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Abstract. It has been known that any covering space of a suitable topological
space can be covered by a regular covering of it which admits a group action as
its covering transformation. We shall establish a theorem which describes the
relation between a given graph covering and a regular covering which cover it in
a combinatorial way with the two notions of ordinary and permutation voltage
assignments.

Introduction

In 1986, the first author [15] proposed the conjecture that a connected graph
G can be covered by a planar graph if and only if G can be embedded on the
projective plane. The sufficiency is clear since such a planar graph can be ob-
tained from G embedded on the projective plane by pulling it back via the
covering projection from the sphere to the projective plane. This conjecture
has been called “Planar Cover Conjecture” and known as one of famous open
problems in topological graph theory and there have been published a lot of
papers [1–3, 5–25,27, 28, 31] related to it.

Negami has proved in [15] that if G can be obtained as the quotient of the
planar graph by a suitable group action, then G can be embedded on the projec-
tive plane, as stated in the conjecture. Such a covering admitting a group action
is said to be regular. One might wonder if the existence of a planar covering
of a given graph guarantees that of its planar regular covering; if it were true,
then the conjecture would follow. Actually we can show that any covering can
be covered by a regular covering, by a method in algebraic topology, which will
be reviewed in Section 1, but its planarity cannot be guaranteed in general.

However, Negami [26] has developed a theory recently to give a new proof
scheme for the conjecture, focusing on the possible regular coverings which cover
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a given planar covering. Our purpose in this paper is to provide the tools to
enable us to deal with his theory in a concrete way.

There has been known a combinatorial way to construct a covering of a given
graph using two types of “voltage assignments”, developed in [4,29]. An ordinary
voltage assignment α : E(G) → A assigns an element α(e) of a finite group A

to each edge e of a given graph G and derives a regular covering Gα of G where
A acts as its covering transformation group. On the other hand, a permutation
voltage assignment ρ : E(G) → S{1,....n} assigns a permutation ρe over the n

numbers {1, . . . , n} to each edge e of G and derives a general covering Gρ, where
SN denotes the group consisting of all permutations over a set N in general. (See
Section 2 for their detailed definitions.)

They look very similar but work differently; Gα gives only regular coverings
while Gρ may not be regular and can control all finite coverings of G. We would
like to understand the relation between these two notions and to know how we
construct a regular covering which covers a given covering of a connected graph
in particular. The following theorems are our answer:

THEOREM 1. Let G be a connected graph and let Gρ be any n-fold covering of
G derived by a permutation voltage assignment ρ : E(G) → S{1,...,n}. Then there
exists uniquely a regular covering Gα of G such that any regular covering G̃ of G
which covers Gρ covers Gα.

We call the regular covering Gα in the theorem the canonical regular covering
of G over Gρ. Note that this is determined by the pair of G and Gρ. (See the
diagram below.) Theorem 2 gives the concrete form of Gα:
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Figure 1 The canonical regular covering

THEOREM 2. If Gρ is connected and ρ is normalized along a spanning tree of
G, then the ordinary voltage assignment α : E(G) → ⟨ρ⟩ with α(e) = ρe for each
edge e ∈ E(G) derives the canonical regular covering Gα of G over Gρ, where
⟨ρ⟩ stands for the subgroup in S{1,...,n} generated by {ρe : e ∈ E(G)}.
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Let G⟨ρ⟩ denote the canonical regular covering of G over Gρ given in the
above theorem, that is, Gα = G⟨ρ⟩. Notice that the notation G⟨ρ⟩ itself has a
meaning for any permutation voltage assignment ρ in general. However, G⟨ρ⟩

may be disconnected when ρ is not normalized. We shall define the notion of
being normalized and discuss the connectedness of graph coverings in Section 3.

If the reader knows the theory of covering spaces in algebraic topology, then
he may know a way to prove the existence of the canonical regular covering of
a given connected graph. We shall explain it briefly in Section 1. However, it is
important that Theorem 2 gives a combinatorial way to give its canonical regular
covering, beyond theoretical understanding. In Section 4, we shall describe the
structure of G⟨ρ⟩ in detail, which will work as the proof of our two theorems.

