-face) if d(f) ≥ k (resp. d(f) ≤ k). A graph

G is called essentially k-edge-connected, if dG(X) ≥ k, for every vertex set X satisfying

2 ≤ |X| ≤ |V (G)| − 2, where dG(X) denotes the number of edges with exactly one end in

X. For a bipartite graph G with bipartition (X,Y ), the bipartite complement of G refers

to the graph obtained from the complete bipartite graph with the bipartition (X,Y ) by

deleting the edges of G. For a family of graphs A, we say that G has an A-minor, if there

are vertex-disjoint connected subgraphs whose contraction results in a simple graph in A

after deleting some edges and some isolated vertices. A graph is called subcubic, if it has

maximum degree at most three.

It is known that every planar graph is 4-colorable [3]. For the 2-distance chromatic

number of planar graphs, we cannot impose a fixed upper bound, because χ2(G) ≥ ∆(G)+

1. In 1977, Wegner [25] proved that χ2(G) ≤ 8 for subcubic planar graphs G. He also

conjectured that the upper bound can be reduced to 7. Recently, this conjecture has been

independently confirmed by Thomassen (2018) [23] and Hartke, Jahanbekam, Thomas

(2016) [13]. We should notice that the latter used a computer assistance.

Theorem 1.1. For all subcubic planar graphs G, we have χ2(G) ≤ 7.

For the 2-distance chromatic number of all planar graphs, Wegner [25] proposed the

following sharp conjecture which has been studied by many authors, see [18, Page 3]. The

currently best known bound is ( 3
2
+ o(1))∆(G), see [2, 14].

Conjecture 1.2. ([25]) If G is a planar graph and ∆(G) ≥ 8, then χ2(G) ≤ 3
2
∆(G) + 1.

Cranston and Kim (2008) [7] already showed that for all subcubic graphs G, except

the Petersen graph, χ2(G) ≤ 8. For 3-distance coloring, Bonamy and Bousquet (2014) [4]

showed that χ3(G) ≤ 20 for all subcubic graphs G. Moreover, they conjectured that the

upper bound can be improved by one, except for finitely many graphs.

Conjecture 1.3. ([4]) For all subcubic connected graphs G, except finitely many, we have

χ3(G) ≤ 19.

In Section 1.2, we study 3-distance coloring of subcubic planar graphs by proving the

following theorem. In addition, we conjecture that this upper bound can be reduced to

12, which is sharp if it is true.
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Theorem 1.4. For all subcubic planar graphs G, we have χ3(G) ≤ 17.

For the 3-distance chromatic number of all planar graphs, the best known upper bound

is obtained by Agnarsson and Halldórsson (2003) [1, Corollary 3.6] who showed that if

G is a planar graph, then χ3(G) is less than 144∆(G). In Section 1.3, we improve their

result by proving the following theorem.

Theorem 1.5. For all planar graphs G, we have χ3(G) ≤ (6 + o(1))∆(G).

This result is much closer to the best known lower bound in the sense that there are

planar graphs G with 3-distance chromatic number 4∆(G) minus a constant. Note also

that for the 4-distance chromatic number, the upper bound cannot be linear, because

χ4(G) ≥ ∆(G)2 + 1 when G has a tree containing a vertex v such that itself and all its

neighbours have degree ∆(G).

1.2 Subcubic planar graphs

In this section, we are going to give an upper bound on the 3-distance chromatic number

of subcubic planar graphs. Before doing so, let us state the following assertion that is

useful to find coloring of the whole graph from colorings of some subgraphs of the graph.

Proposition 1.6. Let G be a graph, and let X, Y be the vertex subsets with X ∩ Y = ∅

and X ∪ Y = V (G). Suppose that the induced subgraphs G[X] and G[Y ] have k-colorings

c : X → A and c′ : Y → B, where A and B are two sets of colors with size k, respectively.

Let P be the bipartite graph with bipartition (A,B) such that

ab ∈ E(P ),

if and only if there are two vertices v ∈ X and u ∈ Y such that uv ∈ E(G), c(v) = a,

and c′(u) = b. Then G itself has a k-coloring if the bipartite complement of P admits a

perfect matching.

Proof. Let M be a perfect matching of the bipartite complement of P . We shall extend

coloring of G[X] to all vertices of G by permuting colors of vertices in Y . More precisely,

for every v ∈ X, we define c′′(v) = c(v), and for every u ∈ Y , we define c′′(u) = a, where
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a is the unique vertex adjacent to b = c′(u) in M . Note that for any two adjacent vertices

v ∈ X and u ∈ Y satisfying c(v) = a and c′(u) = b, we must have ab ̸∈ E(M) and so

c′′(v) = a ̸= c′′(u). Therefore, it is easy to see that c′′ is a k-coloring G.

We need also the following well-known lemma in our proof.

Lemma 1.7. (Hall [11]) Let G be a bipartite graph with bipartition (A,B). Then G admits

a matching covering all vertices of A if and only if for every S ⊆ A, |NG(S)| ≥ |S|.

For planar graphs, there is a simple formula relating order, size, and the number of

faces. It was first discovered by Euler (1752).

Theorem 1.8. (Euler’s Formula) If G is a connected graph embedded on the plane, then

|V (G)| − |E(G)|+ |F (G)| = 2.

One the other hand, it is obvious that summation of degree faces and summation of

degree vertices are the same. By a combination of these two equalities, one can easily

derive the following corollary about cubic planar graphs which be used in our proof.

Roughly speaking, average degree faces is around six and also there must be some faces

with degree at most five.

Corollary 1.9. If G is a connected cubic graph embedded on the plane, then∑
f∈F (G)(d(f)− 6) = −12.

Proof. Since G is cubic, we have |E(G)| = 3
2
|V (G)|. On the other hand, 3|V (G)| =∑

v∈V (G) dG(v) =
∑

f∈F (G) d(f). Thus |V (G)| − |E(G)|+ |F (G)| = −1
2
|V (G)|+ |F (G)| =

−1
6

∑
f∈F (G) d(f) +

∑
f∈F (G) 1. Thus the assertion can be proved by Theorem 1.8.

Now, we are ready to prove the main result of this chapter.

