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Abstract

Direction-of-arrival (DOA) estimation is a process of determining the direction of

electromagnetic sources from the output of a receiving sensor array. The approach

has a wide range of applications in radar, astronomy, imaging, wireless communi-

cation, and other fields. Sparse linear arrays (SLAs) have gained popularity in this

industry due to their increased degrees of freedom (DOF). Given a concept of dif-

ference co-array (DCA), the SLAs retain a O(N2) long central uniform linear array

(ULA) segment in their DCA, which increases their DOF and allows them to re-

solve O(N2) uncorrelated sources with only N sensors. The classic ULA, on the

other hand, can only estimate N − 1 sources given N sensors. The conventional

SLAs include minimum redundancy arrays (MRAs), nested arrays (NAs), and co-

prime arrays (CAs). These arrays, however, have shortcomings ranging from a lack

of closed-form expression (MRAs) to incomplete difference coarray (CAs) and strong

mutual coupling (NAs). Hence, this paper explores innovative sparse linear array

design methodologies for sparse arrays with high DOF and low mutual coupling.

The key contribution of this dissertation is to offer new design approaches for

SLAs. The first part of this dissertation introduces novel fundamental SLA de-

signs including the extended nested array with multiple subarrays (ENAMS) and its

extension, the flexible ENAMS (f-ENAMS). These SLAs offer improved DOF and

high-resolution DOA estimation compared to existing ones. Besides, the trade-offs

between robustness to mutual coupling (MC) and DOA estimation accuracy are also

provided to demonstrate the effectiveness of the proposed array designs. The second

part of this dissertation introduces novel unified SLA configurations via the interele-

ment spacing criterion (IES) with higher DOF and relatively reduced MC effect. The

unified SLAs include the generalized ENAMS (GENAMS) and the enhanced sparse

array via the maximum IES criterion (xMISC). The unified SLAs show improved

DOF and high-resolution DOA estimation performance compared to state-of-the-art

SLAs, even in mutual coupling scenarios. Furthermore, the paper develops a simu-

lated annealing (SA)-assisted deep learning-based sparse array design method. The

two-stage method leverages the SA algorithm to circumvent the computationally

expensive stage of dataset notation, thereby alleviating overall computation time.

Naturally, the paper concludes with remarks on future research directions.
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Chapter 1

Introduction

1.1 Introduction

Sensor arrays are one of the critical components in 21st-century technologies as they

yield captured environmental signals as output for various applications, including

wireless communication [1], biomedical engineering (medical imaging, bioinformatics,

wearable technology) [2]-[4], and so forth [5]-[6]. With the upcoming 5th generation

(5G) network, the highest data rates can be achieved at millimeter-Wave (mmWave)

frequencies [7]. However, high path loss and attenuation at these frequencies and

interference among components necessitate efficient mitigation strategies while ad-

dressing compactness and performance constraints.Achieving this remains a problem

to this day, but the progress in computing technology has made it possible to address

some of these issues through sparse sensing [8].

Sparse sensing (SS) is characterized by sparse sampling and inference [8]. Col-

lection of a few samples of high-dimensional data based on prior knowledge and

transferring it to signal processors to recover low-dimensional information of interest

under specific conditions entail sparse sampling [9]-[12]. Sparse sampling is one of

the most researched areas in signal processing, and many SS methods such as nested

samplers [9], coprime samplers [10], and many more [11]-[12], have demonstrated

widespread applications in source direction finding, cognitive wireless systems, and

imaging [12]. These approaches offer reduced data rates while maintaining perfor-

mance levels comparable to traditional methods [13].

This thesis focuses on source localization as applied in various areas such as wire-

less communication, sonar, seismography, and so on [14]. And in this context, sparse

samplers correspond to sparse sensor array configuration, and information inference

relates to angle/direction-of-arrival estimation (AOA or DOA), estimation of signal’s

amplitude, power, speed, and related parameters as the post-processed output [8],

[15]. More specifically, it focuses on DOA estimation within the source localization

area. Typically, DOA estimation can be considered as a two-fold problem: a) design

1



of an optimal sampler or sensor array configuration that captures the DOAs accu-

rately and efficiently; and b) given the solution for a) developing a DOA estimation

algorithm to resolve the DOAs based on the output from the array. The following

introduces the basic array signal equation that forms the basic building block of most

intricate array signal processing problems.

1.2 Fundamentals of array signal processing

In general array signal processing, the outline in Fig. 1.1 summarizes the basic

arrays signal model where the arrows indicate the environmental source signals waves

impinging the sensor array. The array signal-processing algorithm processes the

output from the array to infer the signal’s information, i.e., waveforms, frequencies,

DOAs, and so forth [8], [16]. For the sake of generalization, the primary array signal

model, as shown in Fig. 1.1, can be derived into an array signal equation, forming

the foundation for the most intricate computations in sensor array signal processing.

Figure 1.1: The basic representation of sensor array signal processing.

For simplicity, we assume that the sensors in the array are uniformly spaced in d

steps on the x-axis (unless otherwise stated). Thus, nd for n ∈ S where S contains

the physical array sensor positions [8]. Figure Fig. 1.2 (a) depicts the uniform
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linear array (ULA) with 10 sensors where the dots denote physical sensors. As

shown in Fig. Fig. 1.2 (a), the sensors are located at S = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}d.
Usually, the d = λ/2 but for simplicity, d is normalized to 1. Hence, S becomes

S = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

Figure 1.2: The basic direction finding setup using (a) ULA and (b) non-
uniform/sparse array. Here, the • and × represent a physical sensor and a blank
space.

Consider a linear array with N−sensors, whose sensor positions are nid where ni

belongs to S = {ni}Ni=1 and d = λ/2 is the unit intersensor spacing, with λ being the

wavelength of the source signal [17]. Assume K uncorrelated narrowband far-field

sources from directions θk, k = 1, 2, ..., K are impinging on the array [4]. Then, the

received signal vector at time t can be expressed as

x(t) = Bs(t) + n(t), (1.1)

such that s(t) = [s1(t), s2(t), . . . , sK(t)]
T is the signal vector and n(t) denotes the

zero mean white Gaussian noise vector with variance σ2
nIN , where σ2

n is the noise

power. Moreover, B = [b(θ1), b(θ2), . . . , b(θK)] is the array manifold whose k-th

source steering vector b(θk) can be expressed as

b(θk) = [ejπd1 sin(θk), ejπd2 sin(θk), . . . , ejπdN sin(θk)]T . (1.2)
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The covariance of x(t) can be defined as

Rxx = E
[
x(t)xH(t)

]
= BRsB

H + σ2
nIN , (1.3)

where Rs = E
[
s(t)sH(t)

]
≈ diag([ρ21, ρ

2
2, . . . , ρ

2
K ]) is the signal covariance matrix and

ρ2k denotes the signal power. This signal model assumes that the signals from the

source are not related and have a circularly symmetric complex Gaussian distribu-

tion with zero mean [8]. The directions of arrival for each source are unique. The

noise added is circularly symmetric and complex, with no correlation to the sources.

Additionally, there is no temporal correlation between snapshots [8], [17]. Thus, ei-

ther Rxx or x can be further manipulated using different DOA estimation algorithms

depending on the nature of the sensor array to resolve the sources [17]-[30].

Traditionally, ULAs have been widely used to tackle this problem in conjunction

with where DOA estimators like the Bartlett [17], Capon beamformer [18], the

Pisanenko [19], the minimum-norm [20], Multiple Signal Classification (MUSIC)

[21]-[25], maximum likelihood estimator [26], method of DOA estimation (MODE)

[27] and its variants [28]-[30]. However, ULA can only resolve up to N − 1 sources

given N physical sensors. Besides, adding more sensors could improve the resolution

but at the cost of extra hardware costs and computation complexity, which is limiting

when the limited mounting platform and computing capacity are available [31].

To circumvent this, recently, with the development of the concept of difference

co-array, it is possible to estimate more sources than the number of sensors using

sparse arrays (see Fig. 1.2 (b)). The difference co-array is expressed as the differ-

ence between the sensor positions, i.e., D = {n1 − n2|n1, n2 ∈ S where S contains

sensor locations [32]. So based on the difference co-array, various co-array-based

methods, including Toeplitz completion [32], spatial smoothing MUSIC [33]-[34],

co-array interpolation [35]-[36], and Khatri-Rao methods [37]-[40]. In array signal

processing, especially when dealing with the underdetermined case where there are

more sources than the number of sensors, two problems emerged to be of paramount

importance: a) reducing the mutual coupling (MC) effect between sensors that have

a detrimental effect on source estimation accuracy, and b) enhancing the aperture

while maintaining the difference coarray to increase the degrees of freedom [33], [41].

Furthermore, a number of sparse arrays have been proposed over the decades
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alongside these co-array-based DOA estimators [9]-[10], [42]-[73]. The classic ones

include minimum redundancy arrays [42], minimum hole arrays [43], nested arrays

[9], and coprime arrays [10]. Later, with efforts to realize sparse arrays with en-

hanced degrees of freedom and reduced mutual coupling, several variations of the

nested array and coprime arrays have been introduced [44]-[73]. Besides, those

sparse arrays with incomplete difference co-array make application of co-array-based

methods challenging to apply as it requires a complete difference co-array, coarray

interpolation methods have been proposed over the years to fill in the missing lags

[74]-[81]. Moreover, learning-based methods have also been exploited to solve sparse

array design and DOA estimation problems [82]-[109]. More details reviews of some

of the well-known sparse arrays will be discussed in Chapter 2.

In light of all this discussion on DOA estimation, and sensor arrays, the original

contribution of this thesis focuses on the design of optimal sparse linear array geome-

tries with enhanced degrees of freedom for DOA estimation. The following discusses

the contributions of this study in detail.

1.3 Contributions

The main contributions in this thesis are summarized as follows:

• Extended nested array with multiple subarrays

Although the classic sparse arrays such as nested arrays, coprime arrays, mini-

mum redundancy, and minimum hole arrays are well-known, these sparse arrays

have disadvantages. The minimum redundancy array and minimum hole arrays

lack closed-form expressions for sensor positions, and the coprime arrays have

holes in their co-array. Besides, the nested arrays have dense, closely spaced

subarray, contributing immensely to the mutual coupling effect. As such, this

chapter introduces a new extended nested array with multiple subarrays with

enhanced degrees of freedom and hole-free difference co-array. The system-

atic approach is used to derive a closed-form expression for sensor positions,

weight functions of closely spaced sensors, and achievable degrees of freedom.

Furthermore, the theoretical properties above are proved, and numerical sim-
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ulation examples demonstrate the superiority of the proposed array.

• Flexible extended nested array with multiple subarrays

Despite that, the proposed extended nested array with multiple subarrays has

closed-form expression for sensor positions, enhanced degrees of freedom, and

reduced mutual coupling than coprime array and nested array. The achievable

degrees of freedom of the extended nested array with multiple subarrays are

still limited compared to some of the state-of-the-art sparse linear arrays such

as maximum interelement spacing constrained array (MISC), and one/two sides

extended nested arrays (OS/TS-ENA).

Next, based on the rudimentary structure of an extended nested array with

multiple subarrays, we extended the ENAMS array further by designing a

systematic approach of relocating multiple sensors from the dense subarray

of the nested array, thereby forming a flexible extended nested array with

multiple subarrays (f-ENAMS). And depending on the number of sensors that

can be relocated, the f-ENAMS is further divided into Type-I (relocates two

sensors) and Type-II (relocates three sensors). The proposed arrays enjoy

all good coarray properties of the ENAMS array with enhanced degrees of

freedom compared to other state-of-the-art arrays. The closed-from expression

for sensor positions, weights functions, and achievable degree of freedom are

derived in detail. Moreover, the properties above are theoretically proved, and

numerical examples are used to demonstrate the performance of the proposed

flexible extended nested array with multiple subarrays.

• Unified extended nested array with multiple subarrays

In sparse array design, the array is often represented using a set of integers

where each integer denotes a sensor. Although it is a widely accepted method

to describe a sparse array, it does not offer much information about the array

structure, especially the fundamental sensor distribution pattern within the

array. Recently, a new technique known as the interelement spacing criterion

has been proposed that uses the spacing between consecutive sensors in the
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array to describe the array. Thus, the interelement spacing approach uses

a set of interelement spacing terms to describe an array instead of a set of

integers. Apart from the compactness of the set, the interelement spacing

criterion depicts the sensor distribution pattern of a sparse array.

Therefore, using the interelement spacing technique, a new generalized ex-

tended nested array with multiple subarrays via an extension of a two-sides

extended nested array and a flexible extended nested array with multiple sub-

array Type-II is proposed. Basic sensor distribution patterns of two-sides ex-

tended nested array and flexible extended nested array with multiple subarrays

demonstrate that the two share a similar basic array pattern, and a unified pat-

tern is derived from the two arrays. Thus, the unified array shares all good

properties of the extended nested array with multiple subarrays except for en-

hanced degrees of freedom. The closed-form expressions for sensor positioning,

weight functions, and achieved are derived in detail and proved. Numerical

examples demonstrate that the proposed unified array has enhanced degrees of

freedom and high-resolution direction-of-arrival estimation performance.

• Enhanced maximum interelement constrained array design via sim-

ple hole-filling strategy

Taking the reduced mutual coupling perspective, one of the recently proposed

sparse arrays with reduced MC effect and improved DOF is an improved sparse

array via maximum interelement spacing (IMISC) criterion. The IMISC array

is an IES-based sparse array with a balanced reduced MC effect and DOF.

However, it is not hole-free. Hence, the realized DOF is limited.

Considering the limitations of IMISC, we propose an enhanced sparse array

design via the maximum interelement spacing constraint (xMISC) criterion.

The xMISC array is developed by filling the holes in the conventional improved

MISC array (IMISC). First, the hole locations in the IMISC array are analyzed,

then a simplified hole-filling strategy is proposed to recover the missing lags.

Compared to the existing MISC and IMISC arrays, the xMISC array exhibits

enhanced uniform degrees of freedom (uDOF) while maintaining relatively re-

7



duced mutual coupling. Besides, the xMISC retains a hole-free difference co-

array. The closed-form expressions for sensor locations, weight functions, and

achievable DOF are also derived in detail. Numerical examples validate the

merits of the xMISC array.

• Sparse array design via deep learning: trade-offs analysis

The prior work introduced a method for designing sparse arrays using a combi-

nation of a convolutional neural network (CNN) and simulated annealing (SA).

This method involves two stages: i) generating data using the SA algorithm and

ii) annotating the data and the CNN implementation. Traditionally, machine

learning techniques for sparse array design require creating a large dataset by

enumerating all possible combinations, which can be computationally expen-

sive. However, the proposed SA algorithm generates only the necessary sam-

ples, optimizing them to meet specific objectives and streamlining the labeling

process. While numerical examples showed the effectiveness of the DL-based

method, the paper did not discuss the computation complexity and accuracy

trade-offs between the SA and the proposed method. Therefore, the problem is

revisited, and the proposed technique and analyze its trade-offs in comparison

with the conventional method. The analysis shows that the DL-based method

produces optimal sparse arrays with minimal matrix computations and has a

fast computation time, making it more suitable and efficient for larger and more

complex problems than the SA algorithm. In other words, this chapter answers

whether the SA algorithm, which can generate good sparse array samples, has

any advantages over the ML-based approach.

1.4 Scope and outline of the dissertation

The preliminaries to sparse array signal processing and conventional sparse array de-

signs are discussed in Chapter 2. Following Chapter 2, the thesis is divided into two

parts. The first part of the thesis considers basic sparse linear array designs (Chap-

ters 3 and 4), including extended nested array with multiple subarrays (ENAMS), the

flexible extended nested array with multiple subarrays Type-I (f-ENAMS-I), and the
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flexible extended nested array with multiple subarrays Type-II (f-ENAMS-II). The

second part introduces generalized sparse linear array designs, such as generalized

extended nested arrays with multiple arrays (Chapter 5) and enhanced sparse via

maximum interelement spacing criterion array (Chapter 6). Lastly, Chapter 7 dis-

cusses the sparse array design via a deep learning approach. In conclusion, Chapter

8 summarizes the thesis and discusses potential future research directions on sparse

array designs for DOA estimation and source localization applications.

1.5 Notations

Throughout this thesis, the operators [·]∗, [·]T , [·]H , [·]−1 and | · | represent complex

conjugate, transpose, complex conjugate transpose, and inverse operation. Besides,

|| · ||, ⊙, ⊗, vec(·), and E
[
·
]
denote norm, Khatri-Rao product (KR product), Kro-

necker product, vectorization and statistical expectation operators. The vectors, ma-

trices, and sets of numbers are represented by {a, b, . . . , x, y, z}, {A,B, . . . ,X,Y,Z}
and {A,B,C, . . . ,X,Y,Z}, respectively. Special matrices like diagonal and identity

matrices are denoted as diag(·) and I, in that order. The notation ⟨r1, r2⟩ denotes

an integer set, i.e., {r ∈ S|r1 ≤ r ≤ r2} whereas O(·) denotes order symbol. The

set diff(A,A) means self-difference set, i.e., {ai − aj|ai, aj ∈ A} while set diff(A,B)
stands for cross-difference set, i.e., {ai − bj|ai ∈ A, bj ∈ B}.
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Chapter 2

Review of Difference Coarray Concept and Sparse

Linear Arrays

2.1 Introduction

In the direction-of-arrival (DOA) estimation field, it is well known that the conven-

tional subspace-based DOA estimation methods can resolve up to N − 1 sources

only given N sensors [13]-[16]. However, due to the demand to process big data

quickly, researchers have turned to underdetermined DOA estimation techniques

[1]-[10], [44]-[106]. This is the case as sparse arrays via difference co-array can

achieve enhanced degrees of freedom (DOF) by exploiting inherently large interele-

ment spacing to extend the effective array aperture [44]-[72]. Traditional uniform

linear arrays (ULAs) have uniformly spaced sensors with the interelement spacing

of d = λ/2 where λ is the wavelength of the source signal’s frequency. The sensor

spacing of d = λ/2 is deliberate to avoid grating lobes, which usually appear in the

beampattern of the array when d > λ/2. Furthermore, the closely spaced sensors

consume the already limited mounting platform contributing to low resolution due

to the limited aperture. Besides, the closely spaced sensors contribute considerably

to mutual coupling between sensors [44]-[76].

On the other hand, sparse or non-uniform linear arrays have different interelement

spacing ds with some ds >> λ/2 [31]. Hence, the overall aperture is considerably

large, given the same number of sensors as ULA. Furthermore, by exploiting the

difference co-array (DCA), the empty spaces created by the larger ds are filled by

virtual sensors, thereby improving the degrees of freedom [41]-[43]. Besides, the

larger interelement spacing reduces the mutual coupling between sensors [96]-[44],

[72]. This chapter discusses the concept of difference co-array and related tools for

analyzing co-array properties of sparse arrays (linear or planar). Moreover, we review

a few selected conventional sparse linear arrays (SLAs) including nested array (NA)

[9], minimum redundancy array (MRA) [42], and coprime array (CA) [10], as well as

planar arrays including open box array (OBA) [95] and simulated annealing based
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planar arrays (SAPSA) [92]-[94].

The remainder of this chapter is outlined as follows. Section 2.2 discusses the co-

array signal model and related terminologies necessary to understand sparse linear

arrays in view of the DCA concept. The co-array signal model in the presence

of the MC effect is discussed in Section 2.2.2. Then, a few selected conventional

sparse linear arrays and planar sparse arrays are reviewed in Section 2.3 and 2.4,

respectively. Finally, Section 2.5 summarizes the chapter.

2.2 Coarry signal model for DOA estimation

This section introduces a linear array (1D array) signal model followed by a pla-

nar array (2D array) signal model. We close the section with array signal model

uncertainties, i.e., mutual coupling effect.

2.2.1 Coarry signal model for sparse linear arrays

According to [33]-[34], [36]-[40], vectorizing the Rxx as expressed in (1.3) yields

y = vec(Rxx) = (B∗ ⊙B)pc + σ2
n1N , (2.1)

where 1N = vec(IN), and (B∗ ⊙B) denotes the extended array manifold due to

the difference co-array. The difference co-array is defined as a difference in sensor

positions. Formally, the DCA can be expressed as

Definition 2.2.1. The difference co-array Dc of a physical sparse array S, is ex-

pressed as

Dc = {n1 − n2|n1, n2 ∈ S} (2.2)

where n1, n2 ∈ S denotes the sensor location set [9].

The virtual sensors or distinct elements in the difference co-array are known as

lags, i.e.,

Definition 2.2.2. Given the difference co-array Dc, the number of distinct elements

in the difference co-array identifies the number of unique lags provided by Dc [15].
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Besides, the number of unique lags of a sparse linear array identifies with the

number of resolvable source signals. Specifically, of interest in the co-array are the

lags that form the consecutive central ULA segment U of the difference co-array

because the total number of resolvable sources by any co-array-based estimators is

considered to be (|U| − 1)/2 sources [33]-[34], [38]. Thus, the central ULA segment

of Dc can be defined formally as

Definition 2.2.3. The central ULA segment of the difference co-array Dc of a phys-

ical sparse array is expressed as

U = ⟨−Lu, Lu⟩ ⊆ Dc (2.3)

and the cardinality of Dc, U and Lu are known as the DOF, uniform DOF (uDOF),

and one-side uDOF [9], [33]-[34].

However, some autocorrelation values in the difference co-array cannot be com-

puted in certain scenarios, or the lags are missing. In co-array properties, these

missing lags are known as “holes”, and can be defined as

Definition 2.2.4. An integer ni is a hole or a missing lag in difference co-array if

ni ∈ Dc but n /∈ U. Moreover, the difference co-array is hole-free if Dc = U [114].

Typically, (2.1) is used instead of a physical array output (1.2). Therefore, if

the sparse linear array is appropriately designed, the size of U can be larger than

the physical array, i.e., Dc = O(|S|2). Since the total number of resolvable sources

by most co-array-based estimators is (|U| − 1)/2 [33], then an optimal sparse array

design should maximize uniform DOF while retaining a hole-free DCA. In other

words, it should satisfy the O(|S|2) and hole-free properties in order to harness all

advantages of the sparse array over ULA [9], [44].

Next, we demonstrate the properties discussed above using three linear arrays.

Figure 2.1 (a) depicts the ULA with 10 sensors, i.e., Sa = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.
Obviously, these sensors are equally spaced with a unit spacing. Moreover, Fig. 2.1

(b) and (c) show the SLAs with 10 sensors located at Sb = {0, 1, 2, 4, 5, 7, 11, 12, 13, 14}
and Sc = {0, 1, 2, 4, 7, 11, 12, 13, 14, 18}, respectively. It can be observed that both

sparse arrays have non-uniform interelement spacings. As for the co-array properties,
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Figure 2.1: The sparse linear arrays are Sa, Sb, and Sc, and their difference co-arrays
are Da, Db, and Dc, respectively. Here, the • and × denote a sensor and a blank
space, respectively.

Sa in Fig. 2.1 (a) and Sb in Fig. 2.1 (b) exhibit complete difference co-array with no

missing lags or holes, whereas Sc in Fig. 2.1 (c) has a hole or a missing lag at position

15 and −15. In short, Sa and Sb show hole-free difference co-array characteristics.

Furthermore, it follows from Fig. 2.1 (a) that the size of the difference co-array of

ULA is |Da| = 19. Thus, the size of the ULA’s DCA is almost 2N , i.ie., |Da| = O(N).

