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Abstract

Coastal areas are highly vulnerable to frequent hazards, which can disrupt com-
munity life and have significant social and economic impacts. While vulnerability
assessments using index-based approaches are common for coastal areas, studies
focusing specifically on beach vulnerability are limited. This study addresses this
gap by examining exposure, susceptibility, and recovery potential as key compo-
nents of beach vulnerability. To assess beach vulnerability, a temporal and spa-
tial beach vulnerability assessment tool called the Beach Vulnerability Index (BVI)
is developed using Multiple Linear Regression (MLR) and Artificial Neural Net-
works (ANN). Additionally, a comprehensive analysis investigates beach suscepti-
bility and resilience by considering beach morphology.

Data from the Hasaki Oceanographic Research Station (HORS) in Ibaraki pre-
fecture, Japan, including hourly wave and water level observations, tidal predic-
tions, and daily beach profile data from 1987 to 2010, were collected. The MLR
model was initially used to predict storm-induced erosion, and the BVI was for-
mulated based on MLR predictions, incorporating variables of wave energy flux,
initial shoreline position, and maximum surge. Subsequently, an ANN model was
introduced and compared to MLR in terms of predicting shoreline change during
storms. The BVI is refined for both models, resulting in BVIANN for the ANN model
and BVIMRL for the MLR model.

The comprehensive analysis categorizes beach profiles into four groups: un-
barred, inner zone sandbar, outer zone sandbar, and double sandbar. Statistical
analyses and metric development were conducted to assess beach susceptibility us-
ing the Beach Erosion Susceptibility Number (BESN) and beach resilience using the
Beach ResilienceNumber (BRN). The study successfully identified keymorphomet-
ric factors that influence beach erosion and quantified the BESN accordingly. Addi-
tionally, 10-day post-storm beach recovery calculations were employed to quantify
the BRN as a ratio relative to the erosion that occurred during the storm. Both the
BESN and BRN are valuable tools for chronological analysis of beach characteristics
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and for identifying abrupt changes in the beach system resulting from unexpected
events in coastal zones. To select the morphometric indicators, XGBoost regression
models were fitted for both susceptibility and resilience quantification. The SHAP
explanation method was then applied to globally and locally quantify the impor-
tance of each morphometric feature in influencing the outcomes of the models.

During the preliminary study period using data from 1993 to 2000, 48 storms
were identified, and the first 38 storms were used to create twoMLRmodels. These
models achieved R² values of 0.58 and 0.52 for predicting shoreline change (dSL)
and volume change (dV) during the training period, respectively. During testing,
the corresponding R² values were 0.48 for shoreline change (dSL) and 0.52 for vol-
ume change (dV). The comparison of the BVI calculated from the MLR predictions
with observed erosion values showed satisfactory model performance. However,
when the complete storm data set from 1987 to 2010 was used, the MLR model
proved less effective in capturing the dynamic behaviour of beach profiles under
different storm conditions. In this expanded period, a total of 347 storm cases were
identified, and 5% of the data (18 storms) were used to test each regression model.
In contrast, the ANNmodel demonstrated superior performance, resulting in more
accurate predictions of beach vulnerability. Specifically, when comparing the BVI
predictions from each model, the Mean Absolute Errors (MAE) for MLR were 1.33,
0.83, 0.78, 0.90, and 1.07, while for BVIANN they were 1.00, 0.20, 0.69, 1.05, and 0.57
for indexes 1-5, respectively. The BVIANN model also achieved higher R² scores for
both training (0.65) and testing (0.62) data in predicting dSL compared to the MLR
model (0.26 for training and 0.35 for testing).

The comprehensive analysis revealed that the contributing morphometrics for
beach susceptibility varied depending on the beach profile types. The initial shore-
line position was found to have an impact only in the unbarred and double sand-
bar profiles. When comparing the predictions of the BESN with observed beach
changes, a Pearson correlation coefficient (r) of 0.75 was obtained for unbarred pro-
files for average storm conditions, indicating satisfactory performance. However,
the accuracy of the BESN was found to be lower under certain conditions, likely
due to variations caused by storm characteristics. In terms of beach resilience anal-
ysis, 104 cases were were identified with no sequencing storms and initial shoreline
erosion cases during the storm events. Among these cases, 79 incidents exhibited
partial or full shoreline recovery, while 25 cases experienced further erosion.

The results indicate that theMLRmodels providemoderate predictions of beach
erosion and adequate predictions of beach vulnerability when tested with a small
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sample of storms during the preliminary study period. However, when the larger
and more diverse storm data set from 1987 to 2010 was utilized, the MLR model
showed limitations in capturing the dynamic behavior of beach profiles under dif-
ferent storm conditions. In contrast, the ANN model demonstrated superior per-
formance, delivering more accurate predictions of beach vulnerability. The Mean
Absolute Errors for the BVI predictions were lower for BVIANN compared to BVIMLR,
indicating the improved accuracy of the BVIANN model. Additionally, the BVIANN
model achieved higher R² scores for both training and testing data in predicting
shoreline change compared to the MLR model.

The comprehensive analysis revealed that beach susceptibility varies depending
on the beach profile types, with the initial shoreline position playing a significant
role in unbarred and double sandbar profiles. The BESN demonstrated satisfactory
performance, particularly for inner zone sandbar profiles, indicating its potential
as a tool for assessing beach susceptibility. However, it also highlighted the need for
further improvements to account for variations in storm conditions that can affect
the accuracy of the predictions. The beach resilience analysis identified cases of
partial or full shoreline recovery, as well as instances of further erosion, providing
insights into the post-storm behavior of beach profiles.

These findings further underscore the potential of employingmachine learning-
based algorithms such as ANN and XGBoost to enhance the accuracy of beach vul-
nerability studies, particularly in capturing the dynamic nature of beach morphol-
ogy changes under diverse storm conditions. The study also highlights the impor-
tance of considering sandbar formations and sediment volume as crucial factors in
determining the processes of erosion and recovery associated with beach vulnera-
bility.

Future work should focus on testing the BESN and BRN under various beach
conditions and conducting numerical simulations to explore beach morphology
changes in similar wave climates. Furthermore, the direct applicability of the BVI,
trained using the ANN model, represents a key advantage that can be leveraged
for assessing beach vulnerability in other coastal areas. This study contributes to
the growing body of research on beach vulnerability by utilizing Machine Learning
algorithms to predict coastal morphology changes and assess beach vulnerability,
highlighting their potential for future applications in coastal engineering.
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Chapter 1

Introduction

1.1 Background

A natural beach zone is considered a valuable asset that provides economic and
environmental benefits to the local community. The beach and its natural beauty
must be protected from destructive human activities, climate change-related haz-
ards, and extreme weather conditions. Frequent natural hazards to beach zones
often cause instabilities to their long-term profile migrations both landward and
seaward (Turner et al., 2016). The seasonal beach profile setting involves many
complex coastal processes, and holistic approaches are commonly used to under-
stand the vulnerability of coastal regions, especially focusing on climate change-
driven factors (Kantamaneni et al., 2017). Although discussions on coastal vulner-
ability have been ongoing since 1991, only a few vulnerability studies have focused
on risk-related concepts specific to the beach zone.

Alexandrakis and Poulos (2014) first tried to quantify the beach vulnerability
using key morphological and metocean data elements. They focused on sediment
transport mechanisms, sea level rising effect, and land-form characteristics to nu-
merically approximate the beach vulnerability. Several studies investigated the
characteristics of coastal processes to assess beach zone vulnerability to hazards
such as erosion, sea level rise, and flooding (de Andrade et al., 2019; Kim et al.,
2021). Kim et al. (2021) proposed the beach recovery factor and beach response fac-
tors, which emphasize beach resilience and susceptibility, respectively. However,
studies addressing both susceptibility and resilience, two key aspects of vulnerabil-
ity, are limited. Although significant research in coastal engineering has examined
the influence of hydrodynamic andwave climate on beach erosion (Callaghan et al.,
2008; Mendoza et al., 2022), there is a dearth of information regarding the morpho-
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metric characteristics of beach profiles. The discussions on specific relationships
between coastal morphometrics such as sandbar formation and beach erosion ex-
ist (Janušaitė et al., 2021) and the risk-related vulnerability aspects are absent.

There have been a number of studies focusing on coastal vulnerability to vari-
ous hazards such as sea level rise, flooding, and erosion (Gornitz et al., 1991, 1994;
Alexandrakis and Poulos, 2014; Koroglu et al., 2019). The term of vulnerability can
be defined as a component of risk, while hazard and exposure being the remain-
ing components in risk analyses. IPCC defines the vulnerability as the degree of
fragility of a system including their capacity to cope (Response capacity) under a
hazardous condition (Field et al., 2011). Therefore, susceptibility and recovery po-
tential both are key elements in beach vulnerability discussions. With the ongoing
development of vulnerability assessment approaches, there is an increasing need
for comprehensive studies that separately quantify the susceptibility and resilience
components of beach vulnerability.

While previous studies on coastal vulnerability have predominantly focused on
climate-related hazards, it is important to note that frequent coastal storms also
inflict significant damage upon sandy beaches worldwide. Coastal storms are ca-
pable of exerting significant influence on both short-term and long-term changes in
beach morphology. These storms are typically characterized by strong winds, high
waves, and heavy rainfall, and they can cause significant damage to the coastal land-
scape (Harley, 2017). During a storm, waves can reach high elevations and cause
significant erosion of the shoreline (Ciavola and Coco, 2017). This erosion can be
particularly severe in areas where it is already vulnerable due to factors such as
high tides, steep gradients, and weak soils. Coastal storms can also lead to the loss
of beach sand and vegetation, which can have a significant impact on local ecosys-
tems. To mitigate the impact of coastal storms on beach erosion, coastal managers
often implement measures such as beach nourishment, dune restoration, and the
construction of seawalls and other protective structures.

Beach morphometrics encompasses the physical characteristics of the coastal
environment, including the shoreline, beach width and slope, sediment properties,
and profile shape (Hillyer, 1996). Thesemorphometric indicators play a pivotal role
in comprehending coastal processes and the behavior of coastal systems. Coastal
engineers rely on morphometric data to develop models and simulations that can
predict the response of coastal environments to various stimuli like waves, tides,
and storms (Hieu et al., 2020). Moreover, morphometric data inform decisions
about coastal management and engineering projects, such as beach nourishment,
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dune restoration, and the construction of seawalls and groins. The availability of
accurate and up-to-date morphometric data is crucial for the success of coastal en-
gineering endeavors, enabling engineers to design structures that suit the specific
characteristics of the local coastal environment.

1.2 Motivation and guide to the dissertation work

1.2.1 Definitions of key terminologies

Exposure: signifies the frequency of occurrence of storm events and their associ-
ated hydrodynamic characteristics.

Vulnerability: examines how the internal attributes of a sandy beach respond to
external influences, particularly storm events. Within this context, the pri-
mary focus lies on two essential internal attributes of the sandy beach system:
susceptibility and resilience.

Susceptibility: represents the fragility of beach profile to storm-induced beach
erosion. A beach profile with high susceptibility will undergo more pro-
nounced erosion, revealing heightened vulnerability to external hazards. On
the contrary, a less susceptible beach profile boasts robust internal morpho-
metric properties that can effectively withstand erosion caused by storms

Resilience: refers to a system’s ability to recover from adverse impacts, particu-
larly concerning its potential to restore the initial condition after substantial
erosion events.

1.2.2 Significance of the study

This dissertation introduces innovative approaches to quantifying beach vulner-
ability. Firstly, it outlines novel regression-based methods for predicting beach
vulnerability. Subsequently, a comprehensive analysis is presented, focusing on
quantifying the susceptibility and resilience characteristics of beach profiles.

By utilizing a substantial and valuable dataset encompassing hydrodynamic fea-
tures of storms, alongsidemorphodynamic characteristics of subsequent beach pro-
files, an application of the Beach Vulnerability Index (BVI) is developed. The re-
gression models, trained with a significant number of storm cases, are expected to
make a significant contribution to quantifying beach vulnerability within compa-
rable beach profile settings, thereby enabling both spatial and temporal analyses.
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The comprehensive analysis of the susceptibility and resilience characteristics
of beach profiles provides unprecedented insights into beach morphology and ero-
sion processes concerning vulnerability. The present dissertation offers substantial
support in formulating effective strategies tomitigate erosion risks and enhance the
resilience of coastal systems.

This research initiative holds the potential to offer valuable guidance for coastal
management and engineering practices, thereby contributing to the sustainable
management of coastal regions.

1.2.3 Applicability and beneficiaries

Sandy beaches hold both ecological and economic value, rendering them vulnera-
ble to adverse effects when structures are placed in close proximity to the shore-
line. The extraction of sand, inadequate construction practices, and disruption of
sediment supply sources can result in significant damage to these beaches. Con-
sequently, a thorough quantification of beach vulnerability is imperative to com-
prehend the implications of human activities and natural processes on beach mor-
phology. This dissertation’s contributions concerning beach vulnerability provide
invaluable insights for stakeholders engaged in coastal management.

The identification of areas grappling with severe erosion, coupled with an ex-
amination of temporal variations in short-term erosion processes, yields substantial
advantages for a diverse range of entities. These encompass coastal managers, engi-
neers, local government authorities, the tourism sector, communities, and various
industrial and economic activities along the coastline.

A fundamental approach to effective beach management involves safeguarding
both the natural processes that supply sand to the beach and the sand-storage capac-
ity of the beach elements themselves (Clark, 2018). In this light, a numerical quan-
tification of beach vulnerability would facilitate the understanding of long-term
beach evolution, centering on its inherent traits as a resilient andminimally suscep-
tible system for sand retention. The proposedmethodology for assessing beach vul-
nerability emerges as a valuable tool for systematically scrutinizing chronological
and spatial transformations in beach morphology. Consequently, coastal managers
can apply the proposed quantificationmethods as preliminary studies to accurately
pinpoint key locations along the coastline.

Beaches inherently shift over seasons, temporarily yielding sand to storm ero-
sion, gradually moving landward with rising sea levels, or growing seaward due to
shifts in ocean currents (Clark, 2018). Hence, an extended analysis of beach sus-
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ceptibility and resilience plays a pivotal role in studying persistent changes. These
transformations are intrinsically tied to the economic and environmental values as-
sociatedwith beaches. Furthermore, quantifying susceptibility can help to evaluate
the impact of diverse gray structures on seasonal shifts in sandy beaches. As discus-
sions advocating for beaches as green structures gainmomentum, this dissertation’s
work furnishes quantitative insights into alterations in beach profiles prompted by
external influences.

1.3 Objectives

The main objective of this study was to advance the comprehension of beach vul-
nerability while refining the precision of assessment techniques. This enhancement
was pursued through innovative regression-based prediction models. In the initial
section of the dissertation, a predictive beach vulnerability assessment tool was de-
veloped and tested. This was accomplished by utilizing a concise set of hydrody-
namic and morphometric indicators. Subsequently, the research work endeavored
to develop and evaluate matrices related to susceptibility and resilience charac-
teristics of beach. These quantification were developed using novel deep learning
methodologies.

Centered around these focal areas, the study aims to propel our understanding
of beach vulnerability forward. Moreover, it aspires to provide valuable insights
that can effectively inform the development of strategies in coastal management
and adaptation. In pursuit of the main objective, three specific objectives were for-
mulated and are presented below.

(1) To refine the accuracy of beach vulnerability prediction by enhancing themul-
tiple linear regression model. The focus was on utilizing an extensive 8-year
stormdata set to identify and rectify any limitations presentwithin themodel.

(2) To investigate the utility of artificial neural networks in predicting beach vul-
nerability. The analysis utilized a 24-year storm data set to assess the effec-
tiveness and potential advantages of employing this approach.

(3) To examine the key morphometric indicators that impact beach susceptibility
and resilience. The goal was to devise matrices that offer quantification of
these factors, while also accounting for diverse beach morphology shapes.
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1.4 Presentation of the dissertation work

The dissertation is organized as follows: Chapter 2 offers a concise overview of
relevant literature, focusing on key discoveries and identified limitations. It aims
to provide a foundation for the subsequent research by examining existing knowl-
edge and gaps in the field. Chapter 3 presents a comprehensive exploration of the
research methodology and materials employed. It begins by describing the study
location and the collection of pertinent data. Special emphasis is placed on the dis-
tinct characteristics of the data and their importance to the research. The chapter
then proceeds to detail the methods employed for the application of beach vulner-
ability assessment and the subsequent comprehensive analysis.

Chapter 4 is dedicated to presenting and discussing the application of the Beach
Vulnerability Index (BVI). It highlights the practical implementation of the BVI in
evaluating beach vulnerability, providing insights into its efficacy as a predictive
tool. The chapter includes thorough examinations of two regression models, illus-
trating the applicability and utility of each BVI approach. Chapter 5 sheds light
on the intricate dynamics of beach vulnerability focusing on the susceptibility and
resilience. The findings are critically dissected, drawing connections between di-
verse beach morphometrics and their roles in erosion processes. This chapter offers
a deeper understanding of the intricate interactions between coastal elements and
beach morphology.

Finally, in Chapter 6, the key findings of the research are synthesized, encapsu-
lating the primary contributions and insights stemming from the study. Following
the conclusion, the bibliography and appendix sections provide valuable additional
resources and supporting materials for further exploration.
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Chapter 2

Literature Review

A comprehensive overview of crucial subjects related to beach vulnerability and
coastal engineering and management literature is presented here. The content is
structured into sub-chapters, each dedicated to delving into specific key aspects of
the current study.

2.1 Vulnerability Studies

An index-based approach established on set criteria is common to quantify and ana-
lyze the vulnerability whereas the definition of vulnerability highly depends on the
study objectives and location. Coastal vulnerability studies focus on various diverse
aspects of the coastal region such as land-use patterns, coastal morphology, social
and economic factors, and wave climate (Gornitz et al., 1994). However, studies on
beach vulnerability assist various stakeholders in better managing and planning
measures against erosion by identifying, and quantifying ranking the vulnerability
of beaches (Alexandrakis and Poulos, 2014). Indeed, beach vulnerability studies
specifically focus on the changes to the beach zone whereas coastal vulnerability
research involves a more comprehensive view of the coastal zone.

2.1.1 Coastal Vulnerability Studies

Coastal vulnerability to storm-induced erosion is a critical aspect of coastal man-
agement, particularly considering the potential impacts of global climate change.
A large and growing body of literature has explored coastal vulnerability in vari-
ous parts of the world, though with varying degrees of emphasis on beach sections.
The Development of a Coastal Risk Assessment Database by Gornitz et al. (1991)
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presented a comprehensive approach to identifying coastal areas at risk of erosion,
inundation, and episodic flooding. While it offers valuable insights into coastal vul-
nerability, it does not specifically focus on beach sections and their unique charac-
teristics. Similarly, the study by Small and Naumann (2001) examined the global
distribution of the humanpopulationwith respect to community exposure to coastal
hazards. In contrast, the study by Koroglu et al. (2019) compared different method-
ologies for assessing coastal vulnerability using the Coastal Vulnerability Index
(CVI) along the Barcelona coastline. Their analysis revealed that Shaw et al. (1998)’s
method provided a more realistic assessment of vulnerability. However, this study
also fell short in explicitly addressing beach sections and their significance for ecol-
ogy and tourism. They further suggested the need for site-specific databases and
region-specific ranking categories within the CVI framework to improve overall
vulnerability assessments. Additionally, the study by Shaw et al. (1998) investi-
gated the potential impacts of global sea-level rise on Canadian coasts. While they
acknowledged the importance of societal response strategies, they did not specifi-
cally address beach sections or their relevance for coastal protection. The reviews
emphasized the necessity for specific characteristics and dynamics of beach sec-
tions, encompassing erosion rates, sediment transport, and the influence of natural
and anthropogenic factors.

To advance the present understanding of coastal vulnerability, future studies
should build upon the existing research by incorporating a comprehensive anal-
ysis of beach sections and their unique vulnerability factors. This would involve
conducting detailed assessments using site-specific databases, considering region-
specific ranking categories within vulnerability assessment frameworks like the
CVI, and examining erosion rates, sediment transport, and the influence of natural
and anthropogenic factors.

2.1.2 Beach Vulnerability Studies

This sub-chapter discusses the research work with the broader focus on beach vul-
nerability and points out the lack of focus on this aspect in the selected literature.
Several studies have addressed beach vulnerability, some focusing on vulnerability
to erosion as well, each using different methods and approaches depending on the
characteristics of study site. Alexandrakis and Poulos (2014) proposed the Beach
Vulnerability Index (BVI), which combines simplicity, easily obtainable data, and
low processing capacity. Their index considered indicators related to sediment
availability, wave climate, beach morphodynamics, and sea level change. While
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the BVI offers a comprehensive approach, it lacked a specific emphasis on the eco-
logical and tourism aspects of beaches.

Ruggiero et al. (2005) have discussed a beach monitoring program aimed at col-
lecting coastal change data to enhance decision-making. Although the program
has quantified beach trends and fluctuations, they have not explicitly addressed
beach vulnerability. The lack of a comprehensive examination of vulnerabilities
in beaches can be identified as a common weakness observed in these literature.
de Andrade et al. (2019) assessed beach vulnerability based on environmental indi-
cators such as terrain elevation, wave exposure, wave incidence angle, and wave
run-up. Their study evaluated the vulnerability of specific beaches in Guarujá,
Brazil. While providing valuable insights, the paper does not extensively discuss
the ecological and tourism significance of beaches or offer a comparative analysis
of different assessment methods.

Alexandrakis and Kampanis (2013) adopted an economic perspective by esti-
mating the value of eroded beaches in terms of tourism revenue, though the sedi-
ment related discussions were limited. Their approach composed of environmental
and economic factors, especially, incorporating the beach width (Table 2.1 summa-
rizes theirmethods to collect each variable). However, the paper has not delved into
the specific methodologies used to assess beach vulnerability, limiting their com-
prehensive analysis. Whereas Perch-Nielsen (2010) have analyzed the beach vul-
nerability with the broader focus on climate change impacts. They have developed
a vulnerability framework considering exposure, sensitivity, and adaptive capacity
indicators which provides in-depth discussion on vulnerability assessments. While
recognizing the importance of weather and climate for beach, it lacked ecological
vulnerabilities.

In comparing the methods used, BVI offered a comprehensive and easily appli-
cable approach to assessing beach vulnerability. However, some of the available lit-
erature lacked a much-needed discussions on the impact of morphological and hy-
drodynamic variables on beach vulnerability. In contrast, de Andrade et al. (2019)
considered environmental indicators, providing valuable insights into vulnerabil-
ity assessment, but have not offered a comparative analysis. Table 2.2 highlights
the use of beach characteristics of existing literature.
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Table 2.1: Variables, methods, and scales used in the study of Alexandrakis and
Kampanis (2013)

Variable Method Scale

Coastal geomorphology Field measurements / Satel-
lite images

Large

Shoreline erosion /accretion rate
[m]

Field measurements / Satel-
lite images

Large

Coastal slope [%] Field measurements / Satel-
lite images

Large

Relative sea-level change [mm] Tide gauges / Bibliographical Large
Mean significant wave height
[m]

Field measurements / Biblio-
graphical

Large

Tidal range [m] Tide gauges / Bibliographical Large
Profile length [m] Field measurements Small
Beach slope (degrees) Field measurements Small
Profile length subaerial [m] Field measurements Small
Maximum profile elevation [m] Field measurements Small
Wave breaking height [m] Numerical modeling Small
Wave breaking angle (degrees) Numerical modeling Small
Significant wave height [m] Numerical modeling Small
Wave length [m] Numerical modeling Small
Wave period Numerical modeling Small
Wave run up [m] Estimate by equation Small
Sea level rise [m] Bibliographical Small
Closure depth [m] Estimate by equation Small
Wind speed [m s−1] Bibliographical Small
River sediment flux [m3/year] Estimate by equation Small
Fall velocity [m s−1] Estimate by equation Small
Grain size (subaqueous) [mm] Field measurements Small
Grain size (subaerial) [mm] Field measurements Small
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Table 2.2: Use of beach morphological indicators in past coastal vulnerability stud-
ies.

Study Number of indicators focused on

In total Beach

Gornitz et al. (1994) 7 1
Shaw et al. (1998) 7 1

Abuodha and Woodroffe (2006) 8 3
Hegde and Reju (2007) 4 1
Balica et al. (2012) 22 2

Alexandrakis and Poulos (2014) 7 7
Sambah and Miura (2014) 3 1

Barnard et al. (2015) 9 1
Kantamaneni et al. (2017) 4 1
Kantamaneni et al. (2018) 7 2

Kim et al. (2021) NA NA

2.2 Coastal storms

Coastal storms are one of the most frequent coastal hazards and cause catastrophic
damages such as erosion and inundation (Martzikos et al., 2021). Definitions to
identify coastal storms are, in general, site-specific. Significantwave height is largely
employed to identify storm events. However, Basco andMahmoudpour (2012) pro-
posed a generalized approach to identify extreme storm events using long-term sig-
nificant wave height characteristics and a minimum storm duration threshold. In
some cases, water surface level is also used to separate storm events though this
approach is not popularly compared to the two-threshold approach discussed an-
tecedently. After Gornitz et al. (1994) proposed the concept of CVI which can be
applicable for various coastal hazards including coastal storms, index-based ap-
proaches are widespread in storm impact assessments.

Coastal storms are extreme hydrometeorological events that have significant
impacts on coastal areas and communities. Understanding the characteristics and
risks associated with these storms is crucial for effective coastal zone management
and the design of resilient coastal structures. Harley (2017); Martzikos et al. (2021)
thoroughly investigated different aspects of coastal storms and analysis methods,
providing a much-needed comprehensive overview of storms for the researchers.
Harley (2017) have further addressed the challenges in defining coastal storms by
emphasizing the diverse coastal environments and their responses tomaritime forc-
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ing, storm timing, and the effects of climate change. They have further highlighted
the importance of assessing coastal storminess through variousmeasures, including
storm frequency, timing, tele-connections with climate patterns, directional shifts,
extreme storm events, and the impacts of storm surge. They have raised awareness
of the dangers associated with climate change and the need for accurate storm def-
initions to mitigate risks to low-lying coastlines. Martzikos et al. (2021)’s findings
focus on the statistical analysis of Mediterranean coastal storms to understand the
risk associated with extreme events by analyzing parameters such as wave height,
wave period, storm duration, calm periods, and storm energy. The authors have
utilized buoy data sets from 30 locations in the Mediterranean Sea to identify and
characterize coastal storms. Their analysis provides insights into the frequency of
occurrence, seasonal distribution, and site-dependent variations of coastal storms,
which are valuable for coastal zone management and the design of coastal struc-
tures.

2.3 Nearshore morphodynamics

Numerous experiments have been conducted both in laboratory settings and in the
field to study beach transformation. The outcomes have indicated that beach shape
and its evolutionary process are significantly influenced by the energy level of in-
cident waves, as well as the geological and geomorphological characteristics of the
coastal zone (Horikawa, 1988). Defeo et al. (2009) provided an overview of the
physical and ecological attributes of sandy beach ecosystems and discuss the var-
ious anthropogenic pressures threatening these ecosystems. While they have pri-
marily focused on the broader threats to beach ecosystems, the need for long-term
field experiments and monitoring programs to quantify the dynamics of key eco-
logical attributes on sandy beaches has been emphasized. However, they have not
specifically addressed the direct connection between nearshore morphology and
beach vulnerability to erosion. Understanding the causes of beach erosion is es-
sential for implementing effective mitigation strategies. Bird and Lewis (2015) ex-
plored the factors contributing to beach erosion, including alterations in processes,
sediment supply, and anthropogenic influences. Their analysis have highlighted
the importance of identifying the underlying causes of beach erosion before imple-
menting mitigation measures. However, they do not suffice extensively discussions
on the specific role of nearshore morphology related to beach vulnerability.

To address the prediction of coastal erosion, the paper ”Combining Artificial
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Neural Networks and GIS Fundamentals for Coastal Erosion Prediction Modeling”
by Peponi et al. (2019) introduced a model that integrates geographic informa-
tion systems (GIS) and Artificial Neural Networks (ANN). This approach enabled
a comprehensive analysis of the factors influencing coastal erosion changes. While
they provides valuable insights into erosion prediction modelling, it does not ex-
plicitly focus on nearshore morphology as a primary factor. However, Suzuki and
Kuriyama (2012) highlighted the correlations between shoreline change rates and
frequency-sectioned wave energy fluxes, taking into account the influence of fore-
shore shape. They demonstrated the importance of considering both wave energy
and shoreline position in accurately estimating shoreline change rates. Their find-
ings further highlight the significance of nearshore morphology, particularly fore-
shore shape, in understanding beach vulnerability. However, they have not ex-
tensively explore other hydrodynamic and morphometric indicators beyond wave
energy flux and foreshore shape.

On steep beaches, cross-shore movement of sand can lead to temporal changes
between the barred winter profile and unbarred summer profile with a pronounced
berm in the upper swash zone Ruessink et al. (2016). Severewave conditions during
winter often lead to the erosion of beaches, causing the shoreline to shift landward.
Furthermore, eroded profiles are often accompanied by the formation of sandbars,
which serve as underwater seawalls and assist in dissipating wave energy (Ciavola
and Coco, 2017). Whereas, accreted beaches have a more seaward shoreline dur-
ing the summer, with fewer sandbars. Despite scientific discussions on the impact
of sandbar formations and coastal erosion, a thorough investigation of the role of
sandbar morphometrics is lacking.

By synthesizing the insights from these literature, it demonstrates that charac-
teristics of nearshore morphology are vital in assessing beach vulnerability. While
the reviewed articles offer valuable contributions to different aspects of nearshore
processes and beach erosion, there is a need for more comprehensive research that
explicitly focuses on the role of nearshore morphology in beach vulnerability. Such
research would enhance the present understanding of the complex dynamics and
interactions between nearshore processes, morphology, and storm-induced erosion,
ultimately leading to more effective strategies for mitigating the impacts of erosion
on vulnerable coastlines.
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2.4 Machine Learning models

In recent years, the application of machine learning models engineering sciences
has gained significant attention. Therefore, not-surprisingly, discussions regard-
ing their applicability in coastal engineering are also substantial. Among them,
neural networks and decision trees have emerged as powerful tools for predicting
wave characteristics, tides, storm surges, and shoreline fluctuations, offering ad-
vantages over traditional approaches. Incorporating the Shapley Additive Expla-
nations (SHAP) framework enhances interpretability at both local and global lev-
els. This sub-chapter aims to delve into the applications of novel machine learning
models, emphasizing their advancements, challenges, and comparative strengths
in the context of coastal engineering.

2.4.1 Artifical Neural Nets

Discussion on the application of Articial Neural Networks (ANN) in civil engi-
neering goes back to Adeli (2001). The majority of applications utilize the back-
propagation algorithms, with some recent works integrating more powerful and
efficient neural network models with other computing paradigms like genetic al-
gorithms, fuzzy logic, and wavelet. Portillo Juan and Negro Valdecantos (2022)
investigated the applicability of ANN specifically in ocean and maritime engineer-
ing. They have highlighted the advantages of ANNs over traditional approaches
and summarized the progress made since the 1990s. The review identifies gen-
eral rules for applying ANNs in ocean engineering and emphasizes the importance
of selecting the correct network and algorithm for successful implementation. Wei
(2021) proposed an ANN model for forecasting wind waves along the US Atlantic
Coast. The model utilized the Long Short-Term Memory (LSTM) technique and
has been trained using historical wind, wave, temperature, and atmospheric pres-
sure data. The study demonstrated accurate short-term predictions, particularly
for storm events, and suggests the potential of ANN models as an alternative tool
for wave prediction and storm forecasting in coastal areas.

Comparing these works, it shows that neural networks, particularly the back-
propagation algorithm, have been successfully applied in various areas of civil and
coastal engineering. They have shown superiority over traditional approaches and
have been successfully integrated with other computational techniques to enhance
their performance. The use of ANNs in coastal engineering has proven advanta-
geous due to their ability to model random patterns, which are common in ocean
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and maritime problems.

2.4.2 Ensemble models for regression

In the review of Kim and Lee (2022), most of the available applications of machine
learning in coastal engineering have been highlighted with a focus on its effective-
ness in predicting various parameters such as wave parameters, tides, storm surges,
design parameters, and shoreline fluctuations. One notable aspect discussed in this
literature is the use of ensemble methods to improve the performance of machine
learning models. Ensemble methods, such as bagging and boosting, are described
as techniques for combining multiple weak classifier models to create a strong pre-
diction model. Bagging reduces variance by averaging or voting on predictions
from various models while boosting focuses on creating strong classifiers by itera-
tively adjusting weights on the data (Chen and Guestrin, 2016).

Random Forest (RF) is presented as a specific ensemble method that improves
upon the decision tree algorithm. RF also incorporates the concept of bagging and
randomization to address the shortcomings of traditional decision trees. By gener-
ating bootstrap samples and creating decision trees based on random subsets of pre-
dictors, RF introduces randomness and creates multiple low-importance learners.
The important hyperparameters in RF include 𝑚𝑎𝑥𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠, bootstrap, and 𝑛𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟 ,
which control the number of features used in each node, data sampling conditions,
and the number of trees in the model, respectively. Boosting is another ensem-
ble method, particularly AdaBoost and Gradient Boosting Regression (GBR) (Kim
and Lee, 2022). AdaBoost adjusts the distribution of training data based on the
performance of weak classifiers, iteratively increasing the weight of samples with
low prediction accuracy. This adaptive weighting improves training accuracy and
leads to the creation of a strong classifier with better performance. GBR, on the
other hand, employs a loss function to classify errors and sequentially adds multi-
ple models, similar to AdaBoost. The distinction lies in the method of recognizing
weak classifiers, with AdaBoost emphasizing weight adjustments and GBR using a
loss function for evaluation.

2.4.3 SHAP explanation method

Various statistical tools are commonly used in coastal engineering to assess the re-
lationship between two or more variables. One big advantage of these tools is their
ability to explain the mathematical reason behind any correlation. However, these
tools are not always effective in dealing with complex and holistic environmental

15



2.5 Literature summary and research gap

phenomena such as beach erosion. Identifying key parameters for beach erosion
is common. However, the research work of Lundberg and Lee (2017) as one of the
recently bloomed machine learning approaches has developed feature importance
algorithms such as entropy, feature importance, and SHAP (SHapley Additive ex-
Planations) values, which are explanatory tools to understand the impact of differ-
ent variables. SHAP explanation method can be identified as a statistical tool to
quantify how much influence each of the input variables has on output variable/s.
Such analysis can help to make more informed decisions in coastal engineering
management.

2.5 Literature summary and research gap

The presented literature review has narrowed down the research work from coastal
vulnerability to beach vulnerability, examining the factors that influence beach
erosion and the methods employed to evaluate and alleviate vulnerability. Ad-
ditionally, the review explores coastal storms and nearshore sediment dynamics,
shedding light on their impacts on coastal environments. Moreover, it delves into
the application of machine learningmodels, specifically neural networks, XGBoost,
and the SHAP explanation method, to predict and interpret the dynamics of the
nearshore morphology. The review further underscores the necessity for compre-
hensive assessments of beach vulnerability that integrate site-specific databases and
account for the unique dynamics and factors influencing different beach sections. It
also emphasizes the significance of nearshoremorphology in comprehending beach
vulnerability and highlights the potential ofmachine learningmodels in coastal en-
gineering research.

Based on the literature review, it was determined that further investigation and
analysis in specific areas related to beach vulnerability are needed. The compre-
hension of nearshore morphology and its link to beach vulnerability remains in-
adequate, underscoring the need for additional research to reveal the underlying
mechanisms driving coastal erosion. Furthermore, limited research exists regard-
ing the application and interpretability of machine learningmodels in coastal engi-
neering, suggesting the necessity for additional studies to explore the effectiveness
and practicality of these advanced models in predicting beach vulnerability. The
objectives of this dissertation work were formulated to address these research gaps
and contribute to the development of more accurate and comprehensive strategies
for managing and mitigating erosion risks in coastal areas.
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Chapter 3

Methodology

This chapter provides an in-depth account of the methods utilized to address the
study objectives. It also outlines the specific approaches applied in the beach vul-
nerability assessment, encompassing the selection and implementation of regres-
sion models. Furthermore, the chapter underscores the comprehensive analysis
undertaken to scrutinize beach susceptibility and resilience. The overall research
methodology is presented in Figure 3.1.

3.1 Study area

The data set used in this study was collected at Hasaki Oceanographic Research
Station (HORS), Japan facing the Pacific Ocean as shown in Figure 3.2. Located in
Kamisu city of Ibaraki prefecture, HORS is situated at the center of a 16km stretch
of straight beach that runs from Choshi port in the South to Kashima port in the
North. HORS features a 392.0mlongpier thatwas constructed perpendicular to the
Hasaki coastline, allowing for chronological measurements of morphological and
hydrodynamic data since 1987 (Thilakarathne et al., 2022). The Port and Airport
Research Institute (PARI) manages the survey and research facilities at HORS. This
micro-tidal beach has a tidal range of 1.45m and is angled at 59°counterclockwise
from the North.

Beach erosion was quantified using daily measurements of a 500.0m cross-
section obtained at 5.0m intervals along the HORS pier (Suzuki and Kuriyama,
2012). The positive distances represents the seaward distance perpendicular to the
shore from the HORS coordinate system origin. Hourly measurements of signifi-
cant wave heights were recorded at 380.0m along the HORS pier, with an average
water depth of 6.0m. At Hasaki, the water levels relative to the datum level (Tokyo
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3.1 Study area

Figure 3.1: Flow chart of research methodology. The flowchart depicts the two-
stage analysis of the critical analysis as well as regression based BVI application.
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3.2 Data collection

Figure 3.2: Location of Hasaki Oceanographic Research Station (HORS). Morpho-
logical and metocean data are collected at the 500 m long pier located at the HORS
(Base map source: Geographical Survey Institute, Japan).

Peil +0.687m) were as follows: the high water level was 1.25m, the mean water
level was 0.65m, and the low water level was −0.20m. The median sediment diam-
eter (d50) is 0.18mm, although storm events could alter it to 1.0mm (Karunarathna
et al., 2016). Notably, significant beach erosion is observed during the typhoon
season, which spans from late August to October. In contrast, natural nourishment
occurs throughout the rest of the year (Banno et al., 2020).

3.2 Data collection

The data collection for this study spanned from 1987 to 2010 and involved the
acquisition of hydrodynamic data at an hourly resolution. The measuring point,
located 380.0m along the pier, was selected as the primary location for data col-
lection. This specific location is depicted in Figure 3.5. In addition to the hydro-
dynamic measurements, daily cross-sectional measurements were conducted at 5-
meter intervals. These data collection efforts aimed to capture a comprehensive
understanding of the coastal dynamics and provide valuable insights into the beach
vulnerability and morphological changes over the specified time period. Table 3.1
shows a statistical summary of data during the 24-year period and during high-
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3.2 Data collection

wave storm conditions.

Table 3.1: Statistical summary of the complete data set and filtered data set in storm
conditions.

Variable Mean (± St. d)

24-year data During Storms

Mean sig. wave height [m] 1.20 (±0.61) 2.20 (±0.36)
Mean sig. wave period [s] 7.84 (±1.91) 9.15 (±1.68)

Mean shoreline [m] 4.19 (±13.93) 2.67 (±12.97)
Maximum surge [m] – 0.39 (±0.25)
Storm power [m2 ·h] – 549.6 (±448.9)
Beach slope (Tangent) 0.0309 (±0.0095) 0.0336 (±0.0106)

3.2.1 Wave data

Significantwave height (H𝑆) is a fundamentalwave parameter extensively employed
in coastal engineering to characterize the wave climate of a specific location. It rep-
resents the average height of the highest one-third of waves observed within a given
time period, typically measured over a period of 20min. H𝑆 is a key descriptor of
wave conditions as it provides a reliable estimate of the wave energy present in a
particular sea state.

The calculation of significant wave height involves statistical analysis of wave
data collected by wave buoys, coastal gauges, or numerical wave models. Initially,
raw wave measurements, typically in the form of time series data, are processed
to remove outliers, noise, and non-wind-generated waves. The remaining wave
heights are then sorted in descending order, and the average of the highest one-third
is determined to obtain the significant wave height value. Figure 3.3 highlights the
significant wave height (m) variation during the study period.

3.2.2 Tidal and water levels

Water level (𝜂) observations were conducted at 380.0m point along the Hasaki pier
(Figure 3.5). The water level observations and tidal predictions for each hour were
used to calculate the storm surge during storm conditions. Though the tidal pre-
dictions are periodical, the water levels vary depending onmany factors, Figure 3.4
highlights the mean water levels (m) variation during 24-year study period.
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3.2 Data collection
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Figure 3.3: Distribution of the Significant Wave Height observations [H𝑠] during
the study period (1987-2010). Monthly mean H𝑆 values are shown in the thick line.
Daily H𝑆 values are shown in light teal color and red line shows the mean H𝑆 at
Hasaki.
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Figure 3.4: Distribution of the water level observations [𝜂] during the study period
(1987-2010). Monthlymeanwater level (𝜂) values are shown in the thick line. Daily
𝜂 values are shown in light teal color and red line shows the mean water level at
Hasaki.
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3.2 Data collection

Figure 3.5: Bed profile variation from 1987 to 2010. Shoreline range during the 24-
year period is shown in brown color. Hourly wave and water level (𝜂) observation
point was at the star point.

3.2.3 Cross sectional data measurements

To accurately assess the sediment exchange along the beach, cross-sectional mea-
surementswere taken along an x-coordinate system ranging from -115.0mto+385.0m,
corresponding to shoreline positions from -36.9m to +45.7m over the 24-year pe-
riod. However, recognizing the critical role of shoreline position in cross-shore
sediment balance and long-term morphology changes, a new cross-shore coordi-
nate system was introduced. This system centers on the shoreline, ensuring the
shoreline position remains fixed at x=0. This novel approach allows us to focus on
beach erosion and better understand the vulnerability of the beach. Surprisingly,
previous studies examining beach vulnerability have not considered the impact of
shoreline variation on the results (Thilakarathne et al., 2022).

Itwas found throughprevious research that the initial shoreline position strongly
influences the impact of storms on the beach, further emphasizing the importance
of using a shoreline-based approach in beach profiling (Thilakarathne et al., 2022).
Figure 3.6 highlights the impact of closure depth on the nearshore sediment move-
ment specially during storm conditions. Considering this, the beach zone was set as
defined in the Figure 3.7. In the comprehensive analysis, lesser discussed morpho-
metrics on the beach zone as well as sandbar formations are thoroughly examined.
Moreover, sandbar height, depth and distance is defined as shown in the Figure 3.8
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Figure 3.6: Seaward beach zone limit definition based on the closure depth (20.0m
from the shoreline position). Average point-erosion rate along the peir is considered
here.

Figure 3.7: Cross-sectional profilig based on the shoreline basedmoving cross-shore
profiling. Beach zone is highlighted in red. Mean beach profile in black is shown
on the beach profile envelope in gray.
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Figure 3.8: Quantifying sandbar features asmorphometric indicators for beach sus-
ceptibility and resilience quantification approach.

3.3 Storm Identification

Typhoons in autumn, strong monsoons in winter, and low atmospheric pressure
throughout the year produce strongwave conditions atHasaki (Katoh, 1997). Storm
classifications are generally site-specific where the peaks over a wave threshold ap-
proach are common. However, generalized storm thresholds can also be beneficial
when considering the applicability of methods across different locations.

3.3.1 Global threshold approach

In most storm identification definitions, a minimum duration of six hours is con-
sidered to include only storm events of a significant duration (Ciavola and Coco,
2017). Generally, a meteorological in-dependent criterion (I) (the period between
individual storm events) is employed to distinguish two storm events. Considering
the wave and morphology characteristics at Hasaki, the wave threshold for storm
identification in specific objective 1 follows the approach proposed by Basco and
Mahmoudpour (2012). Arithmetic mean (𝐻S−mean) and standard deviation (𝐻S−std)
of hourly H𝑆 measurements for 31 years (1987-2017) are used to calculate the wave
threshold to separate storm events (Equation 3.1). In addition, the minimum dura-
tion, and meteorological independent criteria (I) of a storm event are set to 6h and
24h, respectively (Figure 3.9).

Wave threshold = H𝑆−𝑚𝑒𝑎𝑛 + 2 ×H𝑆−𝑠𝑡𝑑 (3.1)
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Figure 3.9: Storm event identification based on hourly significantwave height (24h)
and duration: two storm events are shown here.
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Figure 3.10: Storm event identification based on a two-threshold (Upper limit: 𝐻𝑈,
Lower limit: 𝐻𝐿) significant wave height approach.

3.3.2 Site-specific threshold approach

A two-threshold approach was employed to identify storms based on significant
wave height (H𝑆). A minimum storm duration (D𝑚𝑖𝑛) of 6h was applied to ensure
the inclusion of only significant storm events. An upper threshold of 2.5m (H𝑈

) was utilized to identify storms, representing the minimum requirement for Hs.
Subsequently, a lower threshold of 1.5m (H𝐿) was employed to identify the effective
duration of the storm (Figure 3.10). These two thresholds were derived considering
the long-term characteristics of the offshorewave climate atHasaki (Kuriyama et al.,
2012).
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3.4 Regression models

3.4 Regression models

Prior to the quantification of BVI, two regression models, MLR (in specific objec-
tive 1 & 2) and ANN (in specific objective 2), were trained to predict shoreline ero-
sion, and based on the predictions, beach vulnerability is indexed. To train and
test the two regression models, the data were randomly split using Sklearn’s data
splitting library (Pedregosa et al., 2011) in specific objective 2. The training data
was further divided into 80% for training and 20% for validation, only for the
ANNmodel, while 5% of the initial data was reserved for testing purposes. Regres-
sion model performances were evaluated using the coefficient of determination (R2

Score) metric, which measures the proportion of variance in the target variable that
is explained by the model (Equation 3.2).

R2 Score = 1 − ∑ (𝑦𝑖 − 𝑓𝑖)2

∑(𝑦𝑖 − ̄𝑦)2 (3.2)

Where, 𝑦𝑖, 𝑓𝑖, and ̄𝑦 denote observed data, predicted data, and the mean of the ob-
served data set, respectively.

3.4.1 Multiple linear regression

Multiple linear regression (MLR) is a statistical technique commonly used to ana-
lyze quantitative data that models the relationship between multiple independent
variables and a dependent variable. The goal of MLR is to find the best-fitting lin-
ear equation that represents the relationship between the variables, based on the
available data. Initial shoreline position [m], storm power [m2 h], and maximum
surge [m] were selected as inputs for both the MLR to predict dSL [m] considering
its higher correlation with dSL. Whereas for the specific objective 2, when larger
storm data were tested, foreshore slope was also selected.

3.4.2 Artificial Neural Network

Artificial Neural Network (ANN) is a powerful machine learning model used in re-
gression as well as for classification objectives. It consists of neurons and hidden
layers which connect the input variables with the output (Figure 3.11). These neu-
rons are adjusted to learn from the data using a large number of parameters, and
they are updated through a process called feed-forward back-propagation. Also,
hyper-parameters are used to set the Neural Net architecture where they are set
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3.4 Regression models

Figure 3.11: Example architecture of an artificial neural network setupwith 4 input
variables (indicators), two hidden layer designs with a neuron setup of (4×8).

prior to the training of the model and remain constant during the training and test-
ing.

The accuracy of ANNs highly depends on the number of neurons and the com-
plexity of the layers. Figure 3.12 shows themodel performance variation in training
and testing for different numbers of neurons and hidden layers in the ANN archi-
tecture. Once the model has been trained, it can be used to predict outputs from
unseen input variables (testing). Tuning the ANN model can be a challenging task
due to the need to optimize multiple hyper-parameters and select the best network
architectures. The model had to be run a considerable number of times to achieve
good training and testing performance before tuning the hyper-parameters. The
best-performing initial ANN model was with two hidden layers, each containing
256 and 64 neurons, respectively when tested for predicting dSL. This model em-
ploys a dropout rate of 0.4 to mitigate over-fitting, a common issue in deep learning
models. A learning rate of 0.01 was chosen as a starting point for optimizing the
model’s parameters. The batch size of 32 suggests that the model is trained on 32
samples at a time before updating themodel’s parameters. Themodelwas tested for
1000 epochs, but the early stopping at 400 epochs is used to avoid over-fitting and
increase the efficiency of the model. The model uses the normal distribution as the
initializer for the kernels and the activation function ReLU (Schmidt-Hieber, 2020)
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Figure 3.12: Initial Model setup: performance of ANN with training and testing
data sets for shoreline change prediction in different model architectures. R2 score
is measured between prediction and observed dSL.

in the hidden layers. The activation function in the output layer is linear, which is
appropriate for regression and other similar tasks (Ramsundar and Zadeh, 2018).

3.4.3 XGBoost

The eXtreme Gradient Boosting (XGBoost) algorithm was employed to correlate
shoreline erosion will selected morphometric features in the specific objective 3 to
quantify the feature importance in beach erosion. XGBoost is a highly scalable and
efficient machine-learning algorithm used for regression and classification tasks.
Based on the gradient boosting framework, the algorithm iteratively adds weak
learners to an ensemble model and optimizes a loss function based on residual er-
rors. In this dissertation, the XGBoost model and its weights in combination with
SHAP feature importance are used to understand the impact of each morphometric
feature on the erosion prediction. Notably, XGBoost is designed to handle miss-
ing data and outliers effectively and includes regularization parameters to prevent
overfitting and improve model generalization. The use of XGBoost and SHAP fea-
ture importance allows for a comprehensive and interpretable analysis of the mor-
phometric features that contribute most to beach erosion prediction.

The XGBoostmodel was trainedwith three hyperparameters, namely n_estimat-
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ors, max_depth, and learning_rate. The n_estimators parameter defines the number
of decision trees that are to be used in themodel, which in this studywas set to 1000.
Increasing this parameter can result in better performance but at the expense of
longer training times (Chen and Guestrin, 2016). The max_depth parameter, set to
10 in this study, specifies themaximum depth of each decision tree. This parameter
affects the complexity of each decision tree and controls the level of overfitting in
the model. A higher value of max_depth can lead to more complex trees, but also
increase the risk of overfitting (Chen and Guestrin, 2016). Finally, the learning_rate
parameter sets the step size at each iteration of the boosting process, which was set
to 0.1 in this study. This parameter impacts the rate of convergence and the size
of the update at each step. The XGBoost model is designed to effectively learn the
complex relationships between the input features and the output target, providing
accurate predictions of volumetric erosion (Chen and Guestrin, 2016).

3.5 SHAP explanation method

SHAP (SHapley Additive exPlanations) is a widely recognized technique that lever-
ages cooperative game theory’s concept of Shapley values to elucidate the predic-
tions made by intricate machine learning models (Lundberg and Lee, 2017). The
methodology quantifies the contribution of each feature in a prediction by deter-
mining the marginal contributions of every feature to the model output, ascer-
tained by contrasting the forecast of the complete feature set with the predictions
when each feature is removed. The marginal contributions are aggregated using a
weighted sum to derive the Shapley value for each feature. The weighting scheme
takes into account the number of conceivable feature combinations that include or
exclude the evaluated feature. By calculating Shapley values for each feature across
multiple predictions, SHAP can provide a global or local explanation for individual
predictions. Figure 3.13 illustrates the local interpretability of SHAP explanation
method, especially the black block behaviour of novel deep learning approaches
can be explained by these.

Themain equation used to calculate SHAP (SHapleyAdditive exPlanations) val-
ues is the Shapley value equation (Equation 3.3), which is used to determine the
marginal contribution of each feature to the model output.

Φ𝑖 =
1
𝑀! 

𝑅
𝐸[𝑓(𝑥)|𝑥𝑆𝑅𝑖 ∪𝑖] − 𝐸[𝑓(𝑥)|𝑥𝑆𝑅𝑖 ] (3.3)
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Figure 3.13: An example of the local interpretability of SHAP explanation method.
Color bar shows the feature value. Positive SHAP values denote positive contribu-
tions to the output.

Where,Φ𝑖 represents the Shapley value for feature 𝑖, 𝐸[𝑓(𝑥)|𝑥𝑆𝑅𝑖 ∪𝑖] represents the
expected model output, for instance, 𝑅 when feature 𝑖 is included, 𝐸[𝑓(𝑥)|𝑥𝑆𝑅𝑖 ] rep-
resents the expected model output, for instance, 𝑅 when feature 𝑖 is not included,
and 𝑀 is the total number of possible combinations of features (coalitions).

3.6 Beach Vulnerability Application

This sub-chapter centers on the methods applied to the development of applica-
tions for beach vulnerability assessment, specifically the calculation of the Beach
Vulnerability Index (BVI). The analysis begins with fitting regression models to an
8-year data set to quantify the BVI (specific objective 1). Subsequently, a larger
storm data set spanning 24 years was utilized to showcase the application of a neu-
ral network-based approach for BVI quantification (specific objective 2). The aim
was to gain a comprehensive understanding of beach vulnerability and its response
to storm events.
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3.6 Beach Vulnerability Application

3.6.1 Preliminary Approach

In this Preliminary Approach, a smaller data set of storms was utilized to quantify
BVI. The data set was divided into separate groups based on chronological periods,
with the training group covering 1993-1997 and the testing group covering 1997-
2000. Beach erosionmeasurements, specifically shoreline change (dSL) and volume
change (dV), were analyzed during the model training period to assess beach vul-
nerability to storm-induced erosion along the Hasaki coast. Based on the ranges of
dSL and dV values, five vulnerability classes (1 to 5) were defined to indicate the
level of vulnerability for beach erosion. A Vulnerability Index (VI) was assigned
to each class, with VI𝑑𝑆𝐿 representing shoreline change vulnerability and VI𝑑𝑉 rep-
resenting volume change vulnerability. The final BVI was then calculated as the
simple arithmetic mean of VI𝑑𝑆𝐿 and VI𝑑𝑉 using Equation 3.4.

BVI = 𝑉𝐼𝑑𝑆𝐿 + 𝑉𝐼𝑑𝑉
2 (3.4)

Later the predicted beach erosionmeasurements from the regressionmodel and
observed beach erosion measurements (from SE𝑇𝑆−1 to SE𝑇𝑆−10) were used to calcu-
late and compare the BVI values in the testing phase of the present study. During
the preliminary stage, it was highlighted having two separate sub-Vulnerability In-
dices of VI𝑑𝑆𝐿 and VI𝑑𝑉 would be helpful, as it indicates probable erosion values of
dSL and dV.

3.6.2 Improved Approach

Based on the initial findings, a better understanding of data fitting was obtained,
leading to the development of an improved Beach Vulnerability Index (BVI) appli-
cation using the complete storm data set from 1987 to 2010. However, during the
analysis of the complete data set, a strong correlation (r2 = 0.88) was observed be-
tween volumetric erosion (dV) and shoreline change (dSL) of beach profile changes
at HORS. As a result, only dSL was used to estimate beach vulnerability. The vul-
nerability ranges were defined based on the distribution of dSL values in the com-
plete storm data set, and five vulnerability classes were proposed (Table 3.2). This
was based on a frequency analysis shown in Figure 3.14. A BVI value of 1 indi-
cates a shoreline shift seaward, indicating no erosion. Class ranges of 2, 3, 4, and
5 were defined based on the distribution of dSL values, where higher values indi-
cate the need for precautionary measures. The BVI estimations from the ANN and
MLR models are denoted as BVI𝐴𝑁𝑁 and BVI𝑀𝐿𝑅, respectively, while the observed
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shoreline-change-based BVI calculation is represented as BVI𝑜𝑏𝑠. The performance
of each model was compared with BVI𝑜𝑏𝑠.

Table 3.2: Vulnerability class ranges for beach vulnerability index (BVI) quantifi-
cation. Shoreline accretion is denoted as BVI of 1.

Shoreline erosion measurement ranges (dSL) BVI

>8.0m 5
4.0m to 8.0m 4
2.0m to 4.0m 3
0.0m to 2.0m 2

Shoreline accretion 1
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Figure 3.14: Return Period Analysis of Shoreline Changes at Hasaki Beach.

3.7 Comprehensive analysis on beach vulnerability

The comprehensive analysis on beach vulnerability delved into a detailed explo-
ration of the factors influencing beach vulnerability and sought to enhance the cur-
rent understanding of coastal process. This analysis took into account various ele-
ments such as storm characteristics, beachmorphometrics, and temporal variations
to evaluate the susceptibility and resilience of beaches to erosion. By conducting
an in-depth examination, this chapter aims to provide valuable insights into beach
vulnerability, particularly regarding its susceptibility and resilience-related char-
acteristics.

The Hasaki beach was characterized by two distinct morphometric zones based
on frequent wave breaking point: the inner zone spanning from 20.0m to 170.0m,
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Figure 3.15: Profile definition based on shoreline position. The beach zone, the
inner sandbar zone, and the outer sandbar zone are colored red, blue, and green,
respectively.

and the outer zone ranging from 170.0m to 340.0m. Figure 3.15 illustrates the
definition of these zones, with a highlighted profile displaying double sandbar for-
mations within the profile envelope. The beach profiles were categorized into four
groups based on the presence and location of sandbar formations: unbarred pro-
files, inner zone sandbar profiles, outer zone sandbar profiles, and double sandbar
profiles (Figure 3.16). Statistical approaches were employed to quantify the inter-
nal characteristics of susceptibility and resilience for each profile type in relation to
storm-induced erosion. The aimwas to identify the specific characteristics that ren-
der each profile type vulnerable to erosion. Sandbar formations also indicate differ-
ent stages of long-term sandbar migration, and the profile patterning was expected
to aid in understanding such complexities. In a recent study, Janušaitė et al. (2021)
examined the realignment of nearshore sandbars and its impact on nearshore and
sub-aerial beach changes. They emphasized the significance of sandbar relocation,
cross-shore position, shoreline dynamics, and sand volume changes in beach ero-
sion. While the present dissertation primarily focuses on storm-related timescales,
the findings of Janušaitė et al. (2021) regarding long-term morphological changes
remain applicable and relevant.