Proof. The proof is based on discharging method. Let G be a counterexample with the

minimum |V (G)|. It is easy to see that G is connected. Let H = G3. We are going to

prove the following claims.

Claim 1. The graph G is cubic and triangle-free.

Suppose thatG has a vertex x with degree at most two. By the minimality, if dG(x) = 1

then the third power of the graph G− x must have a 17-coloring. If dG(x) = 2, then the
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third power of the graph G−x+e must have a 17-coloring, where e is an edge joining two

neighbours of x in G. Since dH(x) ≤ 14, we can extend it to a 17-coloring of H, which is

a contradiction.

Now, suppose that G has a triangle xyz. We first contract this triangle into a new

vertex v to obtain a new subcubic planar graph G′. By the minimality, the third power of

the graph G′ must have a 17-coloring, so we can extend it to a 17-coloring of H, because

the degrees of the vertices x, y, and z are at most 15 in H, which is again a contradiction.

□

Claim 2. The graph G is essentially 4-edge-connected.

Suppose, to the contrary, that G has a vertex set X with 2 ≤ |X| ≤ |V (G)| − 2 such

that dG(X) ≤ 3. Let Gx and Gy be the subcubic planar graphs obtained from G by

contracting Y and X, respectively, where Y = V (G) \ X. Note that we delete multiple

edges (if necessary). We denote by x and y two vertices corresponding to X and Y in

the new graphs. Note that x ∈ V (Gy) and y ∈ V (Gx). By the minimality of G, the

third power of the contacted graphs Gx and Gy have 17-colorings c : V (Gx) → A and

c′ : V (Gy) → B, where A and B are two sets of colors with size 17, respectively.

Let P be a bipartite graph with bipartition (A,B) such that ab ∈ E(P ) if and only if

there are two adjacent vertices v ∈ X and u ∈ Y in H satisfying c(v) = a and c′(u) = b.

It is not difficult to check that P has maximum degree at most 9. In addition, for all

but possibly six colors in A are adjacent to at most 6 colors of B in the graph P . Those

exceptional colors must appear on the vertices of X1 or appear on at least two vertices

of X2, where Xi denotes the set of all vertices in X with distance exactly i from y in Gx.

Note that |X1| ≤ 3 and |X2| ≤ 2|X1|.

Let P ′ be the bipartite complement of P . If the graph P ′ has a perfect matching,

then it follows from Proposition 1.6 that G has a 17-coloring, a contradiciton. Thus by

Lemma 1.7, there is a subset S of A satisfying |NP ′(S)| < |S|. Since P ′ has minimum

degree at least 8, we must have 8 < |S|. In addition, since all but possibly at most six

vertices in S must have degree at least 11, we must have 11 < |S|. Since a vertex in

B \NP ′(S) has degree at least 8, we must also have |A \ S| ≥ 8 while |A \ S|+ |S| < 17.

This is a contradiction, as desired. □

Now we fix an embedding of G into the plane, and consider G as a plane graph. We have
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two more claims related to small faces of G.

Claim 3. There is no 4-face adjacent to a 6−-face, and there is no 4-face connected to a

5−-face by an edge.

Suppose that G has a 4-face v1 . . . v4. By Claim 2, every vertex vi in the 4-face has a

neighbor that is not on the 4-face, and let vi+4 be such a neighbor. We may assume that

this face has a common edge with a 6−-face or it is connected to a 5−-face by an edge as in

Figure 1.1. Let V = {v1, . . . , v8}. By the minimality of G, the graph (G− {v1, . . . , v4})3

has a 17-coloring. We erase colors on v5, . . . , v8. For each v ∈ V , we write L(v) to be the

set of colors which do not appear in the neighbours of v in H.

In the case when the 4-face has a common edge with a 6−-face, the list sizes of the

vertices v5, v6, v7, v8, v1, v2, v3, and v4 are at least 4, 3, 3, 4, 8, 7, 7, and 8, respectively.

It is easy to check that we can extend the coloring to all vertices of H using the colors

from these lists by a greedy algorithm with respect to the order mentioned above.

In the case when the 4-face is connected to a 5−-face by an edge, the list sizes of the

vertices v6, v8, v5, v7, v1, v2, v3, and v4 are at least 3, 5, 3, 3, 7, 7, 7, and 7, respectively. We

may assume that the equalities hold. If there is a path Q of size at most three connecting

v6 and v8 in G, then Q together with the path v6, v2, v1, v4, v8 or v6, v2, v3, v4, v8 bounds a

disk on the plane, but we see that this contradicts Claim 2 and the first case. Thus, one

can conclude that there is no path of size at most three connecting v6 and v8 in G and

hence v6v8 ̸∈ E(H). Thus, we can use the same color to v6 and v8. Similarly, we obtain

v5v7 ̸∈ E(H) and we can use the same color to v5 and v7. Since |L(v6)|+ |L(v8)| > |L(v4)|,

there is a color b ∈ L(v6) ∪ L(v8) such that b ∈ L(v6) ∩ L(v8) or b /∈ L(v4). It is easy to

check that, first giving the color b to both v6 and v8 in the case b ∈ L(v6) ∩ L(v8), and

to one of v6 and v8 otherwise, we can extend the coloring to all vertices of H using the

colors from these lists by a greedy algorithm with respect the order mentioned above. □

Claim 4. There are no two adjacent 5-faces, and there is no 5-face adjacent to two

adjacent 6−-faces.

Suppose that G has a 5-face v1 . . . v5. By Claim 2, every vertex vi in the 5-face has

a neighbor that is not on the 5-face, and let vi+5 be such a neighbor. Assume that this

face has a common edge with a 5-face or a common edge with two adjacent 6−-faces, as

Figure 1.2. Let V = {v1, . . . , v10}. By the minimality of G, the graph (G− {v1, . . . , v5})3
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Figure 1.1: A 4-face adjacent to a 6−-face, and a 4-face connected to 5−-face by an edge.

has a 17-coloring. We erase colors on v6, . . . , v10. For each v ∈ V , we write L(v) to be the

set of colors which do not appear in the neighbours of v in H. Lower bounds of the list

sizes are illustrated in Figure 1.2; we may assume that the equality holds. Let C be the

5-cycle C = v6v9v7v10v8. By the same reason as in the proof of Claim 3, we see that for

any two vertices v, u ∈ V (C) with vu ∈ E(C), there exists no path of size at most three

connecting v and u in G. Thus, the induced subgraph H[V ] must be a complete graph

minus the edges of C.
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Figure 1.2: A 5-face adjacent to a 5-face, and a 5-face adjacent to two 6−-faces.

Suppose that there is a color b ∈ L(u) ∩ L(u′) such that u, u′ ∈ V (C), u ̸= u′, and

uu′ ∈ E(C). Then, we can first color both of vertices u and u′ by the same color b and

next start our greedy algorithm for the remaining vertices with respect to the order v9, v8,

v7, v10, v6, v3, v4, v2, v5, v1. We may therefore assume that every color appears in at most

two lists of the vertices in V (C). Let L(C) to be the union of L(u) over all u ∈ V (C).
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Since

9.5 =
1

2

10∑
i=6

|L(ui)| ≤ |L(C)|,

there are at least 10 colors in L(C).

Now we construct the bipartite graph P such that one bipartition is V , the other

bipartition is the set of colors, and a vertex u ∈ V is connected by an edge to the color i

if and only if i ∈ L(u). If there is a matching M of P that covers all vertices in V , then

coloring each vertex u in V with the color that is matched by M to u, all vertices in V

receive distinct colors in the list, and we obtain a 17-coloring of H. Thus, we may assume

that P does not have such a matching. By Lemma 1.7, there is a subset S of V satisfying

|NP (S)| < |S|. If S contains all vertices in C, then it follows from the observation in the

previous paragraph that |NP (S)| ≥ |NP (V (C))| ≥ 10 ≥ |S|, a contradiction. Thus, we

may assume that V (C) \ S ̸= ∅, and hence |S| ≤ 9.

First, we consider the case when the 5-face has a common edge with a 5-face. Since

|NP (u)| = |L(u)| ≥ 3 for each u ∈ V , we see that 3 < |S|. In addition, since there are

only three vertices u in V with |NP (u)| = |L(u)| = 3 and all other vertices u′ satisfy

|NP (u
′)| = |L(u′)| ≥ 5, we see that 5 < |S|. Since there are only five vertices u in V

with |NP (u)| = |L(u)| ≤ 5 and all other vertices u′ satisfy |NP (u
′)| = |L(u′)| ≥ 7, we see

that 7 < |S|. Since V (C) \ S ̸= ∅, S must contain at least one of v1 and v5, which shows

9 ≤ |NP (S)| < |S| ≤ 9, a contradiction.

Secondly, we consider the other case. Since |NP (u)| = |L(u)| ≥ 3 for each u ∈ V , we

see that 3 < |S|. Since there are only two vertices u in V with |NP (u)| = |L(u)| = 3 and

all other vertices u′ satisfy |NP (u
′)| = |L(u′)| ≥ 4, we see that 4 < |S|. Since V (C)\S ̸= ∅,

S must contain at least one vertex in V \ V (C), which shows 7 ≤ |NP (S)| < |S|. This

implies that S contains at least one of v1, v2 and v5, and hence 8 < |S|. Then, S contains

v1, v2 and v5, and hence 9 ≤ |NP (S)| < |S| ≤ 9, a contradiction. This completes the proof

of Claim 4. □
By Corollary 1.9, we have ∑

f∈F (G)

(d(f)− 6) = −12,

where F (G) is the set of all faces. Let us consider the following discharging procedure:

Every 7+-face will send charge 1/3 to every adjacent 5-face and also will send charge 1/2
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to every adjacent 4-face. We are going to show that the charge of every face would be

nonnegative which is a contradiction. By Claim 3, every 4-face is adjacent to at least

four 7+-faces and so it receives at least charge 4 × 1/2 = 2. By Claim 4, every 5-face is

adjacent to at least three 7+-faces and so it receives at least charge 3× 1/3 = 1. Let f be

a 7+-face and let ci be the number of i-faces adjacent to it for i ∈ {4, 5}. Recall that the

face f will send charge c4/2 + c5/3 to other faces. By Claims 3 and 4, one can conclude

that d(f) ≥ 3c4 + 2c5. Thus, if d(f) ≥ 8, then d(f) − 6 ≥ 1
6
d(f) ≥ c4/2 + c5/3. Even in

the case d(f) = 7, since either c4 = 2 and c5 = 0, or c4 = 1 and c5 ≤ 1, or c4 = 0 and

c5 ≤ 3, we therefore have d(f)− 6 ≥ c4/2 + c5/3. This confirms our claim and completes

the proof.

7-face

1/3

1/3 1/3

1/3

1/2

7-face

7-face

4-face

5-face

Figure 1.3: Examples of charging and discharging procedures.

It would be an interesting problem to determine the sharp upper bound in Theorem

1.4. We believe the following conjecture would be true. To see the sharpness, we can

consider the graph obtained from the Cartesian product of the 5-cycle and the path of

size 2 by subdividing two edges which are contained in a common 4-cycle but no 5-cycles.

Indeed, the third power of this graph is the complete graph of order 12.

Conjecture 1.10. If G is a planar subcubic graph, then χ3(G) ≤ 12.

In our proof, we used discharging method along with some simple configurations. We

believe by considering larger configurations, it would be possible to push the upper bound

further down. So we leave it for the interested readers.
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1.3 Graphs with bounded maximum degree

It would be an interesting problem to establish upper bounds on the 3-distance chromatic

number of planar graphs with higher maximum degree. For the square chromatic number,

Wegner (1977) [25] conjectured that if G is a planar graph with ∆(G) ≥ 8, then χ2(G) ≤
3
2
(∆(G)) + 1. In the following, theorem, we establish an upper bound χ3(G), which is

linearly depending on χ2(G) for graphs on surfaces.

Lemma 1.11. For every integer g, there is a positive integer cg such that if G is a graph

embedded on a surface with genus g, then χ2k+1(G) ≤ cgχ2k(G). In particular, if G is

planar, then

χ2k+1(G) ≤ 4χ2k(G).