Note, operator O stands for the order of function. However, as shown in Fig. 2.1 (b)

and (c), the sizes of difference co-arrays of Sb and Sc are |Db| = 29 and |Dc| = 29 in

that order.

The DOF ratio is usually used to quantitatively evaluate a sparse linear array’s

achievable uniform DOF capacity. Below is the formal definition of the DOF ratio.

Definition 2.2.5. Given one-side DOF of a sparse linear array Lu and the number

of sensors N . The DOF capacity of a sparse linear array can be expressed as

γ(N) =
N2

Lu(N)
(2.4)

Fundamentally, the small γ(N) entails higher DOF capacity [41]-[65].
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2.2.2 The coarray signal model and mutual coupling effect

In the presence of the mutual coupling effect, which is inevitable in a practical setting,

the received signal x(t) as defined in (1.2), becomes

x(t) = CBs(t) + n(t), (2.5)

where C is the mutual coupling matrix which can be approximated as a B−banded

matrix

C =

c|n1−n2|, |n1 − n2| ≤ B,

0, |n1 − n2| > B,
(2.6)

such that n1, n2 ∈ S and cb, b ∈ [0, B] denotes MC coefficients which satisfy 1 = c0 >

|c1| > |c2| > · · · > |cB| and |ck/cℓ| = k/ℓ, k, ℓ ∈ [1, B] [8]. Normally, the threshold B

is set to 100 [53]-[66].

Typically, in sparse linear arrays, the total mutual coupling effect is evaluated

using coupling leakage L(N) [58]-[62] as

L(N) =
∥C − C̃∥F

∥C∥F
(2.7)

where

C̃i,j =

{
0 for i ̸= j

Ci,j for i = j
(2.8)

and the ∥C − C̃|| is the energy of all off-diagonal elements, which characterizes the

amount of mutual coupling effect. Essentially, the smaller the L(N), the lesser the

mutual coupling effect [12]. Alternatively, the weight function w(ℓ) can be used to

quantify the mutual coupling effect. For a sparse linear array, the weight function

w(ℓ) is defined as follows,

Definition 2.2.6. The weight function w(ℓ) is the number of sensor pairs that

contribute to the coarray index ℓ, i.e.,

w(ℓ) = |{(n1, n2) ∈ S2|n1 − n2 = ℓ}|, ℓ ∈ Dc. (2.9)
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According to [8]-[10], [13]-[16], weight functions w(1), w(2) and w(3) contribute

the most to mutual coupling effect. Hence, reducing the first three weight functions

during the sparse array design process is desirable [42]-[72].

2.2.3 Coarray-based direction-of-arrival estimator

As highlighted in Chapter 1, Section 1.2, there are several co-array-based DOA es-

timation algorithms [32]-[40] which can be applied on (2.1) to estimate sources.

However, for brevity’s sake, we adopt the spatial smoothing MUSIC (SS-MUSIC) al-

gorithm [33]-[34] as a default DOA estimator throughout this work unless otherwise

stated. Having established the default estimator, we briefly discuss the key steps

behind the SS-MUSIC algorithm in the subsequent paragraphs.

Starting for the extended signal model in (2.1), we can observe that (B∗ ⊙ B)

embeds a steering vector of an array whose sensor location is given by the difference

co-array as defined in (2.3). The virtual ULA can be divided into Nv overlapping

uniform subarrays of size |Nv| where the output is given as

yi = Γiy for i = 1, 2, . . . , Nv, (2.10)

where Γi = [0Nv×(i−1)INv×Nv0Nv×Nv−i] is the selection matrix for the i-th subarray.

Thus, the corresponding covariance matrix for yi can be expressed as

Ryiyi−1 = [yNv , yNv−1, . . . , y1], (2.11)

or

Ryiyi−2 =
1

Nv

Nv∑
i=1

yiy
H
i . (2.12)

The approach in (2.11) is known as the direct augmentation method [33]-[34] whilst

the one in (2.12) is called spatial smoothing method [37]-[39].

Following (2.12), any subspace-based DOA estimation method can be applied to

Ryiyi−2 to estimate DOAs. In our case, we assume the MUSIC algorithm [1]. Essen-

tially, the MUSIC algorithm takes advantage of the orthogonality property to isolate

the signal and noise subspaces of Ryiyi−2. Thus, the Eigen Value Decomposition

(EVD) is performed on Ryiyi−2 to obtain the noise subspace as En which contains
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the smallest Nv −K eigenvalues. Then, a peak check function is initiated as

P (θ) =
1

bH(θk)EnEH
n b(θk)

, (2.13)

where b(θk) is the virtual ULA steering vector. The result from (2.13) is (Nv−1) main

peaks that correspond to the estimated DOAs. Therefore, the SS-MUSIC algorithm

is the combination of (2.12) and (2.13).

2.2.4 Extension to sparse planar arrays

Besides the co-array signal model for sparse linear arrays, let us consider a case of a

sparse planar array (also known as a 2-dimensional or a 2D array) with N sensors such

that N = (Nx, Ny). In the array, the sensor locations are denoted as nd where n =

(nx, ny) ∈ Z2 is an integer-valued vector, and d = λ/2 is the minimum interlement

spacing between sensors with λ being the wavelength of the source signal’s frequency.

Assume that K uncorrelated narrowband signals are impinging on the array and the

i-th source has a complex amplitude Ai ∈ C with azimuth ϕi ∈ [0◦, 360◦) and

elevation θi ∈ [0◦, 90◦) components. Thus, the received signal at t-th snapshot can

be expressed as

x(t) =
K∑
i=1

Ai(θk, ϕk)v(t) + n(t), (2.14)

where θi = (d/λ)sinθicosϕ1, ϕi = (d/λ)sinθisinϕ1 and the term v is the steering

vector such that elements associated with sensors at (nx, ny) can be expressed as

ej2π(θinx+ϕiny) [48]. And, the covariance matrix of x(t) can be expressed as

Rxx = E
[
x(t)xH(t)

]
. (2.15)

Like (2.1), vectorizing (2.15) and cleaning the duplicates yields a difference co-array

model of x(t) as yQ which can be further exploited by a DOA estimator instead of

(2.14). Here, the DCA Q =
{
n1 − n2|n1, n2 ∈ S

}
.

Figure 2.2 shows examples of planar arrays with N = 9 sensor (see Fig. 2.2 (a)

and (c)), and their corresponding difference co-arrays (see Fig. 2.2 (b) and (d)).

Following Fig. 2.2, we highlight the following concerning the DCA properties of the
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Figure 2.2: Examples of 2D sparse arrays with N = 9 and their corresponding
difference co-array. Here, (a) shows a 2D sparse array with holes, and (b) its cor-
responding difference co-array, whereas (c) shows a hole-free 2D sparse array, and
(d) its corresponding difference coarray. Note, the crosses, circles, and brown circles
represent empty spaces, physical sensors, and virtual sensors.

sparse planar arrays:

a) Similar to SLAs, the missing sensors in the DCA are called holes (see the cross

in Fig. 2.2 (b) at grid (2,−2)). Moreover, the difference co-array with holes

is termed non − separable as most DOA estimators, such as the 2D ESPRIT

algorithm, divide the co-array into minor equal square or rectangular subarrays

as a decorrelation step [27].

b) On the other hand, if the DCA of the planar array, as shown in Fig. 2.2 (d), is

complete or has no holes, the planar array is designated to have a hole− free

DCA. Consequently, the DCA is termed separable, and any off-the-shelf DOA

estimator can be applied for DOA estimation purposes [27].

c) In case the holes in (a) are not repairable, a co-array interpolation method can

be utilized to fill the holes. Over the decade, a number of co-array interpolation

methods via nuclear norm minimization techniques have been widely studied

for sparse linear arrays [32], [39], [74]-[75], [77], [79]-[81] and planar arrays

[76], [78], [92]-[94].

On a brighter side, it should be noted that the conditions (b)-(c) above are necessary

if one is considering a DOA estimation problem involving more sources than the

number of sensors (K > N), i.e., the underdetermined case [33]-[48]. Otherwise,
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any DOA estimator can be applied on the consecutive subset of the difference co-

array or directly on (2.15) under the assumption that K ≈ (|U| − 1)/2 [34].

2.3 Conventional sparse linear arrays

This section reviews a few selected classical sparse linear arrays and their correspond-

ing co-array properties. The SLAs include minimum redundancy array [42], nested

array [9], and conventional coprime array [10].

2.3.1 Minimum redundancy array

A minimum redundancy array (MRA) is one of the classic sparse linear arrays pro-

posed in [8], [42]. The MRA minimizes the co-array redundancy R as

R =

(S
2

)
(|U| − 1)/2

, (2.16)

while constraining the difference co-array to be hole-free. In other words, MRA

maximizes the consecutive central ULA segment of the difference co-array for a fixed

number of sensors [42]. Formally, MRA with N sensors can be expressed as

Smra = argmax
S

|D| s.t |S| = N,D = U. (2.17)

According to [41]-[72], the MRA has the largest hole-free difference coarray for

any given number of sensors N . Unfortunately, since MRA is found by solving

(2.17), the MRA has no closed-form expression for sensor position, achievable DOF,

and weight functions. Hence, MRA has inspired researchers to include closed-form

expression for sensor position as one of the key characteristics of a good sparse array

design [60]-[72]. Figure 2.3 shows the MRA with 10 sensors, and it follows from Fig.

2.3 that the MRA has a hole-free difference.

18



-5

0

5

10

15

0 5 10 15 20 25 30 35 40

Figure 2.3: The MRA array configuration with N = 10 sensors and corresponding
coarray weight functions (only positive segment is shown in the view of w(n) ∈
[0, 15]). In the figure, the red stems denote physical sensors.

2.3.2 Nested array

The nested array is one of the common sparse linear arrays, and it consists of two

ULAs with different interelement spacing [9]. A dense ULA made up of N1 sensors

with a unit interelement spacing and a sparse ULA comprised of N2 elements with

the interelement spacing of (N1 + 1) [44]. In short, the NA can be expressed as

Sn = {1, 2, . . . , N1, (N1 + 1), . . . , N2(N1 + 1)}. (2.18)

However, the existence of a dense ULA increases the mutual coupling effect in NAs

[44], [60]. Figure 2.4 shows the NA configuration with N = 10 sensors such that

N1 = N2 = 5. Like MRA, the NA exhibits a hole-free difference apart from the

closed-form expression for sensor locations. However, the first three weight functions

are high and a bit redundant.

According to [9] the achievable uniform DOF of NA is N2

2
+N−1 given N sensors.

Moreover, given parameters N1 = ⌊N/2⌋ and N2 = N −N1, the NA has the weight

functions w(1) = N1, w(2) = N1 − 1 and w(3) = N1 − 2 which are much higher

[9], [44]. As such, several variants of NA have been proposed to reduce the mutual

coupling effect and expand the DOF [44]-[45], [48]-[50], [52]-[57], [60].
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Figure 2.4: The NA array configuration with N = 10 sensors (N1 = N2 = 5) and
corresponding coarray weight functions (only positive segment is shown in the view
of w(n) ∈ [0, 10]). In the figure, the red stems denote physical sensors.

2.3.3 Coprime array

Unlike NAs, coprime arrays are designed with the reduction of mutual coupling ef-

fect as a goal. A coprime array consists of two sparse subarrays with two different

coprime interelement spacing. The first subarray is composed of M sensors with

N interelement spacing, and the second subarray contains N sensors with M in-

terelement spacing where M and N are coprime integers [10], [16]. The well-known

classic coprime array is known as prototype coprime array (PCA), and its made up

of M +N − 1 sensors (as the M sensor subarray and the N sensor subarray shares

the zeroth sensor position).

Figure 2.5 shows an example of a prototype coprime array with 12 sensors where

M = 6 and N = 7. Evidently, as shown in Fig. 2.5, the PCA does not have a

hole-free difference co-array like NA or MRA. Therefore, the the achievable DOF is

based on the extraction of the consecutive section of the difference co-array. For a

given optimal M and N , the PCA achieves 2(M + N) − 1 consecutive lags in the

range [−M −N + 1,M +N − 1], as such the PCA is able to resolve up to O(MN)

sources given M +N − 1 sensors. However, the PCA has a reduced mutual coupling

effect compared to MRA and NA. This can be validated using the weight function

of PCA shown in Fig. 2.5. Here, the PCA has w(1) = w(2) = w(3) = 1 compared

to NA which yields w(1) = �N/2�, (2) = �N/2� − 1 and w(3) = �N/2� − 2 given

the same number of sensors N . Over the decade, several variants of PCA have been
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Figure 2.5: The PCA array configuration with N̄ = 12 sensors (M = 6, N = 7) and
corresponding coarray weight functions (only positive segment is shown in the view
of w(n) ∈ [0, 15]). In the figure, the red stems denote physical sensors.

proposed in [46]-[47], [61]-[63], [68], [70]-[71] by mainly exploiting the redundancy

in the difference co-array of the prototype coprime array to improve the size of the

achievable DOF.

2.3.4 A note on MRA, NA and PCA array properties

As established in Sections 2.3.1-2.3.3, the achievable uniform DOF and weight func-

tion for MRA, NA, and PCA are summarized in Table 2.1. From Table 2.1, three key

desirable characteristics of sparse linear array design emerged based on the properties

of MRA, NA and PCA as follows:

a) The sparse linear array should have a closed-form expression for sensor po-

sitions from which closed-form expressions of weight functions and achievable

degrees of freedom can be derived. For instance, MRA shows attractive proper-

ties such as hole-free difference co-array, enhanced DOF, and relatively reduced

weight functions. However, the lack of a closed-form expression for the sensor

position limits the design process.

b) The difference co-array of the sparse linear array should retain a hole-free prop-

erty since most co-array-based DOA estimators utilize the consecutive central

segment of a difference co-array, i.e., the central ULA, U. More importantly,

since the number of resolvable sources is ≈ (|U| − 1)/2, the existence of the

holes in the difference co-array diminishes the size of the usable DOF.
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c) The sparse linear array should retain minimal weight functions, mainly the

first three weights, i.e., w(1), w(2) and w(3).

In light of the (a)-(c) characteristics of the sparse linear array highlighted above,

our contributions in this thesis center around the design of sparse linear arrays with

improved DOF while retaining the three conditions above.

Table 2.1: Comparison of achievable uniform DOF and weight functions of different
sparse linear arrays

Array Type Optimal N1 Max. uDOF Weight Functions w(n)

w(1) = ⌊N/2⌋ − 1

Nested Array [9] ⌊N/2⌋ N2/2 +N − 1 w(2) = ⌊N/2⌋ − 2

w(3) = ⌊N/2⌋ − 3

MRA [42] − − -

w(1)=1

PCA [10] M +N − 1 2(M +N)− 1 w(2)=1

w(3)= 1

2.4 Conventional sparse planar arrays

Following the review of classical sparse linear arrays in Section 2.3, we extended the

review to classical sparse planar arrays and their corresponding coarray properties

in this section. The idea is to appreciate the use of the co-array properties such as

lags, holes or missing lags, hole-free, and difference co-array in the context of high-

dimensional arrays. In this section, we consider open box array (OBA) [95] and

simulated-annealing-based sparse planar array (SASPA) [92]-[94].

2.4.1 Open box array

The open box array (OBA) is one of the classic 2D sparse arrays known in the array

signal processing field. The OBA is developed using three ULA placed orthogonal to
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Figure 2.6: (a) The OBA array configuration with (Nx = 7, Ny = 6) and (b) its
corresponding difference co-array. Here, the circles, and asterisks represent physical
sensors and virtual sensors.

each other such that the three ULA form a rectangle without a fourth edge. Hence,

it looks like an open box [95]. Formally, given two integers, Nx and Ny, the OBA

sensor positions can be expressed as

Soba = Uo ∪H1 ∪H2 ∪ Co, (2.19)

where 


Uo = {(mx, 0)|1 ≤ mx ≤ Nx − 2},
H1 = {(0,my)|1 ≤ my ≤ Ny − 2},
H2 = {(Nx − 1,my)|1 ≤ my ≤ Ny − 2},
Co = {(0, 0), (Nx − 1, 0), (0, Ny − 1), (Nx − 1, Ny − 1)},

(2.20)

and the total number of sensors N = 2Ny + Nx − 2. Figure 2.6 (a) shows the

array configuration of OBA with N = 17, Nx = 7 and Ny = 6, where H1, Uo and

H2 denote the left ULA, the bottom ULA, and the right ULA, respectively. The

corner sensors are represented by Co. As shown in Fig. 2.6 (b), OBA has a hole-free

difference co-array. Mathematically, the difference co-array of OBA can be expressed

as
Doba = {(mx,my) ∈ Z2| −Nx + 1 ≤ mx ≤ Nx + 1,

−Ny + 1 ≤ my ≤ Ny + 1}.
(2.21)
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Besides the co-array, as observed in Fig. 2.6 (a), the sensor pairs with a sensor

separation of 1 are high due to the use of ULA. As a result, the mutual coupling

effect is severe. To alleviate the mutual coupling effect, several 2D sparse arrays have

been developed over the years based on the basic array structure of OBA [91]-[95],

[99].

2.4.2 SA-based sparse planar arrays

In [91]-[94], a simulated annealing-based planar array (SAPSA) was investigated

with the aim of reducing the mutual coupling in an hourglass array (HA) [95].

Starting with the hourglass array with N sensors as an initial sparse array, i.e., Si,
the SAPSA can be realized by solving the following problem

Ssa = argmax
Si

N∑
i=1

N∑
j=i+1

1

||ni − nj||2
,

s.t ||ni − nj||2 ⩽ B,

(2.22)

where ni,j ∈ Si, N is the number of sensors and || · ||2 is the l2-norm of a vector. The

problem in (2.22) aims at optimizing the sensor positions in Si while minimizing the

mutual coupling between sensors, i.e.,
∑N

i=1

∑N
j=i+1

1
||ni−nj ||2 .

In [92], the simulated annealing algorithm was utilized to solve (2.22) where the

sensor in Si are perturbed until the algorithm converges to a local minimum. Figure

2.7 shows an example of the SAPSA array with N = 16 sensors and its corresponding

difference co-array. It can be observed in Fig. 2.7 (a) that the SAPSA has fewer

sensor pairs with the interelement spacing of 1, hence, reduced mutual coupling effect.

However, such a reduced mutual coupling effect is achieved at the cost of incomplete

difference co-array (see Fig. 2.7 (b)). Despite having reduced mutual coupling, the

SAPSA is not unique, it is algorithm dependent, and each run generates a different

random sparse array [91]-[94].
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Figure 2.7: (a) The SAPSA array configuration with (Nx = 7, Ny = 6) and (b) its
corresponding difference co-array. Here, the circles, and asterisks represent physical
sensors and virtual sensors.

2.5 Chapter summary

In this chapter, we briefly introduced preliminaries to sparse signal processing and

sparse array designs. Specifically, in light of the difference co-array concept, we review

co-array signal models for DOA estimation as applied in both sparse linear and planar

arrays. Besides, the chapter also discussed critical co-array-related terminologies such

as uniform degrees of freedom, degree of freedom ratio, and coupling leakage that

are essential for the evaluation of sparse array designs for DOA estimation.

Furthermore, the chapter discussed a selected few sparse array configurations

(linear and planar) as a foundation for our proposed work in Chapters 3-6. Among

other key properties, coupling leakage (L(N)) and degrees of freedom ratio (γ(N))

emerged to be the two critical parameters with a trade-off. Hence, an optimal sparse

array should be able to balance this trade-off besides retaining the closed-form ex-

pression for sensor locations. Our contributions, as we shall see in Chapters 3-6,

focus on improving the DOF while retaining the hole-free difference coarray and

closed-form expression for sensor positions [9], [42], [51]-[54]. As such, the reduced

mutual coupling effect is a by-product, like the case of the MISC array.
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Chapter 3

A Nested Array Geometry with Enhanced Degrees

of Freedom and Hole-Free Difference Coarray

3.1 Introduction

Direction-of-Arrival (DOA) estimation is one of the valuable techniques in array sig-

nal processing for detection and localization of array input signals [13]–[14]. Hence,

it has many applications in sonar, automotive radar, imaging, and wireless commu-

nication systems [15], [42]. Traditional methods commonly use uniform linear arrays

(ULAs), where the sensors are placed at a half-wavelength (λ/2) from each other to

avoid spatial aliasing [14]. However, ULA can resolve up to N − 1 sources given N

sensors. Besides, the closely λ/2 spaced elements in ULA contribute considerably

to mutual coupling between sensors [42]-[60]. Recently, sparse linear arrays (SLAs)

have become more attractive than traditional ULA for several reasons. Firstly, given

the difference co-array (DCA) concept, the SLAs can attain O(N2) degrees of free-

dom (DOF) which enables the SLAs to resolve more sources than the number of

sensors [9]. Secondly, the large interelement spacing between the sparse array’s sen-

sors alleviates the mutual coupling more effectively [9], [42]–[51]1.

Typical sparse linear arrays include minimum redundancy array (MRA) [42],

minimum hole array (MHA) [43], coprime array (CA) [10], and nested linear array

(NA) [9]. Despite having good co-array and mutual coupling characteristics, the

above sparse linear arrays have limitations: i) the MRA and MHA lack closed-

form expressions for sensor locations [10], [44]-[53]; ii) the CAs have holes in their

difference co-array. Therefore, the realized DOF is lower than those of the MRA,

MHA, and NA [9]; iii) the NA exhibits a severe mutual coupling effect due to the

existence of a dense section with closely spaced sensors [44], [72]. Following these

limitations, several modified NAs and CAs have been developed targeting either a)

1This chapter is based on S. Wandale and K. Ichige, “A Nested Array Geometry with Enhanced
Degrees of Freedom and Hole- Free Difference Coarray,” 2021 29th European Signal Processing
Conference (EUSIPCO), Dublin, Ireland, 2021, pp. 1905-1909, doi: 10.23919/EUSIPCO54536.

2021.9616342.
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improved DOF, b) reduced mutual coupling, or c) both [44]-[53].

Specifically, to reduce the mutual coupling effect, sparse linear arrays such as the

super nested array (SNA) [44], [72], the generalized nested array (GNA) [45], the

generalized coprime array (GCA) [46], the thinned coprime array (TCA) [47], have

been proposed. On the other hand, the augmented nested array (ANA) [48], the

enhanced nested array (ENA) [49], the improved nested array (INA) [50], the Iizuka

NA (IINA) [52], the sparse array with maximum inter-element spacing constraint

(MISC) [51] and one/two-sides extended nested array (OS/TS-ENA) [53] have been

proposed to enhance the DOF. Nonetheless, these modified arrays retain some of

the limitations of their parent arrays, NA and CA. Variants like super nested arrays

achieved reduced mutual coupling at the cost of constant DOF, i.e., the SNA retains

the same DOF as the NA, the parent array [44]. Furthermore, Iizuka nested array

and improved nested array still have the original NA’s dense section with closely

spaced sensors, hence, suffer severe mutual coupling effect. Besides, the difference co-

array of the generalized coprime array, the generalized nested array, and the thinned

coprime array are not complete or hole-free (the co-arrays contain missing virtual

sensors or holes). As a result, their achievable DOFs are still limited compared to

their parent arrays, CA and NA [48], [54]. Therefore, there is still potential for

further extension of these classical sparse arrays.

This chapter proposes an enhanced nested array with multiple subarrays (ENAMS).

The ENAMS array is designed by splitting the nested array into several sparse subar-

rays with different sensor separations. The sparse sensor separation enables ENAMS

to possess enhanced DOF and reduced mutual coupling compared to NA, ENA, and

INA, given the same number of sensors. More importantly, the ENAMS array enjoys

all the desired properties of NA, including closed-form expression for sensor loca-

tions, a hole-free difference coarray, and a relatively reduced MC effect. Numerical

simulations and theoretical analysis are used to demonstrate the superiority of the

proposed sparse linear array. The results show that the proposed ENAMS array

performs better than other sparse arrays.

The remaining sections are organized as follows. Section 3.2 reviews the NA

and ENA array structures and their coarray properties as a basis for the proposed

ENAMS array. The ENAMS array is introduced in Section 3.3, and some basic
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properties are provided. Furthermore, a closed-form expression for achievable DOF

and the weight functions are derived in detail. Numerical examples in Section 3.4

validate the enhanced DOF and high-resolution DOA estimation performance of the

proposed ENAMS array. Lastly, Section 3.5 concludes this chapter.

3.2 Conventional sparse linear arrays

In this section, we review conventional sparse linear arrays, specifically the NA [9]

and ENA [49]. We uncover a two-dimensional (2D) representation approach of a

one-dimensional (1D) sparse linear array from these two conventional arrays. Thus,

this chapter uses the 2D representation approach to design our proposed ENAMS

array.

3.2.1 1D representation of NA and extended NA

The conventional NA consists of two distinct subarrays with two different interele-

ment spacing−a dense ULA with N1-sensors and λ/2 interelement spacing, and a

sparse ULA with N2-sensors and λ/2(N1 + 1) interelement spacing (henceforth, λ/2

is normalized to 1 for simplicity) [9]. Formally, the NA is defined as

Sna = {i1|1 ≤ i1 ≤ N1} ∪ {(N1 + 1)i2|1 ≤ i2 ≤ N2}, (3.1)

where N1 = ⌊N/2⌋ and N2 = N −N1 for N ≥ 6. Besides the closed-form expression

for sensor locations, the NA retains a hole-free difference co-array, i.e., O(N2) DOF.

However, the dense ULA of NA is highly redundant, and the closely spaced sensors

contribute to severe mutual coupling effects. As a result, several variants of NA have

proposed to either alleviate the mutual coupling effect or improve the DOF of NA

[44]-[53]. Among all variants of NA, the ENA [53] is of interest in this chapter.

The ENA array was designed by extending NA via two operations. Firstly, the

gap of length (N1 + 1) is introduced between the dense ULA and sparse ULA of the

NA instead a unit spacing as seen in (3.1). Then, the interelement spacing of sensors

in the sparse ULA is reduced to N1 from (N1 + 1) as used in (3.1). Thus, these two

operations extended the overall aperture of the NA by 1. Essentially, the ENA can
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(a)

1

Dense ULA, N1 sensors

Sparse ULA, N2 sensors

1 6 12 18 24 30

(b)

1

S1, N1 sensors

S2 ⇒ 2N1 + 1

S3, N2 − 1 sensors

1 5 11 16 21 26 31

Figure 3.1: Comparison of sparse linear array configurations. Here, (a) NA with
N1 = N2 = 5 and N = 10, and (b) ENA array with N1 = N2 = 5 and N = 10. The
bullets denote physical sensors, and empty spaces stand for crosses.

be expressed as

Sena = {(N1+1)−i1|i1 ∈ [1, N1]}∪(2N1+1)∪{(i2+2)N1+1|i2 ∈ [1, N2−1]}, (3.2)

where N1 = ⌊N/2⌋ and N2 = N − N1 for N ≥ 6 [53]. Figure 3.1 compares the

sparse array configurations of the NA and ENA with N = 10 sensors. Obviously,

from Fig. 3.1, the ENA (Fig. 3.1 (a)) has an extended aperture compared to NA

(Fig. 3.1 (b)). It can be observed that the sparse ULA begins from 2N1 + 1 instead

of N1 + 1, which is N1 + 1 than in NA. Furthermore, like NA, the ENA retains a

hole-free difference co-array.

3.2.2 2D representation of NA and extended NA

To understand the connection between the NA and ENA as defined in Section 3.2.1,

we adopt a 2D representation approach of a 1D sparse linear array as suggested in

[44], [72]. Note that this does not mean converting a 1D sparse linear array to a 2D

sparse array but instead presenting the interelement spacing pattern of a 1D array

in a vertically stacked format such that it looks like a 2D sparse array.

Beginning with the NA withN = 10 sensors, as shown in Fig. 3.2 (a), the distance

between the 1st and the 2nd sensor in the sparse ULA of the NA is (N1 + 1), and a

quick analysis of the whole NA array structure indicates that the NA can be divided

into N2 section of length (N1 + 1) [44]. The first (N1 + 1) section, subsequently,

the ℓ− 1 layer, consists of N1 sensors from the dense ULA and the 1st sensor of the

sparse ULA. Then, starting with the ℓ− 1 layer and stacking the subsequent N2 − 1
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(a)

(b) (c) (d)

ℓ− 1

ℓ− 2

ℓ− 3

ℓ− 4

ℓ− 5

Dense ULA, N1 sensors Sparse ULA, N2 sensors

N1 + 1 = 6 N1 + 1 = 6 N1 + 1 = 6 N1 + 1 = 6 N1 + 1 = 6

ℓ− 1

ℓ− 2

ℓ− 3

ℓ− 4

ℓ− 5

Figure 3.2: The 2D representation of 1D sparse linear array configurations with
N1 = N2 = 5 and N = 10 sensors. Here, (a) 1D representation of NA, (b) 2D
representation of NA, (c) 2D representation of ENA, and (d) 2D representation of
ENAMS array. Note the bullets denote physical sensors, and empty spaces stand for
crosses. Notations: i) black bullets (dense ULA sensors), ii) red bullets (sparse ULA
sensors), and iii) blue dotted circles (relocated sensors).

sections on top of it, forms a 2D structure as a 2D representation of the NA as shown

in Fig. 3.2 (b).

Similarly, by using the same criterion of length (N1 + 1) and dividing the ENA

as shown in Fig 3.1 (b) into segments of length (N1 + 1), we can generate a 2D

representation of the ENA as shown in Fig. 3.2 (b) by stacking the segments together.

A closer look at Fig. 3.2 (b) suggests that the ENA is realized by relocating the

sensors from the far-right column into the diagonal of the square grid. And to

complete the diagonal, a sensor is relocated from (N1+1) to N2(N1+1)+1, thereby

increasing the aperture of NA by 1 [Proposition 2, 53] given any number of sensors

N provided that N1 = ⌊N/2⌋ and N2 = N −N1.

3.3 The proposed ENAMS array design

The 2D representation depicted in Fig. 3.2 (b)-(c) indicates that there are many

possibilities for extending the NA, and one such extension is the proposed ENAMS
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S2 =1 sensor @N1 + 1

S1, N1 − 2 sensors

S3, N2 − 1 sensors

S4 =1 sensor @N2(N1 + 1)

S5 =1 sensor @N2(N1 + 1) +N1 − 2

1 3 6 10 16 22 2830 33

Figure 3.3: The sparse linear array configurations of ENAMS array with N1 = N2 = 5
and N = 10 sensors. The bullets denote physical sensors, and empty spaces stand
for crosses.

array. These possible extensions can be achieved by relocating sensors from i) the

bottom first row, ii) the far-right column of the 2D representation of the NA, or iii)

both. To improve the DOF of the ENA further, the ENAMS array is designed by

relocating the sparse ULA sensors from the far-right column to the N1th column

except for the first sensor located at N1 + 1. Then, two sensors at locations N1 − 1

and N1 are relocated to locations N2(N1 + 1) and N2(N1 + 1) +N1 − 2, respectively

(see Fig. 3.2 (d)). Thus, the proposed ENAMS array can be defined as

Senam = S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5, (3.3)

where
S1 = {ℓ1|1 ≤ ℓ1 ≤ N1 − 2},
S2 = N1 + 1,

S3 = {2N1 + ℓ2(N1 + 1)|0 ≤ ℓ2 ≤ N2 − 2},
S4 = N2(N1 + 1),

S5 = N2(N1 + 1) +N1 − 2,

where N1 = ⌊N/2⌋ and N2 = N −N1 for N ≥ 6 [54]. Figure 3.3 shows the ENAMS

array configuration with N = 10 sensors. Compared to NA and ENA (Fig. 3.1

(a)-(b), respectively), the proposed ENAMS array offers an improved aperture than

NA and ENA. Besides, the ENAMS array retains a hole-free difference co-array, as

formally summarized in Lemma 3.3.1 below.

Lemma 3.3.1. Given N1 = ⌊N/2⌋, N2 = N − N1 and N ≥ 6, the difference

co-array of ENAMS array is hole-free ULA, i.e., D = [−Lu, Lu] such that Lu =

N2(N1 + 1) +N1 − 3.

31



Proof. Refer to Appendix 8.2

Property 3.3.2. Given N1 = ⌊N/2⌋, N2 = N − N1 and N ≥ 6, the achievable

uniform DOF of the ENAMS array is N2

2
+ 2N − 5.

Proof. According to (5.5) and Lemma 3.3.1, the uniform DOF of the ENAMS array

is

uDOF = 2Lu + 1 = 2N2(N1 + 1) + 2N2 − 5. (3.4)

Assuming N1 = ⌊N/2⌋ ≈ (N/2) and N2 = N −N1, and substituting them into (3.4)

yields

uDOF =
N2

2
+ 2N − 5, (3.5)

and, therefore, completes the proof.

Property 3.3.3. Given N1 = ⌊N/2⌋, N2 = N −N1 and N ≥ 10, the ENAMS array

satisfies the following first three weight functions: w(1) = N1− 3, w(2) = N1− 3 and

w(3) = N1 − 4.

Proof. See Appendix 8.2

According to Property 3.3.3, the first three weight functions of the proposed

ENAMS array are less than those of the NA [9]

w(1) = N1, w(2) = N1 − 1, and w(3) = N1 − 2, (3.6)

and those of the ENA array [53]

w(1) = N1 − 1, w(2) = N1 − 2, and w(3) = N1 − 3. (3.7)

This is due to the fact that the weights w(1), w(2), and w(3) contribute largely to

mutual coupling effects. As a result, the robustness of a sparse array to the mutual

coupling effect can be judged based on the value of these weight functions. The

smaller the values of these weight functions, the lower the mutual coupling effect

and vice versa [44].
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3.4 Numerical examples

In this section, we examine the performance of the proposed ENAMS array in terms of

i) weight functions, ii) achievable DOF, iii) MUSIC spectra [33], and iv) root-mean-

square-error (RMSE) of DOA estimates. For comparison purposes, the following

sparse arrays are considered: NA, ENA, and MRA. The RMSE averaged over J
trials is expressed as

RMSE =

√√√√ 1

JK

J∑
j=1

K∑
k=1

(˜̄θjk − θ̄k)2, (3.8)

where ˜̄θik denotes i−th estimated normalized DOA for i−th trial and θ̄k is the true

normalized DOA.

3.4.1 Co-array, weight functions, and achievable DOF

In this subsection, we evaluate the co-array properties and weight functions of the

proposed ENAMS array against other existing sparse arrays. Figure 3.4 shows the

sensor placement of various sparse arrays and their corresponding weight functions.

As shown in Fig. 3.4, all sparse arrays retain a hole-free difference coarray, and

the ENAMS array has a larger aperture than the NA and the ENA array. This

observation agrees with Lemma 3.3.1 and Property 3.3.2. Moreover, the ENAMS

array has weight functions w(1) = 4, w(2) = 4 and w(3) = 3 which validates

Property 3.3.3. Compared to weights of the NA (w(1) = 6, w(2) = 5 and w(3) = 4),

and the ENA (w(1) = 5, w(2) = 4 and w(3) = 3), the ENAMS array possesses small

weights than the NA besides the enhanced DOF. However, the weights are still high

than those of the MRA (w(1) = 2, w(2) = 1, and w(3) = 2).

Next, we compare the closed-form expressions of achievable DOF of difference

sparse linear arrays versus the number of sensor N . The achievable DOF of the NA,

ENA, and ENAMS array are summarized in Table 3.1. Note that according to our

knowledge, the closed-form expression for achievable DOF of the MRA does not exist

[42], [44], hence, omitted in Table 3.1. As shown in Table 3.1, the ENAMS array

attains high DOF than other sparse arrays given the same number of sensors N .
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(a) NA with N1 = 6, N2 = 6 and N = 12 sensors.
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(b) ENA with N1 = 6, N2 = 6 and N = 12 sensors.
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(c) ENAMS array N1 = 6, N2 = 6 and N = 12 sensors.
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(d) MRA array with N = 12 sensors.

Figure 3.4: Comparison of sparse linear array configurations and their corresponding
coarray weight functions (only positive segment is shown in the view of w(n) ∈
[0, 15]).
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Table 3.1: Comparison of achievable DOF of various sparse arrays

Array Type Optimal, N1 Achievable uDOF

NA ⌊N/2⌋ N2/2 +N − 1

ENA ⌊N/2⌋ N2/2 +N + 1

ENAMS ⌊N/2⌋ N2/2 + 2N − 5

MRA − −

3.4.2 MUSIC spectra of DOA estimation

In this example, we compare the MUSIC spectra P (θ̄) of DOA estimation of different

sparse array configurations. Here, we consider SNR = 0 dB SNR, 500 snapshots and

K = 25 uncorrelated sources, located at θ̄k = −0.2 + 0.5(k − 1)/24 for k ∈ [1, 25].

Since all sparse arrays consist of N = 12, this is an underdetermined case where there

are more sources than the number of sensors. Figure 3.5 depicts the SS-MUSIC

spectra of different sparse linear arrays. As shown in Fig 3.5, the MRA and the

proposed ENAMS were able to resolve all sources successfully. However, the NA and

the ENA resolved some of the sources correctly. Besides, the SS-MUSIC spectra of

the NA and the ENA exhibit spurious peaks, which can be attributed to the limited

array aperture or DOF.

3.4.3 RMSE of DOA estimation

Lastly, we evaluate the performance of the arrays quantitatively using the root-mean-

square-error (RMSE) of DOA estimation. The RMSE is expressed as in (3.8). First,

we consider RMSE versus input SNR where the number of snapshots is 500, K = 26

located at θ̄k = −0.2+0.5(k−1)/25 for k ∈ [1, 26] and N = 16. The SNR varies from

-30 to 10 dB. Figure 3.6 (a) shows the plot of RMSE versus input SNR for different

sparse arrays. As shown in Fig 3.6 (a), the proposed ENAMS array outperforms

other sparse arrays except for MRA, mainly due to its large aperture.

Secondly, we examine the RMSE versus the number of snapshots for NA, ENA,
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Figure 3.5: The SS-MUSIC spectra P (θ̄) for the NA, ENA, ENAMS and MRA when
N = 12 and K = 26 normalized sources distributed in the range −0.3 ≤ θ̄ ≤ 0.3.
The SNR is 0 dB, while the number of snapshots is 500. The dotted lines on the
x-axis denote the true DOAs.

ENAMS, and MRA. In this example, the SNR is 0 dB, K = 26 evenly located at

θ̄k = −0.2+0.5(k− 1)/25 for k ∈ [1, 26] and N = 16. Here, the number of snapshots

varies from 100 to 1000. Figure 3.6 (b) depicts the plot of RMSE versus the number

of snapshots for various sparse arrays. From Fig. 3.6 (b), it is evident that the

ENAMS array performs better than NA and ENA but slightly lower than MRA.

Assuming the mutual coupling scenario, we consider examining the RMSE versus

|c1| where SNR is 0 dB, the number of snapshots is 500, K = 26 evenly located at

θ̄k = −0.2+0.5(k−1)/25 for k ∈ [1, 26], N = 16, and the mutual coupling parameters

as B = 100 and cl = c1e
jπ(l−1)/8/l for l ∈ [1, B]. This experiment aims to assess the

robustness of various sparse arrays at different levels of mutual coupling effect. With
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all parameters constant, we vary the coupling factor |c1| from 0 to 0.6. The plot of

the RMSE versus |c1| for various sparse arrays is shown in Fig. 3.7 (a). As shown

in Fig. 3.7 (a), the ENAMS is robust to the mutual coupling effect when |c1| < 0.18

and degrades as |c1| increases. However, NA and ENA performance suffers within

the same |c1| region.
Lastly, we evaluate the impact of the number of sources K on the RMSE perfor-

mance of various sparse arrays. In this experiment, SNR is fixed at 0 dB, the number

of snapshots is 500, and N = 16. The number of sources K varies from 10 to 50, all

distributed in the range θ̄k = −0.3+0.6(k−1)/(K−1) for k ∈ [1, K]. Figure 3.7 (b)

shows the plot of RMSE versus the number of sources for various sparse arrays. No-

tably, the RMSE performance degrades for all sparse arrays as the number of sensors

increases. However, the ENAMS performs well than the NA and the ENA, except

for MRA. Although MRA outperforms the ENAMS array, Fig. 3.7 (b) demonstrates

the superiority of the proposed ENAMS array compared to its parent arrays, the NA

and the ENA.
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(a) RMSE versus input SNR.
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(b) RMSE versus number of snapshots.

Figure 3.6: RMSE of DOA estimation performance for different sparse linear arrays
where (a) SNR= −30 ∼ 10 dB with 500 snapshots and (b) 100 ∼ 1000 snapshots
with 0 dB SNR.
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Figure 3.7: RMSE of DOA estimation performance for different sparse linear arrays
where (a) |c1| = 0 ∼ 0.6 with 0 dB SNR, 500 snapshots and (b) K = 10 ∼ 50 with 0
dB SNR, 500 snapshots.

3.5 Chapter summary

This chapter introduced a new extended nested array geometry with multiple subar-

rays (ENAMS) that provide enhanced DOF and a hole-free difference coarray. Using

a 2D representation of a 1D sparse linear array approach, the ENAMS array is de-

signed by relocating two sensors from the dense ULA of the NA and a sensor from the

sparse ULA of the NA. The relocated three sensors are strategically allocated to the

locations at begin of the sparse ULA and at the end of the same sparse ULA, thereby

enhancing the overall aperture. Numerical examples demonstrate that the realized

sparse array provides high-resolution DOA estimation compared to the conventional

NA and other well-known sparse arrays.

Although the ENAMS array has demonstrated enhanced DOF and reduced weight

functions, the ENAMS array is still limited in terms of achievable DOF and reduced

mutual coupling compared to the state-of-the-art sparse linear array such as one/two

sides extended nested array (OS/TS-ENA) [53], improved NA (INA) and sparse ar-

ray via maximum interelement spacing (MISC). As a result, in the subsequent Chap-

ters, we explore more advanced methods of extending the ENAMS array further and

develop better sparse linear array configurations.
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Chapter 4

Flexible Extended Nested Array with Multiple

Subarrays Achieving Improved Degrees of

Freedom

4.1 Introduction

Over the decade, several modified nested arrays and coprime arrays have been pro-

posed to enhance the degrees of freedom and reduce the mutual coupling effect [8]-

[10], [44]-[72]. The well-known variants include the super nested array (SNA) [44],

[72], generalized nested array (GNA) [45], generalized coprime array (GCA) [46],

thinned coprime array (TCA) [47], augmented nested array (ANA) [48], enhanced

nested array (ENA) [49], improved nested array (INA) [50], Iizuka NA [52], sparse

array via maximum interelement spacing constraint (MISC) [51] and one/two-side

extended nested array (OS/TS-ENA) [53]. Even so, some of them are not optimal.

For instance, the SNA shares the same DOF with the parent NAs. Besides, the INA

and ENA still retain the dense subarray of prototype NA, hence, suffer severe mutual

coupling effect. Moreover, the DCAs of GCA and GNA are not hole-free. Therefore,

their resulting degrees of freedom (DOF) are much more limited as compared to

those of NA and CA1.

In Chapter 3, we introduced an extended nested array with multiple subarrays

(ENAMS) as an extension of NA. The ENAMS array is formed by relocating sensors

from the dense and sparse subarrays of the NA to the far right side of it, thereby

improving the overall DOF. Although ENAMS retains all the good properties of NA

apart from enhanced DOF, the realized DOF is still limited compared to state-of-

the-art sparse arrays such as OS/TS-ENA and MISC arrays [55]-[56]. This is due to

1This chapter is based on S. Wandale and K. Ichige, “Flexible Extended Nested Array with
Multiple Subarrays Achieving Improved Degrees of Freedom,” 2022 30th European Signal Processing
Conference (EUSIPCO), Belgrade, Serbia, 2022, pp. 1931-1935, doi: 10.23919/EUSIPCO55093.

2022.9909786 and S. Wandale, and K. Ichige, “Flexible extended nested arrays for DOA estimation:
Degrees of freedom perspective,” Signal Processing, vol. 201, no. 108710, 2022. ISSN 0165-1684,
https://doi.org/10.1016/j.sigpro.2022.108710.
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the fact that regardless of the number of sensors per configuration, only three sensors

are relocated. Thus, there is still potential for further improvement of the ENAMS

array either for DOF enhancement or MC effect reduction.

In this chapter, we extend the work in Chapter 3 [54], where an extended nested

array with multiple subarrays (ENAMS) is derived and provides a flexible way

to construct ENAMS-like arrays with enhanced DOF than other state-of-the-art

sparse arrays. Thus, we propose a flexible extended nested with multiple subar-

rays (f−ENAMS) configurations with improved DOF. The f−ENAMS arrays are

constructed by splitting the dense subarray of the NA into four subarrays and re-

locating them on either side of the NA configuration to maximize the DOF. More

importantly, f−ENAMS arrays have a closed-form expression for sensor positions and

corresponding achievable DOF. Furthermore, numerical examples are presented to

demonstrate the merits of the f−ENAMS arrays in terms of achievable DOF, weight

functions, and DOA estimation performance.

In summary, our main contributions in this chapter are as follows: i) We propose

a flexible extended nested array with multiple subarrays geometries (f−ENAMS).

The proposed f−ENAMS array geometries are in two forms: f−ENAMS type-I

(f−ENAMS-I) and type-II (f−ENAMS-II). The proposed f−ENAMS arrays show im-

proved DOF compared to other sparse linear arrays and retain a hole-free DCA; (b)

Furthermore, we derive closed-form expressions for the determination of achievable

DOF, the number of relocated sensors, and sensor positions of the entire f−ENAMS

array configurations; and (c) present theoretical and numerical simulation exam-

ples to validate the superiority of the proposed f−ENAMS arrays in terms of the

achievable DOF, weight functions, and DOA estimation performance.

The remainder of this chapter is organized as follows. The conventional sparse

linear array is discussed in Section 4.2 as preliminaries to the proposed sparse linear

array designs. Section 4.3 describes the proposed flexible extended nested array with

multiple subarrays array designs. Numerical examples to demonstrate the superiority

of the proposed sparse linear arrays are explored in Section 4.4. Finally, Section 4.5

concludes this work.
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4.2 Conventional sparse linear arrays

The ENAMS array, as discussed in Chapter 3, consists of five subarrays where the

dense ULA of the NA is split into three subarrays and the sparse ULA into two.

Specifically,

Senam =⟨1, N1 − 2⟩ ∪
(
N1 + 1

)
∪ 2N2 + ⟨0, N2 − 2⟩(N1 + 1)

∪N2(N1 + 1) ∪N2(N1 + 1) +N1 − 2,
(4.1)

where ⟨·⟩ denotes a range of integers. Even though the ENAMS array extends the

aperture and DOF of the NA, a quick glance at (4.1) shows that only three sensors

are relocated; two from the dense ULA and one from the sparse ULA. Consequently,

the extended DOF is limited compared to other state-of-the-art arrays such as MISC

[51] and OS/TS-ENA [53].

In the ANA [48], the NA’s dense ULAs were grouped into right/left subarrays.

Then, some sensors from the dense ULA were relocated to both sides of the sparse

ULA of the NA, thereby increasing the overall DOF and reducing the mutual coupling

effect concurrently [14]. In this work, inspired by the SNA [44] and ANA [48], we

propose a flexible extended NA (f-ENAMS) configuration, which extends the NA by

retaining the number of sensors in the sparse ULA of the NA and splitting the dense

ULA into right/left subarrays like [48], [53]. Then, each of the right/left subarrays

is split further into dense and sparse subarrays, thereby increasing the achievable

DOF. As we shall see in the subsequent sections, the realized f−ENAMS array has

improved DOF than the ENAMS array and other state-of-the-art sparse arrays.

4.3 Proposed flexible ENAMS array designs

This section discusses the proposed f−ENAMS arrays and their corresponding prop-

erties.
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4.3.1 Flexible Extended NA with Multiple Subarrays-I

Definition 4.3.1. Given a pair of integers N1 ≥ 10 and N2 ≥ 1, the configuration

of the f−ENAMS-I array can be expressed as

S = S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5, (4.2)

S1 = {1 + (l1 − 1)|1 ≤ l1 ≤ T − 2}
S2 = {T (l2 + 1) + (l2 − 2)|1 ≤ l2 ≤ 2},
S3 = {(1 + l3)(N1 + 1)− 1|1 ≤ l3 ≤ N2},
S4 = {N2(N1 + 1) +N1 + l4T |1 ≤ l4 ≤ 2},
S5 = {N2(N1 + 1) + 2N1 + 2 + l5|1 ≤ l5 ≤ T − 2},

where T = ⌊N1/2⌋ and ⌊·⌋ is the floor operator.

The f−ENAMS-I array configuration, as defined in (4.2) consists of five subarrays.

The dense ULA section of the NA is divided into four ULAs: S1, S2, S4, and S5. The

sparse ULA section of the NA is retained as S3 with N2 sensors. However, it starts

from 2(N1 + 1)− 1 instead of N1 + 1 as originally designed in the NA. As for S1, it

comprises of T − 2 sensors placed at a unit spacing interval, whereas S2 consists of

two sensors separated by a distance of T + 1. With two sensors, S4 follows S3, and

S5 come after S4 with T − 2 sensors separated by a unit spacing.

Figure 4.1 (c) shows the array configuration of the f−ENAMS-I array with N1 =

10 and N2 = 2. As shown in Fig. 4.1 (c), (4.2) renders S1 = {1, 2, 3}, S2 = {9, 15},
S3 = {21, 32}, S4 = {37, 42} and S5 = {45, 46, 47} thereby yielding a large array

aperture than the NA (see Fig. 4.1 (a)) given the same number of sensors N . Note

that S2, S4, and S5 are no longer limited to a single sensor but rather assume multiple

sensors. These changes extend the array aperture further and enhance the achievable

DOF. Also, the equal distribution of sensors from the dense subarray of the NA to

S1 and S5, along with the further relocation of sensors from S1 and S5 into S2 and

S4, helps to reduce the effect of sensors interacting with each other.

Accordingly, the following Lemma 4.3.2 holds for the f−ENAMS-I array.

Lemma 4.3.2. Given N1 ≥ 10, N2 ≥ 1 and N ≥ 11, the difference coarray of the

f−ENAMS-I array is hole-free ULA, i.e., D = [−Lu, Lu] where Lu = N2(N1 + 1) +
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(a)

1

Dense ULA, N1 sensors

Sparse ULA, N2 sensors

1 67 14 21 28 35 42

(b)
−41 0 41

(c)

1

S1, T − 2 sensors

S2, 2 sensors

S3, N2 sensors

S4, 2 sensors

S5, T − 2 sensors

1 3 9 15 21 32 37 42 4547

(d)
−46 0 46

Figure 4.1: (a) Nested array configuration with N1 = N2 = 6, and N = 12, and (b)
corresponding difference co-array. (c) f−ENAMS-I array configuration with N1 = 10,
N2 = 2, and N = 12, and (d) corresponding difference co-array. The bullets denote
physical sensors and the crosses represent empty spaces.

(a)

1

S1, T − 3 sensors

S2, 3 sensors

S3, N2 sensors

S4, 3 sensors

S5, T − 3 sensors

1 4 8 15 22 29 44 52 60 68 76 79

(b)
−78 0 78

Figure 4.2: (a) an example of f−ENAMS-II array with N1 = 14, N2 = 2, and N = 16,
and (b) corresponding difference co-array. The bullets denote physical sensors and
the crosses represent empty spaces.

5N1/2− 1.

Proof. Refer to Appendix B (8.2).

Following Lemma 4.3.2, if follows that

Property 4.3.3. For N1 ≥ 10, N2 ≥ 1 and N ≥ 11, the f−ENAMS-I array yields a

maximum uniform DOF of

uDOF =


N2/2 + 3.5N − 28 11 ≤ N ≤ 14

N2/2 + 3.5N − 6 15 ≤ N ≤ 18

N2/2 + 3.5N − 1 N ≥ 19

(4.3)
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Proof. Refer to Appendix B (8.2).

Moreover, based on Property 4.3.3, given the number of sensors N , the optimal

parameters of N1 should be an even number equivalent to

N1 =


2⌊(N + 1)/4⌋+ 4 if 11 ≤ N ≤ 14,

2⌊(N + 1)/4⌋+ 2 if 15 ≤ N ≤ 18,

2⌊(N + 3)/4⌋ if N ≥ 20.

(4.4)

and N2 = N −N1. For N1, we default to even numbers to ensure coarray continuity

and improved DOF. In fact, the f−ENAMS-I array has enhanced DOF compared

with the NA, ENA, INA, MISC, and the OS-ENA given the same number of sensors

N . However, the f−ENAMS-I array shares the same uniform DOF as the TS-ENA

array under certain optimal N1 conditions. Therefore, in the subsequent section,

we relocate extra sensors from the dense ULA section of the f−ENAMS-I array to

improve further the overall array aperture [23].

4.3.2 Flexible extended NA with multiple subarrays-II

It is noteworthy that even though S2 and S4 in the f−ENAMS-I array no longer

assume a single sensor, S2 and S4 are still restricted to two sensors each. Moreover,

the f−ENAMS-I array shares the same uniform DOF as the TS-ENA array. As a

result, we expanded the f−ENAMS-I array further to provide more flexibility and

improve the overall achievable DOF.

Definition 4.3.4. Given a pair of integers N1 ≥ 14 and N2 ≥ 1, the f−ENAMS-II

array configuration can be expressed as

S = S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5, (4.5)
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

S1 = {1 + (l1 − 1)|1 ≤ l1 ≤ T − 3},
S2 = {T l2 + 1|1 ≤ l2 ≤ 3},
S3 = {(1 + l3)(N1 + 1)− 1|1 ≤ l3 ≤ N2},
S4 = {N2(N1 + 1) +N1 + l4(T + 1)|1 ≤ l4 ≤ 3},
S5 = {N2(N1 + 1) + 3N1 + 3 + l5|1 ≤ l5 ≤ T − 3},

where T = ⌊N1/2⌋.

Like the f−ENAMS-I array in (4.2), the f−ENAMS-II array consists of five sub-

arrays, where the dense ULA section of the NA is divided into four ULAs: S1, S2, S4,

and S5. Furthermore, the sparse ULA section of the NA is retained as S3 with N2

sensors. Meanwhile, S1 and S5 are made up of T −3 sensors with a unit spacing. Un-

like the f−ENAMS-I array, the number of sensors in S2 and S4 is not fixed to two but

rather three sensors. Thus, bringing more flexibility to S2 and S4. And this, coupled

with a further reduction of sensors in S1 and S5, extends the overall array aperture

and eventually the achievable DOF. Figure 4.2 shows the array configuration of the

f−ENAMS-II array with N1 = 14 and N2 = 2, where (4.5) yields S1 = {1, 2, 3, 4},
S2 = {8, 15, 22}, S3 = {29, 44}, S4 = {50, 60, 68} and S5 = {76, 77, 78, 79}. As men-

tioned, it can be observed that the number of sensors in S2 and S4 are no longer fixed

to two but three sensors.

And, according to (4.5), the following Lemma 4.3.5 holds for the f−ENAMS-II

array,

Lemma 4.3.5. Given N1 ≥ 10, N2 ≥ 1 and N ≥ 11, the difference coarray of the

f−ENAMS-II array is hole-free ULA, i.e., D = [−Lu, Lu] where Lu = N2(N1 + 1) +

7N1/2− 1.

Proof. See Appendix B (8.2).

Property 4.3.6. For N1 ≥ 10, N2 ≥ 1 and N ≥ 11, the f−ENAMS-II array yields

a maximum uniform DOF of

uDOF =


N2/2 + 4.5N − 43 16 ≤ N ≤ 19

N2/2 + 4.5N − 13 20 ≤ N ≤ 23

N2/2 + 4.5N + 1 N ≥ 24

(4.6)
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Proof. See Appendix B (8.2).

According to Property 4.3.6, optimal uniform DOF can be achieved by setting

parameters N1 and N2 as

N1 =


2⌊N/4⌋+ 6 if 16 ≤ N ≤ 19

2⌊N/4⌋+ 4 if 20 ≤ N ≤ 23

2⌊N/4⌋+ 2 if N ≥ 24

(4.7)

and N2 = N − N1 given the number of sensors N . Similarly, the value of N1 is

strategically fixed to even numbers to guarantee coarray continuity and enhanced

DOF. Besides, compared to the f−ENAMS-I array, the f−ENAMS-II array has en-

hanced DOF than the NA, ENA, ANA, INA, MISC, and the TS-ENA given the

same number of sensors N .

Remark 4.3.7. Note, to guarantee the continuity of the difference coarray, the exten-

sion requires N1 ≥ 10 for the f−ENAMS-I array and N1 ≥ 14 for the f−ENAMS-II

array. And, if the value of N1 for each array is less than the required value, the

coarray becomes discontinuous. As for N2, both arrays hold when N2 ≥ 1, bring-

ing the required minimum number of sensors to N ≥ 11 for the f−ENAMS-I array

and N ≥ 15 for the f−ENAMS-II array. Moreover, the f−ENAMS-I array and the

f−ENAMS-II array share the same array structure, as both array configurations con-

sist of five subarrays. The difference between the two is in the number of sensors in

the S2 and S4 subarrays, i.e., n2,4. Specifically, in the f−ENAMS-I array n2,4 = 2,

whereas in the f−ENAMS-II array n2,4 = 3.

Remark 4.3.8. Since n2,4 corresponds to the number of sensors relocated from S1

and S5, this means that the more the sensors are relocated from S1 and S5 into S2

and S4, the larger the array aperture and overall achievable DOF. This phenomenon

explains the differences in the achievable DOF by the f−ENAMS-I array and the

f−ENAMS-II array. Furthermore, the same concept applies to the weight functions

of each f−ENAMS array design. However, n2,4 can be any number other than two

or three, and further extension to such higher n2,4 values is left as future work. In
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the subsequent section, we evaluate the performance of the f−ENAMS array designs

against other state-of-the-art sparse linear arrays.

4.4 Numerical examples

In this section, we present numerical examples to verify the performance of the

f−ENAMS arrays in terms of weight functions, achievable DOF, and DOA estimation

performance. Throughout the simulation examples, the ENAMS, improved NA,

MISC, and TS-ENA arrays are used for comparison purposes. For the ENAMS

and improved NA arrays, we choose parameters N1 = N2 = 11 and N = 22. For

the f−ENAMS-I, f−ENAMS-II, MISC, and TS-ENA arrays, we set the parameters

(N1 = 12, N2 = 10), (N1 = 14, N2 = 8), (N = 22, P = 12), and (N1 = 14, N2 =

7, N = 22), respectively. Note that all arrays contain 22 elements. Moreover, the

spatial smoothing MUSIC algorithm [33], [34] is used for DOA estimation. The

root-mean-square-error (RMSE) of estimated DOAs is adopted to evaluate DOA

estimation performance. The RMSE computed over 1000 number of trials and is

given as

RMSE =

√√√√ 1

1000K

1000∑
q=1

K∑
k=1

(θ̃qk − θ̄k)2, (4.8)

where θ̃qk denotes the estimated normalized DOA of the true normalized DOA θ̄k in

q−th trial.

4.4.1 Achievable degrees of freedom

In this section, we compare the DOF capacity of different kinds of nested arrays with

the same number of elements N using the DOF ratio. Normally, the DOF ratio is

defined as

γ(N) = N2/Lu(N), (4.9)

where N is the physical element number, and Lu(N) is one-side of uniform DOF or

size of aperture. Accordingly, the smaller the γ(N), the higher the DOF capacity.

Figure 4.3 shows the plot of the DOF ratio γ(N) as a function of N . As shown

in Fig. 4.3, out of the six sparse arrays, the ENAMS array has the highest values
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Table 4.1: Achievable uniform DOF of different sparse linear arrays

Sparse array type Optimal N1 Optimal uniform DOF

NA N/2 N2/2 +N − 1

Enhanced NA N/2 N2/2 +N + 1

Improved Nested N/2 N2/2 + 2N − 3

ENAMS (N + 1)/2 N2/2 + 2N − 9/2

MISC 2⌊N/4⌋+ 1 N2/2 + 3N − 9

f−ENAMS-I 2⌊(N + 3)/4⌋ N2/2 + 3.5N − 1

TS-ENA 2⌊(N + 3)/4⌋ N2/2 + 3.5N − 1

f−ENAMS-II 2⌊N/4⌋+ 2 N2/2 + 4.5N + 1

of γ(N), especially when N < 50, and improves as N increases. On the other

hand, the f−ENAMS-II array has the lowest possible values except when N < 20.

This is due to the restriction on the N1 = 14 value as shown in (4.7) to guarantee

a hole-free coarray. Hence, the achievable DOF of the f−ENAMS-II array when

N < 20 is limited. However, as the value of N1 becomes more flexible, the achievable

DOF improves, particularly when N ≥ 20. Meanwhile, the performance of the

f−ENAMS-I array follows that of the f−ENAMS-II array, and shares almost similar

values with the TS-ENA array under a certain value of N . Table 4.1 compares the

maximum achievable DOF of various arrays using closed-form expressions. Clearly,

the f−ENAMS-II array can achieve higher DOFs as compared to other state-of-the-

art sparse arrays.

4.4.2 Weight functions

Figure 4.4 compares the weight functions for various sparse linear arrays with 22

sensors. As shown in Fig. 4.4, the INA and ENAMS arrays show the largest weight

functions (w(1) = 10, w(2) = 9, w(3) = 8) and (w(1) = 8, w(2) = 8, w(3) = 7)

respectively, owing to the existence of a dense ULA. Compared to the ENAMS

and INA, the MISC array has the smallest weight functions (w(1) = 1, w(2) =

8, w(3) = 1). The TS-ENA and f−ENAMS-I arrays share the same weight functions
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Figure 4.3: The DOF ratio γ(N) versus the number of sensors N varying from 16 to
100.

(w(1) = 6, w(2) = 4, w(3) = 3), whereas the weight functions of the f−ENAMS-II

array are (w(1) = 6, w(2) = 4, w(3) = 2). The f-ENAMS-II array depends on a

large value of N1 to achieve a large aperture, and this is why it has higher weight

functions. Although the weight functions of the f−ENAMS-II array are higher than

those of the MISC and TS-ENA arrays, the f−ENAMS-II array has improved DOF,

which ensures a better DOA estimation performance.

Remark 4.4.1. Concerning the mutual coupling effect, the f−ENAMS-I array has a

weight function of w(1) = N1 − 6 since (4.2) shows that 4 sensors are relocated from

the dense ULA of the NA, and the remaining sensors are split into two. Similarly,

the f-ENAMS-II array has w(1) = 6 as N1/2 + 1 sensors are relocated from NA’s

dense ULA to realize the f-ENAMS-II array regardless of the number of sensors. The

remaining sensors in the dense ULA are divided further into S1 and S5. Therefore,

the MC effect due to w(1) is slightly stronger in the f-ENAMS-I array than in the

MISC array but better than in the OS-ENA array. Moreover, the MC effect in the

f-ENAMS-II array due to w(1) is stronger than in the MISC and TS-ENA arrays but

better than in the OS-ENA array.
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4.4.3 DOA estimation in the absence of mutual coupling

In the second set of examples, we compare the DOA estimation performance among

the ENAMS, improved NA, MISC, TS-ENA, f−ENAMS-I, and f−ENAMS-II arrays

in the absence of a mutual coupling effect. All sparse arrays consist of 22 elements

as described in Section 4.4.1.

MUSIC spectra of DOA estimation

Figure 4.5 compares the MUSIC spectra P (θ̄) of DOA estimation of the NA, improved

nested array, MISC, TS-ENA, f−ENAMS–I and f−ENAMS–II array when K = 32

uncorrelated sources are located at θ̄k = −0.1 + 0.2(k − 1)/31 for 1 ≤ k ≤ 32 such

that θ̄ = sin(θ). The input SNR is fixed at 0 dB, and the number of snapshots

at 500. Figure 4.5 shows that all sparse arrays can resolve all 32 sources except

for the ENAMS and improved NA arrays. The two show false peaks, and this is

due to limited DOF. However, the proposed f−ENAMS-II array depicts all sources

with well-delineated peaks followed by the TS-ENA, MISC, and f−ENAMS-I arrays.

Therefore, the f−ENAMS-II array can provide a higher DOA estimation resolution

than other sparse arrays.

RMSE of DOA estimation

In the following examples, we evaluate the RMSE performance versus the input

SNR, the number of snapshots, and the number of sources. First, we compute

the RMSE versus input SNR when K = 50 uncorrelated sources located at θ̄k =

−0.3+0.6(k−1)/49 for 1 ≤ k ≤ 50. The number of snapshots is fixed at 1000 whereas

the input SNR varies from −30 to 10 dB. Second, with all other parameters fixed, we

calculate the RMSE versus the number of snapshots when the input SNR = 0 dB, and

the number of snapshots varies from 10 to 2000. Lastly, we obtain the RMSE versus

the number of sources where K sources are located at θ̄k = −0.3+0.6(k−1)/(K−1)

for 1 ≤ k ≤ K.

Figure 4.6 shows the RMSE of the normalized DOA estimates versus input SNR.

It can be observed that the performance of all the sparse arrays improves as the

SNR increases, and stabilizes when the SNR is higher than −10 dB. However, the
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f−ENAMS-II array shows improved DOA estimation performance, followed by the

TS-ENA, f−ENAMS-I, MISC, INA, and ENAMS arrays. Thus, the enhanced DOF

of the f−ENAMS-II array improved the DOA estimation performance.

Figure 4.7 shows the RMSE of the normalized DOA estimates versus the number

of snapshots. Like Fig. 4.6, the performance of all the sparse arrays improves as the

number of snapshots increases. Moreover, the f−ENAMS-II array shows improved

DOA estimation performance, followed by the TS-ENA, f−ENAMS-I, MISC, INA,

and ENAMS arrays. Figure 4.8 shows the RMSE of the normalized DOA estimates

versus the number of sources. Here, the performance of all sparse arrays degraded as

the number of sources increased. However, the f−ENAMS-II array shows the lowest

possible RMSE, and it is lower than those of the TS-ENA, f−ENAMS-I, MISC, INA,

and ENAMS arrays. Thus, the enhanced DOF enables the f−ENAMS-II array to

exhibit improved performance compared to other sparse arrays.

4.4.4 DOA estimation in the presence of mutual coupling

In the third example, we compare the DOA estimation performance of the ENAMS,

improved NA, MISC array, TS-ENA, f−ENAMS–I, and f−ENAMS–II arrays in the

presence of mutual coupling. As described in Section 4.4.1, 22 sensors were used for

all array configurations.

For mutual coupling, the signal model in (2.5) is assumed. The parameters for the

mutual coupling model were chosen as c1 = 0.2ejπ/3, B = 100 and cℓ = c1e
−j(ℓ−1)/8/ℓ

for 2 ≤ ℓ ≤ B. Firstly, we consider the RMSE of the normalized DOA estimation

performance versus the input SNR and the absolute value of the mutual coupling

coefficient |c1|. The RMSE versus SNR was computed first with K = 50 uncorrelated

sources located at θ̄k = −0.3+0.6(k−1)/49 for 1 ≤ k ≤ 50 and 1000 snapshots, and

the SNR varies from −30 to 10 dB. Secondly, the RMSE versus |c1| was computed

when SNR = 0 dB, number of snapshots T = 1000, K = 50 narrowband uncorrelated

sources located at θ̄k = −0.3 + 0.6(k− 1)/49 for 1 ≤ k ≤ 50, c1 = |c1|ejπ/3 such that

B = 100 and cℓ = c1e
−j(ℓ−1)/8/ℓ for 2 ≤ ℓ ≤ B.

Figure 4.9 shows the RMSE of the normalized DOA estimates versus the input

SNR. As shown in Fig. 4.9, although the mutual coupling of the f−ENAMS-II array

is w(1) = N1 − 8, the DOF of the f−ENAMS-II array is higher than those of the
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MISC, TS-ENA, and f−ENAMS-I arrays. Hence, the f−ENAMS-II array obtains a

better RMSE than the other sparse arrays. Moreover, the f−ENAMS-I array has

almost the same RMSE as the TS-ENA array because the two share the same weight

functions. Besides, the MISC array performs well than the f−ENAMS-I and TS-

ENA arrays. Fig. 4.10 shows the RMSE of the normalized DOA estimates versus

|c1|. As shown in Fig. 4.10, the MISC array performs better than the f−ENAMS-I,

f−ENAMS-II, and TS-ENA arrays because it has reduced mutual coupling compared

to all other sparse arrays. However, the f−ENAMS-II array performs better when

|c1| < 0.2, and the performance degrades as |c1| increases.

4.5 Chapter summary

This chapter presented a new flexible extended nested array geometry with mul-

tiple subarrays (f-ENAMS) that provide enhanced DOFs and hole-free difference

co-arrays. The proposed array configurations are designed to further distribute the

NA’s dense subarray sensors to the right side of the conventional NA to enhance the

uniform DOF and reduce the mutual coupling effect. Simulation examples showed

that the f−ENAMS arrays have enhanced DOF and provide high-resolution DOA

estimation compared with other sparse linear arrays.

Although two f−ENAMS array designs (f-ENAMS-I and f-ENAMS-II) have been

introduced, we limited our study to array designs in lower-level cases where S2 and

S4 contain n2,4 = 2 and n2,4 = 3 sensors. Thus, the proposed f-ENAMS arrays

are limited in terms of uniform DOF. Future work considers the expansion of the

f−ENAMS arrays to a more generalized form featuring both low and high levels of

n2,4.
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Figure 4.4: The weight functions for various sparse linear arrays with 22 sensors. (a)
ENAMS, (b) Improved NA, (c) f−ENAMS-I, (d) MISC array, (e) TS-ENA, and (f)
f−ENAMS-II.
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Figure 4.5: MUSIC spectra P (θ̄) comparison among (a) ENAMS, (b) Improved NA,
(c) f−ENAMS–I, (d) MISC array, (e) TS-ENA and (f) f−ENAMS–II. The MUSIC
spectra are computed using N = 22, SNR = 0 dB, 500 snapshots and K = 32 sources
distributed in θ̄ = [−0.1, 0.1]. Note, the dotted vertical lines on the θ̄ axis denote
true DOAs.
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Figure 4.6: RMSE of the normalized DOA estimates versus the input SNR when
T = 1000.
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Figure 4.7: RMSE of the normalized DOA estimates versus the number of snapshots
when SNR = 0 dB.
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Figure 4.8: RMSE of the normalized DOA estimates versus the number of sources
when SNR is 0 dB, N = 22, T = 1000 and K sources are located at θ̄k = −0.3 +
0.6(k − 1)/(K − 1) for 1 ≤ k ≤ K.

−30 −20 −10 0 10
10−4

10−3

10−2

10−1

Input SNR (dB)

R
M
S
E

ENAMS Improved NA
MISC f−ENAMS-I

TS−ENA f-ENAMS-II

Figure 4.9: RMSE of the normalized DOA estimates versus the input SNR when
the number of snapshots T = 1000, N = 22 and K = 50 sources are located at
θ̄k = −0.3 + 0.6(k − 1)/49 for 1 ≤ k ≤ 50.
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N = 22, T = 1000 and K = 50 sources are located at θ̄k = −0.3 + 0.6(k − 1)/49 for
1 ≤ k ≤ 50.
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Chapter 5

A Generalized Extended Nested Array Design via

Maximum InterElement Spacing Criterion

5.1 Introduction

As discussed in Chapters 3-4, the sparse linear arrays (SLAs) such as the improved

nested array (INA) [50], the extended nested array (ENA) [49], the extended nested

array with multiple subarrays (ENAMS) [54], the augmented nested array (ANA)

[48], the CA with displaced subarrays (CADiS) [62], the Iizuka NA (IINA) [52], the

two-sides extended nested array (TS-ENA) [53], and the flexible extended nested

array (f-ENAMS) [55]-[56], have been developed to improve the achievable degrees

of freedom (DOF). On the contrary, the generalized non-redundant array (GNR) [58],

the NA variants [61]-[63], and the CA variants [44], [72], [59]-[60] were designed

with a focus on reduced mutual coupling (MC) effect. Thus, it is clear that the

extension approaches above aim to reduce the mutual coupling or improve the degrees

of freedom with little or no balance between the two determining factors.

Recently, a family of SLA structures based on the interelement spacing (IES)

principle has been proposed [51], [64]-[65]. In this context, the IES criterion [64]-

[65] is a method that uses a set of IES terms instead of integers to describe a sparse

linear array. The IES approach saves space due to its compact form and captures the

array sensor distribution pattern. Arrays such as the sparse array based on uniform

linear array (ULA) fitting method with 4-layers (UF-4BL) [64], sparse array via

maximum IES criterion (MISC) [51], and improved MISC array (IMISC) [65] are

typical examples of IES-based SLAs. These IES-based arrays offer a relatively low

MC effect and improved DOF, thereby yielding a good balance between the MC

effect and achievable DOF [66]. Thus, the IES principle is one of the most promising

array-designing approaches1.

1This chapter is based on S. Wandale and K. Ichige, “A Generalized Extended Nested Array
Design via Maximum Inter-Element Spacing Criterion,” IEEE Signal Processing Letters, vol. 30,
pp. 31-35, 2023, doi: 10.1109/LSP.2023.3238912.
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Using the IES principle, this chapter explores the relationship and similarities be-

tween the previous chapter’s proposed f-ENAMS-II array and TS-ENA and presents

a unified sparse linear array design. A generalized IES set pattern is derived by

utilizing the IES set patterns of the two-sides extended nested array and the flexi-

ble extended nested array with multiple subarrays type-2. The generalized IES set

is used to design the unified sparse array, which consists of six uniform linear ar-

rays (ULAs). The proposed unified array is called the generalized extended nested

array with multiple subarrays (GENAMS) array. Compared to other arrays, the

GENAMS array has improved degrees of freedom and relatively less mutual cou-

pling. Furthermore, the achievable DOF and the weight functions of the GENAMS

array are derived and analyzed in detail. Finally, numerical examples are used to

demonstrate the merits of the GENAMS array over other existing sparse arrays.

In summary, the main contributions in this chapter are as follows: i) We develop

a generalized extended NA array structure with enhanced DOF via the array pat-

terns of the TS-ENA and f-ENAMS-II arrays; ii) Deduce and analyze closed-form

expressions of the GENAMS array for sensor locations, achievable DOF, and weight

functions; and iii) Provide simulation examples to demonstrate exceptional perfor-

mance of the GENAMS array in terms of DOA estimation performance, coupling

leakage, and DOF ratio.

This chapter is organized as follows. First, the conventional sparse linear arrays

from which the proposed sparse array design is drawn are reviewed in Section 5.2.

Then, the proposed generalized sparse array design is discussed in Section 5.3. Next,

section 5.4 examines different numerical examples to validate the performance of the

proposed sparse array design. Lastly, concluding remarks are discussed in Section

5.5.

5.2 Conventional sparse linear arrays

In this section, we review the sensor distribution patterns of the TS-ENA and the

f-ENAMS-2 array using the IES criterion, as demonstrated in [65], to understand

the underlying IES array patterns of these two sparse linear arrays. Then, the

closed-form expressions of the TS-ENA and the f-ENAMS-2 are reformulated and
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represented in one unified framework, as proposed in [66]. Finally, following the

unified framework, the IES array patterns are generalized into a single unified sparse

linear array pattern.

5.2.1 Maximum interelement spacing constrained array

In [51], an interelement spacing criterion-based Maximum Interelement Spacing Con-

strained (MISC) array is introduced with enhanced degrees of freedom and reduced

mutual coupling effect. The MISC array is controlled by an IES term Q, and an IES

set Amisc such that

Amisc = {1, Q− 3, Qr, 2z, 3, 2z}, (5.1)

where Q = 2�N/4� + 2, r = N − Q, and z = (Q − 4)/2, for N ≥ 5. Note that in

(5.1), the notation xn denotes n repetitions of the term x [51], [65]-[66]. Namely, x

denotes the interelement spacing term, and n is the number of times the term has

been repeated within that particular section of the array.

Given the number of sensors N ≥ 5, the MISC array achieves N2

2
+ 3N − 9

uniform DOF, and the first three weight functions as w(1) = 1, w(2) = 2�N/4� − 2

and w(3) = 2 [51]. Compared to other state-of-the-art sparse arrays like the ENAMS

array, the MISC array yields higher uniform DOF and a reduced mutual coupling

effect [56]. Figure 5.1 shows the MISC array with 12 sensors where Q = 8, r = 4,

and z = 2.

Figure 5.1: The MISC array configuration with N = 12 sensors (Q = 8, r = 4, z = 2)
and corresponding coarray weight functions (only positive segment is shown in the
view of w(n) ∈ [0, 15]). In the figure, the red stems denote physical sensors.
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5.2.2 TS-ENA array via interelement spacing criterion

Independently, while attempting to improve further the DOF of the NA array, a

two-sides extended nested array (TS-ENA) was introduced in [53] via the extended

nested array (ENA) strategy. The ENA strategy [53], [54] holds on the basis that

the virtual sensors in the difference co-array are located in the range

v = (N1 + 1)(ℓ1 − 1) + (N1 + 1 + ℓ2) (5.2)

where ℓ1 ∈ [1, N2] and ℓ2 ∈ [0, N1]. Thus, the ENA strategy is designed such that

the left/right (L/R) subarrays are placed N2 further than in ANA (the ANA array

consists of three main subarrays in this order, the left (L), middle (M) and right (R)
subarrays). Thus, the strategy expands the distance between the ANA’s L/R and

M subarrays, thereby enhancing the overall aperture and achievable DOF [48], [53].

Compared to the MISC array, the TS-ENA has improved DOF but a slightly

more severe mutual coupling effect than the MISC array due to a large number of

sensor pairs with separation one it inherits from the ANA array [53], [54]. According

to [53], for N ≥ 12, the TS-ENA can be expressed as

Sts−ena = L ∪M ∪ R, (5.3)
L = (N1 + 1)− l1, l1 ∈ Q1

M = (N1 + 1)l2, l2 ∈ [1, N2]

R = l3 − (N1 + 1)(N2 + 1), l3 ∈ Q2

(5.4)

where i = ⌊N1/2⌋, Q1 = {0, i, 2i, 2i + 3 : 3i}, Q2 = {0, i + 1, 2i + 2, 3i + 3 : 4i},
N1 = 2⌊(N + 3)/4⌋ and N2 = N − N1 − 1 [53]. Note, Q1 and Q2 are the relative

sensor position vectors.

Figure 5.2 shows a typical example of a TS-ENA array with N = 17 sensors

where N1 = 14 and N2 = 2. Given N = 17, N1 = 14 and N2 = 2, (5.3) yields L =

{0, 7, 14, 17, 18, 19, 20, 21} and R = {0, 8, 16, 24, 25, 26, 27, 28}. It can be observed in

Fig. 5.2 that the TS-ENA array has a hole-free difference co-array and improved

weight functions compared to those of NA. Besides, for N ≥ 12, the TS-ENA yields
N2

2
+ 3.5N − 1 uniform DOF and the first three weight functions of w(1) = N1 − 4,
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w(2) = N1 − 6 and w(3) = N1 − 7 [53], [56]. Thus, TS-ENA has improved uniform

DOF and reduced mutual coupling compared to other existing sparse arrays.

Figure 5.2: The TS-ENA array configuration with N = 17 sensors (N1 = 14 and
N2 = 2) and corresponding coarray weight functions (only positive segment is shown
in the view of w(n) ∈ [0, 15]). In the figure, the red stems denote physical sensors.

5.2.3 Flexible ENAMS array via IES principle

Following the TS-ENA array, without the knowledge of its underlying IES pattern,

the flexible extended nested array with multiple subarray type-II (f-ENAMS-2) was

proposed in [55]-[56] by extending the ANA array, where the sensors with a unit

spacing in Q1 and Q2 subarrays were further distributed into the M subarray thereby

achieving an extended array aperture and the uniform DOF. Using exact sensor

location information, the f-ENAMS-2 can be defined as

Sf−enams = Zf
1 ∪ Zf

2 ∪ Zf
3 ∪ Zf

4 ∪ Zf
5 , (5.5)




Zf
1 = {l1|1 ≤ l1 ≤ L− 3},

Zf
2 = {Ll2 + 1|1 ≤ l2 ≤ 3},

Zf
3 = {(1 + l3)(N1 + 1)− 1|1 ≤ l3 ≤ N2},

Zf
4 = {N2(N1 + 1) +N1 + l4(L+ 1)|1 ≤ l4 ≤ 3},

Zf
5 = {N2(N1 + 1) + 3N1 + 3 + l5|1 ≤ l5 ≤ L− 3},

(5.6)

where L = �N1/2�, N1 = 2�N/4� + 2 and N2 = N − N1 for N ≥ 15 [55]. Besides,

as discussed in Chapter 4, the f-ENAMS-2 yields N2

2
+ 4.5N − 1 uniform DOF and
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the first three weight functions of w(1) = N1 − 6, w(2) = N1 − 8 and w(3) = N1 − 9.

Although the f-ENAMS-2 has improved uniform DOF than the TS-ENA and the

MISC, the mutual coupling effect in f-ENAMS-2 remains relatively higher than in

the MISC array, as judged by the weight functions. Figure 5.3 depicts the f-ENAMS-

2 array configurations with N = 17. From Fig. 5.3, the f-ENAMS-2 array exhibits

hole-free difference co-array characteristics.

Figure 5.3: The f-ENAMS-2 array configuration with N = 17 sensors (N1 = 14 and
N2 = 2) and corresponding coarray weight functions (only positive segment is shown
in the view of w(n) ∈ [0, 20]). In the figure, the red stems denote physical sensors.

5.2.4 TS-ENA vs. flexible ENAMS array configuration

Lemma 5.2.1. The TS-ENA and the f-ENAMS-2 share the same basic array struc-

ture and differ only in the number of sensors in the far left and right subarrays, i.e.,

the L and R subarrays.

Proof. To demonstrate Lemma 5.2.1, let us consider definitions (5.3) and (5.5), and

reformulate them in terms of the IES criterion [65]-[66], [51]. Without loss of gen-

erality, the TS-ENA array can be expressed using the interelement spacing term Q

and set Ats−ena as

Ats−ena = {1z−1, (P + 1)3, Qr, P 2, 3, 1z−1}, (5.7)

where Q = 2�(N + 3)/4� + 1, r = N − Q, z = �(Q + 1)/4� and P = (Q − 1)/2.
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Rearranging the terms in (5.7) yields

Ats−ena = {1z−1, 3, P 2, Qr, (P + 1)3, 1z−1}. (5.8)

Similarly, the f-ENAMS-2 array can be reformulated using the interelement spac-

ing term Q, and set Af−enams as

Af−enams = {1z−1, 4, P 3, Qr, (P + 1)4, 1z−1}. (5.9)

where Q = 2⌊N/4⌋+3, r = N −Q, z = ⌈(Q+1)/4⌉ and P = (Q− 1)/2. Therefore,

it follows from (5.8) and (5.9) that the TS-ENA and the f-ENAMS-2 array share the

same basic array structure and differ only in the values of the second, third, and fifth

terms, which are fixed regardless of the number of sensors N .

Lemma 5.2.2. Suppose that the 2nd, 3rd and the 5th terms in (5.3) are given as z,

P z−1 and (P + 1)z where z ∈ N+. Then, the TS-ENA array can be mapped to any

z-level array whose uniform DOF is N higher than the previous z-level.

Proof. The Lemma 5.2.2 can be verified by comparing (5.8) and (5.9). Here, the fixed

terms of the TS-ENA array and the f-ENAMS-2 array differ by 1, i.e., {3, P 2, (P+1)3}
and {4, P 3, (P + 1)4} for the TS-ENA array and the f-ENAMS-2 array, respectively.

Hence, the f-ENAMS-2 array is a z + 1 extension of the TS-ENA array. Besides,

according to [53] and [66], the DCA of both (5.3) and (5.5) are hole-free ULAs.

And, the maximum positions of the TS-ENA array and the f-ENAMS-2 array via

(5.3) are N2(N1 + 1) + 3.5N1 and N2(N1 + 1) + 4.5N1, respectively, which leads

to a uniform DOF difference of N considering that both TS-ENA and f-ENAMS-2

arrays are hole-free. Thus, every unit change in z-level increases the uniform DOF

by N .

To quantitatively demonstrate Lemma 5.2.2, we compute the DOF capacity ver-

sus the number of sensors for different z-level array configurations. The DOF capacity

is given by a DOF ratio as defined in (2.2.5) [48]. As you may recall, the smaller

the γ(N), the higher the DOF capacity [56]. Figure 5.4 shows the γ(N) plot versus

the number of sensors N . As shown in Fig. 5.4, the DOF capacity increases as the

z-level level increases. However, the required minimum number of sensors becomes
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higher. For instance, a 3-level array requires a minimum of 11 sensors, whereas a 4-

level array requires 15. To resolve this, we generalize all z-level array configurations

into a unified sparse array geometry and ultimately generalize the achievable DOF

capacity (Fig. 5.4, dotted line).

0 20 40 60 80 100

2.5

3

3.5

4

Figure 5.4: Comparison of the DOF ratio versus the number of sensors N for various
z-level sparse arrays.

We unify the two sparse linear array geometries in the subsequent section, moti-

vated by Lemma 5.2.1 and 5.2.2, by leveraging the three constant IES terms.

5.3 Proposed generalized ENAMS array design

Following Lemma 5.2.1 and 5.2.2 in Section 5.2, we propose a new generalized ex-

tended nested array with multiple subarrays (GENAMS) by generalizing the fixed

(2nd, 3rd and 5th) terms of (5.8) and (5.9). The GENAMS array can be expressed

using the IES term Q, and an IES set Agenams as

Agenams = {1z−1, z, P z−1, Qr, (P + 1)z, 1z−1}. (5.10)
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Figure 5.5: An example of the GENAMS array with N = 10 sensors (Q = 7, r = 3,
P = 3 and z = 2) and corresponding coarray weight functions (only positive segment
is shown in the view of w(n) ∈ [0, 10]). In the figure, the red stems denote physical
sensors.

where Q = 4�(N + 5)/6� − 1, r = N − Q, z = (Q + 1)/4 and P = (Q − 1)/2. The

corresponding exact sensor locations can be expressed as a union of six subsets




Z1 = {0, 1, . . . , z − 1},
Z2 = 2z − 1,

Z3 = {2P, 3P, . . . , zP},
Z4 = {zP +Q, zP + 2Q, . . . , zP +Qr},
Z5 = zP +Qr + {(P + 1), . . . , z(P + 1)},
Z6 = z(2P + 1) +Qr + {0, 1, . . . , z − 1},

(5.11)

where each subset chronologically corresponds to a term in (5.10). The GENAMS

array leverages changing values of the 2nd, 3rd, and 5th terms, otherwise fixed in

TS-ENA and f-ENAMS-2, to realize a large array aperture. Figure 5.5 shows a

GENAMS array with N = 10 sensors, Q = 7, r = 3, P = 3 and z = 2 where

(5.10) yields Z1 = {0, 1}, Z2 = {3}, Z3 = {6}, Z4 = {13, 20, 27}, Z5 = {31}, and
Z6 = {35, 36}. Thus, the sensor positions of the GENAMS array can be uniquely

determined using (5.10) given any value of N . Hence, the GENAMS array has a

closed-form expression for sensor positions. Also, the DCA of the GENAMS array

is hole-free, as summarized in Lemma 5.3.1.

Lemma 5.3.1. The difference co-array of the GENAMS array as defined in (5.10)

is a hole-free ULA, i.e., Dg = [−Lu, Lu] with Lu = Q(r + z) + z − 1.
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Proof. See Appendix C (8.2).

Following Lemma 5.3.1, we obtain the following properties.

Property 5.3.2. Given that Q = 4⌊(N + 4)/6⌋ − 1, r = N −Q, z = (Q+ 1)/4 and

P = (Q− 1)/2. The uniform DOF of GENAMS array is 2N2

3
+ 2N

3
− 1 for any value

of N ≥ 10.

Proof. Refer to Appendix C (8.2).

Therefore, the GENAMS array yields improved uniform DOF than the TS-ENA

array (N2/2 + 3.5N − 1) and f-ENAMS-2 array (N2/2 + 4.5N + 1) given the same

number of sensors N .

Property 5.3.3. According to (5.10), for N ≥ 10 the first three weight functions of

GENAMS array are

w(1) = 2z − 2, w(2) =

{
1, 14 > N ≥ 10

2z − 4, N ≥ 14.
(5.12)

w(3) =


2, 14 > N ≥ 10

1, 20 > N ≥ 14

2z − 6, N ≥ 20.

(5.13)

Proof. See Appendix C (8.2).

Comparing with weights of the TS-ENA and f-ENAMS-2 array, the weights in

Property (5.3.3) are less than w(1) = Q − 7, w(2) = Q − 9, and w(3) = Q − 10

weight functions of the TS-ENA array as well as w(1) = Q− 9, w(2) = Q− 11, and

w(3) = Q − 13 weights of the f-ENAMS-2 array. However, the weights are higher

than those of the ICNA [59], IMISC [65], and UF-4BL array [64].

5.4 Numerical examples

This section examines the performance of the GENAMS array against other sparse

linear arrays under different scenarios. The SS-MUSIC [33] is used for DOA es-

67



timation. The root-mean-square error (RMSE) of estimated DOA computed over

1000 trials is used as the performance metric. The following parameters are fixed

throughout this section: N = 30 sensors for all arrays, the mutual coupling factors

of c1 = 0.2ejπ/3, and cg = c1e
−j(g−1)/8/g, 2 ≤ g ≤ 100, and T = 1000 snapshots [57].

5.4.1 DOF capacity and coupling leakage analysis

First, we examine the uniform DOF capacity of various sparse linear arrays using

the DOF ratio as γ(N) = N2/Lu(N) [48]. Remember, the higher the uniform DOF

capacity, the smaller the γ(N) value [57]. Figure 5.6 shows the DOF ratios of various

sparse linear arrays. As shown in Fig. 5.6, the proposed GENAMS array has the

highest uniform DOF among the existing sparse linear arrays, and NA has the least

uniform DOF capacity. However, as N increases, the uniform DOF of the GENAMS

array slightly degrades but still outperforms other arrays.
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Figure 5.6: Comparison of DOF ratio γ(N) versus the number of sensors N for
various sparse linear arrays.

Next, we consider the coupling leakage of various sparse linear arrays as shown in

Fig. 5.7. In this example, Fig. 5.7 shows that the coupling leakage of the GENAMS

array is lower than those of the NA, INA, ENAMS, TS-ENA, and f-ENAMS-2 but

higher than the selected few sparse linear arrays. However, the GENAMS array has
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higher uniform DOF capacity than other sparse arrays, guaranteeing better DOA

estimation performance [54]-[57].
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Figure 5.7: Comparison of coupling leakage L(N) versus the number of sensors N
for various sparse linear arrays.

5.4.2 RMSE of DOA estimation in the presence of MC

In this section, we demonstrate the DOA estimation performance of the proposed

GENAMS array compared to other sparse linear arrays. The RMSE versus input

SNR in the presence of a mutual coupling effect is examined first. In this example,

50 uncorrelated sources in the range θ̄m = −0.45 + 0.8(m− 1)/49 for m ∈ [1, 50] are

used, and the input SNR is varied in the range −30 ≤ SNR ≤ 10 dB. Figure 5.8

shows the plot of RMSE versus input SNR for various sparse linear arrays. It is clear

from Fig. 5.8 that the GENAMS array outperforms other sparse arrays because of

its large uniform DOF and relatively low mutual coupling.

Finally, the RMSE versus |c1| is then evaluated. Here, with all other parameters

constant, the SNR is fixed at 0 dB, and the |c1| ranges between 0 and 0.6. Figure 5.9

shows the plot of RMSE versus |c1| for various sparse linear arrays. As shown in Fig.

5.9, the GENAMS array performs well when |c1| < 0.25; however, the ICNA and UF-

4BL outperform the GENAMS array when |c1| > 0.3. However, as we have observed
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Figure 5.8: Comparison of RMSE versus input SNR for various sparse linear arrays.

in Fig. 5.8, in lower |c1| cases, the size of uniform DOF adds DOA estimation

performance advantage to sparse arrays. Hence, balancing the two factors−mutual

coupling and uniform DOF is paramount when designing a sparse linear array to

ensure optimal DOA estimation performance.

5.5 Chapter summary

In this chapter, using the IES patterns of the TS-ENA and f-ENAMS-2 array, a

new generalized ENAMS array has been proposed. The proposed GENAMS array

has a closed-form expression for sensor position constrained by the IES term Q and

N . Theoretical analysis demonstrates that the GENAMS array unifies the optimal

segments of different sparse arrays as the number of sensors N increases. Further-

more, a detailed derivation of the GENAMS achievable uniform DOF and weight

functions show that the proposed array achieves enhanced uniform DOF than ex-

isting ones with relatively low mutual coupling. Lastly, numerical examples verified

that the GENAMS array offers improved uniform DOF and a high-resolution DOA

estimation performance.

However, as observed in Fig. 5.8, a trade-off exists between the achievable uni-
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Figure 5.9: Comparison of RMSE versus |c1| for various sparse linear arrays.

form DOF and coupling leakage. Namely, as achievable uniform DOF increases,

the coupling leakage tends to increase, although ideally, it was supposed to decrease

due to the reduction of co-array redundancy. As such, researchers tend to focus on

reducing mutual coupling or improving the achievable uniform DOF. Although the

IES-based sparse linear arrays like MISC array and IMISC have managed to balance

the two, there is still potential for such sparse arrays.
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Chapter 6

xMISC: Improved Sparse Linear Array via

Maximum Inter-Element Spacing Concept

6.1 Introduction

So far, the design of sparse linear arrays has been approached from the perspective of

enhanced degrees of freedom (DOF) for high-resolution DOA estimation. Although

optimal DOF guarantees optimal DOA estimation performance, there is a limit at

which the performance of sparse linear arrays deteriorates as the strength of mutual

coupling (MC) increases. Eventually, the performance becomes dependent on the

MC characteristics of the sparse linear array. Besides, as we have observed, in an

effort to improve the uniform DOF, sparse linear arrays [48]-[57] were proposed,

whereas as [59]-[66] have been developed to alleviate MC effects. Recently, a new

family of sparse linear arrays [51], [64]-[66] that balance MC effects and DOF has

been proposed via the maximum interelement spacing (MISC) criterion.

In Ref. [65], an enhanced version of MISC is introduced. This upgraded version

comprises six ULA and offers better uniform DOF while minimizing mutual coupling

effects. However, the difference co-array of the IMISC array still contains holes, mak-

ing it less efficient. Therefore, in this study, we aim to improve IMISC by addressing

the existing holes in its difference co-array. Here, we analyze the occurrence of these

holes and present a simple strategy for recovering the missing virtual sensors with-

out needing additional sensors. The proposed strategy involves manipulating the

IES terms of the IMISC array [57], [65]-[66], [113], resulting in a new sparse array

configuration herein called enhanced MISC array (xMISC)1.

In this chapter, our main contributions include: i) We propose a new sparse linear

array design called enhanced MISC array via a hole-filing strategy; ii) Derive detailed

closed-form expressions for the xMISC array related to sensor locations, achievable

1This chapter is based on S. Wandale and K. Ichige, “xMISC: Improved Sparse Linear Array
via Maximum Inter-Element Spacing Concept,” IEEE Signal Processing Letters, vol. x, pp. xx-xx,
202x (under review).
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DOF, and weight functions; iii) Finally, we provide numerical examples to illustrate

the merits of the xMISC array in terms of achievable uDOF, coupling leakage, and

accuracy of DOA estimation.

The remainder of this chapter is organized as follows. First, the conventional

IMISC array from which the proposed xMISC array design is drawn is reviewed in

Section 6.2. Then, the proposed hole-filling strategy and the proposed xMISC array

design are discussed in Section 6.3 and 6.4, respectively. Next, section 6.5 examines

different numerical examples to validate the performance of the proposed sparse array

design. Lastly, concluding remarks are discussed in Section 6.6.

6.2 Conventional improved MISC array

In [65], a maximum interelement constrained (MISC) criterion-based sparse linear

array called improved MISC (IMISC) was proposed. The improved MISC is ex-

pressed using an interelement spacing set Zi and a base term R that depends on the

number of sensors N . Thus, the IMISC can be defined as

Zi =



2, . . . , 2︸ ︷︷ ︸
R
4
−1

, 1, 1,
R

2
− 2,

R

2
− 1, . . . ,

R

2
− 1︸ ︷︷ ︸

R
4
−2

, R, . . . , R︸ ︷︷ ︸
N−R

,
R

2
+ 1,

R

2
+ 1, . . . ,

R

2
+ 1︸ ︷︷ ︸

R
4
−2

, 2, 2, . . . , 2︸ ︷︷ ︸
R
4
−1


, (6.1)
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where R = 4⌊(N + 2)/6⌋ for N ≥ 10 [65]. The sensor location set corresponding to

(6.1) is given as

Zi =



0, . . . ,
R

2
− 2︸ ︷︷ ︸

Z1

,
R

2
− 1,

R

2︸ ︷︷ ︸
Z2

, R− 2, . . . ,
R2

8
− R

4︸ ︷︷ ︸
Z3

,

R2

8
+

3R

4
, . . . , NR− 7R2

8
− R

4︸ ︷︷ ︸
Z4

,

NR− 7R2

8
+

3R

4
+ 1, . . . , NR− 3R2

4
− R

2
− 1︸ ︷︷ ︸

Z5

,

NR− 3R2

4
− R

2
+ 1, . . . , NR− 3R2

4
− 1︸ ︷︷ ︸

Z6

.



, (6.2)

Compared to the MISC array [51], the IMISC array has enhanced uniform DOF

and less mutual coupling effect [57], [64]-[66]. However, unlike the MISC array,

the DCA of the IMISC array is incomplete due to the existence of holes or missing

lags. Figure 6.1 (a)-(b), shows the array configuration of IMISC with N = 10 where

R = 8, and its difference co-array. As shown in Fig. 6.1 (b), the difference co-array

of the IMISC array contains holes at positions {30,−30}.
Furthermore, based on [65, Eq. 19], the DCA of the IMISC array is consecutive

in the range

[−NR +
3R2

4
+

R

2
− 1, NR− 3R2

4
− R

2
+ 1]. (6.3)

As such, compared to (6.1), the uniform DOF of the IMISC array has (R− 4) fewer

lags than its unique DOF, which is limiting considering that (R − 4) grows as the

number of sensors N increases. Inspired by this limitation, in the subsequent section,

we analyze and identify the occurrences of holes in the IMISC array and derive a

hole-filling strategy to recover the missing lags.
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6.3 Hole analysis and filling strategy

This section first analyzes and identifies hole locations in the difference co-array of

the IMISC array. Then, we develop a strategy to fill the holes by rearranging the

interelement spacing terms of (6.1).

6.3.1 Hole Identification and Anaysis

When comparing (6.1)-(6.3) with the DCA of the IMISC array [65, Appendix A], it

becomes evident that the holes in the DCA of the IMISC array are located at specific

positions of

Ho = ±{NR− 3R2

4
− R

2
+ i+ 1|1 ≤ i ≤ R

4
− 1}, (6.4)

where R is as defined in (6.1). Based on equation (6.4), it can be inferred that

the holes in the DCA of the IMISC array are spaced at intervals of 2 starting from

position NR − 3R2

4
− R

2
+ 2. Additionally, it is worth noting that the total number

of holes in the DCA of the IMISC array remains constant at (R− 4), irrespective of

the value of N .

6.3.2 Hole filling strategy

In accordance with [57], [64]-[66], we reformulated and summarized (6.1) into a more

concise format for clarity and ease of understanding. Thus, Mi can be expressed as

Mi = {2m−1, 12, (T − 2), (T − 1)l−2, Rv, (T + 1)m−1, 2m}, (6.5)

where R = 4⌊(N + 2)/6⌋, v = N − R, T = R/2 and m = R/4. In this new format,

we can treat the IMISC array as a minimum redundancy array. When it comes to

the MRA, it is possible to create a new configuration using (6.5) by either updating

or reproducing the highest IES or the primary term [57], [65]-[66]. Another option

is to modify the powers of the IES terms on each side of the primary term to achieve

a new configuration [113].

Utilizing the conditions above, we eliminate one IES term from the second one.

Then, we add the third to the fourth term to equalize the power between the fourth
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and sixth terms. As a result, (6.5) is adjusted as

Le = {2m−1, 1, (T − 1)m−1, Rv, (T + 1)m−1, 2m}, (6.6)

where R, T ,m and v are as expressed in (6.5) except that the total number of sensors

is N − 1 instead of N . Moreover, the corresponding sensor locations set is given by

L1 = {2q1|0 ≤ q1 ≤ m− 1}
L2 = 2m− 1

L3 = {2m+ (T − 1)q2 − 1|1 ≤ q2 ≤ m− 1}
L4 = {Ri+m(T + 1)− T |1 ≤ i ≤ v}
L5 = {Rv +m(T + 1) + (T + 1)q2 − T }
L6 = {Rv + 2T (m− 1) + 2m+ 2q3 − 1|1 ≤ q3 ≤ m}.

(6.7)

In the example illustrated in Figure 6.1 (c)-(d), an Le configuration is depicted

with parameters N = 10, R = 8, v = 2, T = 4, and m = 2. It is worth noting that

despite the aperture remaining intact, four new holes have appeared at positions

{−10, 10} and {−18, 18}.
Next, based on (6.7) the holes in (6.6) are located at

H1 = ±{Rv + 2T (m− 1) + 4m− 2i1|1 ≤ i1 ≤ m− 1}, (6.8)

and

H2 = ±{R(v − i2) + T (m− 1) + 3m|1 ≤ i2 ≤ v − 1}, (6.9)

As a result, similar to (6.4), the number of holes in H1 and H2 are determined by

m−1 and v−1, respectively. By utilizing the extra sensor from (6.6) and positioning

it at dm = Rv + 2T (m− 1) + 4m in Le, we can effectively fill in the holes in H1 and

H2, i.e.,

dm − dL1 = {Rv + 2T (m− 1) + 4m− 2i1|1 ≤ i1 ≤ m− 1}, (6.10)

and

dm − dL4 = {R(v − i2) + T (m− 1) + 3m|1 ≤ i2 ≤ v − 1}. (6.11)
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Figure 6.1: Comparison of sparse linear array configurations and their difference
co-arrays. (a) Improved MISC array and (b) its difference co-array where Ho is the
location set of holes. (c) Relaxed IMISC and (d) its difference co-array where H1

and H2 denote the 1st and 2nd set of holes, respectively. Finally, (e) Enhanced
MISC array where the dotted line represents sensor relocation and (f) its difference
co-array.

77



6.4 Proposed enhanced MISC array design

Following the hole-filling strategy in Section 6.3.2, we propose an enhanced maximum

interelement spacing constrained (xMISC) array. Like the IMISC and MISC array,

the xMISC array is designed using an interelement spacing set Lm and the maximum

interelement spacing term Q. Specifically, the xMISC array can be expressed as

Lm = {2m−1, 1, (T − 1)m−1, Rv, (T + 1)m−1, 2m, 1}, (6.12)

where R = 4⌊(N+2)/6⌋, v = N−R, T = R/2 and m = R/4. And the corresponding

sensor locations can be given as

L1 = {2q1|0 ≤ q1 ≤ m− 1},
L2 = 2m− 1,

L3 = {2m+ (T − 1)q2 − 1|1 ≤ q2 ≤ m− 1},
L4 = {Ri+m(T + 1)− T |1 ≤ i ≤ v},
L5 = {Rv +m(T + 1) + (T + 1)q2 − T },
L6 = {Rv + 2T (m− 1) + 2m+ 2q3 − 1|1 ≤ q3 ≤ m}
L7 = Rv + 2T (m− 1) + 4m.

(6.13)

where sets Li for i ∈ [1, 7] chronologically correspond to the IES terms as expressed

in (6.12).

Figure 6.1 (e)-(f) shows an example of xMISC array configuration with N = 10

sensors where R = 8, v = 2, T = 4 and m = 2. As shown in Fig. 6.1 (f), the

additional sensor at L7 filled the holes in H1 and H2. Thus, the xMISC retains a

hole-free DCA. In the following, we formally summarize the property of the xMISC

array.

Property 6.4.1. Given R = 4⌊(N +2)/6⌋ for N ≥ 10, the difference co-array of the

xMISC array is a hole-free, i.e., D = [−Lu, Lu] such that Rv + 2T (m− 1) + 4m.

Proof. See Appendix D (8.2).

And, based on Property 6.4.1, we derive the following property.
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Property 6.4.2. Given that R = 4⌊(N+2)/6⌋, v = N−R, T = R/2, and m = R/4.

The uniform DOF of the xMISC array is (2N2 − 5)/3 for N ≥ 10.

Proof. Utilizing Property 6.4.1 and (6.12), it follows that

uDOF = 2Lu + 1 ≈ 2Rv + 4T (m− 1) + 8m+ 1, (6.14)

Plugging in R, v and m as given in (6.12) into (8.13) returns

uDOF = 2RN − 3R2

2
+ 1 ≈ 2N2 − 5

3
, (6.15)

and, therefore, completes the proof.

Concerning the weight functions, based on (6.12), the first three weight functions

of the xMISC array are

w(1) = 2, w(2) =
R

2
− 1, w(3) = 2. (6.16)

Obviously, these weights are closer to those of MISC [51] and IMISC [65] but higher

than those of the ICNA [59], and SNA [44], [72].

6.5 Numerical examples

In this section, numerical examples are provided to verify the effectiveness of the

xMISC array. The DOA estimation is conducted using SS-MUSIC [33], and the

accuracy is measured by the root mean-square-error (RMSE) of the estimated DOA

(averaged over 1000 trials). Here, these parameters remain constant: 28 sensors

are used for all arrays, with mutual coupling factors of c1 = 0.2ejπ/3, and ck =

c1e
−j(k−1)/8/k, where k ∈ [2, 100]. The number of snapshots is 1000, and the SNR

ranges from -30 to 10 dB.

6.5.1 DOF capacity and mutual coupling analysis

Let us begin by comparing the DOF capacity of the xMISC array with other sparse

arrays using the DOF ratio. As depicted in Fig. 6.2, the NA has the lowest DOF
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Figure 6.2: Performance of the xMISC array in terms of the DOF ratio γ(N).

capacity, whereas the xMISC array has the highest, and above it, is the DOF ratio

of the original IMISC array. In contrast, the γ(N) values of other sparse arrays lie

between those of the NA and the xMISC array. Moving on, the plot of coupling

leakage against the number of sensors is shown in Fig. 6.3. The ICNA has the least

coupling leakage values, followed by IMISC and xMISC. The IMISC and xMISC

arrays retain w(1) = 2, so the overall coupling leakage values remain fairly consistent.

However, the xMISC array achieves higher DOF than the IMISC array.

Alternatively, we can illustrate the performance of the xMISC array in joint DOF

and reduced mutual coupling. Thus, we evaluate the DOF and mutual coupling

leakage jointly. Accordingly, the optimal sparse linear array should satisfy (6.17),

which forms a feasible region in the 2D plane as shown in Fig. 6.4, i.e.,

γ(N) ≤ 3.25 and L(N) ≤ 1

3
. (6.17)

As shown in Fig. 6.4, the DOF ratio and coupling leakage of the xMISC array is

0.2 and 0.13, respectively, and all are within the feasible region. On the contrary,

However, other sparse linear arrays are not located in the feasible region except for

the IMISC, TS-ENA, and f-ENAMS-2 array.
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Figure 6.3: Performance of the xMISC array in terms of the coupling leakage L(N).

6.5.2 RMSE of DOA estimation in the presence of MC

Finally, we evaluate the DOA estimation performance of the proposed XMISC array.

The RMSE versus the input SNR is computed when P = 40 sources are located at

θ̄p = −0.4+ 0.8(p− 1)/39 for p ∈ [1, 40]. According to Fig. 6.5, NA performs poorly

due to limited DOF. However, the performance of the xMISC array outperforms

other sparse arrays. Thus, the enhanced DOF of the xMISC array improves its

DOA estimation resolution. Next, we computed the RMSE versus mutual coupling

coefficient |c1|. In this example, with all parameters constant, we vary the value of

|c1| from 0 to 0.6. The results are depicted in Fig. 6.6 as a plot of RMSE versus

|c1|. It is clear from Fig. 6.6 that the proposed xMISC array outperforms other

sparse arrays when c1 ≤ 0.4. As |c1| increases, the performance of the xMISC array

degrades. However, the performance is still better than those of the MISC, ICNA,

and other sparse arrays.

6.6 Chapter summary

This chapter introduced an enhanced MISC array design via a hole-filling strategy

(xMISC). This strategy manipulates the interelement spacing terms of the IMISC

array, thereby eliminating the need for extra sensors. The proposed xMISC array has

closed-form expressions for sensor positions and retains a hole-free DCA. Numerical
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Figure 6.4: Comparison of the DOF ratio and coupling leakage for different arrays.
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Figure 6.5: Performance of the xMISC array in terms of the RMSE versus SNR.

examples demonstrated that the xMISC array improves uniform DOF and high-

resolution DOA estimation performance.
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Chapter 7

Sparse Array Design via Deep Learning:

Trade-Offs Analysis

7.1 Introduction

Recently, antenna array design has witnessed a dynamic shift from traditional (ad-

hoc, analytical, and heuristic) methods to cognitive machine learning-based ap-

proaches, especially regarding sparse arrays. As highlighted in previous chapters 3-6,

sparse or non-uniform arrays offer many unique advantages, including reduced mu-

tual coupling, enhanced resolution, and cost-effectiveness [42]-[72]. However, their

optimal design remains challenging due to the vast solution space and complexity of

achieving the desired performance characteristics such as reduced mutual coupling

(MC) effect, hole-free difference co-array, reduced redundancy, trimmed sidelobe lev-

els (SLLs), and many more [83]-[90]. Therefore, a successful design depends on

the method used and the choice of the objective function or desired performance

characteristics.

Concerning the sparse array design approaches, the ad-hoc methods are most rec-

ognized and are typically based on trial and error as well as prior experience (expert

knowledge). As such, they might not guarantee optimal solutions but are usually

easy to implement and understand. For example, one common ad-hoc approach is

to manually adjust the antenna elements’ positions until the desired performance is

achieved. This is portrayed in the design of well-known sparse arrays like NA [9], CA

[10], MISC [51], and many more [8], [15], [42]-[72]. Another limitation of ad-hoc

approaches is that the method becomes infeasible as the array size increases due to

the exponentially growing solution space [83]. Therefore, to work around this prob-

lem, closed-form expressions are used to generate any sparse array of that pattern

given any number of sensors N [42]-[43], [48]1.

1This chapter is based on S. Wandale and K. Ichige,“Simulated annealing assisted sparse array
selection utilizing deep learning,” IEEE Access, vol. 9, pp. 156907-156914, 2021, doi:10.1109/
ACCESS.2021.3129856.
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On the other hand, heuristic methods leverage optimization algorithms to explore

the solution space systematically [91]. One of the popular heuristic techniques is the

simulated annealing (SA) algorithm, a probabilistic method for finding the global

minimum of a function. The SA algorithm reasonably compromises computational

efficiency and solution quality by avoiding local minimum traps. However, the SA

algorithm still requires substantial computational resources and time, particularly

for large-scale problems [83], [90]-[94].

In contrast to ad-hoc and heuristic methods, machine learning (ML) techniques

have the potential to solve large-scale sparse array design problems more efficiently.

Specifically, deep learning (DL) algorithms have shown promise due to their ability

to model complex, non-linear relationships and handle high-dimensional data [107]-

[109]. For example, one recent approach uses a two-stage DL-based sparse array

selection method, comprising an initialization step using the SA algorithm to gener-

ate sparse array configurations for the construction of the dataset, then training a

convolutional neural network (CNN) model on this data [91]. This approach offers

the advantage of requiring fewer data samples to realize data labels, significantly

reducing computational costs and time in the process. Moreover, the trained CNN

model can provide optimal solutions with reduced computation time compared to

the conventional SA-based optimization approach [83], [91]-[94]. Besides, it does so

without needing an expert, as the ad-hoc method requires [42].

This chapter explores and elucidates the trade-offs between the heuristic and ML-

based sparse array design approaches. Specifically, we consider the SA-based method

proposed in [92]-[94] and the SA-assisted DL array design method demonstrated in

[92]. The fundamental trade-offs of interest in this chapter involve the consideration

of a balance between computational efficiency and solution quality when choosing

a sparse array design method. In the context of DOA estimation, we explore the

trade-off where the quality is evaluated in the form of accuracy or DOA estimation

performance of a sparse array design by each method above.

This chapter is organized as follows: Section 7.2 introduces a sparse array de-

sign problem as an antenna selection or array thinning problem. Then, Section 7.3

discusses different sparse array design methods and their unique solutions. Next,

Section 7.4 examines the trade-offs of the two techniques in light of the sparse arrays
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designed. Finally, Section 7.5 concludes the chapter.

7.2 Antenna selection and sparse array design

Antenna selection and sparse array design are crucial aspects of wireless communica-

tion systems, focusing on antennas’ optimal arrangement and utilization to maximize

signal reception and transmission. However, these processes have to account for var-

ious elements such as signal strength, interference, power efficiency, and physical

constraints, thereby increasing the complexity of the problem space [97]-[107]. In

antenna selection, the main objective is to choose the best subset of antennas from

a larger set to optimize system performance based on specific criteria, such as SNR,

channel capacity, or energy efficiency. This selection problem can be expressed as

Sop = max
Si⊆1,2,...,N,|Si|=M

F (S) (7.1)

where F (S) represents the objective function (e.g., SNR, channel capacity), N is the

total number of antennas, Sop is the selected subset, andM is the number of antennas

to be selected. The complexity of this problem arises from its combinatorial nature;

with a large number of potential combinations, i.e.,

Q =

(
N

M

)
=

N !

M !(N −M)!
. (7.2)

Therefore, identifying the optimal subset becomes computationally demanding and

is often classified as an NP-hard problem, implying no known algorithm can solve it

in polynomial time [83]-[91].

On the other hand, sparse array design pertains to the optimal arrangement of a

limited number of antennas M in a larger space N to optimize specific performance

metrics such as the array’s directivity, SSLs, or spatial resolution. Thus, although not

explicitly equivalent to antenna selection, the two are used interchangeably, yielding

almost the same problem space, i.e., Q combinations. The problem space here is

massive due to the many ways antennas can be arranged, resulting in high compu-

tational complexity [13]-[16], [103].

As highlighted in Section 7.1, different techniques have been developed over the
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decades to address these problems, ranging from classical ad-hoc [42]-[72], [108]-

[113] to recently harnessed machine learning methods [85], [87]-[91], [106]-[109].

However, despite the pros and cons of these methods, these tasks (antenna selection

and sparse array design) remain vital in developing and operating modern wireless

communication systems [1]-[7]. Therefore, this chapter explores the pros and cons

of these methods, especially the trade-off between computational complexity and

accuracy, in order to foster balanced and informed decisions when selecting sparse

array design methods. In the sections that follow, we briefly review two different

sparse array design approaches: i) traditional heuristic methods [92]-[94]; and iii)

contemporary ML techniques [90]-[91].

7.3 Review of sparse array design

In this section, we will be examining two distinct approaches to sparse array design

that we plan to use for trade-off analysis. The third method, ad-hoc, since the

computation complexity of the ad-hoc method cannot be accurately measured, we

will be focusing our analysis on the ML-based method in Section (7.3.1) and the

traditional heuristic methods in Section (7.3.2). To simplify matters, we will be using

the SA method [92] and the SA-assisted DL-based method [91] as representatives of

the heuristic and ML-based approaches, respectively.

7.3.1 Heuristic optimization methods

As discussed in Section 2.4, in [92]-[94], a simulated annealing-based planar array

(SAPSA) was studied with the aim of reducing the mutual coupling in an hourglass

array (HA) [95]. Starting with the HA with N sensors as an initial array, i.e., Zi,

the SAPSA can be realized by solving the following problem

Ssa = argmax
Si

N∑
i=1

N∑
j=i+1

1

||ni − nj||2
,

s.t ||ni − nj||2 ⩽ B,

(7.3)
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where ni,j ∈ Zi, N is the number of sensors and || · ||2 is the l2-norm of a vector.

Additionally, B is the upper-bound coefficient of mutual coupling [48], [92]. Thus,

the problem in (7.3) aims at optimizing the sensor positions in Zi while minimizing

the mutual coupling between sensors, i.e.,
∑N

i=1

∑N
j=i+1

1
||ni−nj ||2 [92].

In this context, the SA algorithm can realize a sparse array with desired aperture

and well-distributed sensors while navigating around such a big problem space as Q.

Below, we summarize the optimization stages of the SA algorithm:

(a) The initialization stage requires Zi the initial 2D array with N sensors, and

other parameters, including initial temperature βo, permitted number of holes

in the DCA η, and objective function κ.

(b) Then, at each iteration it perturbates the Zi while maintaining the number of

permited holes η in the DCA of Zin [92]. Therefore, using the current tem-

perature β, the acceptance probability function ρ(∆κ, β) of current solutions

is givens as

ρ(∆κ, β) =

e−∆κ/β, if ∆κ > 0

1, otherwise
(7.4)

where ∆κ = κn−κn−1 such that κn and κn−1 denote objective functions of the

new and the previous solutions, respectively. Thus, the solution is accepted if

the new κ is smaller than the preceding one. Otherwise, the temperature is

decreased, discard poor solutions discarded, and the algorithm iterate.

Note that β is decreased using a cooling schedule which is determined by a

coefficient α. Therefore, using βo, at i-th iteration the temperature becomes

β = βo · αi. (7.5)

The operation in (7.5) is repeated at each iteration until the algorithm con-

verges to a global minimum. The smaller the ∆κ, the higher the temperature.

Furthermore, cooling down the temperature slowly slows down the convergence

rate. Therefore, it is essential to select a higher value of βo to escape from the

local minimum and an optimal value of α to increase the chances of obtaining

a global optimum [31], [92].
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Figure 7.1: (a) The flow diagram of simulated annealing algorithm for optimization
of HA.

Figure 7.1 summarizes the above stages in a generalized flow diagram [91]. Note

that this SA algorithm can be extended to other 2D arrays other than HA.

7.3.2 Machine learning methods

Unlike heuristic methods, ML-based methods have become attractive due to their

low computation complexity once online (after being trained offline and deployed).

At this stage, the ML models require less time to converge to a near-optimal solution.

Besides, they are robust to uncertainties and can transfer features between models

or tasks, i.e., transfer learning. So far, different methods, such as support vector

machines (SVM) and artificial neural networks (NN) [84], have been proposed to

predict sparse linear array configurations. In addition, DL-based approaches have

also been proposed to tackle the 2D array design problem in [85]-[88]. However,

these problems depend on Q or its partial form to construct meaningful datasets and
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ground truth, which is computationally costly and often yields biased representation.

Hence, in [91], an SA-assisted DL-based model was proposed to circumvent the above

problem. Overall, machine learning is a new and promising approach as far as sparse

array design is concerned. In the next paragraph, we discuss the SA-assisted DL-

based sparse array design approach to demonstrate the use of ML in sparse array

design [91].

Performance criterion: Like any other optimization problem, knowing the

objective function simplifies the design process of the algorithm. Here, the perfor-

mance metric must be known to generate meaningful target or ground truth data

for the ML model. For simplicity, we assume Cramer-Rao bound (CRB) as a metric

[24]-[26], [85]. In what follows, we derive the closed-form expression of the CRB.

Utilizing (2.15) from Section 2.2.4, the partial derivative of A(Θ) with respect

to θ and ϕ can be expressed as b(θk) = ∂
∂θk

A(θk) and b(ϕk) = ∂
∂ϕk

A(ϕk) re-

spectively for k = 1, 2, . . . , K such that Bθ =
[
b(θ1), b(θ2), . . . , b(θK)] and Bϕ =[

b(ϕ1), b(ϕ2), . . . , b(ϕK)] respectively [85]. As such, the CRB with respect to θ and

ϕ can be defined as

Cθ =
σ2
n

2T
ℜ
[
Iθ ⊙

(
RsA

H(Θ)R−1A(Θ)Rs

)T]
, (7.6)

Cϕ =
σ2
n

2T
ℜ
[
Iϕ ⊙

(
RsA

H(Θ)R−1A(Θ)Rs

)T]
, (7.7)

where

Iθ = BH
θ

[
I −A(Θ)(AH(Θ)A(Θ))−1AH(Θ)

]
Bθ,

Iϕ = BH
ϕ

[
I −A(Θ)(AH(Θ)A(Θ))−1AH(Θ)

]
Bϕ,

respectively [10], [17]. Combining (7.6) and (7.7) yields

C(Θ) =
1√
2

[
Cθ2 + Cϕ2

] 1
2
, (7.8)

assuming that the SNR is expressed as 10 log10(σ
2
s/σ

2
n) [85]. Therefore, using (7.8)

the DOA estimation performance of a sparse array Si given that the signal informa-

tion is known prior [84]-[91].

Ground truth construction: Next, given a range of DOA sources and (7.8),
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conventional ML-based methods employ simple search methods to select subarrays

with the best CRB values as ground truth for different subarrays depending on the

DOAs. However, searching through Q is computationally expensive. To work around

this problem, in [91], two simple modifications were proposed as summarized in Fig.

7.1 as follows: i) a condition was added to maintain all corner sensors, i.e., Zψ; and

ii) a loop was added after step (b) so that sparse arrays St for t ∈ T , are generated

for T trials. Therefore, the realized sample matrix T is not only more manageable

than Q but also contains array samples with desired sparse array conditions [87],

[90]-[91].

In this context, the simple search algorithm can be expressed as

UT = argmin
St,t∈T

C
(
Θ, St

)
, (7.9)

Accordingly, the resulting ground truth matrix UT is much smaller than UQ due to

the similarities in array configurations and responses to various DOAs [84], [88].

Dataset construction: Now, having established the sample and the ground

truth generation stages, in this section, we put together all the components into a

single algorithm. Given the total number of sensors N , the number of sensors to

be selected M , the number of snapshots T , the number of different DOA angles K,

the input SNR, and the sample array matrix T . First, P signals are realized for

different |T | arrays. Thus, the signals are used to construct covariance matrices, i.e.,

Rxx,t, ∀t ∈ T [95], [91].

Before we proceed, note that the input data is N × N × 3 real-valued matrices

{H}3i=1 whose (i, j)−th entry consists of [H1]i,j = ∠[R]i,j, [H2]i,j = Re[R]i,j and

[H3]i,j = Im[R]i,j denoting the phase, real and imaginary components of a sample

covariance matrix Rxx,t [95], [88]. Next, in a parallel setup, (7.9) is applied to the

realized covariance matrices to generate the ground truth data. Since the result-

ing data is used for training purposes, the SNR used in this process is denoted as

SNRTRAIN. Lastly, the input-output data pairs (or input-target pairs) are computed

as (Ht, ut) such that ut ∈ Ut is the output label that represents the best subarray

given Rxx,t as the input. The above steps are summarized in the Algorithm 1.

Deep learning model: For objective comparison, we adopt a general CNN

structure consisting of 8 layers as in [85]. In general terms, the first layer (1st layer)
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Algorithm 1 Proposed training dataset generation method

Input: Given N , M , T , K, P and SNRTRAIN

Output: Training data DTRAIN

1: Generate T as shown in Fig. 7.1 (b).
2: Sample K DoA angles {Θk}Kk=1.
3: Compute P different realizations of subarray output, {X i

k}Pi=1 for k ∈ [1, K]
such that X i

k = [xik(1),x
i
k(2), . . . ,x

i
k(T )],

where xik(t) = a(k)s(i)(t) +n(i)(t), s(i)(t) ∼ CN (0, σ2
sI) and n(i)(t) ∼ CN (0, σ2

n)

4: Calculate covariance matrix R̂ and M ×M matrices R
(i,k)
t , ∀t ∈ T .

5: Compute C
(
Θ,St

)
∀t ∈ T and select labels following (7.9).

6: Create input-output data pairs as (R̂(i,k), u
(i)
k ) for k = 1, 2, . . . , K and for i =

1, 2, . . . , P .
7: Connect the input-output pairs to form the training dataset as

DTRAIN =
[
(R̂(1,1), u

(1)
1 ), (R̂(2,1), u

(2)
1 ), . . ., (R̂(P,1), u

(P )
1 ), (R̂(1,2), u

(1)
2 ), . . . , (R(P,K), uPK)

]
where the size of the training dataset is R = PK.

accepts the 2D input, and the last output layer (8th layer) is a classification layer with

l units where a softmax function is used to obtain the probability distribution of the

classes [90]. The second (2nd layer) and the fourth (4th layer) layers are max-pooling

layers with 2 × 2 kernel to reduce the dimension whereas the third (3rd layer) and

the fifth (5th layer) layers are convolutional layers with 64 filters of size 2 × 2.

Finally, the seventh (7th layer) and the eighth (8th layer) layers are fully connected

layers with 1024 units. Note, the rectified linear units (ReLU) are used after each

convolutional and fully connected layer such that ReLU(x) = max(x, 0) [11]. During

the training phase: 90 % and 10 % of the data are allocated for training and validation

purposes. The stochastic gradient descent with momentum (SGD) is used with a

learning rate of 0.03 and a mini-batch of 500 for 50 epochs [91].

Implementation example: In this section, using a URA with 42 sensors, we

generate two distinct training datasets using the conventional method [85] and the

SA-assisted approach [91]. We randomly sample 10000 subarrays for the former and

employ the SA-based optimization method for the latter. To realize classes T using

the SA-based algorithm, we assume the following parameters: η = 0, β = 1000,

βo = 0.0001 and κo is as in (7.3). We sample Kϕ = 120 DOAs uniformly within the

range of [0◦, 360◦) whereas Kθ was fixed at 90◦. Furthermore, for each dataset, we
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Table 7.1: Realized training data for various techniques

(N,M) Sets
Data generation techniques

Conventional DL (Q) SA-assisted DL (T )

(42, 16)
Samples 10000 4000

Labels 34 37

assume 10 dB SNRTRAIN and 100 snapshots.

Table 7.1 summarizes the data samples and their corresponding ground truth. As

shown in Table 7.1, the number of labels generated by the SA-assisted method almost

tally with those realized using the conventional method despite using a small number

of samples compared to the conventional approach. Thus, the proposed initialization

step achieves large label samples from a small predefined generated dataset compared

to the conventional method. Thus, the SA-assisted approach considerably reduces

computation costs [91].

Next, using the generated dataset, we evaluate the trained CNN model in three

ways. In example #1, we test the CNN model with the data generated using param-

eters shown in Table 7.2 to predict sparse 2D arrays. The predicted sparse array is

depicted in Fig. 7.2. Specifically, Fig. 7.2 (a) shows the parent 42−element URA

whereas Fig. 7.2 (b)–(c) show the predicted 16-element DL-based 2D sparse array

using the conventional and SA-assisted method, respectively. As shown in Fig. 7.2,

the SA-assisted method yields a 2D sparse array with a larger physical aperture

compared to the conventional DL-based sparse array.

In the second example (example #2), we evaluate the sparse array design ap-

proaches in terms of RMSE performance of DOA estimation. For this experiment,

we assume simulation parameters in the third column of Table 7.2. The realized

sparse arrays from CNN are fed to a MUSIC algorithm [24]-[26] for DOA estimation

purposes. In this scenario, the SNRTEST is varied from −20 dB to 10 dB over 100

number of trials. The RMSE is calculated as,

RMSE =

√√√√ 1

T K

T∑
i=1

K∑
k=1

(ϕ̃ik − ϕk)2, (7.10)
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Table 7.2: Simulation parameters for estimation performance evaluation

Parameters
Simulation examples

Example #1 Example #2 Example #3

(N,M) (42, 16)

# of trials, T 100

TTEST, TTRAIN 100 snapshots

(Kθ, Kϕ)TRAIN [deg.] 120

(Kθ, Kϕ)TEST [deg.] 2

SNRTRAIN [dB] 10

SNRTEST [dB] 5 −20 to 10

where ϕ̃ik and ϕk denote the estimated and true k−th DOAs in the i−th trial, re-

spectively.

Figure 7.3 shows the RMSE of DOA estimation as a function of SNRTEST. In

Fig. 7.3, the best subarray represents the subarray with the lowest CRB value or the

ground truth. Thus, we compare the ground truth’s DOA estimation performance

with the predicted arrays, i.e., CNN-generated sparse arrays by both the conventional

and the SA-assisted method. As shown in Fig. 7.3, the SA-assisted method coincides

quickly with the ground truth’s performance compared to the conventional method.

Finally, in example #3, we compare the antenna selection accuracy of the two

DL-based methods. Here, we use the simulation parameters shown in the fourth

column of Table 7.2. The realized sparse arrays from CNN are compared to the

best subarrays or labels to evaluate the classification performance [85]. During the

testing stage, the SNRTEST is varied from −20 dB to 10 dB over 100 number of trials.

Figure 7.4 shows the accuracy of sensor selection as a function of SNRTEST, i.e.,

Accuracy =
D
F × 100 %, (7.11)

where D is the total number of input data in which the model identifies the best

subarray correctly F times [85], [91]. From Fig. 7.4, it can be observed that the

SA-assisted method has more than 90% accurate for SNRTEST ≥ −8 dB when the
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(16−sensors) and (d) the proposed DL-based array (16−sensors). Note that the
dots denote physical sensors.

.

network is trained by the dataset with SNRTRAIN ≥ 10 dB. Compared to the con-

ventional method, it has less than 90% accuracy for SNRTEST ≥ −8 dB when the

model is trained with the same parameters. Hence, the SA-assisted method performs

better than the conventional method [91].

7.4 Trade-off analysis

In this section, we analyze the trade-off among different sparse array design methods

in terms of i) computation complexity in Subsection 7.4.1 and ii) accuracy in Sub-

section 7.4.2. Since the computation complexity of the ad-hoc method can not be

measured, the analysis focuses on the ML-based and traditional heuristic methods.

Besides, for simplicity, we consider the SA method [93] and the SA-assisted DL-based

method [92] as representative of the heuristic and ML-based methods, respectively.

Moreover, generalizability and specificity are other important trade-offs that are

beyond this chapter’s scope and can be considered as future work.

7.4.1 Computational complexity analysis

Here, we compare the computation complexity of the simulated annealing [93] and

DL-based [92] methods to represent the heuristic and ML-based approaches, respec-

95



-20 -15 -10 -5 0 5 10

SNR [dB]

10
-2

10
-1

10
0

10
1

R
M

S
E

 [
d
B

]

Best subarray(Conventional)

CNN(Conventional)

Best subarray(Proposed)

CNN(Proposed)

Figure 7.3: Comparison of DOA estimation of the conventional and proposed method
for different array configurations.

tively. Firstly, the SA-based algorithm requires O(M) operations to realize a sparse

array with M sensors. Then, approximately O(MN2) operations are required to

optimize the previously generated sparse subarray. Therefore, the computational

complexity of the SA-based sparse array design method becomes

Wsa = O(MN2 +M). (7.12)

However, in the SA-assisted deep learning method [92], the SA-based algorithm was

executed multiple times, specifically T times, to yield a considerable amount of sub-

arrays to mimic conventional permutation or combination stages of the algorithm.

Hence, multiplying that by the previously calculated Wsa yields computation com-

plexity of the SA-assisted stage as

Wdl = O
(
T (MN2 +M)

)
, (7.13)

Table 7.3 summarizes the computational complexities of both methods [91]. A quick

glance of (7.12) and (7.13), indicates that Wsa is significantly lower by T as com-

pared to Wdl. However, as we shall see in the subsequent paragraphs, the DL-based
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Figure 7.4: Performance of the conventional and SA-assisted method for different
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Table 7.3: Comparison of the computation complexity of the deep learning and SA-
based sparse array design methods

Sparse array design method Computational complexity

SA-based O(MN2 +M)

DL-based O
(
T (MN2 +M)

)
method requires less computation time to predict a sparse array once trained offline.

manageable compared to the conventional method.

Next, we compare the computational time necessary for DL-and SA-based sparse

array design methods. The methods were executed in MATLAB on a personal com-

puter with Intel(R) Core (TM)-i5 processor operating at 2.60 GHz with 4GB of RAM.

In this case, we consider the time to predict only for the DL-based approach and the

time to optimize a single 2D sparse array under 100 iterations for the SA algorithm.

Figure 7.5 shows the computation complexity of the sparse array design methods as

a function of the array size. Unlike Table 7.3, which indicates that the SA-based

method has less computation complexity than the DL-based method, Fig. 7.5 shows

that the DL-based method required less time to predict a sparse 2D array once on-
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Figure 7.5: Comparison of computation time between the DL-based and traditional
SA sparse array design techniques.

line [91]. Besides, the computation time does not increase with the problem size or

space. On the other hand, the SA method can provide better solutions but at the

cost of increased computational time and resources as the problem space increases.

Meanwhile, the DL-based method offers a balance between these two extremes by

providing high-quality solutions with reduced computational requirements.

7.4.2 Quality analysis: DOA estimation performance

Following the computation complexity analysis in Section 7.4.1, we examine the per-

formance of 2D sparse arrays realized by the SA-assisted DL and SA-based methods

as discussed in Section 7.3. In these numerical examples, all sparse arrays consist

of 42 sensors, and conventional uniform rectangular arrays (URA) with 16 and 42

sensors are used for comparison purposes. In particular, we explore the behavior

of the RMSE as a function of SNR and the number of snapshots. The RMSE is
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calculated as

RMSE =

√√√√ 1

T K

T∑
i=1

K∑
k=1

[
(ϕ̃ik − ϕk) + (θ̃ik − θk)

]2
, (7.14)

where ϕ̃ik, θ̃
i
k and ϕk, θk denote the estimated and true k−th DOAs in the i−th trial,

respectively.

Besides, Table 7.4 summarizes the simulation parameters used to compute RMSE

with respect to SNR (Example #1) and the number of snapshots (Example #2), re-

spectively. Moreover, the 2D-ESPRIT algorithm is adopted as the default DOA esti-

mator [95], [23]. However, if the difference co-array of the 2D sparse array generated

via the SA algorithm is not hole-free, the resulting virtual 2D array becomes irreg-

ular. As such, the spatial-smoothing DOA estimation method such as 2D-ESPRIT

cannot be applied since the 2D-ESPRIT algorithm requires a URA array structure

for spatial smoothing pre-processes [23]. As a result, a nuclear norm minimization

(NNM) approach is applied to fill the holes [93]-[95] and restore it to a standard 2D

URA-like array.

Figure 7.6 shows the RMSE performance of different 2D sparse arrays as a func-

tion of input SNR. As shown in Fig. 7.6, the URA with 42 sensors has better perfor-

mance overall due to its large effective aperture, whereas the URA with 16 sensors

performed poorly than other methods. Thus, the URAs form the lower (URA with

42 sensors) and upper (URA with 16 sensors) performance bounds. In contrast, the

DL-based sparse array performed better than the URA with 16 sensors and slightly

lower than the URA with 42 sensors. Besides, the SA-based sparse array performs

better next to the DL-based sparse array.

Figure 7.7 shows the RMSE versus the number of snapshots performance for

various 2D sparse arrays. A similar trend is observed where the two URAs bound

the performance of the SA-assisted DL and SA-based sparse arrays as the number of

snapshots increases. The URA with 42 sensors has the lowest RMSE values, whereas

the one with 16 has higher RMSE values than all other sparse arrays. Evidently,

these examples demonstrate that the sparse array design methods can thin 2D arrays

to a manageable size without considerable loss of DOA estimation resolution. More

importantly, compared to the sparse array generated by the SA method, the sparse
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Table 7.4: 2D DOA estimation simulation parameters

Parameters
Simulation examples

Example #1 Example #2

# of sources K 9

# of trials, T 1000

# of snapshots 500 10 to 1000

SNR [dB] −20 to 10 0

DOAs (θ, ϕ) [deg.] (10, 255), (45, 300), (20, 345), (50, 210),

(70, 0), (0, 30), (60, 165), (5, 120), (30, 79)

Estimator 2D-ESPRIT

array realized by the SA-assisted DL method exhibits enhanced DOA estimation

performance.

7.5 Chapter summary

In this chapter, we evaluated two approaches to designing sparse arrays - heuristic

and ML-based methods, using the example of the SA algorithm proposed in [92] and

an SA-assisted DL sparse array design method [91]. The analysis focused on two

parameters - the computational complexity of the method and the accuracy of DOA

estimation performance of the resulting sparse arrays. Following the analysis, it is

clear that while Ad-hoc methods may provide straightforward solutions, but they

may not always be the most effective. On the other hand, heuristic methods utilize

optimization algorithms which yield more efficient outcomes. However, for complex

problems with intricate relationships and large amounts of data, especially high-

dimensional data, machine learning, particularly deep learning, is the most suitable

option.
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Chapter 8

Concluding Remarks and Future Work

8.1 Concluding remarks

As reiterated throughout this dissertation, traditional uniform linear arrays (ULA)

are limited when dealing with i) undetermined DOA estimation problems where

there are more sensors than the number of sources or ii) when faced with a resolution

dilemma given a restrictive array antenna mounting platform. Thanks to the concept

of difference co-array, the larger interelement spacing in sparse arrays can be exploited

to generate virtual sensors or lags and, therefore, improve the degrees of freedom

(DOF) from O(N) to O(N2) given N sensors only [8]-[10], [42]-[72]. The generated

virtual array is used for DOA estimation with the help of co-array-based subspace

estimators such as spatial smoothing MUSIC [33]-[34] and other similar methods

[35]-[40]. As discussed in Chapter 2, prior sparse samplers or arrays include MHA

[43], MRA [42], nested arrays [9], and coprime arrays [10]. These conventional arrays

have shortfalls ranging from the lack of closed-form expression for sensor positions

to limited DOF due to missing virtual sensors or holes, which ultimately reduce

the usable or effective virtual array aperture [42]-[72]. It is these limitations that

have motivated researchers to seek other sparse array designs with some or all of the

following characteristics:

a) The sparse array with closed-form expression for sensor positions [48].

b) The sparse array with hole-free or near-hole-free difference co-array to maintain

the optimal DOF [8], [13]-[16].

c) The sparse array with a minimal sensor pairs with unit spacing to reduce the

mutual coupling effect between sensors [44], [72].

Inspired by the limitations of conventional sparse arrays, especially nested arrays,

a new sparse linear array known as extended nested array with multiple subarrays

(ENAMS) is introduced in Chapter 3 [52]. The ENAMS array retains all the good

properties of the nested array and attains improved DOF and a relatively reduced
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mutual coupling effect compared to the nested array. Numerical examples demon-

strate that the ENAMS array achieves high-resolution DOA estimation performance

compared to a nested array given the same number of sensors. However, compared

to other state-of-the-art sparse arrays such as TS-ENA [53] and MISC [51], the

ENAMS array’s DOF is limited.

To further improve the uniform DOF of the ENAMS array, flexible ENAMS arrays

(type-I and type-II) are proposed in Chapter 4 [55]-[56]. The flexible ENAMS arrays

are formed by relocating sensors from the dense subarrays (left and right subarrays)

of TS-ENA into its sparse section (middle subarray), thereby enlarging the available

array aperture while maintaining all the good properties of TS-ENA. Compared to

MISC and TS-ENA arrays, the f-ENAMS arrays have enhanced DOF and relatively

reduced mutual coupling. However, the TS-ENA array can relocate n1,2 = 2 sensors

only and n1,2 = 3 sensors for the f-ENAMS-2 array against the observation that n1,2

can attain any value in the range of [1,∞) [57]. Based on this observation and the

IES criterion, the array patterns of the TS-ENA and f-ENAMS-2 arrays are unified,

and a unified ENAMS array geometry called Generalized ENAMS (GENAMS) is

proposed in Chapter 5. The GENAMS array leverages the variation of n1,2 as N

increases to construct an optimal sparse linear array [57]. Besides retaining all

the properties of the TS-ENA array, the GENAMS array achieves improved DOF

and exhibits high-resolution DOA estimation performance compared to other sparse

arrays.

Thus, the critical contributions of this dissertation are the ENAMS, f-ENAMS,

and GENAMS sparse array designs, which can be valuable in array signal processing

for DOA estimation, even when the mutual coupling is present.

8.2 Future work

As for future work, designing sparse linear arrays with reduced mutual coupling

effect is one of the possible research directions. In this work, the development of

sparse linear arrays has been studied from the perspective of enhanced degrees of

freedom for high-resolution DOA estimation. Although ultra-high array aperture or

improved degrees of freedom guarantee optimal DOA estimation performance, as we
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have witnessed in the case of the GENAMS array in Chapter 5, the performance of

sparse arrays deteriorates as the strength of mutual coupling increases to the extent

that the DOA estimation performance no longer depends of available DOF but rather

the mutual coupling effect.

Furthermore, despite the effort by the researcher to balance the two factors -

available DOF and mutual coupling effect, the design of sparse linear arrays with

higher DOF and reduced MC effect remains one of the hot topics in array signal

processing, especially at the time undetermined array signal processing problems

are more attractive. On the other hand, it is worth noting that tremendous effort

and achievement have been made in developing sparse linear arrays for the past

seven years, and less to 2D or planar arrays for array signal processing applications.

Therefore, extending such efforts on 2D sparse arrays with enhanced DOF and less

mutual coupling is another promising research direction for sparse array design [91]-

[96], [99]-[104].
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Appendix A

Proof of Lemma 3.3.1

Based on (5.5), the difference co-array of ENAMS array spans the range [−N2(N1+)−
N1 + 3, N2(N1+)+N1 − 3] for N ≥ 6. Furthermore, due to the symmetric structure

of the DCA, the following statements hold− i) if p ∈ U,U ⊆ D, then −p ∈ U,U ⊆ D,
and ii) the first sensor or self-difference of one of the physical sensors contributes

to lag p = 0. As such, we only need to show that there exists a lag p in the range

1 ≤ p ≤ N2(N1+) +N1 − 3. Thus, we consider the following cases:

a) The lags in the range 1 ≤ p ≤ N1 + 1, can be realized by a difference set

between Z2 and Z1, i.e., diff(Z2,Z1). Namely,

diff(S2, S1) = {0, 1, . . . , N1}. (8.1)

b) On the other hand, the majority of the lags in the range N1+1 ≤ p ≤ N2(N1+

1)− 2, can be covered by

diff(S3, S1) = {2N1 + i(N1 + 1)− j|i ∈ [0, N2 − 2], j ∈ [1, N1 − 2]}. (8.2)

And other few holes can be easily filled by the following sets: diff(S3, S2),

(S4, S3), (S5, S3), (S4, S2) and (S5, S2).

c) Next, the difference set diff(S4, S1) cover up the lags in the range of N2(N1 +

1)− 2 ≤ p ≤ N2(N1 + 1)− 1, i.e.,

diff(S4, S1) = {N2(N1 + 1)− i|i ∈ [1, N1 − 2]}. (8.3)

d) Lastly, the lags in the final segment of range N2(N1 + 1) ≤ p ≤ N2(N1 + 1) +
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N1 − 3, can be realized by

diff(S5, S1) = {N2(N1 + 1) +N1 − 2− i|i ∈ [1, N − 1]}. (8.4)

Thus, cases a)−d) collectively cover the lags in the range 1 ≤ p ≤ N2(N1+1)+N2−3;

therefore, the ENAMS array’s difference co-array is hole-free.

Proof of Property 3.3.3

To prove Property 3.3.3, we consider checking the self-difference and the cross-

difference sets of the ENAMS array.

For the self-difference sets, the sets diff(S2, S2), diff(S4, S4) and diff(S5, S5) do not

include sensors with separation 1, 2, 3 and so on, as they contain a single sensor only.

Besides, diff(S3, S3) yields ±(N1 + 1), ±2(N1 + 1), up to ±(N2 − 2)(N1 + 1). It is

only diff(S1, S1) that include 0, ±1,±2,±3 and so on. That’s we have

(N1 − 3), (N1 − 4) and (N1 − 5), (8.5)

sensor pairs with separations 1, 2, and 3, respectively. As for the cross-difference sets,

the sets of interest are diff(S2, S1), diff(S4, S3), and diff(S5, S4). Thus, examining the

minimum elements of diff(S2, S1) leads to

min diff(S2, S1) = (N1 + 1)− (N1 − 2) = 3, (8.6)

while evaluating the minimum elements of diff(S4, S3) yields

min diff(S4, S3) = N2(N1 + 1)− (N2(N1 + 1)− 2) = 2. (8.7)

And, evaluating the minimum elements of diff(S4, S3) leads to

min diff(S5, S4) = N2(N1 + 1) +N1 − 2−N2(N1 + 1) = N1 − 2, (8.8)

which contributes to weights w(n) for n ≤ 3 if N1 ≤ 5. Thus, combining (8.15)-(8.8)

add up to w(1) = w(2) = N1 − 3 and w(3) = N1 − 4.
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Appendix B

Proof of Lemma 4.3.2

The proposition that the DCA of the f−ENAMS-I array has a U in ⟨−Nu+5N1/2−
1, Nu + 5N1/2 − 1⟩ where Nu = N2(N1 + 1) is equivalent to the argument that for

m ∈ U, there is at least one pair of sensors that leads to it, and since DCA is a

symmetric set, then it suffices to show that 0 ≤ n ≤ Nu + 5N1/2 − 1. To that end,

we consider the following cases:

a) The lags in ⟨0, 3T − 1⟩ can be realized by considering the following sets

diff(S2, S1) =
{
T ⟨1, T − 2⟩

}
∪
{
3T − ⟨1, T − 2⟩

}
,

diff(S5, S4) = ⟨T − 3, T ⟩ ∪ ⟨T + 1, 2T − 2⟩,

except for holes at H1 = ⟨0, T − 3⟩ and H2 = (N1 + 1)i for 0 ≤ i ≤ N2 − 1

which can be easily filled by diff(S1, S1) and diff(S3, S3), respectively.

b) Regarding the lags in ⟨3T , Nu + N1 − 1⟩, we can consider the union of the

following sets

diff(S3, S1) =
{
Nu − ⟨1, T − 2⟩

}
∪
{
Nu +N1 − ⟨1, T − 2⟩

}
,

diff(S3, S2) = (T + 1)⟨1, N2⟩ ∪ ⟨3T + (T + 1)⟨0, N2 − 1⟩+ 2,

diff(S3, S4) = T ⟨1, N2⟩ ∪ (N1 + 1)⟨0, N2 − 1⟩+N1,

diff(S3, S5) =
{
3T − ⟨0, T − 3⟩

}
∪
{
Nu + T − ⟨0, T − 3⟩

}
.

and

diff(S4, S2) =
{
Nu + (T + 1)⟨0, N2 − 1⟩+ 1

}
∪
{
Nu +N1 + 1− T ⟨0, N2 − 1⟩

}
.

Thus, collectively these sets cover ⟨3T , Nu +N1 − 1⟩.
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c) Finally, the lags in the range ⟨Nu +N1, Nu + 5N1/2− 1⟩ can be attributed to

the following sets

diff(S5, S2) =
{
Nu + 3N1/2 + 1− ⟨0, T − 3⟩

}
∪
{
Nu +N1 − ⟨0, T − 3⟩

}
,

diff(S4, S1) =
{
Nu + 3N1/2− ⟨1, T − 2⟩

}
∪
{
Nu + 2N1 − ⟨1, T − 2⟩

}
,

diff(S5, S1) = ⟨0, T − 3⟩ ∪ ⟨Nu +N21, Nu + 5N1/2− 1⟩.

Thus, combining these with fragments from ξ(S4, S2) covers ⟨Nu + N1, Nu +

5N1/2− 1⟩.

In general, the union of cases (a)-(c) and their counter sets cover the consecutive

integers in ⟨−Nu − 5N1/2 + 1, Nu + 5N1/2 − 1⟩, i.e., the DCA of the f−ENAMS-I

array is hole-free.

Proof of Property 4.3.3

According to Lemma 4.3.2, the Lu of the f−ENAMS-I array is [0, N2(N1 + 1) +

5N1/2 − 1], and assuming that ⌊N1/2⌋, ⌊(N + 1)/4⌋ and ⌊(N + 3)/4⌋ are N1/2,

(N + 1)/4 and (N + 3)/4, respectively. The uniform DOF |U| of the f−ENAMS-I

array can be expressed as

uDOF = 2Lu + 1 ≈ 2N2(N1 + 1) + 5N1 − 1 (8.9)

As such, substituting the values of N1, and N2 = N−N1 while maximizing the uDOF

under the constraint of N = N1+N2 yields N
2/2+3.5N − 28, N2/2+3.5N − 6 and

N2/2 + 3.5N − 1 given that 2⌊(N + 1)/4⌋ + 4 when ≤ N ≤ 14, 2⌊(N + 1)/4⌋ + 2

when ≤ N ≤ 18 and 2⌊(N + 3)/4⌋ when N ≥ 19. Hence, Property 4.3.3 is proved.

Proof of Lemma 4.3.5

The proposition that the DCA of the f−ENAMS-II array has a U in the range

[−N2(N1 + 1) + 7N1/2 − 1, N2(N1 + 1) + 7N1/2 − 1] is equivalent to the argument

that for m ∈ U, there is at least one pair of sensors that leads to it, and since DCA
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is a symmetric set, then it suffices to show that 0 ≤ n ≤ N2(N1 + 1) + 7N1/2 − 1.

To that end, we consider the following sections:

a) The lags in the range ⟨0, 3T − 1⟩ can be realized by taking the union of

diff(S2, S1) and diff(S5, S4), i.e,

diff(S2, S1) = ⟨0, T ⟩ ∪ ⟨T − 3, 2T ⟩ ∪ ⟨3T − 4, 3T ⟩

and,

diff(S5, S4) = ⟨T + 1, 2T − 3⟩ ∪ ⟨2T + 2, 3T − 3⟩ ∪ ⟨3T + 3, Nu − 1⟩,

except for holes at I = (N1 + 1)i which can be filled by diff(S3, S3) which

accounts for all lags (N1 + 1)i for 0 ≤ i ≤ N2 − 1.

b) The lags in the range ⟨3T , Nu+N1 − 1⟩ can be realized by taking the union of

diff(S3, S1), diff(S3, S2), diff(S3, S4), diff(S3, S5) and diff(S4, S2), such that

diff(S3, S1) =
{
1 + ⟨1, N2⟩)(N1 + 1)− 1

}
− ⟨1, T − 3⟩

≈
{
Nu − ⟨1, T − 4⟩

}
∪
{
Nu +N1 − ⟨1, T − 3⟩

}
,

diff(S3, S2) =
{
1 + ⟨1, N2⟩)(N1 + 1)− 1

}
−
{
T ⟨1, 3⟩+ 1

}
≈

{
3T + ⟨0, N2 − 1⟩

}
∪
{
Nu + T ⟨0, N2 − 1⟩ − 1

}
,

diff(S3, S4) =
{
1 + ⟨1, N2⟩)(N1 + 1)− 1

}
−
{
Nu +N1 + (T + 1)⟨1, 3⟩

}
≈

{
3T + ⟨2, T − 2⟩

}
∪
{
Nu + (T + 1)⟨0, N2 − 1⟩

)
+ 1

}
,

diff(S3, S5) =
{
(1 + ⟨1, N2⟩)(N1 + 1)− 1

}
−
{
Nu + 3N1 + ⟨1, T − 3⟩+ 3

}
≈

{
Nu + ⟨2, T − 2⟩

}
∪
{
Nu +N1 + 1⟨1, T − 3⟩

}
,

diff(S4, S2) =
{
Nu +N1 + (T + 1)⟨1, 3⟩

}
−
{
T ⟨1, 3⟩+ 1

}
≈

{
Nu + T + ⟨1, 2⟩

}
∪
{
Nu +N1 + ⟨1, 3⟩

}
∪
{
Nu + 3T + ⟨1, 2⟩

}
∪
{
Nu⟨1, 2⟩

}
.

Thus, these sets cover the lags between the end of S2 to S3.

c) Considering the lags in ⟨Nu + N1, Nu + 7N1/2 − 1⟩, this section can be filled

122



by the union of the following sets

diff(S4, S1) =
{
Nu +N1 + (T + 1)⟨1, 3⟩

}
− ⟨1, T − 3⟩

≈
{
Nu + 3N1/2− ⟨0, T − 4⟩

}
∪
{
Nu + 2N1 + 2− ⟨1, T − 3⟩

}
∪
{
Nu + 5N1/2 + 3− ⟨1, T − 3⟩

}
.

diff(S5, S2) =
{
Nu + 3N1 + 3 + ⟨1, T − 3⟩

}
−
{
T ⟨1, 3⟩+ 1

}
≈

{
Nu + 2N1 − ⟨1, T − 3⟩

}
∪
{
Nu + 5N1/2− ⟨1, T − 3⟩

}
∪
{
Nu + 3N1 − ⟨1, T − 3⟩

}
.

diff(S5, S1) =
{
Nu + 3N1 + 3 + ⟨1, T − 3⟩

}
− ⟨1, T − 3⟩

≈ ⟨0, T − 4⟩ ∪ ⟨Nu + 3N1, Nu + 7N1/2− 1⟩.

Therefore, combining these sets with segments from diff(S4, S2) accounts for

the lags in ⟨Nu +N1, Nu + 7N1/2− 1⟩.

In general, the union of cases (a)-(c) cover the consecutive integers in ⟨0, Nu +

7N1/2− 1⟩, i.e., the DCA of the f−ENAMS-II array is hole-free.

Proof of Property 4.3.6

Following Lemma 4.3.5, the Lu of the f−ENAMS-II array is N2(N1+1)+7N1/2−1,

and assuming that ⌊N1/2⌋ and ⌊N/4⌋ are N1/2 and N/4, respectively. The uniform

DOF of the f−ENAMS-II array can be expressed as

uDOF = 2Lu + 1 ≈ 2N2(N1 + 1) + 7N1 − 1. (8.10)

Therefore, substituting the values of N1 and N2 = N − N1 whilst maximizing the

uniform DOF under the constraint of N = N1 +N2 yields N2/2 + 4.5N − 43 when

16 ≤ N ≤ 19, N2/2 + 4.5N − 13 when 20 ≤ N ≤ 23 and N2/2 + 4.5N + 1 when

N ≥ 24 given that 2⌊N/4⌋+6, 2⌊N/4⌋+4 and 2⌊N/4⌋+2, respectively. Therefore,

Property 4.3.6 is proved.
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Appendix C

Proof of Lemma 5.3.1

The maximum position according to (5.11) is Q(r + z) + z − 1, and since Dg is

symmetric about position zero. Then, it suffices to show that the positive part of the

consecutive set U, U+ = [1, 2, . . . , Q(r + z) + z − 1]. Accordingly, based on (8.20)-

(8.12), the DCA sets D1,2, D1,2, D1,2, D1,2 and D1,2 cover the range [1, zP − 1]. And,

the sets D1,2, D1,2, D1,2, D1,2, D1,2, D1,2 and D1,2 generates the consecutive range

[zP, zP + Qr]. Finally, the sets D1,2, D1,2, D1,2 and D1,2 generates the consecutive

range [zP +Qr + 1, Q(r+ z) + z − 1]. Thus, the three sections collectively generate

the consecutive range [1, Q(r + z) + z − 1], completing the proof.
D1,1 = {0, 1, . . . , z − 1},D1,2 = {z, z + 1, . . . , 2z − 1}
D1,3 = {(2 + i)P − j|i = j, i = 0 ≤ i ≤ z − 1},
D1,4 = {zP +Q(1 + i)− j|i = j, 0 ≤ i ≤ z − 1},

(8.11)
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

D1,5 = {P (z + 1) +Qr + i(P + 1)− j|1 ≤ i ≤ z, 0 ≤ j ≤ z − 1}
D1,6 = {2zP +Qr + z + i− j|i = j, 0 ≤ i ≤ z − 1},
D2,3 = {(2 + i)P − (2z + 1)|0 ≤ i ≤ z − 1},
D2,4 = {zP +Qi− (2z + 1)|1 ≤ i ≤ r},
D2,5 = {zP +Qr + P + i(P + 1)− (2z + 1)|1 ≤ i ≤ z},
D2,6 = {2zP +Qr + z + i− (2z + 1)|0 ≤ i ≤ z − 1},
D3,4 = {zP +Qi− j|1 ≤ i ≤ r, 2P ≤ j ≤ zP},
D3,5 = {zP +Qr + P + i(P + 1)− j|1 ≤ i ≤ z, 2P ≤ j ≤ zP},
D3,6 = {2zP +Qr + z + i− j|1 ≤ i ≤ z − 1, 2P ≤ j ≤ zP},
D4,5 = {Qr + i(P + 1)−Qj|1 ≤ i ≤ z − 1, 1 ≤ j ≤ r},
D4,6 = {zP +Qr + z − (P + i)−Qj|1 ≤ i ≤ z − 1, 1 ≤ j ≤ r},
D5,6 = {P (z − 1) + z + i− j(P + 1)|1 ≤ i ≤ z − 1, 1 ≤ j ≤ z}.

(8.12)

Proof of Property 5.3.2

According to (5.10), and Lemma 5.3.1, it follows that

uDOF = 2Lu + 1 = 2Q(r + z) + 2z − 1. (8.13)

Substituting the values of Q, r and z as defined in (5.10) into (8.13) yields

uDOF =
2N2

3
+

2N

3
− 1, (8.14)

and, therefore, completes the proof.

Proof of Property 5.3.3

Given the closed-form expression of the GENAMS array in (5.11), Property 5.3.3

can be proved by analyzing the self-difference and the cross-difference sets of the

GENAMS array. Specifically, we consider set Z1 to Z6 as expressed in (5.11), and

evaluate the sets containing sensor pairs with separation of 1, 2, and 3 as the main
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contributors of weight functions w(1), w(2) and w(3).

Beginning with the self-difference sets, the set diff(Z4,Z4) generates lags with

separation 0,±Q, ±2Q, . . . ,±(r − 1)Q whereas diff(Z3,Z3) and diff(Z5,Z5) do not

include sensors with separation 1, 2, 3 and so on, as they contain lags with spacing

0,±P , ±2P, . . . ,±(z − 2)P and 0,±(P + 1), ±2(P + 1), . . . ,±(z − 1)(P + 1), re-

spectively. Besides, diff(Z2,Z2) contains a single sensor only at location z. It is only

diff(Z1,Z1) and diff(Z6,Z6) which include 0, ±1,±2,±3 and so on. That’s we have

2(z − 1), 2(z − 2) and 2(z − 3), (8.15)

sensor pairs with separations 1, 2, and 3, respectively.

Concerning the cross-difference sets, the sets of interest are diff(Z2,Z1) and

diff(Z3,Z2). Thus, examining the minimum elements of diff(S2, S1) leads to

min diff(S2, S1) = (2z − 1)− (z − 1) = z, (8.16)

while evaluating the minimum elements of diff(Z3,Z2) yields

min diff(S4, S3) = 2P − (2z − 1) = P, (8.17)

which contributes to weights w(n) for 2 ≤ n ≤ 3 if Q = 7. Thus, combining (8.15)-

(8.17) add up to w(1) = 2z − 2, w(2) = 2z − 4 and w(3) = 2z − 6. And therefore,

complete the proof for Property 5.3.3.
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Appendix D

Proof of Property 6.4.1

Given that the maximum aperture is Rv + 2T (m − 1) + 4m, and the fact that the

DCA D is symmetric at the zeroth position. It is sufficient to demonstrate that the

positive part of the consecutive ULA segment U+ = [1, 2, . . . , Rv+2T (m−1)+4m].

Therefore, for clarity, we construct the range [1, Rv + 2T (m− 1) + 4m] using three

cases. Also, throughout this section, we assume that q1 ∈ [0,m− 1], q2 ∈ [1,m− 1]

and q3 ∈ [1,m] as defined in (6.6):

a) Using (6.6), the lags in the range [1,m(T + 1)− T ] can be determined by the

difference sets D7,1, D5,6, and D5,7, besides D2,1, D3,1 and D3,2, which are also

contributing lags in the same arnge. Namely,

D2,1 = {2(m− q1)− 1},
D3,1 = {(T − 1)q2 + 2(m− q1)− 1},
D3,2 = (T − 1)q2

D6,5 = {(m+ q2)(T + 1) + 2q3 − T − 1|i ∈ [1, v]}
D7,5 = {(m− q2)(T + 1) + T }.

(8.18)

b) Moreover, the lags in the range [m(T + 1) − T − 1, Rv +m(T + 1) − T − 1]
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can be uniquely filled difference sets D5,4, D7,4, D5,3, D4,3, D4,1 and D4,2, i.e.,

D4,1 = {Ri− 2q1 +m(T + 1)− T |i ∈ [1, v]},
D4,2 = {Ri+m(T + 1)− 2T + 1|i ∈ [1, v]}
D4,3 = {Rv +m(T − 1)− T − (T − 1)q2 + 1}
D5,3 = {Rv +m(T − 1) + 2q2 − T + 1}
D5,4 = {R(v − i) +m(T + 1)q2|i ∈ [1, v]}
D6,4 = {R(v − i) +m(T + 1) + 2q3 − T − 1|i ∈ [1, v]}
D7,4 = {R(v − i) +m(T + 1) + T |i ∈ [1, v]}.

(8.19)

c) Finally, the difference sets D5,1, D6,1, D7,1, D5,2, D6,2, D7,2, D6,3 and rest of the

sets account for the lags in the range [Rv+m(T +1)−T , Rv+2T (m−1)+4m].

D5,1 = {Rv +m(T + 1) + (T + 1)q2 − 2q1 − T }
D6,1 = {Rv + 2m(T + 1) + 2(q3 − q1 − T )− 1},
D7,1 = {Rv + 2m(T − 1) + 4m− 2q1},
D7,2 = {Rv + 2m(T − 1) + 2m+ 1}
D6,2 = {Rv + 2m(T + 1) + 2(q3 −m− T )}
D5,2 = {Rv +m(T − 1) + (T + 1)q2 − T + 1}
D7,3 = {Rv + 2mT − (T − 1)q2 + 1}
D6,3 = {Rv + 2T (m− 1) + 2q3 − (T − 1)q2}
D6,5 = {(m+ q2)(T + 1) + 2q3 − T − 1|i ∈ [1, r]}
D7,6 = {2(R− q3) + 1}.

(8.20)

Therefore, the cases a)−c) accounts for the lags in the range [1, Rv+2T (m−1)+4m],

and therefore, completes the proof.
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