Daily cross-shore survey datawere used to identify sandbar formations. AGaus-
sian 1dfilter from the Python library SciPywas used to obtain smooth profiling (Vir-
tanen et al., 2020). Then, another signal processing toolbox based on Python was
used to identify the bar crests and troughs (Virtanen et al., 2020). Based on the sand-
bar characteristics at Hasaki, minimum sandbar height threshold values of 0.2m
and 0.4mwere used to filter the inner zone and outer zone formations, respectively.
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Figure 3.16: Main beach profile patterns: a) unbarred profiles, b) inner zone sand-
bar, c) outer zone sandbar, and d) multiple sandbar formations.

The distance to the sandbar crest was calculated from the shoreline position. Sand-
bar depth was defined as the water depth from the HWL (1.252m) to bar crest. Bar
height was calculated as the vertical distance between the crest and the line join-
ing the adjoining troughs (Figure 3.8). Also, the sandbar slopes in the seaward and
the landward faces were calculated and later used in the feature selection for the
comprehensive analysis.

3.7.1 Beach susceptibility

Through SHAP value analysis, key morphometric indicators that influence beach
erosion during storm conditions for each of the four profile types were identified.
These indicators were then used to develop a susceptible metric, Beach Erosion
Susceptibility Number (BESN), with each indicator weighted according to its con-
tribution to the predictions of XGBoost model. To ensure generalizability, a weight
function was introduced for each morphometric indicator that mainly depends on
the value of the indicator. By incorporating these methods, it was expected to gain
a better understanding of the impact of morphometric indicators on beach erosion
and provide a more accurate and comprehensive tool for coastal engineering man-
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3.7 Comprehensive analysis on beach vulnerability

agement to quantify beach susceptibility. Table 3.3 shows descriptions for all the
indicators selected for this comprehensive analysis.

Table 3.3: Morphometric variables (indicators) used in this analysis to quantify the
beach profile susceptibility.

Notation indicator Description

A Shoreline position [m] Shoreline of the previous day’s beach
profile

B Inner zone sediment vol-
ume [m3m−1]

Volumetric sediment deposition in the
inner zone

C Outer zone sediment vol-
ume [m3m−1]

Volumetric sediment deposition in the
outer zone

D Beach slope Tangential beach slope (vertical
height/100 m)

E Inner sandbar height [m]
Sandbar formations in the inner zone
(20m to 170m) are characterized
based on Figure 3.15

F Inner sandbar distance [m]
G Inner sandbar water depth

[m]
H Inner sandbar landward

slope
I Inner sandbar landward

slope

J Outer sandbar height [m]
Sandbar formations in the outer zone
(170m to 340m) are characterized
based on Figure 3.15

K Outer sandbar distance
[m]

L Outer sandbar water
depth [m]

M Outer sandbar landward
slope

N Outer sandbar landward
slope

After identifying the key indicators usingXGBoost and SHAPexplanationmeth-
ods, the selected indicators are utilized to quantify the susceptibility characteristic
of the beach profile by considering their magnitude and significance in relation to
beach erosion. Each morphometric indicator is denoted as 𝐼. The steps involved in
generating the BESN are outlined below.
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3.7 Comprehensive analysis on beach vulnerability

Step 1: Indicator Normalization

Normalization was applied to each indicator to ensure the generalizability of the
BESN across different sites and disregard the original value ranges. This was par-
ticularly important as the value ranges of the indicators can vary significantly. For
example, the shoreline indicator might range from −36.9m to 45.7m, while the
inner sandbar height indicator might range from 0.2m to 2.3m. To achieve nor-
malization, the indicator values were transformed using Equation 3.5.

𝐼norm = 𝐼 − 𝐼min

𝐼max − 𝐼min
(3.5)

Step 2: Weights for BESN

Weights were assigned to each normalized indicator to account for their varying
contributions to beach erosion and, consequently, beach susceptibility. The weights
(𝑤𝑖) were determined based on the SHAP values, which quantify the impact of each
indicator on beach susceptibility. Equation 3.6 was used to ensure that the weights
add up to one and maintain their relative proportions.

𝑤̄𝑖 =
𝑤𝑖

∑𝑖 𝑤𝑖
(3.6)

Step 3: Linear functions for weights

A linear function was introduced to capture the relationships between SHAP values
and indicator weightsmore accurately. This was necessary due to the observed vari-
ation in SHAP values for different indicator values, which also affected the corre-
sponding weights. We could better account for the complex relationships between
indicators and beach susceptibility by calculating coefficients 𝑐𝑓 and 𝑚 for each se-
lected indicator within each profile pattern, leveraging the local interpretability of
SHAP values (Equation 3.7).

𝑤̄𝑖 = 𝑐𝑓𝐼𝑖 + 𝑚 (3.7)

Step 4: Discretization of BESN generations

In the final step of the BESN generation process, the continuous BESNdata obtained
by multiplying the corresponding 𝐼𝑖 values with Equation 3.7 were discretized into
five separate data bins using NumPy (Equation 3.8)(Harris et al., 2020). This dis-
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Figure 3.17: Distribution of time gap between two storm events. Based on this a
10-day period was decided for the beach recovery analysis.

cretization enabled us to categorize the beach profiles effectively according to their
susceptibility to erosion. Higher BESN values indicated a greater vulnerability to
erosion, while lower values suggested a lower susceptibility.

BESN = discretize ⒧(𝑐𝑓𝐼𝑖 + 𝑚)𝐼𝑖⒭ (3.8)

3.7.2 Beach resilience

The Beach Resilience Number (BRN) was proposed to quantify the recovery poten-
tial of different beach profile patterns. The ratio between the shoreline recovery
after an n-day period and the shoreline erosion during the storm event was de-
fined as the BRN in this study (Equation 3.9). Moreover, the post-storm duration to
quantify short-term recovery was defined based on the study area characteristics of
recovery. While Eichentopf et al. (2020) proposed using an 18-day period to iden-
tify the presence of sequencing storm events, a 10-day period was selected for this
study, considering the observed recovery and the need for sufficient data for the
analysis. Figure3.17 shows the distribution of the time gap to the next storm event
for all the selected cases in this study. Figure 3.18 illustrates the two-step criteria
for the storm event selection for the BRN analysis.

𝐵𝑅𝑁 = BR
𝑑𝑆𝐿 (3.9)

Where BR denotes the 10-day beach recovery, and dSL represents the shoreline
erosion during the storm event.
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Figure 3.18: Storm event selection for the BRN analysis considering the absence of
storms and positive shoreline erosion during the storm events.
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Figure 3.19: Outlier identification of the BRN distribution based on the first and
third quantiles and interquartile ranges.

To begin, storm events with a sequenced occurrence during the 10-day post-
storm period and those associated with shoreline accretion during the storm were
excluded. Subsequently, the Beach Resilience Number (BRN) was calculated for
the selected events. As BRN represents beach recovery relative to shoreline ero-
sion, considering larger outliers would not yield meaningful insights. Thus, iden-
tification of outliers was based on the inter-quartile range of the BRN distributions.
Outliers in the BRN calculation were then eliminated. Figure 3.19 shows the outlier
identification approach employed in this study. A BRN value of 1 indicates com-
plete recovery of the shoreline from the erosion attributed to the respective storm
event (Equation 3.9). Conversely, a negative BRN indicates negative recovery, im-
plying further erosion instances.
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3.7 Comprehensive analysis on beach vulnerability

Given the limited number of storm datasets, particularly following the filtering
process, applying XGBoost models to fit data for a regression model while incorpo-
rating influential morphological features and BRN could potentially raise concerns
regarding the reliability of analysis results. However, four distinct XGBoost models
were developed to evaluate beach resilience. Subsequently, the SHAP explanation
method was employed to quantify the significance of each morphometric indicator.
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Chapter 4

Beach vulnerability Index
Application

In this chapter, the results of the developments in the Beach Vulnerability Index
(BVI) are presented and discussed. Initially, a preliminary approach was employed
with the smaller data set by applying the MLR model. Subsequently, the complete
data set was utilized to enhance vulnerability prediction through the implementa-
tion of ANN.

• Preliminary approach to quantify the beach vulnerability using linear re-
gression models.

• Improved approach to quantify the beach vulnerability adding neural net-
works to the preliminary study.

4.1 Preliminary approach to quantifying beach vulnerabil-
ity

The reliminary approach tried to extend the research work by Malek et al. (2020)
related to quantifying probable erosion in Hasaki beach. They have discussed the
behavior of Hasaki beach morphology under storm conditions using a storm data
set from 1993 to 1997. Hence, the preliminary approach also commenced with the
same time period as a foundational point for exploring the development of BVI.
It is important to note that this sub-chapter serves as an introductory exploration,
laying the groundwork for the subsequent analysis with a larger data set, whichwill
provide more comprehensive insights into beach vulnerability assessment.
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4.1 Preliminary approach to quantifying beach vulnerability

4.1.1 Storm event identification

Over the 8-year study period, a total of 48 storm events were identified. The first
38 storm events, occurring between 1993 and 1997, were selected to train regres-
sion models for the purpose of predicting beach erosion. Among these events, the
longest duration was 169h with a maximum surge of 0.34m, while another event
experienced amaximum surge of 1.13m. Additionally, the highest recorded energy
flux reached 2.4 × 1011 kN s−1.

Figure 4.1 shows scatter plots and individual linear regression lines of dSL and
dV against each input variable. Colored triangular markers within the figure em-
phasize the four most severe storm events (shown in blue, orange, green, and pur-
ple) from the training data set. Despite two of these events having similar energy
fluxes, the third event demonstrated substantial differences in dSL and dV. This
divergence could be attributed to clear differences in initial shoreline positions, re-
sulting in significant variations in beach erosion quantities.

During the testing period spanning from 1998 to 2000, a total of 10 storm events
were identified. For instance, one storm event lasting 75h (with an energy flux of
1.06 × 1010 kN s−1) induced a volumetric alteration of 17.22m3m−1 in the beach
zone, along with a shoreline shift of 6.39m. In contrast, another storm, lasting
25h (with an energy flux of 3.45× 109 kN s−1), led to a more substantial beach zone
erosion of 26.40m3m−1 and a shoreline retreat of 15.5m, signifying the most sig-
nificant impact on the beach. Consequently, it became evident that beyond hy-
drodynamic factors, other contributing elements, such as morphological features,
necessitate testing to establish a more precise framework for beach vulnerability
assessment.

4.1.2 Multiple linear regression model

38 storm events in the training set were employed to create regression models for
beach erosion predictions. Based on the distributions of dSL and dV with input pa-
rameters (E𝑓 , SL𝑖, and S𝑚𝑎𝑥), a linear relationship is understood to be the best fit for
regression models (Figure 4.1). Equation 4.1 and Equation 4.2 show the generated
regression models to predict dSL and dV, respectively.

dSL = 5.7 × 10−10(𝐸𝑓 ) + 0.17(𝑆𝐿𝑖) + 10.8(𝑆𝑚𝑎𝑥) − 2.1 (4.1)

dV = 13.3 × 10−10(𝐸𝑓 ) + 0.19(𝑆𝐿𝑖) + 25.8(𝑆𝑚𝑎𝑥) − 7.8 (4.2)

Even though only four storm events had surpassed the energy flux of 1.0 ×
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Figure 4.1: Scatter plots: shoreline change variation with: (a) energy flux, (b) initial
shoreline, and (c) maximum surge and volume change variation with: (d) energy
flux, (e) initial shoreline, and (f) maximum surge.
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Figure 4.2: Validation of shoreline change (m) prediction of the linear regression
model (Equation 4.1).

1010 kN s−1 (Figure 4.1 (a)), their inclusion in the regression model was vital as they
incorporate extreme storm conditions to the model. Furthermore, R2 scores (R2)
for each regression model on the training data set were 0.58 (Equation 4.1) and
0.52 (Equation 4.2) which showed a tolerable fit. Then the 10 storm events in the
testing set were used to test the performance of the above two linear regression
models. Figure 4.2 and Figure 4.3 show the scatter plot of observed and predicted
values of dSL and dV, respectively. Model predictions showed that Equation 4.1
tends towards over predictions (positive error) of dSL while Equation 4.2 holds a
much broader distribution of dV predictions which explains the relatively lower R2

value compared to Equation 4.1. However, Root Mean Square Error (RMSE) values
of dSL and dV predictions were 3.46m and 6.56m3m−1, respectively. Whereas the
Scatter Index (SI) values (Equation 4.3) indicated tolerable estimations (for dSL and
dV, SI were 0.83 and 0.90, respectively).

𝑆𝐼 = 𝑅𝑀𝑆𝐸
mean of observed data

(4.3)

Despite the limited use of linear regression models in coastal morphological as-
sessments, especially under strongwave conditions, the preliminary results demon-
strated reliable accuracies. However, it is important to test recent advancements
in advanced regression models such as ML for more precise beach change predic-
tions. The simplicity of linear regression models, along with an acceptable degree
of accuracy, provides a distinct advantage compared to the mostly black-box appli-
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Figure 4.3: Validation of volumetric change (m3m−1) prediction of the linear re-
gression model (Equation 4.2).

cations of ML and Deep Learning (DL) algorithms. Linear regression models allow
for easier implementation and interpretation, as well as the ability to identify and
visualize inconsistencies and anomalies in the data. Additionally, individual data
sets can be checked for the presence of anomalies. However, linear regression mod-
els are sensitive to outliers and prone to noise and overfitting, which is a significant
drawback.

During this stage of the study, a total of 48 storm events were analyzed, allowing
for the assessment ofmorphological and hydrodynamical conditions for each event.
This explicit understanding of missing data, anomalies, and storm event character-
istics greatly influenced the setup of the regression model. While the statistical
indices indicated a promising performance of linear regression in predicting beach
change, it was further observed thatmany of the data points were concentrated near
the origin [0,0] (Figure 4.1).

4.1.3 BVI calculations

The 10 selected storm events from the testing period were utilized to establish and
validate the preliminary Beach Vulnerability Index (BVI) approach. Firstly, two
classes of Vulnerability Indices (VI), denoted as VI𝑑𝑆𝐿 and VI𝑑𝑉, were defined
based on the historical distribution of changes in shoreline position (dSL) and vol-
umetric changes (dV), respectively. The lowest VI value of 1 was assigned when the
shoreline shifted seaward and beach volume experienced accretion, indicating no
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Figure 4.4: Components of BVIs during the testing period of 10 storm events. p-
VI𝑑𝑆𝐿 and p-VI𝑑𝑉 denote the predicted VI𝑑𝑆𝐿 and VI𝑑𝑉 values.

erosion. Subsequently, following coastal vulnerability frameworks (Koroglu et al.,
2019; Gornitz et al., 1991), VI𝑑𝑆𝐿 and VI𝑑𝑉 class ranges of 2, 3, 4, and 5 were de-
fined by categorizing dV and dSL values into four distinct classes. The subsequent
calculation of the BVI was conducted for both observed and predicted measure-
ments of beach erosion.

Figure 4.4 shows the distribution of observed and predicted BVI of storm events
in the testing group. This graphical presentation further disintegrates BVI to VI𝑑𝑆𝐿
and VI𝑑𝑉 to identify the dominant erosion factor (either dSL or dV). For example,
SE𝑇𝑆7 has a VI𝑑𝑆𝐿 of 3 and a VI𝑑𝑉 of 1 which indicates a significant change to the
shoreline, yet the volume change is negligible. In that event, the eroded volume
remained within the beach zone limits, hence a negligible volumetric change and
a significant shoreline change were observed. The majority of model predictions
were slightly over-estimated. The model accurately predicted both components of
BVI during SE𝑇𝑆3 and SE𝑇𝑆9. Only the BVI predictions of SE𝑇𝑆27 and SE𝑇𝑆5 were
under-predicted and the prediction of VI𝑑𝑉 (p-VI𝑑𝑉) in SE𝑇𝑆7 was also substandard.
Nevertheless, five of the p-VI𝑑𝑉 and four of p-VI𝑑𝑆𝐿 were accurate. Also, the rela-
tively lower R2 value of regression Equation 4.1 (for dSL) during the testing stage
(0.48) compared with what was achieved during the training stage (0.58) might
suggest an over-trained condition of the dSL model.

It is important to note that the interpretation of vulnerability is predominantly
specific to the site in question. Therefore, the defined vulnerability class ranges
should be applied cautiously and tailored to different locations and time frames as

45



4.2 Improved approach to quantifying beach vulnerability

needed.

4.2 Improved approach to quantifying beach vulnerability

This method parallels the approach outlined in the first specific objective, initially
utilizing Multiple Linear Regression (MLR) in its analysis. However, to further re-
fine the accuracy of capturing shoreline change and its subsequent integration into
BVI calculations, a novel ANN regression model was employed. Moreover, consid-
ering the robust linear relationship observed between the variables dSL and dV,
the investigation was confined to dSL. The assignment of BVI vulnerability classes
for each dSL estimation was determined based on the criteria detailed in Table 3.2.
The linear relationship between dV and dSL is shown in Figure 4.5, while Figure 4.6
provides a depiction of storm duration in relation to the initial shoreline variation
for each storm event.
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Figure 4.5: Correlation between the shoreline change [m] and volume change in the
beach zone [m3m−1].

4.2.1 Storm event identification

During the 24-year study period, a total of 347 storm events were identified. To
train and test the ANN andMLRmodels, the Sklearn library Pedregosa et al. (2011)
randomly split these events into 329 storms for training and 18 storms for testing.
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Figure 4.6: Distribution of storm duration and initial shoreline position: complete
data set (1987-2010) - 347 storm events.
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Figure 4.7: Storm event selection for training and testing of regression models:
ANN and MLR.

The distribution of storm power for each storm is shown in Figure 4.7, with a suit-
able characteristic distribution achieved for both training and testing data sets. The
longest storm event lasted for 314h, while a separate storm event had a maximum
surge of 1.5m. The maximum initial beach slope was 0.0653 and the maximum
storm power was 3296.25m2 h.

4.2.2 Multiple Linear Regression model

Figure 4.8 shows the distribution of the MLR prediction with the observed dSL.
The R2 score for the testing data was 0.35, indicating that the model can explain
only 35% of the variance in the target variable. The R2 Score for the training data is
0.26, suggesting that the model fails to exhibit satisfactory performance even when
evaluated on the data used for its training. MLR tends to under-predict most of
the dSL, especially the severe shoreline changes (Figure 4.8-(b)). This questions the
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Figure 4.8: Multiple Linear Regression (MLR)model performance: (a) training data
set (329 storms) and (b) testing data set (18 storms).

prediction capabilities of MLR especially for extreme erosion conditions.

4.2.3 Artificial Neural Networks

Figure 4.9 shows the distribution of the ANNpredictionwith the actual observation
of dSL. The performance of the described ANN model was evaluated using the R2

score metric. The R2 Score for the testing data was 0.62, indicating that the model
can explain 62% of the variance in the target variable. An R2 Score of 0.68 was
achieved for training data. The training and testing performances of a model need
careful attention to balance the generalization with good prediction capability.

4.2.4 Beach Vulnerability Index calculations

The violin plots in Figure 4.10 compare BVI𝐴𝑁𝑁 and BVI𝑀𝐿𝑅 with BVI𝑜𝑏𝑠. The sec-
ond specific objective also revolves around assessing the BVI prediction accuracy
of the two regression models. As anticipated, ANN demonstrated superior per-
formance compared to MLR. There is a noticeable deviation in the distribution of
BVI𝑀𝐿𝑅 from BVI𝑜𝑏𝑠 for classes 1, 2, and 3. However, for class 4 of BVI𝑜𝑏𝑠, which cor-
responds to dSL values in the range of 4.0m to 8.0m, BVI𝑀𝐿𝑅 exhibited relatively
accurate results. On the contrary, for class 5 of BVI𝑜𝑏𝑠, representing the highest vul-
nerability category, BVI𝑀𝐿𝑅 displayed significant underestimation, while BVI𝐴𝑁𝑁

showed promising outcomes.
The Kernal Density Estimate (KDE) plots were also used to compare the BVI𝐴𝑁𝑁

and BVI𝑀𝐿𝑅 (Figure 4.11). Darker areas of the KDE plotS in Figure 4.11 show higher
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Figure 4.9: Artificial Neural network (BVI𝑀𝐿𝑅) model performance: (a) training
data set (329 storms) and (b) testing data set (18 storms).
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Figure 4.10: Violin plots showing the distribution of BVI predictions (BVI𝐴𝑁𝑁 and
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frequency distributions of BVI𝑀𝐿𝑅 and BVI𝐴𝑁𝑁 . The Mean Absolute Errors (MAE)
for each of the five BVI classes (from 1 to 5) were calculated and found that the ANN
model performed better thanMLR. BVI𝐴𝑁𝑁 : 1.00, 0.20, 0.69, 1.05, 0.57 and BVI𝑀𝐿𝑅:
1.33, 0.83, 0.78, 0.90, 1.07 for which showed the better prediction capabilities of
BVI𝑀𝐿𝑅, especially for BVIs 2, 3, and 5. The vertically concentrated distribution in
Figure 4.11-(e) emphasizes the poor predictions ofMLRwhen severe erosion-driven
vulnerabilities were present.

4.3 Summary of the findings

The preliminary approach to quantifying beach vulnerability employed linear re-
gression models to predict dSL and dV based on storm characteristics of energy
flux, maximum surge, and initial shoreline as the morphological characteristic.
These models exhibited a satisfactory fit on the training data set. When tested on
a separate dataset of 10 storm events, they slightly over-predicted dSL. The pre-
liminary outcomes showcased reliable accuracies of the linear regression models
in forecasting beach change, while acknowledging their limitations such as sensi-
tivity to outliers and overfitting. The graphical representation of BVI components
aided in identifying the dominant erosion factor for each storm event. While most
model predictions slightly overestimated BVI, the overall performance was deemed
acceptable, despite some instances of under-predictions and substandard results.
Additionally, the regression model’s performance during testing exhibited a lower
R2 value compared to the training stage, suggesting potential over-training.

In the improved approach, which utilized the complete storm data set, the focus
narrowed down to dSL, and a novel ANNmodel was tested. The performance of the
ANNmodel was assessed using the R2 score metric, achieving a score of 0.62 for the
testing data. This score indicates its enhanced ability to explain the variance in the
target variable compared to linear regression models. Particularly, the ANNmodel
outperformed the MLR model for higher vulnerability classes. Further validation
was confirmed through MAE calculations, substantiating the superior prediction
capabilities of the ANN model.

While the preliminary approach demonstrated reliable accuracies of linear re-
gression models with short-term storm data, their performance was less favorable
with a larger dataset, emphasizing the importance of a better sample size of beach
responses to storms. The improved approach, incorporating ANN models, exhib-
ited enhanced prediction capabilities and surpassed the linear regression models.
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Figure 4.11: Density plots showing the distribution of BVI predictions (BVI𝐴𝑁𝑁 and
BVI𝑀𝐿𝑅) of ANN and MLR models for the extreme BVI𝑜𝑏𝑠. (a) to (e) are for BVI𝑜𝑏𝑠
values of 1 to 5, respectively.
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4.3 Summary of the findings

Nonetheless, it is essential to strike a balance between the model’s generalization
and its prediction capability. The BVI methodology presented in this chapter finds
applicability in sandy beaches with ecological and economic values. The findings
contribute to comprehending the quantification of beach vulnerability and under-
score the potential of machine learning algorithms in erosion prediction.
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Chapter 5

Comprehensive analysis on beach
vulnerability

In this chapter, the results of quantifying beach susceptibility using SHAP value
explanations and XGBoost regression approaches, along with the analysis of beach
resilience, are presented and discussed. The same storm data set used in the second
specific objective was employed for this analysis. Fourteen beach morphometric
variables were utilized to quantify the vulnerability components of susceptibility
and resilience. A summary of the statistical data for these 14 morphometric vari-
ables corresponding to each pre-storm beach profile is presented in Table 5.1.

5.1 Beach susceptibility

Statistical testswere conducted on 14morphometric variables, encompassing shore-
line position, sediment volume in each zone, beach slope, and sandbar character-
istics. These tests aimed to investigate the correlation between these variables and
beach erosion, thereby determining beach susceptibility. By analyzing the SHAP
feature importance values, specific morphometric variables were identified as key
factors for each profile type. To provide a quantitative assessment of the suscepti-
bility of each profile type to beach erosion, a metric called the Beach Erosion Sus-
ceptibility Number (BESN) was developed.

5.1.1 Key morphometric indicators on beach vulnerability

The classification of the four beach profile patterns was established according to
the presence and location of sandbar formations. These patterns are referred to as
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5.1 Beach susceptibility

Table 5.1: Variable description and statistics summary of all the 14 morphometric
variables.

ID Morphometric Variable Mean Min Max St. d

A Shoreline [m] 2.66 -27.93 39.09 12.97
B Inner zone volume [m3m−1] 382.90 71.47 489.83 76.01
C Outer zone volume [m3m−1] 436.13 187.77 611.63 83.32
D Beach slope 0.0336 0.172 0.0653 0.0107
E Inner zone sandbar Height ([m] 0.90 0.25 2.32 0.48
F Inner zone sandbar distance [m] 132.15 55.00 170.00 27.59
G Inner zone sandbar depth [m] 2.31 1.04 4.10 0.65
H Inner zone sandbar slope landward 0.0105 0.0003 0.0396 0.0083
I Inner zone sandbar slope seaward 0.0312 0.0116 0.0605 0.0092
J Outer zone sandbar height [m] 1.32 0.50 2.67 0.51
K Outer zone sandbar distance [m] 245.65 175.00 335.00 48.86
L Outer zone sandbar depth [m] 3.63 2.23 6.54 0.75
M Outer zone sandbar slope landward 0.0177 0.0016 0.0483 0.0091
N Outer zone sandbar slope seaward 0.0215 0.0001 0.0474 0.0113

Unbarred profiles, Inner zone sandbar profiles, Outer zone sandbar profiles, and
Double sandbar profiles. The distribution of profiles within each pattern is pre-
sented in Table 5.2.

Table 5.2: Number of beach profiles in each of four group.

Profile pattern Number of profiles

Unbarred profiles 40
Inner sandbar profiles 92
Outer sandbar profiles 130
Double sandbar profiles 85

To create quantitative indicators of susceptibility for each profile type, distinct
XGBoost regression models were trained employing the entire data set of storm
events for each profile pattern, as detailed in Table 5.2. The models were evaluated
in terms of their capacity to precisely fit the training data set, and all four models
exhibited 100% accuracy, signifying a flawless fit. These outcomes indicate that the
formulated models align perfectly with the training data, thus validating their use
in generating SHAP values.

SHAP values were extracted for each storm case in each profile pattern (as lo-
cal interpretations), resulting in a set of values quantifying the contribution of each
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Figure 5.1: Indicator selection based on the SHAP values: Bar plots of mean ab-
solute SHAP values for each morphometric indicator within each profile pattern.
Table 5.1 presents terminologies of each ID.

morphometric in each event. Mean absolute values for eachmorphometricwere cal-
culated in each profile pattern to identify key morphometrics (𝑤𝑖) in Equation3.6).
To determine the relative contribution of eachmorphometric within the profile pat-
tern, (𝑤̄𝑖) was calculated as described in Equation3.7. These SHAP values (𝑤̄𝑖), re-
ferred to asweights in the BESN generation, were normalized by dividing their sum.
Further, a threshold of 0.1 was applied to identify the most significant morphomet-
rics in each profile pattern.

Figure 5.1 shows the indicator selection for each profile pattern using the mean
absolute SHAP values of each indicator. This analysis led to the identification of 7
significant morphometric variables that play a crucial role in influencing shoreline
erosion. These variables were subsequently chosen for the development of BESN.
The distribution of each of these selected morphometric indicators is shown in Fig-
ure 5.2. Furthermore, Figure 5.3 provides a graphical representation of the local
interpretations of SHAP values for each morphometric indicator within each pro-
file pattern. In this depiction, a positive value (+) indicates a contribution to beach
erosion, while a negative value signifies the opposite effect.

5.1.2 Linear weight functions for each profile pattern

The relationships between the SHAP values and morphometric indicators are illus-
trated in Figure 5.4 through Figure 5.7. Utilizing these relationships, linear func-
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profile pattern.
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5.1 Beach susceptibility

tions for the weights were formulated using Equation 3.7. The resultant weight
functions are detailed in Table 5.3. Subsequently, BESN values were computed by
applying the weight functions to the normalized indicators as described in Equa-
tion 3.8.

Table 5.3: Gradients (𝑚) and coefficients (𝑐𝑓 ) of weight functions for each morpho-
metric indicator for different profile patterns.

Profile type 𝑤̄𝑖
Morphometric values

A B C D E I L

Unbarred
𝑚 9.97 −21 04 – – – – –
𝑐𝑓 −4 67 17.08 – – – – –

Inner sand-
bar

𝑚 4.77 – – −7 89 2.48 1.70 –
𝑐𝑓 −1 90 – – 1.91 −1 15 −0 52 –

Outer sand-
bar

𝑚 14.65 4.71 −2 89 – – – −6 47
𝑐𝑓 –6 93 −3 13 1.40 – – – 1.99

Double
sandbar

𝑚 19.51 – −31 28 – – – –
𝑐𝑓 −8 85 – 20.88 – – – –

Unbarred profiles

Figure 5.4 shows the distribution of SHAP values for each indicator in the presence
of unbarred profiles. As shown in Figure5.4a and Figure5.4b, the initial shoreline
(A) and inner-zone sediment volume (B) are the most influential indicators con-
tributing to erosion susceptibility. Therefore, these indicators are identified as sig-
nificant contributors to beach susceptibility. Figure5.4c clearly demonstrates the
positive and negative influences of shoreline position on beach susceptibility. Al-
though the linearity between SHAP values and inner-zone sediment volume is un-
clear, Figure5.4d shows relatively larger SHAP values, indicating the significant
influence of inner-zone sediment volume on beach susceptibility.

The inner-zone sediment volume is the primary indicator influencing beach
erosion, and it exhibits a negative correlation. However, Figure 5.4d reveals that
the SHAP values demonstrate a positive correlation when the inner-zone sediment
volumes exceed 0.9. Interestingly, we also observed that the relationship between
erosion susceptibility and inner-zone sediment volume depends on the initial con-
dition of the beach profile. Specifically, already eroded inner-zone profiles were
more prone to erosion than uneroded profiles with the same sediment volume. This
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Figure 5.4: SHAP value variation with eachmorphometric for unbarred profile pat-
terns: a) SHAP summary plot, b) bar plot of mean absolute SHAP values, c) correla-
tion between SHAP values and normalized initial shoreline, d) correlation between
SHAP values and normalized inner zone sediment volumes.
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5.1 Beach susceptibility

highlighted the importance of considering the initial condition of the beach profile
in erosion vulnerability assessments. However, the slope of the beach profile was
found to have no significant impact on erosion susceptibility, implying that other
factors may be more effective in erosion mitigation efforts for unbarred profiles.
Additionally, the impact of outer-zone sediment volume on erosion susceptibility
was negligible.

Inner sandbar profiles

Figure 5.5 shows an overview of the distribution of SHAP values for each indicator
in inner sandbar profiles. Figure5.5a and Figure5.5b reveal that the initial shore-
line (A), foreshore slope (D), inner sandbar height (E), and inner-sandbar seaward
slope (I) are the most influential indicators contributing to erosion susceptibility.
However, the impact of indicators A and I on erosion susceptibility is unclear, as
indicated by the scattered data points observed in Figure5.5c and Figure5.5f. Con-
versely, indicator D exhibits higher SHAP values, suggesting its significance in in-
fluencing the erosion susceptibility of beach profiles. Additionally, while the lin-
earity between SHAP values and inner sandbar height is not clearly shown, Fig-
ure5.5e consistently demonstrates negative SHAP values.

In the presence of an inner sandbar, the formation of bars reduces beach erosion
and, subsequently, beach susceptibility. This observation aligns with the hypothe-
sis that inner sandbar formation has a beneficial impact on reducing beach erosion.
However, when milder seaward slopes are present, the influence of the indicator
becomes less clear, as indicated by the scattered positive and negative SHAP values
in Figure5.5f. This finding is supported by Bujan et al. (2019), who showed that
gentle slopes encourage beach erosion, resulting in highly susceptible and frag-
ile beach profiles. Notably, the majority of SHAP values for indicator E display
a consistent negative pattern, suggesting its contribution to reducing beach sus-
ceptibility. Moreover, the higher outer-zone sediment volumes are not necessarily
significant, as their contribution is negligible, as shown in Figure 5.5b. Further-
more, the location and depth of the inner sandbar have no significant influence on
beach susceptibility.

Outer sandbar profiles

Figure 5.6 shows an overview of the distribution of SHAP values for each indi-
cator in outer sandbar profiles. Figure5.6a and Figure5.6b reveal that the initial
shoreline (A), inner-zone sediment volume (B), outer-zone sediment volume (C),
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Figure 5.5: Variation of SHAP values with each morphometric for inner sandbar
profile patterns: a) SHAP summary plot; b) bar plot of mean absolute SHAP values;
c) correlation between SHAP values and initial shoreline; d) correlation between
SHAP values and foreshore slope; e) correlation between SHAP values and inner
sandbar height; f) correlation between SHAP values and inner sandbar seaward
slope.
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5.1 Beach susceptibility

and outer sandbar depth (L) are the most influential indicators contributing to ero-
sion susceptibility in outer sandbar profiles. The initial shoreline position shows
a good linear fit, indicating its importance in quantifying beach susceptibility for
this profile pattern. Sandbar depth has the most significant influence on erosion
susceptibility among the other outer sandbar characteristics, as evidenced by its
significant mean SHAP value. Although both indicators B and C have an impact,
the impact of B, inner-zone sediment volume, is significantly greater.
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Figure 5.6: Variation of SHAP values with each morphometric for outer sandbar
profile patterns: a) SHAP summary plot; b) bar plot of mean absolute SHAP values;
c) correlation between SHAP values and normalized initial shoreline; d) correlation
between SHAP values and normalized inner zone sediment volumes; e) correlation
between SHAP values and normalized outer zone sediment volumes; f) correlation
between SHAP values and normalized outer sandbar depth.

Figure5.6c illustrates that eroded beaches, i.e., landward shorelines, result in
low susceptibility beach profiles, whereas higher seaward shorelines increase sus-
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5.1 Beach susceptibility

ceptibility. The staggered higher indicator values of B indicate its importance in
quantifying susceptibility, as reflected by the higher SHAP values in Figure5.6d.
Although indicator C is less influential, it is a good fit for a linear function used
in BESN calculations. A satisfactory linear fit is crucial for a better BESN quan-
tification. Additionally, indicator L demonstrates a good linear fit to the data in
Figure5.6f. However, lower outer sandbar depths help to reduce erosion suscep-
tibility. This is primarily because lower water depths cause wave breaks before
reaching the beach, resulting in lower wave energy reaching the beach and reduced
erosion susceptibility.

Double sandbar profiles

Figure 5.7 shows an overview of the distribution of SHAP values for each indicator
in double sandbar profiles. Figure5.7a and Figure5.7b reveal that the initial shore-
line (A) and outer-zone sediment volume (C) are the most influential indicators
contributing to erosion susceptibility in double sandbar profiles. These selected in-
dicators exhibit a good linear fit, indicating their importance in quantifying beach
susceptibility for this profile pattern. Both indicators A and C demonstrate the in-
fluence on erosion susceptibility, as they exhibit relatively higher mean absolute
SHAP values than the other 12 indicators.

Although 14 morphometric indicators were tested, using the same threshold of
0.1 for significant indicator selectionmay not be appropriate. However, the selected
indicators and the other 12 indicators clearly showedmean SHAP value differences
(Figure5.7b), indicating their relative importance. Specifically, advanced shoreline
positions, i.e., seaward shorelines, were associated with increased susceptibility to
erosion, as indicated by the finer distribution of SHAPvalues in Figure5.7c. This be-
haviorwas consistentwith the findings observed in other profile patterns. However,
the impact of outer-zone sediment volume (C) was predominantly negative, indi-
cating its significance in reducing the susceptibility of the beach to storm-induced
erosion, as shown in Figure5.7d.

The formation of double sandbar profiles is generally considered the final phase
of long-term sandbar migration in winter profiles (Vidal-Ruiz and Ruiz de Alegría-
Arzaburu, 2019). However, understanding the comprehensive physical mecha-
nisms related to all 14morphometric indicators in the context of sediment exchange
is complex. Nevertheless, this study highlights the importance of carefully consid-
ering the effects of shoreline position and outer-zone sediment volume when de-
signing coastal protection measures for double sandbar profiles.
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Figure 5.7: SHAP value variation with each morphometric for double sandbar pro-
file patterns: a) SHAP summary plot; b) bar plot of mean absolute SHAP values;
c) correlation between SHAP values and Initial shoreline; d) correlation between
SHAP values and outer zone sediment volume.
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5.1.3 Performance of Beach Erosion Susceptibility Number

Actual measurements of beach erosion are compared to the corresponding BESN
values to determine the accuracy of BESNpredictions. Higher BESN values indicate
a higher susceptibility of beach profiles to erosion, implying a higher probability
of significant erosion. However, it is important to note that beach erosion is also
influenced by wave energy conditions during a storm event. The storm power (P)
is calculated using the maximum significant wave height (𝐻S-max) recorded during
the storm duration (D) in hours to quantify the wave energy condition. The storm
power (P) can be calculated using the following equation:

Storm Power = 𝐻2
s-max × 𝐷 (5.1)

The 347 observed erosion events were divided into three categories based on
their storm power values: mild, average, and severe storm conditions. The thresh-
olds of 500m2 h and 1000m2 h were used to classify the erosion events into these
categories, as shown in Figure 5.8. This categorization enabled for a comprehensive
evaluation of BESN performance under different storm power conditions, provid-
ing insights into its effectiveness in capturing the susceptibility of beach profiles to
erosion.
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Figure 5.8: Storm power histogram was used to divide the complete data set into
three groups for BESNvalidation based on stormpower [m2 h]: a)mild storm condi-
tions, b) average storm conditions, and c) severe storm conditions. The red vertical
dotted lines indicate the boundaries separating the groups.

It was assumed that grouping erosion events based on similar storm conditions
would result in a consistent impact on erosion by wave conditions. The perfor-
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Table 5.4: Performance of the BESN for different profile types and storm conditions.
The Pearson correlation coefficient (r) values between BESN and observed beach
erosion are utilized as a measure of the performance of BESN.

Profile type Pearson r values

Mild storms Average storms Severe storms

Unbarred 0.53 0.75 0.05

Inner sandbar 0.22 0.40 0.42

Outer sandbar 0.54 0.40 0.46

Double sandbar 0.31 0.26 0.40

mance of BESN for three different storm conditions is illustrated in Figure5.9. Ta-
ble 5.4 summarizes the statistical performance of BESN for each profile pattern
and storm condition based on the Pearson correlation coefficient (r). Moderate cor-
relations were observed for inner, double, and outer sandbar profiles during severe
storm conditions. However, unbarred profiles showed minimal correlation. Both
unbarred and outer sandbar profile patterns displayed significant correlations un-
dermild storm conditions, which encompassedmany storm cases. In the case of av-
erage storm conditions, unbarred profiles exhibited a strong correlation coefficient
of 0.75. Inner and outer sandbar profiles also demonstrated good performance,
while the correlation for double sandbar profiles was relatively weaker. Although
some BESN predictions did not fully satisfy expectations, most cases indicated a
positive relationship between BESN values and observed erosion.

5.1.4 Applicability of the BESN

The BESN was introduced to quantify the beach susceptibility, also referred to as
fragility or sensitivity in other studies, of different beach profile patterns. The BESN
was designed to act as an indicator of a beach profile’s susceptibility to erosion. Our
observations at Hasaki indicated thatmorphological characteristics such as sandbar
formations also influence beach susceptibility. Previous studies have overlooked
the importance of considering beach vulnerability in their research. Although long-
term changes in beach morphology, such as sandbar migration, are often seasonal,
our focus in the development of BESN was on a storm-wise susceptibility quantifi-
cation approach rather than long-term changes.

The Pearson correlation coefficient (r) was initially used to assess the relation-
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Figure 5.9: BESN Validation for different storm conditions: Storms are categorized
into three groups based on storm power thresholds of 500m2 h and 1000m2 h. Pan-
els (a-c) display the distribution of storms across the storm power groups, with dif-
ferent profile patterns represented by different colors. Panels (d-f) illustrate the
correlation between eroded volume and BESN, where distinct markers and lines
depict each of the four profile patterns.
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ship between the selected 14 morphometric indicators and beach susceptibility.
However, it was acknowledged that relying solely on Pearson r has limitations be-
cause it provides only a single value to represent the relationship between an indi-
cator and beach erosion. This approach did not consider the specific contribution
of each indicator, which can vary in importance. The SHAP explanation method
was employed to address this limitation, which offers both local and global inter-
pretability for themodels. The SHAP values provided insights into the contribution
of each indicator on a local level, allowing for amore comprehensive understanding
of their significance in predicting beach erosion. When combined with theoretical
knowledge, the SHAP findings helped to validate the findings and ensure the ro-
bustness of the approach.

Although the seasonality factor was not explicitly considered in this study, it is
recognized that seasonal variations, particularly during winter, play a crucial role
in severe erosion events and the formation of sandbars withmild slopes in the outer
zone. The presence of sandbars and milder slopes could impact beach profile sus-
ceptibility. Although three groups were defined based on different wave conditions
in this study, it is recommended to further validate the approach through numerical
simulations under consistent wave conditions in future work. This would provide
a more comprehensive validation of the proposed methodology and enhance the
accuracy of beach profile susceptibility quantification.

The importance of maintaining natural sediment balance in a coastal system,
particularly in the face of human disturbances, has led to the popularity of rela-
tively low-cost beach nourishment efforts. To optimize these efforts, a holistic ap-
proach is required to assess the susceptibility of a beach profile to erosion. In this
regard, the proposed BESN effectively identifies the most susceptible areas and aid
to conduct nourishment accordingly. Long-term analysis of beach susceptibility
also enables coastal stakeholders to make informed decisions regarding the need
for shore protection action. Althoughmany previous studies on beach nourishment
have focused on dunes, sandbar formations have been relatively understudied due
to a lack of data. Our study provides valuable insights into the impact of sand-
bars on beach susceptibility, which can guide future research in this area and help
justify the omission of certain indicators. Furthermore, BESN can also be used to
determine the optimal timing for soft protection measures such as nourishment.
Artificial nourishment has been shown to have minimal negative impact compared
to other shore protection options. The use of BESN to identify vulnerable locations
along a coastline allows for the effective execution of necessary shore protection
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Figure 5.10: Beach response after 10 days of the end of the storm. Red colour mark-
ers denote the cases where a sequencing storm is present in the post-storm 10-day
period. Negative recovery indicates continued erosion.

actions.

5.2 Beach recovery potential

Figure 5.10 illustrates the distribution of beach recovery (m) for all of the identi-
fied storm events during the study period. Out of the 347 storm events identified,
176 cases did not have any sequencing storms during the 10-day post-storm pe-
riod. Additionally, some storm cases exhibited shoreline accretion during the storm
event. After filtering the data, 125 cases were obtained, and then BRN values were
calculated and outliers were removed, resulting in 104 storm cases for the beach
resilience analysis. Initially, the impact of hydrodynamic conditions on the recov-
ery process was examined, considering the relationship between BRN and mean
hydrodynamic indicators of wave and surge heights.

In a manner similar to the BESN approach, the profiles were divided into four
groups. However, upon separation, a clear distinct impact of the profile pattern
was not evident (Figure 5.11). One contributing factor to this outcomemight be the
absence of storm sequencing in the analysis, leading to a higher number of positive
BRNs, indicative of beach recovery. Furthermore, 28 cases exhibited BRN values
higher than 1, signifying that in those instances, the shoreline had recovered beyond
the erosion extent during the storm event.

Equation 5.2 explains the relationship between wave steepness, sediment grain
size, and bottom slope related to cross-shore sediment movement. However, this
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Figure 5.11: Histogram of Beach Recovery Number with different profile types,
utilizing a total of 104 storm data sets.

study did not incorporate sediment size information into the analysis. Nevertheless,
the clear relationship between beach slope and sediment size implies that the use
of slope would already account for sediment characteristics to some extent.

𝐻0
𝐿0

= 𝐶𝑠 (tan 𝛽)−0.27 ⒧ 𝑑𝐿0
⒭
0.67

(5.2)

5.2.1 Post-storm hydrodynamic condition on beach recovery

Figure 5.12 shows the distribution of BRN with the mean significant wave height
(H𝑆) during the 10-day post-storm period. The mean wave height during the study
periodwas 1.19m, and therewere 32 caseswhere themeanH𝑆 exceeded this thresh-
old. Interestingly, even with relatively higher mean H𝑆, positive BRNs were still
observed. However, when the mean H𝑆 during the post-storm period exceeded 1.6
m, negative BRNs were more prevalent. Additionally, it was observed that most of
the positive BRN cases occurred under milder wave conditions, suggesting that the
wave conditions were similar in these cases.

Figure 5.13 shows the distribution of BRN with the mean surge height during
the 10-day post-storm period. The surge calculations were derived as the differ-
ence between water level observations (𝜂) and tidal predictions. It was observed
that smaller surge values has less impact on the recovery process and were not sig-
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Figure 5.12: Variation of BRNwith mean significant wave height during the 10-day
post-storm period.

nificant contributors. Based on the statistical analysis, the impact of surge on the
recovery process was found to be not significant.

5.2.2 Key morphometric indicators on beach resilience

Initially, without the separation of profile patterns, a single XGBoost model was
trained using all 104 cases. Themean SHAP values for all 14 indicators are depicted
in Figure 5.14. Subsequently, an assessment of significant morphometric indicators
was conducted. The influence of each indicator on Beach Recovery Number (BRN)
is presented in Table 5.5 based on this initial analysis. However, a subsequent sta-
tistical analysis driven by machine learning (ML) was carried out to determine the
importance of features for beach resilience, taking into account each of the four pro-
file patterns. The findings of this analysis are presented in the following sections.

Unbarred profiles

Figure 5.15 shows the distribution of SHAP values for each morphometric indi-
cator in unbarred profiles. Outer zone sediment volume, shoreline position, and
foreshore slope were found to exert significant control over short-term recovery. In
the case of unbarred profiles, the outer zone is abundant in sediment depositions,
consequently contributing to the recovery during the milder post-storm period.
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Figure 5.13: Variation of BRNwithmean surge height during the 10-day post-storm
period.
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Figure 5.14: Mean SHAP values for all 14 indicators.
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5.2 Beach recovery potential

Table 5.5: Mean SHAP values for significant morphometric indicators. All the 104
storm cases were used for this analysis.

Morphometric indicator mean SHAP value

Shoreline position 0.081
Inner zone sed. vol 0.084
Outer zone sed. vol 0.080
Inner sandbar depth 0.080
Inner sandbar landward slope 0.200
Outer sandbar depth 0.072
Outer sandbar seaward slope 0.169
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Figure 5.15: Bar plot of mean absolute SHAP values for unbarred profiles. 16 pro-
files were used to fit the data to a XGBoost model.
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5.2 Beach recovery potential

Inner sandbar profiles

Figure 5.16 shows the distribution of SHAP values for each morphometric indica-
tor in inner sandbar profiles. The results indicated that inner sandbar height, inner
sandbar landward slope, foreshore slope, and shoreline position influence short-
term recovery, as evident from their normalized SHAP values for BRN. Similar to
beach susceptibility, inner sandbar height also facilitates the recovery process. Ad-
ditionally, the landward slope of the inner sandbar contributes to recovery by acting
as a berm formation. The SHAP values revealed that lower slopes, which indicates
a presence of berm formation, result in rapid recovery.
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Figure 5.16: Bar plot of mean absolute SHAP values for inner sandbar profiles. 27
profiles were used to fit the data to a XGBoost model.

Outer sandbar profiles

Figure 5.17 shows the distribution of SHAP values for each morphometric indica-
tor in outer sandbar profiles. Short-term recovery in these profiles is influenced
by the seaward slope of the outer sandbar, outer zone sediment volume, shoreline
position, and outer sandbar height, as evidenced by their respective normalized
SHAP values. Particularly noteworthy was the significant impact of the seaward
slope on the recovery process. Higher sandbar slopes indicated more unstable bar
formations, leading to sediment being prone to move to the foreshore during the
post-storm period. Although water depth played a role in beach susceptibility, its
influence was not clearly visible in this context.
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Figure 5.17: Bar plot of mean absolute SHAP values for outer sandbar profiles. 40
profiles were used to fit the data to a XGBoost model.

Double sandbar profiles

Figure 5.18 shows the distribution of SHAP values for each morphometric indica-
tor in double sandbar profiles. Among the indicators tested, outer sandbar depth
stands out as the only significant factor controlling short-term recovery. However,
it is worth noting that out of the 14 indicators trialed and considering the normal-
ized SHAP values obtained by dividing the sum of the SHAP value of each indica-
tor, the contributions of other morphometric values appeared relatively insignifi-
cant. Nevertheless, the impact of shoreline position and inner sandbar water depth
seemed somewhat significant, as they approached the threshold value of 0.1. The
role of outer sandbar depth in recovery is relatively straightforward. Lower depths
suggest a more abundant supply of sediment available for transportation to the
foreshore zone, thereby facilitating sediment transportation during the recovery
process.

5.3 Summary of the comprehensive analysis

The proposed Beach Erosion Susceptibility Number (BESN) could be noted as a
valuable tool for identifying vulnerable areas along coastlines and measuring their
temporal fragility. It utilized the SHAP feature importance from theXGBoostmodel
to assess beach susceptibility and further examines the correlation between mor-
phometric indicators and shoreline erosion (i.e., susceptibility). The effectiveness
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Figure 5.18: Bar plot of mean absolute SHAP values for double sandbar profiles. 21
profiles were used to fit the data to a XGBoost model.

of BESN was validated under various storm conditions, showcasing its potential in
identifying weak locations. The use of SHAP analysis might be questionable, es-
pecially with environmental data sets. However, it provided valuable insights into
the relative importance of different features in determining beach susceptibility.

Next, BRN investigated the recovery potential of beaches after storm events. The
methodology employed included MLR model training and input variable selection
based on their coefficients. The distribution of BRN revealed that full recovery is
not common, highlighting the challenges in beach restoration. The role of factors
such as foreshore slope and sediment transport in the recovery process was also
examined, emphasizing their significance. The analysis considered the influence
of climate variations and sedimentary stock preservation, shedding light on the
complex nature of beach resilience. By identifying these factors that contribute to
successful recovery, this dissertation aimed to enhance the current understanding
of beach dynamics and improve future mitigation strategies.

In addition to assessing beach susceptibility and recovery potential, the study
delved into the analysis of storm events during the study period. It identified cases
of significant shoreline erosion and further explored the factors influencing beach
recovery and further erosion cases. The statistical significance of input variables
was discussed, emphasizing the importance of the foreshore slope and the impact
of mild waves during the post-storm period on the recovery process. The study
further revealed that even with similar wave conditions, it could lead to different
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5.3 Summary of the comprehensive analysis

erosion outcomes, indicating the influence of beach characteristics on the recovery
process. Therefore, long-term resilience studies and a comprehensive understand-
ing of coastal erosion systems are essential for effective coastal management, high-
lighting the need for further research and the implementation of ecosystem-based
approaches to mitigate the impacts of coastal storms.
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Chapter 6

Conclusion

6.1 Concluding remarks

In recent years, beach vulnerability assessment has gained significant attention in
the field of coastal research and management. This dissertation aimed to enhance
the accuracy of beach vulnerability assessments through the utilization of various
novel methodologies and techniques. Three specific objectives were addressed,
each contributing to a deeper understanding of beach vulnerability and its asso-
ciated factors.

The first objective focused on evaluating the performance of a linear regression
model in predicting beach erosion measures. The results demonstrated that the
model provided reasonable predictions, allowing for the development of a satis-
factory Beach Vulnerability Index (BVI) during the testing period. While the find-
ings were limited to the site-specific characteristics of Hasaki, this study serves as a
foundation for further research in diverse coastal conditions. Future investigations
should consider the application of alternative regression models and assess their
performance.

Building upon the initial findings, the second objective incorporated a machine
learning algorithm, specifically Artificial Neural Networks (ANN), into the BVI
methodology. This integration aimed to enhance the accuracy of beach vulnera-
bility predictions, particularly in cases of severe erosion. The study confirmed the
applicability of ANN in BVI assessments and highlighted the importance of key
vulnerability indicators such as shoreline position, foreshore slope, and sandbar
depth. Additionally, the research identified the need to explore other morphome-
tric characteristics and their impact on beach susceptibility. The findings suggest
the potential for more sophisticated predictive models and informed coastal man-
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6.2 Limitations and recommendations

agement decisions.
The third objective investigated the relationship between morphometric vari-

ables and beach erosion, considering the shape of the beach profile and shoreline
position. The study revealed that the impact of these variables on beach suscep-
tibility is highly dependent on the specific profile type. Key factors such as sedi-
ment deposition, sandbar formations, and beach slopes were found to influence the
beach vulnerability to storm-induced erosion. However, further research is neces-
sary to comprehensively investigate these factors and their contribution to beach
susceptibility and recovery potential. The study acknowledged the limitations of
the research, including the need for numerical simulations and validation of the
proposed BESN under controlled hydrodynamic conditions (further discussed in
Chapter 6.2.

In conclusion, this study has made contributions to the field of Coastal Engi-
neering & Management by proposing novel approaches to quantify beach vulner-
ability. It has demonstrated the effectiveness of linear regression models and ma-
chine learning algorithms, such as ANN & XGBoost, in predicting beach erosion
and enhancing vulnerability assessments. The findings underscore the importance
of key vulnerability indicators and the need for a comprehensive understanding of
morphometric variables. Further analysis results of beach resilience highlight the
key morphometrics that controls the short-term recovery of beach morphology. Fo-
cusing on integrating susceptibility and recovery potential into a final beach vul-
nerability index is recommended, ultimately leading to a real-time vulnerability
calculation approach. Additionally, the applicability of the proposed methodolo-
gies should be tested in different coastal locations with diverse data sets to ensure
their generalizability.

6.2 Limitations and recommendations

Beach Vulnerability Index

The development of the BVI in this dissertation, relying on readily available mor-
phological and storm characteristics, does possess certain limitations that warrant
consideration for future research work. Firstly, the generalizability of the linear
regression model used for predicting beach erosion measures and developing the
BVI is limited to the site-specific characteristics of Hasaki. Caution should be ex-
ercised when applying the index-based vulnerability approach in diverse coastal
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6.2 Limitations and recommendations

settings, as the findings may not directly apply. Future research should assess the
performance of other regression models to determine their effectiveness in beach
vulnerability prediction.

Although ANN showed effectiveness in predicting beach erosion, especially in
severe cases, limitations were identified when using MLR for fitting long-term data
with large variations. MLR performed well with small data sets but requires refine-
ment for larger data sets. Further studies should explore strategies to improve the
performance of MLR and consider the application of other machine learning algo-
rithms to enhance beach vulnerability assessments. It is important to acknowledge
that the findings are specific to the data set and site conditions, and their applica-
bility to other coastal locations may vary. By addressing these limitations, future
research can enhance beach vulnerability assessment methodologies.

Comprehensive analysis on beach vulnerability

The comprehensive analysis of beach susceptibility and resilience using the BESN
and BRN also brings about certain limitations. The validation of BESNwas affected
by the significant influence of different storm conditions, highlighting the limita-
tion of the validating phase. Conducting numerical simulations with controlled
storm characteristics and generating synthetic data sets could address this limita-
tion and validate the BESN, particularly focusing on different beach profile settings
and sandbar formations. Additionally, the use of linear functions for the weights
of BESN generation is a limitation that was not addressed in this study to maintain
simplicity. Future research could explore the application of more complex func-
tions to improve the accuracy of BESN generation.

Furthermore, the study acknowledges the challenge of clear descriptions of uti-
lization of machine learning techniques such as XGBoost and SHAP explanation
methods. While these techniques have demonstrated noteworthy predictive capa-
bilities in other contexts, their application in the current research could benefit
frommore extensive explanation and exploration. Moreover, the restricted data set
comprising 104 cases, which was used to establish the statistically analyzed beach
resilience, imposes a limitation. Tomitigate this limitations, numerical simulations
involving various profile configurations could be employed. Additionally, investi-
gating recovery over different time-frames could provide valuable insights into the
short-term beach responses to storm events.

During the present dissertation work, the methodology was not tested on differ-
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6.2 Limitations and recommendations

ent sandy beaches. However, based on the general characteristics of Hasaki Beach
as a representative sandy beach, it is reasonable to expect that the methodology can
be directly applied or slightlymodified for other similar beaches.The trainedmodel
for predicting beach vulnerability could be particularly valuable in low-resource
areas, especially in developing countries, with the support of relevant government
agencies. By utilizing the BESN and BRN, temporal changes in beach profiles can be
identified, enabling informed actions to sustain beach zones and mitigate erosion
impacts.

By acknowledging these limitations, future research can focus on addressing
these challenges and expanding the knowledge base in beach vulnerability assess-
ment.
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Appendix
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Figure A.1: Monthly distribution of Beach Resilience Number (BRN). Both of the
recovered profiles as well as further eroded cases are considered here.

22 Mar 08 15 22 Apr 08 15 22
2007−Apr

0.5

1.0

1.5

2.0

2.5

3.0

S
ig

.
w

av
e

he
ig

ht
(m

)

−30

−20

−10

0

10

S
ho

re
lin

e
po

si
tio

n
(m

)

Figure A.2: Storm sequencing at Hasaki. The time gap between storms are used to
separate the sequencing storms.
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Figure A.3: Post-storm duration selection based on the different time gaps of se-
quencing storms at Hasaki.
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Figure A.4: Comparison of the time gap between two storm events and beach ero-
sion during the time. A negative erosion denotes beach recovery.
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