As an application of our method, we shall discuss “abelian coverings” in
Section 5, which will show the relation between abelian coverings and non-abelian
coverings. Also we shall illustrate an concrete example of a planar covering of
K3,3, related to Planar Cover Conjecture, from the point of view of our theory
in Section 6.

This note has been written mainly for researchers working in graph theory
and our terminology is quite standard in that field. However, we assume the
reader’s knowledge of basic topology and group theory. Section 3 will show an
important argument to join the theories in topology and in graph theory.

1. Reviewing covering spaces

We shall describe briefly the well-developed general theory of covering spaces
in algebraic topology [30] in this section. We assume that any topological space
discussed here has no pathological structure, as graphs, surfaces and manifolds.
The notation has been adapted to our use in graph theory. We shall refer to the
total described below as “the classification of covering spaces”.

Let X̃ and X be two topological spaces, which are assumed to be arcwise
connected. If there exists a local homeomorphism p : X̃ → X, that is, a sur-
jective continuous map which induces a homeomorphism between suitable open
neighborhoods of corresponding points in X̃ and X, then X̃ or the pair (X̃, p) is
called a covering space of X and p its covering projection or simply a projection.
If the projection p is an n-to-1 map for a finite number n > 0, then X̃ is called
an n-fold covering of X.

The fundamental group π1(X) of a topological space X is defined as a group
consisting of closed curves based at a fixed point in X up to continuous deforma-
tion (or up to homotopy) and the product of two elements in π1(X) corresponds
to the closed curve going along the first one and next along the second one. It
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has been known that any covering space X̃ of X is associated with a subgroup
H in π1(X) unique up to conjugation and that its projection p : X̃ → X induces
an isomorphism p# : π1(X̃) → H. We denote such a covering space by X̃H and
its projection by pH : X̃H → X.

It is clear that an arc α starting at a base point in X can be lifted to an arc
in X̃H , say α̃, by pulling it back naturally via pH . It depends on the homotopy
type of α whether or not the terminus of α̃ coincides with its origin, even if α is a
closed curve. The existence of the isomorphism between π1(X̃H) and H implies
that the subgroup H consists of the homotopy types of closed curves in X that
can be lifted to a closed curve in X̃H .

Let x0 ∈ X and x̃0 ∈ X̃H be the base point of π1(X) and that of π1(X̃H),
respectively, with pH(x̃0) = x0. Take any point x̃ in X̃H which projects to x0

and consider two arcs α̃ and β̃ starting at x̃0 and terminating at x̃ in X̃H . Then
α̃ · β̃−1 becomes a closed curve based at x̃0 and hence it can be regarded as an
element h̃ in π1(X̃H). That is, α̃β̃−1 = h̃ and α̃ = h̃β̃. Since pH induces an
injective homorphism from π1(X̃H) to π1(X), we may regard this equality as
α = hβ, omitting their “tildes” to get the corresponding elements in π1(X).

This means that α belongs to the right coset Hβ of H in π1(X) and hence
there is a bijection between the pre-images of x0 in X̃H and the right cosets Hg

of H in π1(X). We can conclude the same fact also for any point x ̸= x0 in X,
modifying the above argument slightly. Therefore, the number of pre-images of
x is equal to |p−1

H (x)| = (π1(X) : H). This value, say n, does not depend on a
point x ∈ X and is often called the covering index of pH and X̃H is called an
n-fold covering of X.

Suppose that H is a normal subgroup in π1(X) in particular. Then the
quotient π1(X)/H becomes a group and acts on the set of pre-images p−1

H (x)

for each point x ∈ X naturally. Thus, the quotient group π1(X)/H acts on
the whole X̃H as the covering transformation group. That is, all points in X̃H

equivalent under this group action project to the same point in X. In particular,
the covering space X̃{1} corresponding to the trivial subgroup {1} in π1(X) is
called the universal covering space of X and π1(X) itself acts on X̃{1}, where “1”
stands for the identity element in π1(X).

Let X̃N be the covering of X associated with another subgroup N in π1(X)

which is contained in H, denoted by N < H. Then X̃N corresponds to the
right coset decomposition of N in π1(X) and we can define a covering projection
q : X̃N → X̃H so that q maps a point in X̃N corresponding to a right coset Ng

to a point corresponding to Hg, which is well-defined since N < H, and that
pN = pH ◦ q. In this case, we say that the covering pN : X̃N → X factors through
pH and simply that X̃N covers X̃H . Since {1} is contained in any subgroup H,
the universal covering p{1} : X̃{1} → X covers any covering of X.
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NOTE: Although a graph is a combinatorial object in graph theory, we usu-
ally regard it as a 1-dimensional topological space which can be expressed as a
simplicial complex consisting only of vertices and edges. Thus, the classification
of covering spaces works also for the coverings of any connected graph G. Note
that π1(G) is isomorphic to the “free group”.

The free group Fr of rank r is the group consisting of all words over r alpha-
bets and their inverses. The product of two words first joins them and cancels
consecutive inverse pairs as well as possible. The rank of π1(G) of a connected
graph G as a free group coincides with the cycle rank of G as a graph, which is
equal to |E(G)|−|V (G)|+1. Therefore, if G is a tree, then it admits no covering
except itself since π1(G) is trivial. On the other hand, if G is not a tree, that
is, if G contains at least one cycle, then π1(G) contains infinitely many elements
and its universal covering becomes an infinite tree.

2. graph coverings with voltage assignments

In this section, we shall introduce two combinatorial ways to construct the
covering spaces of a given graph, which has been developed in [4, 29]. First,
we should translate the notion of covering spaces into one described in terms of
graph theory, as follows.

Let G̃ and G be two connected simple graphs and let p : G̃ → G be a covering
projection between them. We assume implicitly that p maps each vertex in G̃ to a
vertex in G. Recall that p must induce a homeomorphism between suitable open
neighborhoods of two corresponding vertices ṽ and v = p(ṽ) in the topological
sense. An enough small open neighborhoods of v in G consists of the vertex v

and the segments of edges incident to v. This means that the same number of
edges are incident to both ṽ and v and that p induces a bijective correspondence
between those edges.

Since two graphs are assumed to be simple, such a correspondence induces
a bijection between their neighbors. So we define a covering p : G̃ → G as a
surjective map p : V (G̃) → V (G) such that it induces a bijection between N(ṽ)

and N(p(ṽ)) for each vertex ṽ ∈ V (ṽ), where N(v) stands for the neighborhood
of a vertex v in general, that is, N(v) is the set of vertices adjacent to v.

First we shall show a combinatorial way to construct a regular covering of a
given connected graph G. Let A be a finite group and let α : E(G) → A be an
assignment of elements of A to edges. The value α(e) is called a voltage assigned
to an edge e. The assignment α is usually called a voltage assignment. However,
we shall refer to it as an ordinary voltage assignment to distinguish it from what
will be defined later.
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Precisely speaking, each edge e = uv should have a direction u → v to define
the voltage assignment α and it must satisfies the condition that α(vu) = α(uv)−1

for the edge vu having the opposite direction. However, we shall describe all for
undirected graphs, assuming implicitly defined edge directions, to avoid the usage
of noisy notations.

Let u be any vertex of G and prepare the set U = {u× τ : τ ∈ A} where the
symbolical notation u × τ denotes a vertex prepared virtually for each element
τ ∈ A. Let v be another vertex of G to which u is joined by an edge e = uv

and let V = {v × τ : τ ∈ A} be the set of vertices defined for v as well as for u.
Put V (Gα) as the union of those sets so defined and join each vertex u × τ to
v × (α(e) · τ) for each eage e = uv ∈ E(G) and each element τ ∈ A.

The resulting graph Gα over V (Gα) is called the covering of G derived by the
voltage assignment α. It is easy to see that Gα is a covering space of G in the
topological sense and that A acts on Gα; the action carries any vertex u × τ to
u×(τ ·α) for each α ∈ A. Thus, Gα is a regular covering of G having the covering
transformation group A. Its projection pα : Gα → G projects each vertex u× τ

to u for any vertex u ∈ V (G).
Now we shall show another combinatorial construction of a graph covering.

Let S{1,...,n} denote the group consisting of all permutations over {1, . . . , n}, which
is isomorphic to the symmetric group Sn of degree n. Let ρ : E(G) → S{1,...,n}

be an assignment of permutations to edges; ρ(e) = ρe ∈ S{1,...,n}. As well as the
ordinary voltage assignment α, we assume that ρ(vu) = ρ(uv)−1 for each edge
e = uv and call ρ a permutation voltage assignment of G.

Put U = {u1, . . . , un} as the set of n copies of any vertex u ∈ V (G) and let
V = {v1, . . . , vn} be the set similarly defined for another vertex v ∈ V (G). Add
the edges uivρe(i) for i = 1, . . . , n if there exists an edge e = uv between u and v

in G. The resulting graph over V (G)×{1, . . . , n} is denoted by Gρ and is called
the covering of G derived by ρ. Its projection pρ : Gρ → G maps each ui to u.

It is easy to see that Gρ is actually an n-fold covering of G and that any
n-fold covering of G, regular or not, can be obtained as Gρ with a permutation
voltage ρ : E(G) → S{1,...,n} suitably defined.

NOTE: Any covering Gρ constructed combinatorially can be regarded as a
covering space of G in the topological sense. However, Gρ may be disconnected
for some permutation voltage assignment ρ even if G is connected. In such a
case, the classification of covering spaces does not work well. Hereafter, we shall
assume implicitly that both G and Gρ are connected. Under such an assumption,
Gρ corresponds to a suitable subgroup H in π1(G) and G̃H = Gρ.

What is H? To answer this question, Negami [21] has discussed the relation
between two ways, topological and combinatorial, to construct graph coverings
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and conclude the following.
Let ρ : E(G) → S{1,...,n} be a permutation voltage assignment for a connected

graph G and let W = e1 · · · ek be any closed walk in G based at a fixed vertex
v0, presented as a sequence of edges. Then the homotopy type of W as a closed
curve can be regarded as an element in π1(G). Define the voltage ρ(W ) for W

by ρ(W ) = ρ(e1) · · · ρ(ek). This induces a well-defined group homomorphism
ρ : π1(G) → S{1,...,n}. Put H = ρ−1(S{2,...,n}), where S{2,...,n} is the subgroup in
S{1,...,n} consisting of all permutations fixing 1. This H is the answer.

It is well-known that the cycle space of G is generated by the cycles C1, . . . , Cr

corresponding to the edges e∗1, . . . , e
∗
r of a cotree T ∗ in G, that is, those not

belonging to a spanning tree T in G. Then we can redefine a permutation voltage
assignment ρ∗ : E(G) → S{1,...,n} by ρ∗(e∗i ) = ρ(Ci) and ρ∗(e) = id for each edge
e lying on T , where id stand for the identity permutation. Since the induced
homomorphism ρ∗ : π1(G) → S{1,...,n} coincides with ρ, this permutation voltage
ρ∗ derives the same covering as G̃H = Gρ.

Similarly, the covering Gα of G derived by an ordinary voltage assignment
α : E(G) → A must be the regular covering G̃N of G associated with some normal
subgroup N in π1(G). Since π1(G)/N acts on G̃N as its covering transformation
group, the group A must be isomorphic to π1(G)/N .

Let a1, . . . , a|A| denote all the elements of A, that is, A = {a1, . . . , a|A|}.
Then α(e) induces a permutation over this A. Define a permutation voltage
assignment ρα : E(G) → S{1,...,|A|} as one that assigns a permutation over the
subscripts {1, . . . , |A|} induced by α(e) to each edge e ∈ E(G). Then Gρα is a
covering of G equivalent to Gα and we can recognize the normal subgroup N for
G̃N = Gα = Gρα in the same way as mentioned above for Gρ.

3. Connectedness of coverings

As we have mentioned in the previous note, we should guarantee the con-
nectedness of coverings of a connected graph G when we apply the classification
of covering spaces to them. Here we shall discuss a criterion for a covering of a
connected graph to be connected.

Let G be a connected graph and let T be any spanning tree of G. A permu-
tation voltage ρ : E(G) → S{1,...,n} is said to be normalized along T if ρ(e) = id

for each edge e lying on T . That is, the only edges e∗1, . . . , e
∗
r of the cotree T ∗

corresponding to T receive non-trivial permutations in S{1,...,n}. If ρ is not nor-
malized, then we can obtain another permutation voltage assignment ρ∗ in the
same way as described in the previous section and this ρ∗ is normalized along T .
We call it the normalization of ρ along T .
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A subgroup H in S{1,...,n} is said to be transitive over {1, . . . , n} if there exists
an element τ ∈ H with τ(x) = y for any pair of numbers x, y ∈ {1, . . . , n}.

LEMMA 3. Let ρ : E(G) → S{1,...,n} be a permutation voltage assignment of a
connected graph G normalized along a spanning tree T of G. Then the covering
Gρ derived by ρ is connected if and only if ⟨ρ⟩ is transitive over {1, . . . , n}.

Proof. Let u ∈ V (G) be any vertex of G and let u1, . . . , un be the pre-images of
u via the projection pρ : Gρ → G. First suppose that Gρ is connected. Then
there exists a path Q from ui to uj in Gρ. Let τi,j ∈ S{1,...,n} denote the product
of voltages assigned to edges along the path Q. It is clear that τi,j belongs to ⟨ρ⟩
and τi,j(i) = j since Q starts at ui and terminates at uj. This implies that ⟨ρ⟩ is
transitive over {1, . . . , n}. The necessity follows.

Conversely suppose that ⟨ρ⟩ is transitive over {1, . . . , n}. Let T1, . . . , Tn be
the mutually disjoint n trees each of which projects to the spanning tree T along
which ρ is normalized. We may assume that ui lies on Ti and take another vertex
vk lying on Ti that projects to v. Then there is a path ẽ1 · · · ẽℓ along Ti joining
ui to vk, where ẽ1, . . . , ẽℓ are the edges lying along the path in this order.

Since ρ is normalized along T , the voltage assigned to each edge pρ(ẽj) of T
is the identity permutation, ρ(pρ(ẽj)) = id, and hence ẽj joins two vertices in Gρ

which has the same index. This implies that k = i and that all vertices lying on
Ti has the same index i as well as ui. Thus, we assume that ui lies on Ti for any
vertex u of G and any index i.

Since ⟨ρ⟩ is transitive, there is a sequence e1, . . . , eℓ of edges in G, for any pair
of numbers i, j ∈ {1, . . . , n}, such that the composition ρeℓ · · · ρe1 ∈ ⟨ρ⟩ maps i to
j. If e1 = uv and if ρe1(i) = i1, then there is an edge uivi1 in Gρ. Start at ui and
move to vi1 along the edge uivi1 . If e2 = u′v′ and if ρe2(i1) = i2, then we can go
from vi1 to u′

i1
along Ti1 and there is an edge u′

i1
v′i2 . Move to v′i2 . Continue the

same process as above for edges e1, . . . , eℓ in order. Then we find a path from ui

to uj in Gρ, which joins two trees Ti and Tj, and hence Gρ is connected.

Notice that the above argument for the necessity works even if ρ was not as-
sumed to be normalized. To understand why the assumption of being normalized
is needed, consider the following easy example.

Let G be the complete graph over three vertices u, v and x0. Then the two
edges x0u and x0v induce a spanning tree of G, say T . Define ρ : E(G) → S{1,2,3}

by ρ(x0u) = (12), ρ(uv) = (123) and ρ(x0v) = id. Then ρ is not normalized along
T and is not also along any other spanning tree of G. It is easy to see that the
covering Gρ consists of a triangle and a hexagon, and hence it is not connected.
However, we have ⟨ρ⟩ = ⟨(12), (123)⟩ and it is transitive over {1, 2, 3}. This
shows that the sufficiency of the lemma does not hold without the assumption
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of ρ being normalized.
Now consider the normalization ρ∗ of ρ along T , which assigns (12)(123) to

uv and id to the two edges x0u and x0v of T . Since (12)(123) = (13), we have
⟨ρ∗⟩ = ⟨(13)⟩ and ⟨ρ∗⟩ is not transitive over {1, 2, 3}. The covering Gρ∗ is not
connected. This coincides with the fact stated in the lemma.

We shall give a similar criterion for a regular covering of a connected graph
G to be connected. An ordinary voltage assignment α : E(G) → A is said to be
normalized along a spanning tree T of G if the voltages α(e) on all edges e lying
along T is the identity element of A; α(e) = id. We denote the subgroup in A

generated by all voltages α(e) by ⟨α⟩ = ⟨α(e) : e ∈ E(G)⟩.

LEMMA 4. Let A be a finite group and let α : E(G) → A be an ordinary voltage
assignment of a connected graph G normalized along a spanning tree T of G.
Then the covering Gα derived by α is connected if and only if A = ⟨α⟩.

Proof. First suppose that Gα is connected. Then there exists a path Q in Gα

which joins u× id to u× τ , for any element τ ∈ A. Then the product of voltages
α(e) along Q must be equal to τ . This implies that τ belongs to ⟨α⟩ and hence
A ⊂ ⟨α⟩. Since the later is a subset of A, we have A = ⟨α⟩.

Now suppose that A = ⟨α⟩. It suffices to show that u× id can be connected
to v×τ by a path in Gα for any two vertices u, v ∈ V (G) and any element τ ∈ A.
Then τ can be expressed as the products of voltages α(e1), . . . , α(eℓ) and we can
find a path Q from u× id to u× τ , using the copies T1, . . . , T|A| of the spanning
tree T of G by the way similar to that in the proof of Lemma 3. Extend Q to
join u× id to v × τ , adding the path between u× τ and v × τ along the tree Ti

which contains both of them; the added path preserves “τ” since α is normalized
along T . The sufficiency follows.

The previous example of a graph G over three vertices u, v and x0 works to
illustrate the above lemma. However, the voltage assignment must be regarded
as an ordinary one α : E(G) → S{1,2,3}, that is, α(x0u) = (12), α(uv) = (123)

and α(x0v) = id. Then the regular covering Gα is 6-fold since S{1,2,3} acts on
it. We have ⟨α⟩ = ⟨(12), (123)⟩ = S{1,2,3}, but this covering is not connected
and has three components each of which is a cycle of length 6. Also the regular
covering Gα∗ derived by the normalization α∗ of α along T is disconnected and
⟨α∗⟩ = ⟨(13)⟩ ̸= S{1,2,3}. Thus, the assumption of Gα being normalized is needed
actually, as well as in Lemma 3.

Remark that a covering of a connected graph is assumed to be connected
implicitly, as stated in the second paragraph of Section 2, unless stated otherwise
and that the notations Gρ and Gα with voltage assignments are just methods to
exhibit coverings of a graph.
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4. Canonical regular coverings

Let G be a connected graph and let ρ : E(G) → S{1,...,n} be a permuta-
tion voltage assignment. The covering Gρ derived by ρ may be disconnected in
general, but we suppose that Gρ is connected and that ρ is normalized along a
spanning tree T of G, as in Theorem 2. The following arguments consisting of
six parts will give a proof of Theorems 1 and 2, describing the desired regular
covering Gα in details:

• Construction
Here, we shall discuss the regular covering Gα under a slightly wider situ-

ation. Let A be a subgroup in S{1,...,n} and suppose that A contains ⟨ρ⟩. Put
Ai = {τ ∈ A : τ(1) = i} for each i = 1, . . . , n. Then A decomposes into n mutu-
ally disjoint subsets A1, . . . , An and A1 becomes a subgroup of A in particular.
Define an ordinary voltage assignment α : E(G) → A by α(e) = ρe. Then the
covering Gα of G derived by α becomes a regular covering of G with its covering
transformation group A.

Under this construction, the set of pre-images of each vertex u ∈ V (G) in
Gα decomposes into n mutually disjoint sets U1, . . . , Un each of which, say Ui,
corresponds to Ai. Denote the corresponding element in Ui by u×τ symbolically
for each τ ∈ Ai. That is, we have Ui = {u × τ : τ ∈ Ai}. