

熱平衡な光、非平衡な磁性体

•

馬場基彰 〈横浜国立大学大学院工学研究院/京都大学大学院理学研究科/京都大学白眉センター bamba.motoaki.y13@kyoto-u.jp〉

光(電磁波)は非平衡,磁性体は熱平衡 が主な研究の舞台である.ここでは逆に, 横場の電磁場を熱平衡下で相転移させるた めに,磁性体中のマグノンの非平衡下での 振る舞いを測定したという話をする.

1973年,光場(横場の電磁場)を介した 原子間の相互作用によって,原子集団が横 場の電磁場と一緒に相転移すると理論的に 提唱された.これは超放射相転移やディッ ケ (Dicke)相転移とよばれる.その実現に よって,非常に強い2モード量子スクイー ジングが熱平衡下で得られる.デコヒーレ ンスに対して堅牢な量子科学技術の基盤に 繋がりうる現象である.しかし,熱平衡下 の超放射相転移は,提唱より50年,いま だ観測された例がいない.

超放射相転移は,荷電粒子が電気双極子 遷移を通じて電磁場と相互作用する単純な 系ではまず起こらないと認識されており, スピンなどの別の自由度の存在が肝心と なる.この戦略に基づき,最初の一歩とし て,我々はスピン波(マグノン)版の超放 射相転移を確認した.具体的には,磁性体 $ErFeO_3$ 中の Fe^{3+} スピン格子のマグノン を介して, Er^{3+} スピン同士が相互作用す ることで, Fe^{3+} マグノンと Er^{3+} スピン集 団が約4Kで相転移することを確認した.

マグノン版の超放射相転移かどうかを検 証するためには,熱平衡下の相図だけでは 不十分である.我々は,Fe³⁺マグノンを介 して Er³⁺スピン同士が確かに相互作用す ることを確認するために,ErFeO₃の静磁 場下でのテラヘルツ分光実験を実施した. 吸収スペクトルにFe³⁺マグノンと Er³⁺ 遷 移のピークが得られ,静磁場の大きさの変 化により,それらの準位反発(反交差; anticrossing)が観測された.さらに我々は Er³⁺ を Y³⁺ に置換して Er³⁺ 密度 N/V(原子数 N,体積 V)を変化させることで,その準位 反発の大きさが Er³⁺ 密度の平方根 $\sqrt{N/V}$ に比例することを確認した.Fe³⁺と Er³⁺ が近接的に相互作用するだけなら、準位反 発は N/V に比例するはずである. 観測さ れた $\sqrt{N/V}$ 依存性が、 ${\rm Fe}^{3+}$ マグノンを介 して ${\rm Er}^{3+}$ スピン同士が相互作用すること の証拠である.

 \sqrt{N} に比例する準位反発は、真空ラビ (Rabi) 分裂とよばれる (V は一定とする ことが多い). 初期状態として Er³⁺ スピン のどれか1個だけが励起した状態を考える. それが基底状態に緩和した際, Fe³⁺マグノ ン(超放射相転移が提唱された本来のモデ ルでは共振器中の光子)が1個生成される. そのマグノン(光子)はまた Er³⁺ スピン (原子)集団のどれか1個を励起する.こ れが繰り返されることで、マグノン数(光 子数)の期待値は時間的に振動し、マグノ ン(光場)の振動にはうなりが生じる。こ れが真空ラビ (Rabi) 振動とよばれる. ま た、うなりをフーリエ変換するとスペクト ル上に準位反発が得られ、これが真空ラビ 分裂とよばれる. 初期状態でマグノン(光 子) がゼロ個でも起こる振動であることか ら「真空」と冠せられる. マグノン(光子) 1 個によって Er³⁺ スピン(原子)のどれ か1個が励起されればよいことから、真空 ラビ振動の周期は \sqrt{N} に反比例し、真空 ラビ分裂の大きさは \sqrt{N} に比例する.

このように, $ErFeO_3$ 中の Fe^{3+} マグノン と Er^{3+} 遷移の非平衡ダイナミクス(吸収 スペクトル)の測定から, Fe^{3+} マグノン を介した Er^{3+} の協同的な相互作用を確認 した.また,準位反発の大きさから相互作 用の強さを見積もることで, $ErFeO_3$ が約 4 K で示す相転移が,確かにマグノン版の 超放射相転移であると結論づけた.

現在,より確かな証拠を得るために, Fe³⁺ マグノンと Er³⁺ スピン集団の熱平 衡下での量子スクイージング観測を目指し て研究を進めている.デコヒーレンスに対 して堅牢な量子科学技術を構築するために も,まずは観測が必要である.

—用語解説—

スピン波 (マグノン): スピン歳差運動が波として 物質中を伝搬するものがス ピン波,スピン波を量子化 したものがマグノンとよば れる(電磁波を量子化した ものが光子).

N 個の原子が光場(横場の 電磁場)を介して協同的に 相互作用する時,真空ラビ 振動の周期は \sqrt{N} に反比例 し,真空ラビ分裂の分裂幅 は \sqrt{N} に比例する.

原子集団がスピン波と協同 的に相互作用すれば、それ らの間で振幅がキャッチボー ルされ(ラビ振動し)、スペ クトル上には真空ラビ分裂 が現われる.

1. 光は主に非平衡下で研究されてきた

光(電磁波)を研究対象とする場合には,非平衡な状況が 基本的には扱われる.非平衡とはつまり,注目する系と外 界との間にエネルギーや粒子の流れがある状況である.発 光やレーザー発振では,注目する系(物質)から光が出て いく.非線形光学現象,光電効果,光誘起相転移,光誘起 超伝導などでは,注目する系に光を入れる.光を使った量 子技術も大半が非平衡なものである.(真空)ラビ振動・分 裂も非平衡な現象である.

熱平衡下の光を扱う研究の例としては,19世紀の空洞放 射(黒体輻射)が挙げられ,その研究が量子論の構築に繋 がった.その他には,光子のボーズ-アインシュタイン凝縮 (BEC)の試みや,半導体中の励起子ポラリトン(物質の励 起状態と光子との重ね合わせ状態)のBECが挙げられる. これらは,光子やポラリトンという準粒子を,熱平衡に至 るほど長い時間にわたって光の共振器に閉じ込めることで, BECが準安定状態として実現するというものである.

とはいえ、これらのような熱平衡下での光の現象は、非 常に多彩な非平衡下での現象に比べると、多様性は乏しい と言える.その中で、50年近くにわたり、手を変え物質を 変え、研究が続いている現象がある.それは、超放射相転 移 (superradiant phase transition) やディッケ相転移とよば れる熱平衡下の相転移現象である.

本稿では,超放射相転移について説明した後,その実現 には未だ課題が山積していることを説明する.その後,光 の代わりに磁性体 ErFeO₃ 中のスピン波(マグノン)を用い ればスピン波の超放射相転移が起きるのではというアイデ アについて,その実験的・理論的な検証の研究を解説する.

2. 光が熱平衡下で相転移する?

いま単純に,単一の光 (電磁波) モードと N 個の二準位 系が相互作用する系を考える.具体的には,ディッケ模型 とよばれる以下のハミルトニアンを考える.¹⁾

$$\hat{\mathcal{H}}_{\text{Dicke}} = \hbar \omega_{\text{photon}} \left(\hat{a}^{\dagger} \hat{a} + \frac{1}{2} \right) + \hbar \omega_{\text{atom}} \left(\hat{S}_z + \frac{N}{2} \right) + 2\hbar g_0 (\hat{a}^{\dagger} + \hat{a}) \hat{S}_x.$$
(1)

ここでは、光子の共鳴振動数を ω_{photon} とし、 \hat{a} (\hat{a}^{\dagger}) は光子 の消滅 (生成) 演算子である。第 1 項は光子のエネルギーを 表している。二準位原子の遷移振動数は ω_{atom} とし、大きさ N/2のスピン演算子 $\hat{S}_{x,y,z}$ で N 個の原子集団を表現してい る。第 2 項は原子励起のエネルギーを表している。すなわ ち、 \hat{S}_z の固有状態 $|N/2, m\rangle$ ($m = \pm N/2, \pm (N-1)/2, \ldots$) に第 2 項を作用すると、(m + N/2) $\hbar\omega_{\text{atom}}$ が固有エネル ギーとして得られ、(m + N/2) 個の原子が励起した状態を 表す。

式 (1) の最終項は光子と原子集団との相互作用を表して いる.スピン昇降演算子を $\hat{S}_{\pm} \equiv \hat{S}_x \pm i \hat{S}_y$ と定義すると,

図1 光(電磁波)と原子の相互作用の描像.式(2)の4項のうち,回転 項とよばれる2項は,原子緩和による光子の放出($\hat{a}^{\dagger}\hat{S}_{-}$)と光子吸収に よる原子励起($\hat{S}_{+}\hat{a}$)に対応する.残り2項の反回転項は,原子励起と 光子放出($\hat{a}^{\dagger}\hat{S}_{+}$),光子吸収と原子緩和($\hat{S}_{-}\hat{a}$)に対応し,一見すると エネルギーが保存していないように見えるが,過程としては存在する.

相互作用項は

$$2\hbar g_0(\hat{a}^{\dagger} + \hat{a})\hat{S}_x = \hbar g_0(\hat{a}^{\dagger} + \hat{a})(\hat{S}_+ + \hat{S}_-)$$
(2)

と書き換えることができる. これらのうち, $\hat{a}^{\dagger}\hat{S}_{-}$ と $\hat{S}_{+}\hat{a}$ は回転項とよばれる. 図1に示すように, $\hat{a}^{\dagger}\hat{S}_{-}$ は原子1個 が励起状態から基底状態に緩和して光子が1個放出される 過程, $\hat{S}_{+}\hat{a}$ は逆に光子1個が吸収されて原子が1個励起さ れる過程を表す. 相互作用の強さ g_{0} は, 光子1個が原子1 個に吸収・放出されるレートに相当する. ここで, N 個ある 原子のどれか1個が光子と相互作用すればよいので, 例え ば, 原子集団の基底状態からの励起には $\hat{S}_{+}|N/2, -N/2\rangle = \sqrt{N}|N/2, -N/2+1\rangle$ のように \sqrt{N} が現われる. このように,

$$g \equiv \sqrt{Ng_0} \tag{3}$$

が原子集団としての相互作用の強さ(光子1個が原子集団 に吸収・放出されるレート)に相当する.この \sqrt{N} 依存性 はディッケ協同性とよばれる. g_0 は光モード(共振器)の体 積の平方根に反比例する.物質の体積を固定した場合,gは 原子密度の平方根に比例することになる.

光子数ゼロで原子が1個だけ励起した状態を初期状態と して,式(1)のハミルトニアンに基づいた系の時間発展(ダ イナミクス)を計算すれば,前頁の中図のような真空ラビ 振動が得られる.光の振幅をフーリエ変換すると分裂した 2つのピークが得られ,その分裂幅がおおよそ2g/(2π)に なる.この分裂は吸収スペクトルなどの線形光学応答で比 較的簡単に観測することができ,真空ラビ分裂とよばれる.

一方,式(2)の残りの項, $\hat{a}^{\dagger}\hat{S}_{+}$ と $\hat{S}_{-\hat{a}}$ は反回転項とよ ばれる.図1に示すように、 $\hat{a}^{\dagger}\hat{S}_{+}$ は原子が励起されると共 に光子が1個生成される過程、 $\hat{S}_{-\hat{a}}$ は原子が緩和すると共 に光子が1個消滅する過程を表している.これらは一見す るとエネルギーが保存しないかのように見えるが、光子と 原子の相互作用が電流とベクトルポテンシャルの積(もし くは電気分極と電束密度の積)として導かれることを踏ま えると、自然とハミルトニアンに現れてくる.これら反回 転項によって、系の基底状態において一般に量子スクイー ジングが得られることが知られている.²⁾

1973 年にヘップ (K. Hepp) とリーブ (E. Lieb) によって, 式 (1) のディッケ模型では熱力学極限 $(N \to \infty)$ で 2 次の

図 2 ディッケ模型 [式 (1)] の相図. $\omega_0 = \omega_{\text{photon}} = \omega_{\text{atom}}$ とした.光 と物質の相互作用の強さが閾値 $g = \sqrt{\omega_{\text{photon}}\omega_{\text{atom}}}/2$ を越えると超放 射相転移が起こる. 超放射相では、無次元化された横場の電磁場の期待値 $\langle \hat{a} \rangle / \sqrt{N}$ (秩序変数) が自発的に有限値となる.

相転移が得られることが示された.³⁾ 秩序変数は光子の消滅 演算子の期待値 $\langle \hat{a} \rangle$ (無次元化された電磁場の大きさ)もし くは相互作用に関わるスピン演算子の期待値 $\langle \hat{S}_x \rangle$ (無次元 化された原子集団の分極や電流の大きさ)である.図2は, $\omega_0 = \omega_{\text{photon}} = \omega_{\text{atom}}$ として,無次元化した相互作用の強 さ g/ω_0 と温度 $k_{\text{B}}T/\hbar\omega_0$ に対して $\langle \hat{a} \rangle/\sqrt{N}$ をプロットした 相図である. $g^2 = \omega_{\text{photon}}\omega_{\text{atom}}/4$ を閾値として,2次の相 転移が得られる.

例えば、ベクトルポテンシャルや磁束密度は $(\hat{a}^{\dagger} + \hat{a})$ に 比例し、電場もしくは電束密度は $i(\hat{a}^{\dagger} - \hat{a})$ に比例する. そ の場合、 \hat{a} の期待値の実部がベクトルポテンシャル(磁束 密度)に比例し、虚部が電場(もしくは電束密度)に比例 する. 超放射相転移が起きるということは、それら横場の 電磁場が有限の値を取ることを意味する. 典型的な非平衡 下の光の現象では、 $\langle \hat{a} \rangle$ は時間的に振動するが、超放射相転 移では、それらは熱平衡下で静電磁場として現れる.

3. 磁気相転移や強誘電相転移との違い

磁性体や強誘電体との違いは、それらの相転移が物質内 の相互作用に起因するのに対して、超放射相転移は横場の 電磁場と物質との相互作用に起因するところにある.この 違いは、古典量 (秩序変数)よりもむしろ、量子ゆらぎに反 映される.つまり、相互作用によって一般に量子スクイー ジング(量子ゆらぎの圧縮)が得られるが、磁気相転移な どではスピン(物質)を基底としたスクイージングが得ら れるのに対し,⁴⁾ 超放射相転移では電磁場と物質の重ね合わ せ状態を基底とした量子スクイージングが得られる.²⁾

言い方を変えれば、最大のスクイージングは、超放射相 転移の場合、光子と原子状態の重ね合わせの基底において 得られる.光子や原子状態など、それぞれの基底でのスク イージングは、最大値よりも小さなものとなる.どの基底 で量子スクイージングが最大となるのかを測定することが、 相転移を引き起こす相互作用の同定に繋がる.

典型的な量子技術で生成・制御されるスクイーズド状態は 非平衡下において系の励起状態として得られる.それゆえ, デコヒーレンス(ノイズ)によって減退してしまう.一方, 超放射相転移にて得られるスクイーズド状態は,系の基底 状態や熱平衡状態で得られ,様々なデコヒーレンスに対し て堅牢であると期待される.このスクイーズド状態をどの ように制御し観測するかについては,さらなる研究が必要 ではあるが,量子技術に常に付きまとうデコヒーレンス問 題への根本的な解決策に繋がる可能性がある.磁気相転移 で期待される熱平衡下のスピンのスクイージング⁴⁾と比べ れば,基底変換を基本的に必要とする量子技術には,複数 種類の基底(粒子)で実現される超放射相転移によるスク イージングのほうが有利に働くと考えられる.

4. 熱平衡な光の超放射相転移は未だ探索中

絶対零度 (*T* = 0) に相当する状況下でのパラメータ変化 による超放射相転移については、レーザー光照射下の冷却 原子系で 2010 年に確認された.⁵⁾ ただし、これは非平衡な 状況である. 照射するレーザー光の強度が温度に相当する という議論もあるが,⁶⁾ 熱平衡下の超放射相転移ではない.

熱平衡下で超放射相転移が起きるのかどうかは,長年に わたり現在でも議論が続いている.1973年の提唱³⁾の2年 後,レゼウスキ (K. Rzążewski) らは以下を指摘し,熱平衡 下の超放射相転移はアーティファクトであると述べた.⁷⁾

式(1)のディッケ模型は、クローンゲージにおいてマクス ウェルの方程式と荷電粒子のニュートンの運動方程式から 典型的に導かれる、いわゆる最小結合 (minimal-coupling) ハミルトニアン

$$\hat{\mathcal{H}}_{\min} = \hat{\mathcal{H}}_{photon} + \sum_{i=1}^{N} \frac{[\hat{\boldsymbol{p}}_i + e\hat{\boldsymbol{A}}(\hat{\boldsymbol{r}}_i)]^2}{2m} + V(\{\hat{\boldsymbol{r}}_i\}) \qquad (4)$$

から近似的に導かれる.¹⁾ 第 1 項は光子(横場の電磁場)の エネルギー,第 2 項は電荷 -e と質量 m の荷電粒子の運動 エネルギー,最終項はクーロン(縦場の電磁場)エネルギー である. \hat{r}_i と \hat{p}_i は, i 番目の荷電粒子の位置と運動量の演 算子である.式(1)の最終項で表される光と物質の相互作 用は,運動エネルギー項を展開して現れる $\hat{p}_i \cdot \hat{A}$ から導か れる.レゼウスキらの指摘は,相互作用の強さ g が超放射 相転移の閾値である $\sqrt{\omega_{\text{photon}\omega_{\text{atom}}}/2$ ほどに大きい場合は, 式(1)では無視されている \hat{A}^2 項が付加的なエネルギーコ ストとなり,超放射相転移が起きないというものであった.

その後も約 50 年にわたり,最小結合ハミルトニアンや, スピン自由度などをさらに考慮した系にて,熱平衡下の超 放射相転移が起きるかどうか,理論的な議論が交わされて いる.最新の議論としては,空間的な変調のある電磁場モー ドが必要であることや磁気感受率の発散が注目されている. ⁸⁾しかし,熱平衡下で電磁場が超放射相転移したという報 告はいまだなされていない.

5. スピン波を介した協同性が確認された

一方,式(1)のディッケ模型にて, $g^2 > \omega_{\text{photon}}\omega_{\text{atom}}/4$ と熱力学極限($N \rightarrow \infty$)で超放射相転移が起きること自

図 3 ErFeO₃ の吸収スペクトルの外部磁場依存性.¹⁰⁾約 0.5 THz にあるのが Fe³⁺ スピン波の吸収線,外部磁場に対して共鳴振動数がほぼ線形 に変化するのが Er⁺³ スピン遷移の吸収線. これらが,約4T で準位反発(真空ラビ分裂)する.

体には,数学的な疑義は出ていない.問題は,それが起こ りうる物理系が約 50 年にわたって見つかっていなかったと いうことである.

この問題に対して,私たちはまず,光(電磁波)とは異な る波(ボゾン場)でディッケ模型が形成される物理系を探索 することとした.これは,ディッケ協同性(√N依存性)に よる相転移が物理として起りうるかどうかをまず確認する ためである.私たちは特に,磁性体におけるスピン波(マ グノン)によってディッケ協同性が現れるかどうか検証す ることとした.これは,電磁場の超放射相転移の実現のた めにスピン自由度の重要性が認識されているからである.⁹⁾

物質としては, テラヘルツ領域にてスピン波のダイナミ クスが近年盛んに研究されている, 希土類オルソフェライ ト系 (RFeO₃) に着目した. Fe³⁺ イオン格子にてスピン波 が形成されることがよく知られており, 希土類イオン R³⁺ のスピン集団が Fe³⁺ スピンと相互作用する系である. 問 題は, その相互作用が近接的なものなのか, ディッケ協同 性を示すものなのか, ということである.

その確認のために、RFeO₃ に静磁場を印加することで R³⁺ スピンの共鳴振動数を Fe³⁺ スピン波のそれと同程度 にまで変調させ、準位反発の様子をテラヘルツ波による分 光測定によって観測した.物質としては、スピン波の超放 射相転移との類似性が古くから指摘されていた ErFeO₃ (次 節で説明する) とスピンを持たない Y³⁺ からなる YFeO₃ の 混晶 $\operatorname{Er}_{x}Y_{1-x}$ FeO₃ を用いた.

図3は、外部磁場の大きさとプローブ振動数に対して吸 収率をプロットしたものである.¹⁰⁾ x = 1 であり (ErFeO₃), 試料温度は10 K、外部磁場は c 軸方向に印加し、電場が a軸方向のプローブ光を c 軸に並行に照射した.

外部磁場に対して共鳴振動数が 0.5 THz 程度でほとんど 変化しない線が Fe³⁺ の qFM とよばれるスピン波に由来す るものである.一方,外部磁場に対してほぼ線形に共鳴振 動数が変化する線が Er³⁺ スピンの遷移に由来するもので ある.これらが約4Tで準位反発を起こすことが見てとれ る (中間に現れているのは縮退していた Er³⁺ の遷移が分裂

図 4 ErFeO₃ が約 4 K にて示す相転移前後での Fe^{3+} スピンと Er^{3+} スピンの配置. 高温相では常磁性的であった Er^{3+} スピンが反強磁性的に 秩序し,同時に Fe^{3+} スピンの面が回転を始める. この回転が, Fe^{3+} ス ピン波が自発的に有限値の期待値を獲得することに対応する.

したものだが,11) 本稿では詳細は割愛する).

準位反発は、 Fe^{3+} スピン波と Er^{3+} スピンとの相互作用 (振幅のキャッチボール)の存在を意味する.この相互作用 が近接的なものなのかディッケ的なものなのかは、 Er^{3+} ス ピン密度 $N/V \propto x$ (V は体積)に対する準位反発の依存性 で評価できる.近接的なものであれば準位反発はxに比例 し、ディッケ的であれば \sqrt{x} に比例するはずである.

私たちは、 $Er_x Y_{1-x} FeO_3$ の組成 (Er^{3+} 密度) をx = 1, 0.75, 0.5 と変化させた.また、温度変化によっても Er^{3+} ス ピンを熱的に励起し実効的な密度 x_{eff} を変化させた.詳細 ¹⁰⁾は割愛するが、私たちは準位反発の大きさが $\sqrt{x_{eff}}$ に比 例することを確認し、 Fe^{3+} スピン波と Er^{3+} スピン集団と の相互作用がディッケ的であること、つまり、 Er^{3+} スピン 集団が Fe^{3+} スピン波を介してディッケ協同性を示すことを 確認した.これは、物質中のボゾン素励起を介したディッ ケ協同性(真空ラビ分裂)の初めての観測であった.¹⁰⁾

6. 熱平衡なスピン波の超放射相転移も確認された

私たちは次に, ErFeO₃ にてスピン波の超放射相転移が 起るかどうかの検証を行った.

そもそも 1970 年代には、図 4 のように、ErFeO₃ は約 4 K にて Er³⁺ スピンが反強磁性秩序を示す磁気相転移を起こ すこと、また、その反強磁性秩序と一緒に Fe³⁺ スピンが 回転することが知られていた.¹²⁾ Er³⁺ スピンの反強磁性秩 序と Fe³⁺ スピンとが相関していることから、この相転移 と協同的ヤーン・テラー (Jahn–Teller) 転移¹³⁾ とでアナロ ジーが成り立つことが、1980 年に指摘されていた.¹⁴⁾ 一方 で、協同的ヤーン・テラー転移と超放射相転移とのアナロ ジーが理論的に 1984 年と 2008 に指摘されており,^{15, 16)} 希 土類鉄ガーネットがスピン波の超放射相転移を示す候補物 質であると提案されていた.¹⁶⁾ しかしながら、2つのアナロ ジーの議論はほぼ独立になされていたためか、ErFeO₃ の 約 4 K での相転移がスピン波の超放射相転移と見なせるか どうか、議論が手つかずのままであった.

スピン波の超放射相転移と見なせるか評価するにあたり, 相転移の起源として, Fe³⁺ スピン波と Er³⁺ スピン集団の 相互作用だけでなく, Er³⁺ スピン間の近接相互作用も存在 することが問題であった.両方があることで,前者の寄与 を簡単には評価できず,結合の強さが閾値以上なのか(超放 射相転移とよべるのか)を判断するのが困難であった.

そこで、私たちはまず、前節の外部磁場下のテラヘルツ 分光の結果¹⁰⁾ および磁化測定の結果¹⁷⁾ から ErFeO₃ のス ピン模型のパラメータを同定した. その後、スピン模型を ディッケ模型に帰着させた. ただし、Er³⁺ スピン間の近接 相互作用があることで、ディッケ模型から拡張されたハミル トニアンとなった. ディッケ模型でのパラメータg, ω_{photon} , ω_{atom} (ErFeO₃ ではそれぞれ、Fe³⁺ スピン波と Er³⁺ スピ ン集団との結合強度、Fe³⁺ スピン波の共鳴振動数、Er³⁺ スピンの遷移振動数にあたる) などのゼロ磁場における値、 また Er³⁺ スピン間の交換相互作用の強さを見積もった.

結果として、 $g^2 > \omega_{\text{photon}}\omega_{\text{atom}}/4$ を確かに満たしており、 Er³⁺間の近接相互作用がなくても相転移が起ることを確認 した.また、Fe³⁺スピン波とEr³⁺スピン集団との結合が あることで、Er³⁺間の近接相互作用だけよりも臨界温度や 臨界磁場が高まっていることも確認した.これら2つの結 果、またErFeO₃のスピン模型が(拡張された)ディッケ模 型に帰着すること、Fe³⁺スピン波とEr³⁺スピン集団との 結合がディッケ的であるという実験結果も踏まえ、ErFeO₃ が約4Kで示す相転移が、スピン波の超放射相転移である と結論づけた.これは、単なるアナロジーの提案を越えて、 実験結果に基づいて定量的にディッケ協同性による相転移 の存在を示した初めての結果である.

7. これから望まれる研究

量子光学の分野においてこれまで光が担ってきた役割(ボ ゾン場を介した協同効果)を、物質中のスピン波も果たせ ること,¹⁰⁾ さらには、光(横場の電磁場)ではいまだ実現 していない熱平衡下の超放射相転移を、スピン波であれば 実現できることが確認された.¹¹⁾

レーザー発振や超蛍光など,これまで光(電磁波)を通じ て研究されてきた非平衡下での協同効果を,スピン波で実 現すること,また,フォノンなどの他のボゾン素励起で実 現することが次のステップとして考えられる.これは,多 種多様な量子状態の生成・制御や量子技術が,スピン波や フォノン,超伝導電流など光以外の様々なボゾン素励起で 研究開発されているのと同じ発想である.

一方で,光では難しいことを追究するのも有意義である. 熱平衡下の超放射相転移は,その一例であり,相転移点に おける熱平衡下の量子スクイージング²⁾の観測・制御・活 用なども今後の展開として考えられる.

より一般化して考えれば、光はレーザー発振やパラメト リック発振など、非平衡下で多彩な発振現象 (閾値的な挙 動)を示してきた.スピン波は、熱平衡下の多彩な磁気相転 移と一緒に研究されてきた.スピン波によるディッケ協同 性や超放射相転移は、これら非平衡と熱平衡を繋ぐ鍵となるものである.その舞台である ErFeO₃ などを理論的・実験的に様々な方面から研究することが、¹⁸⁾ 非平衡と熱平衡の境界に存在する可能性のある、まったく新しい物理現象の発見に繋がると期待される.

本稿の執筆にあたり,共同研究者の河野淳一郎氏および Xinwei Li 氏との議論とデータ提供に感謝する.

参考文献

- 1) R. H. Dicke, Phys. Rev. 93, 99 (1954).
- T. Makihara, *et al.*, Nat. Commun. **12**, 3115 (2021);
 K. Hayashida, *et al.*, Sci. Rep. **13**, 2526 (2023).
- 3) K. Hepp and E. H. Lieb, Ann. Phys. 76, 360 (1973).
- J. Ma and X. Wang, Phys. Rev. A 80, 012318 (2009); W. F. Liu, J. Ma, and X. Wang, J. Phys. A: Math. Theor. 46 (2013);
 I. Frérot and T. Roscilde, Phys. Rev. Lett. 121, 020402 (2018).
- K. Baumann, et al., Nature 464, 1301 (2010); Z. Zhiqiang, et al., Optica 4, 424 (2017).
- 6) H. J. Carmichael, Physical Review X 5, 031028 (2015).
- K. Rzążewski, K. Wódkiewicz, and W. Żakowicz, Phys. Rev. Lett. 35, 432 (1975).
- 8) P. Nataf, et al., Phys. Rev. Lett. 123, 207402 (2019); G. M. Andolina, et al., Phys. Rev. B 102, 125137 (2020); D. Guerci, P. Simon, and C. Mora, Phys. Rev. Lett. 125, 257604 (2020); D. Guerci, P. Simon, and C. Mora, Phys. Rev. B 103, 224436 (2021); G. Manzanares, et al., Phys. Rev. B 105, 245304 (2022).
- J. M. Knight, Y. Aharonov, and G. T. C. Hsieh, Phys. Rev. A 17, 1454 (1978).
- 10) X. Li, et al., Science **361**, 794 (2018).
- 11) M. Bamba, et al., Commun. Phys. 5, 3 (2022).
- 12) G. Gorodetsky, et al., Phys. Rev. B 8, 3398 (1973); V. A. Klochan, N. M. Kovtun, and V. M. Khmara, Zh. Eksp. Teor. Fiz. 68, 721 (1975).
- 13) G. A. Gehring and K. A. Gehring, Rep. Prog. Phys. 38, 1 (1975); K. I. Kugel' and D. I. Khomski, Sov. Phys. Usp. 25, 231 (1982).
- 14) A. M. Kadomtseva, I. B. Krynetskil, and V. M. Matveev, Sov. Phys. JETP 52, 732 (1980).
- 15) J. Loos, Phys. Status Solidi 123, 595 (1984).
- 16) J. Larson, Phys. Rev. A 78, 33833 (2008).
- 17) X. X. Zhang et al., Phys. Rev. B 100, 054418 (2019).
- 18) N. M. Peraca, et al., arXiv:2302.06028 [quant-ph].

(2023年4月3日原稿受付)

Thermal Photons and Non-Equilibrium Magnons Motoaki BAMBA

abstract: Magnon-mediated Dicke cooperativity has been observed in ErFeO₃. A superradiant phase transition by ultrastrong magnon–spin coupling has also been confirmed. The low-temperature phase transition in ErFeO₃ would be a key phenomenon bridging the thermal-equilibrium and non-equilibrium physics.