In addition, if every A-minor free graph has chromatic number at most cA for a family

A of graphs, then for every A-minor free graph G we have χ2k+1(G) ≤ cAχ2k(G).

Proof. It is known that there is a positive integer cg such that every graph which can

be embedded on a surface with genus g is cg-colorable [15]. Note that c0 = 4 by the

Four-Color Theorem [3]. Let c : V (G) → Z be a coloring of the graph G2k using χ2k(G)

colors. For every color i, we let Xi be the set of all vertices having the same color i, where

1 ≤ i ≤ χ2k(G). Let G0 be the graph obtained from G by connecting any two vertices

with distance exactly 2k+1. We claim that G0[Xi] is embeddable on the same surface of

G. Let P be a path of size 2k+1 with end vertices v and u in Xi. Assume that that P has

a common middle vertex x with another path P ′ of size 2k + 1 with end vertices v′ and

u′ in Xi. We may assume that x is closer to u in P and also is closer to u′ on P ′. These

imply that the distance of u and v is at most 2k, and so they must have different colors

whenever u ̸= u′. Therefore, the edges corresponding to P in G0[Xi] can be drawn on the

surface without crossing other edges. (Note that the arguments stated above also show

that if G is A-minor free, then G0[Xi] should be A-minor free). Thus every graph G0[Xi]

is cg-colorable and so the graph G2k+1 must be cgχ2k(G)-colorable. Hence the proof is

completed.

Havet, van den Heuvel, McDiarmid and Reed (2007) [14] and Amini, Esperet, and

Heuvel (2013) [2] showed that the square chromatic number of every planar graph G is
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at most
(
3
2
+ o(1)

)
∆(G). By applying this result together with Theorem 1.11, one can

conclude Theorem 1.5.

Lemma 1.12. (Restated) For all planar graphs G, we have χ3(G) ≤ (6 + o(1))∆(G).

Note that there are planar graphs with the maximum degree ∆ and 3-distance

chromatic number 4∆ minus a constant. For example, consider the complete graph of

order 4 and attach ∆− 3 pendant vertices to each vertex.
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Chapter 2

Complete Coloring of Hypergraphs

In 1967 Harary, Hedetniemi, and Prins showed that every graph G admits a complete

t-coloring for every t with χ(G) ≤ t ≤ ψ(G), where χ(G) denotes the chromatic number

of G and ψ(G) denotes the achromatic number of G which is the maximum number r for

which G admits a complete r-coloring. Recently, Edwards and Rza̧żewski (2020) showed

that this result fails for hypergraphs by proving that for every integer k with k ≥ 9,

there exists a k-uniform hypergraph H with a complete χ(H)-coloring and a complete

ψ(H)-coloring, but no complete t-coloring for some t with χ(H) < t < ψ(H). They

also asked whether there would exist such an example for 3-uniform hypergraphs and

posed another problem to strengthen their result. In this chapter, we generalize their

result to all cases k with k ≥ 3 and settle their problems by giving several examples of

3-uniform hypergraphs. In particular, we disprove a recent conjecture due to Matsumoto

and Ohno (2020) who suggested a special family of 3-uniform hypergraph to satisfy the

desired interpolation property.

2.1 Introduction

In this chapter, all hypergraphs are considered simple. Let H be a hypergraph. The

vertex set and the hyperedge set of H are denoted by V (H) and E(H), respectively. A

vertex subset of V (H) is said to be independent, if there is no hyperedge of H including

two different vertices of it. A hypergraph is said to be k-uniform, if its hyperedges all have

the same size k. We say that a vertex set S covers a hyperedge e, if S includes at least one
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vertex of e. A face hypergraph refers to a hypergraph obtained from a graph G embedded

in some surface whose vertices are the same vertices of G and there is a one-to-one

correspondence between the faces of G and hyperedges of H such that each hyperedge

of H consists of all vertices of its corresponding face. This concept was introduced by

Kündgen and Ramamurthi [19]. The minimum number of colors needed to color the

vertices of H such that any two vertices lying in the same hyperedge have different colors

(proper property) is denoted by χ(H). A complete t-coloring of a k-uniform hypergraph

H is a coloring of its vertices, using t colors, such that any two vertices lying in the

same hyperedge have different colors, and also every set of k different colors appears

in at least one hyperedge. Note that a uniform hypergraph may have not a complete

coloring, see [9]. For a hypergraph H, we denote by ψ(H) the largest integer t such

that H has a complete t-coloring, if such t exists. Otherwise, we define ψ(H) = 0. The

numbers χ(H) and ψ(H) are called the chromatic number and the achromatic number

of H, respectively. It was proved in [10, 20] that a given uniform hypergraph H may

have not a complete χ(H)-coloring even if it admits a complete coloring. We say that a

hypergraph H satisfies interpolation property, if it admits a complete t-coloring for every

integer t with χ(H) ≤ s < t ≤ ψ(H), provided that H has a complete s-coloring.

In 1967 Harary, Hedetniemi, and Prins studied the interpolation property for complete

colorings of graphs and established the following result.

Theorem 2.1. ([12]) Every graph G admits a complete t-coloring for every t with χ(G) ≤

t ≤ ψ(G).

Recently, Edwards and Rza̧żewski (2020) showed that Theorem 2.1 cannot be extended

to k-uniform hypergraphs for all integers k with k ≥ 9.

Theorem 2.2. ([10]) Let k be a positive integer with k ≥ 9. There exists a k-uniform

hypergraph H which has a complete χ(H)-coloring, and a complete ψ(H)-coloring, but no

complete coloring for some t with χ(H) < t < ψ(H).

In addition, they formulated the following two problems for generalizing Theorem 2.2

to 3-uniform hypergraphs, and for studying a weaker version of the interpolation property

of complete colorings of hypergraphs.

Problem 2.3. (Edwards and Rza̧żewski (2020) [10]) Does there exist a 3-uniform

hypergraph not satisfying the interpolation property?
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Problem 2.4. (Edwards and Rza̧żewski (2020) [10]) Does there exist a uniform

hypergraph H with ψ(H) ≥ χ(H) + 2 such that H has a complete χ(H)-coloring and a

complete ψ(H)-coloring, but no complete t-coloring for any t satisfying χ(H) < t < ψ(H)?

In this chapter, we generalize Theorem 2.2 to all cases k with k ≥ 3 by modifying some

parts of their proof. In Section 2.3, we answer Problem 2.4 positively by giving several

kinds of 3-uniform hypergraphs, which consequently shows that the answer of Problem 2.3

is positive. In particular, we formulate the following stronger assertion.

Theorem 2.5. There exists a 3-uniform hypergraph H with ψ(H) ≥ χ(H) + 3 such that

H has a complete χ(H)-coloring and a complete ψ(H)-coloring, but no complete t-coloring

for any t satisfying χ(H) < t < ψ(H).

Recently, Matsumoto and Ohno (2020) [20] investigated complete colorings for a

special family of face hypergraphs using terms of facial complete colorings of planar

triangulations. They posed the following problem in their paper to study the interpolation

property of those hypergraphs. (For convenience, we write Problem 2.6 in terms of

hypergraphs which is equivalent to Problem 5 in [20].) They also remarked that the

answer is positive, if one replaces the weaker condition 4 ≤ t < ψ(H). It is known that

every planar triangulation is 4-colorable [3].

Problem 2.6. (Matsumoto and Ohno (2020) [20]) Does there exist a 3-uniform face

hypergraph H, obtained from a planar triangulation, such that H has a complete

ψ(H)-coloring, but no complete t-coloring for some t satisfying χ(H) ≤ 4 < t < ψ(H)?

Moreover, they put forward the following conjecture to suggest a family of hypergraphs

satisfying the interpolation property. In Section 2.4, we disprove Conjecture 2.7 by

a particular hypergraph of order 12, which consequently shows that the answer of

Problem 2.6 is positive. It is known that a planar triangulation is 3-colorable if and

only if the degree of every vertex is even [24].

Conjecture 2.7. (Matsumoto and Ohno (2020) [20]) Let H be a 3-uniform face

hypergraph obtained from a planar triangulation. If H is 3-colorable, then it admits a

complete t-coloring for every t with χ(H) ≤ t ≤ ψ(H).
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2.2 The existence of uniform hypergraphs for which

the interpolation property fails

The following theorem makes a stronger version for Theorem 2.2.

Theorem 2.8. Let k be a positive integer with k ≥ 3. There exists a k-uniform hypergraph

H which has a complete χ(H)-coloring and a complete ψ(H)-coloring, but no complete

t-coloring for some t with χ(H) < t < ψ(H).

Proof. We may assume that k ≥ 4, as the assertion holds for k = 3 by Theorem 2.9. Let

r be a sufficiently large integer compared to k. Define H to be the k-uniform hypergraph

with V (H) = {vi,j : 1 ≤ i ≤ k, 1 ≤ j ≤ r} and E(H) = E1 ∪ E2 such that

E1 = {{vi,pi : 1 ≤ i ≤ k} : (p1, . . . , pk) ∈ A and f(p1, . . . , pk) ≤ 1}, and

E2 = {{vi,pi : 1 ≤ i ≤ k} : (p1, . . . , pk) ∈ A and p1 < · · · < pk},

where A denotes the set of all sequences (p1, . . . , pk) such that all pi are distinct and

1 ≤ pi ≤ r and f(p1, . . . , pk) = |{(i, j) : |pi − pj| = 1 and 1 ≤ i < j ≤ k}|. We call the

i-th part of H as the set of all vertices vi,j with 1 ≤ j ≤ r, and call the j-th position of

H as the set of all vertices vi,j with 1 ≤ i ≤ k. According to this construction, one can

prove the following three assertions:

(a1) There is no hyperedge including two vertices of the same position.

(a2) There is no hyperedge including two vertices of the same part.

(a3) For any two vertices in different parts and different positions, there is a hyperedge

including them.

We prove only the last assertion as the other ones are obvious. Let vi,j and vi′,j′ be

two arbitrary vertices of H in different parts and different positions so that i ̸= i′ and

j ̸= j′. Since r is large enough, there is an integer s with 1 ≤ s ≤ r such that {j, j′} ∩

{s, . . . , s + 2k + 2} = ∅. Consider the sequence (p1, . . . , pk) satisfying pi = j, pi′ = j′,

and pt = s + 2t for every t ∈ {1, . . . , k} \ {i, i′}. Obviously, this sequence is in A and

f(p1, . . . , pk) ≤ 1. Thus the hyperedge corresponding to this sequence must be in E1.

Note that this hyperedge includes both of vi,j and vi′,j′ . Hence the claim holds.
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To show that this hypergraph has a complete k-coloring, we take color set

{c1, c2, . . . , ck} and for each i with 1 ≤ i ≤ k, we color all vertices in the i-th part

with the color ci. By (a2) this is a proper coloring and each hyperedge contains all k

colors. For complete r-coloring, we take a color set {c1, c2, . . . , cr} and for each j with

1 ≤ j ≤ r, we color all vertices in the j-th position with the color cj. According to (a1),

it is a proper coloring. In addition, if {cp1 , cp2 , . . . , cpk} is a k-subset of {c1, c2, . . . , cr}

with p1 < · · · < pk, then the hyperedge {v1,p1 , v2,p2 , . . . , vk,pk} of E2 contains this color

set. Therefore, χ(H) = k and ψ(H) ≥ r.

Now, we show that H has no complete t-coloring for every integer t with k−2
k−1

r+k+1 ≤

t < r. Suppose, to the contrary, that H has a complete t-coloring using colors c1, . . . , ct.

Define X to be the set of colors appearing in at least two parts and define Y to be the set

of colors appearing in only one part. We are going to prove the following two assertions:

(b1) Each color of X appears in only one position and all vertices of this position are

colored only by this color.

(b2) Each part has only one color from Y so that |Y | = k and |X| = t− k.

Consider a color x ∈ X. If x ∈ X occurred in more than one position, then by the

definition of X, there must be two vertices having the same color x with different parts

and different positions. Thus by (a3) there is a hyperedge including both of them. This

shows that the coloring is not proper, a contradiction. Thus all occurrences of x are in

the same position. Now, since |X| < r, there is one position whose colors are not in X.

In other words, there are k vertices with different parts whose colors are in Y . On the

other hand, each part contains at most one color of Y ; otherwise, if two colors of Y are

in the same part, then by (a2) there is no hyperedge including them which is impossible.

Therefore, |Y | = k and |X| = t − k. Consequently, we can define yi to be the unique

color in Y appearing in the i-th part, where 1 ≤ i ≤ k. Assume that the color x ∈ X

appears in the j-th position. We are going to show that all vertices of this position are

colored by this color. If we consider a given arbitrary vertex vi,j of this position, then

there is a hyperedge of H containing all colors of the set {y1, . . . , yi−1, x, yi+1, . . . , yk}. Let

(p1, . . . , pk) ∈ A be the sequence corresponding to this hyperedge. Obviously, the color of

vt,pt must be yt for every t ∈ {1, . . . , k} with t ̸= i. Thus the color x must appear in the
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i-th part, and so the vertex vi,j must be colored with x. Therefore, all of vertices of the

j-th position are colored with the color x. Hence the assertions hold.

Obviously, there are r− |X| positions not colored by the colors of X. Since r− |X| ≤

r/(k− 1)− 1, we can conclude that there are k− 1 consecutive positions {s, s+1, . . . , s+

k − 2} of H colored only with colors of X. Define Z to be the set of all those k − 1

colors along with the color y2. By the assumption, there is a hyperedge e ∈ E(H)

including all colors of Z. Let (p1, . . . , pk) ∈ A be the sequence corresponding to this

hyperedge. Obviously, by (b2), the vertex v2,p2 must be colored by y2. We know that

{p1, . . . , pk} \ {p2} = {s, s + 1, . . . , s + k − 2}. Since k ≥ 4, there must be three integers

a, b, c ∈ {1, . . . , k} such that {pa, pb, pc} = {s, s+1, s+2}. Thus f(p1, . . . , pk) ≥ 2 and so

e /∈ E1. Moreover, according to the situation of the position containing the color y2, we

have either max{p1, p3} < p2 or p2 < min{p1, p3} and so e /∈ E2. This is a contradiction.

Hence the theorem is proved.

2.3 Solution to Problem 2.4 using 3-uniform

hypergraphs

In this section, we are going to answer Problem 2.4 by giving several examples of 3-uniform

hypergraphs without the interpolation property. These examples will be introduced by

their incidence graphs; the incidence graph of a hypergraph H is a bipartite graph G

with V (G) = V (H) ∪ E(H) in which a vertex v ∈ V (H) and a hyperedge e ∈ E(H) are

adjacent in G if and only if v ∈ e. In what follows, we represent the vertices of V (H) and

E(H) in the figure of incidence graph by black and white vertices, respectively.

2.3.1 A hypergraph of order 9

A positive answer to Problem 2.4 is given in the following theorem.

Theorem 2.9. There exists a 3-uniform hypergraph H of order 9 with ψ(H) ≥ χ(H) + 2

such that H has a complete χ(H)-coloring and a complete ψ(H)-coloring, but no complete

t-coloring for any t satisfying χ(H) < t < ψ(H).

Proof. Let H be the 3-uniform hypergraph of order 9 whose incidence graph is shown in
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Figure 2.1 such that its vertices are colored black. If H has a complete k-coloring for

k ≥ 6, then it has at least twenty hyperedges. However, H has exactly ten hyperedges

and hence ψ(H) ≤ 5. In fact, H has a complete 3-coloring and a complete 5-coloring (see

Figures 2.1 and 2.2, respectively). Therefore, χ(H) = 3 and ψ(H) = 5.

Figure 2.1: A complete 3-coloring of H Figure 2.2: A complete 5-coloring of H

Next, we show that H has no complete 4-coloring. Suppose, to the contrary, that

H has a complete 4-coloring using colors c1, . . . , c4. Since H has nine vertices, there

exists at least one color appearing on at least three vertices of H, say color c1. Note

that those vertices with the same color form an independent set. It is easy to check that

there are exactly three independent sets of H with size three (which are shown as vertices

numbered by 1, 2 and 3 in Figure 2.1). Since the vertices of every such vertex set cover

all hyperedges of H, the triad {c2, c3, c4} does not appear on any hyperedge of H. Hence

H has no complete 4-coloring and so it is a desired hypergraph.

2.3.2 A 3-regular 3-uniform hypergraph of order 15

Another positive answer to Problem 2.4 is given in the next theorem.

Theorem 2.10. There exists a 3-uniform 3-regular hypergraph H of order 15 with ψ(H) ≥

χ(H) + 2 such that H has a complete χ(H)-coloring and a complete ψ(H)-coloring, but

no complete t-coloring for any t satisfying χ(H) < t < ψ(H).

Proof. LetH be the hypergraph with the vertex set {vi,j : 1 ≤ i ≤ 3, 1 ≤ j ≤ 5} consisting
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of those hyperedges eij with 1 ≤ i ≤ 3 and 1 ≤ j ≤ 5 in which

eij = {vi,j+1} ∪ {vt,j : 1 ≤ t ≤ 3, t ̸= i},

where vi,6 = vi,1. The incidence graph of this hypergraph is shown in Figure 2.3 such

that its vertices are colored black. Obviously, H is 3-uniform and 3-regular. If H has a

complete k-coloring for k ≥ 6, then H must have at least twenty hyperedges. However, H

has exactly fifteen hyperedges and hence ψ(H) ≤ 5. In fact, H has a complete 3-coloring

and a complete 5-coloring (see Figures 2.3 and 2.4, respectively). Therefore, χ(H) = 3

and ψ(H) = 5.

Figure 2.3: A complete 3-coloring of H Figure 2.4: A complete 5-coloring of H

Suppose, to the contrary, that H has a complete 4-coloring using colors c1, . . . , c4.

Since |V (H)| = 15, there exists a color appearing on at least four vertices, say c1. Define

Xi = {vi,j : 1 ≤ j ≤ 5} for each i with 1 ≤ i ≤ 3. According to the construction of H,

it is not difficult to check that every independent set of size four must be a subset of X1,

X2, or X3. Hence the color c1 only appears on vertices of a set Xt where 1 ≤ t ≤ 3. If c1

appears on five vertices, then it must appear on all vertices of Xt. In this case, the triad

{c2, c3, c4} does not appear, because all hyperedges of H are covered by the vertices of

Xt. Therefore, each color appears on at most four vertices. Since H has 15 vertices, every

color must appear on four vertices, except one color which appears on three vertices. We

may assume that for each i ∈ {1, 2, 3}, the color ci appears on exactly four vertices of Xi.

Then the remaining three vertices are colored by c4 so that each Xi includes exactly one

of them. Let us define Yj = {vi,j : 1 ≤ i ≤ 3} for each j with 1 ≤ j ≤ 5. It is easy to

check that if a vertex in Xi and a vertex in Xi′ are colored by the same color provided

that i ̸= i′, both of them cannot be in the set Yj ∪ Yj+1 for all j ∈ {1, . . . , 5}; where

Y6 = Y1. Now, since three vertices are colored by c4 and each Xi includes exactly one

of them, we derive a contradiction. Therefore, H has no complete 4-coloring and it is a

desired hypergraph.
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2.3.3 Solution to a stronger version of Problem 2.4

Our aim in this subsection is to present a 3-uniform 3-colorable hypergraph having a

complete 6-coloring but no complete t-coloring for each t ∈ {4, 5}. This hypergraph is

made from the complete 3-uniform hypergraph H of order 6 with size
(
6
3

)
by splitting

every vertex into two vertices. In fact, we used an innovative computer search for finding

how to split the vertices satisfactorily. A similar method was already used to construct

the hypergraph considered in the proof of Theorem 2.9.

Theorem 2.11. There exists a 3-uniform hypergraph H of order 12 with ψ(H) ≥ χ(H)+3

such that H has a complete χ(H)-coloring and a complete ψ(H)-coloring, but no complete

t-coloring for any t satisfying χ(H) < t < ψ(H).

Proof. Let H be the 3-uniform hypergraph whose incidence graph is shown in Figure 2.5

such that its vertices are colored black. If H has a complete k-coloring for k ≥ 7, then it

has at least thirty-five hyperedges. However, H has exactly twenty hyperedges and hence

ψ(H) ≤ 6. In fact, H has a complete 3-coloring and a complete 6-coloring (see Figures 2.5

and 2.6, respectively). Therefore, χ(H) = 3 and ψ(H) = 6.

Figure 2.5: A complete 3-coloring of H. Figure 2.6: A complete 6-coloring of H.

Next, we show that H has neither a complete 4-coloring nor a complete 5-coloring.

According to the construction of H, it is not hard to check that there are exactly three

independent sets X1, X2 and X3 of size four (which are shown as vertices numbered by

1, 2 and 3 in Figure 2.5, respectively). Moreover, every independent set of size three must
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be a subset of X1, X2, or X3. Suppose, to the contrary, that H has a complete 4-coloring

using colors c1, . . . , c4. First, we assume that there exists a color appearing on at least

four vertices of H, say color c1. Since H has no independent sets of size five, the color c1

must appear on all four vertices of a set Xi, where i ∈ {1, 2, 3}. Since these four vertices

cover all hyperedges of H, the triad {c2, c3, c4} does not appear on any hyperedge of H, a

contradiction. Now, since H has 12 vertices, we may assume that every color appears on

exactly three vertices of H. On the other hand, H has at most three disjoint independent

sets of size three, a contradiction. Therefore, H has no complete 4-coloring.

Suppose, to the contrary, that H has a complete 5-coloring using colors c1, . . . , c5. As

we have observed above, no color can appear on at least four vertices. Since H has 12

vertices, there must be a color appearing on exactly three vertices of H, say c1. Call the

set of all vertices having the color c1 by S. Since the size of S is three, it must be a subset

of X1, X2, or X3, say X1. We may assume that the unique vertex in X1 \ S is colored

by c2. Since X1 covers all hyperedges of H, the triad {c3, c4, c5} does not appear on any

hyperedge of H, a contradiction. Therefore, H has no complete 5-coloring and it is a

desired hypergraph.

As we have shown, the answer of Problem 2.4 is positive even by replacing the lower

bound of χ(H) + 3. The natural question arises whether the answer would be positive

even by replacing greater lower bounds.

Problem 2.12. For any integer t0 with t0 ≥ 4, does there exist a uniform hypergraph

H with ψ(H) ≥ χ(H) + t0 such that H has a complete χ(H)-coloring and a complete

ψ(H)-coloring, but no complete t-coloring for any t satisfying χ(H) < t < ψ(H)?

2.4 An exceptional example for Conjecture 2.7

A counterexample of Conjecture 2.7 is given in the following theorem which answers both

of Problems 2.3 and 2.6 as well. This hypergraph was first found by writing a C++ code

for checking complete colorings of hypergraphs and by applying it on the specified outputs

of plantri program due to Brinkmann and McKay [5]. Note that this face hypergraph is

unique by searching among all 3-colorable planar triangulations on up to 23 vertices.
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Theorem 2.13. There exists a 3-uniform 3-colorable face hypergraph of order 12, obtained

from a planar triangulation, having a complete 6-coloring but with no complete 5-coloring.

Proof. Let H be the 3-uniform face hypergraph obtained from the planar triangulation

shown in Figure 2.7. If H has a complete k-coloring for k ≥ 7, then H has at least

thirty-five hyperedges. However, H has exactly twenty hyperedges and hence ψ(H) ≤ 6.

In fact, H has a complete 3-coloring and a complete 6-coloring (see Figures 2.7 and 2.8,

respectively). Therefore, χ(H) = 3 and ψ(H) = 6.

1

2 3

3 2

1

1

2 3

3 2

1

Figure 2.7: A complete 3-coloring of H

1

2 3

6 5

4

2

3 1

5 4

6

Figure 2.8: A complete 6-coloring of H

Suppose, to the contrary, that H has a complete 5-coloring using colors c1, . . . , c5. We

call the vertices of H by v1, . . . , v6 and w1, . . . , w6 which are shown in Figure 2.9. We may

assume that w1, w2, and w3 are colored by c1, c2, and c3, respectively. We may also assume

that each of the colors c4 and c5 appears on at least one of w4, w5, and w6; otherwise,

it is enough to change the colors of them to make this property along with maintaining

the property of complete 5-coloring. According to the features of the hypergraph H, we

can also assume that w4, w5, and w6 are colored by c4, c5, and c2, respectively. It is not

difficult to check that for a given arbitrary proper coloring of the octahedron, every pair

of colors is contained in at most two kinds of triads appeared on faces of the octahedron.

Thus the octahedron v1v2 · · · v6 minus the face v4v5v6 has at most two kinds of colored

faces including both of c3 and c4. Since there exist three remaining triads containing c3

and c4, one can conclude that the color c4 must appear on either v4 or v6. Similarly, with

respect to the colors c1 and c5 on this octahedron, one can also conclude that the color

c5 must appear on either v4 or v5.
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Figure 2.9: A vertex labelling of H

To complete the proof, we shall consider three cases.

Case A: The vertex v4 is colored by c2.

In this case, the vertices v5 and v6 must be colored by c5 and c4, respectively. Since at

least one face is colored by the triad {c1, c4, c5}, the color c1 must also appear on the

vertex v1. Consequently, it is easy to see that the triad {c3, c4, c5} cannot appear, which

is a contradiction.

Case B: The vertex v4 is colored by c4.

In this case, the vertex v5 must be colored by c5 and so the vertex v6 must be colored by

c1. Since at least one face is colored by the triad {c3, c4, c5}, the color c3 must also appear

on the vertex v3. Consequently, it is easy to see that the triad {c1, c3, c5} cannot appear

which is again a contradiction.

Case C: The vertex v4 is colored by c5.

The proof of this case is similar to Case B (by exchanging the colors c4 and c5 and

exchanging the colors c1 and c3, and using the symmetry of H).

Hence the proof is completed.

We would like to know whether the 3-uniform face hypergraph stated in the proof

of Theorem 2.13 is a unique exceptional face hypergraph not satisfying the interpolation

property. For this purpose, we pose the following problem which is a revised version of
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Problem 2.6.

Problem 2.14. Let H0 be the 3-uniform face hypergraph stated in the proof of

Theorem 2.13. Does there exist a 3-uniform face hypergraph H with H ̸= H0, obtained

from a planar triangulation, not satisfying the interpolation property?

2.5 Answering a problem of Matsumoto and Ohno

about complete coloring of planar triangulations

Recently, Matsumoto and Ohno [20] showed that if a 3-uniform face hypergraph obtained

from a planar triangulation is 3-colorable, then its achromatic number can be large enough,

provided that its matching number would be lare enoguh. In addition, they characterized

such hypergraphs with the achromatic number exactly 3. Here, we denote by α′(H) is

the maximum number of vertex disjoint hyperedges of H.

Theorem 2.15. ([20]) Let H be a 3-uniform face hypergraph obtained from a planar

triangulation. If H is 3-colorable and α′(H) ≥ 4
(
k
3

)
, then H admits a complete k-coloring.

The condition on the chromatic number is necessary, because they constructed an

infinite family of such 3-uniform face hypergraphs H with the chromatic number 4 and

without complete 4-coloring while α′(H) ≥ 1
4
(|V (H)|+1). Motivated by this observation,

they posed the following problem in their paper.

Problem 2.16. (see Problem 4 [20]) Does there exist a real number m with 3 ≤ m < 4

such that if H is a 3-uniform face hypergraph obtained from a planar triangulation with

the chromatic number 4 satisfying α′(H) ≥ 1
m
|V (H)|, then H has a complete 4-coloring.

In the following theorem, we answer to Problem 2.16 negatively by an infinite family of

planar triangulations. It remains to decide whether by inserting a condition on minimum

degree or maximum degree the result holds or not.

Theorem 2.17. There are infinitely many 3-uniform face hypergraphs H obtained from

planar triangulations with the chromatic number 4 satisfying α′(H) ≥ 1
3
|V (H)| while

H has no complete 4-coloring, where α′(H) is the maximum number of vertex disjoint

hyperedges.
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Proof. Let n be an integer divisible by 3 with n ≥ 9. Let k be an odd positive integer.

First, consider a cycle C of order k + 4 with vertices c0, c1, . . . , ck+3. Next, add two

vertices u0 and u to this cycle and join them to all those vertices. Finally, for every i with

1 ≤ i ≤ k, insert two vertices xi and yi into the face ci−1ciu0 and insert six edges xici−1,

xici, xiu0, yici−1, yici, and yixi into this graph. Call the resulting graph Gk. Obviously,

Gk is a triangulation on the plane (the graph G1 is depicted in Figure 2.10). It is easy to

check that c1x1y1, . . . , ckxkyk, u0c0ck+3, and uck+1ck+2 are |V (G)|/3 vertex disjoint faces

of G in which |V (G)| = 3k + 6. Let H be the 3-uniform face hypergraph obtained from

G. Suppose, to the contrary, that H has a complete 4-coloring (with respect to the colors

1, 2, 3, and 4). We may assume that four vertices u0, c0, c1, x1 are colored by 1, 2, 3, and

4 respectively. First assume that u is colored by 4. According to the construction of H,

all vertices of the cycle C must be colored by 2 and 3. Since C has odd order, we derive a

contradiction. Now, assume that u is colored by 1. In this case, for every i with 1 ≤ i ≤ k,

the vertices ci−1, ci, xi must be colored by 2, 3, 4. Therefore, all vertices y1, . . . , yk must

have the same color 1. This implies that every hyperedge of H (every face of G) contains

a vertex with the color 1. Thus the triple {1, 2, 3} cannot appear. Hence we again derive

a contradiction, as desired.

c 1c

2c

3c

c4

0

x1

y1

u

u

0

Figure 2.10: A 4-chromatic triangulation of order 9 having three vertex disjoint faces but

with no proper facial 3-complete 4-coloring.
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[9] M. Dȩbski, Z. Lonc, and P. Rza̧żewski, Harmonious and achromatic colorings of

fragmentable hypergraphs, European J. Combin., 66 (2017) 60–80.
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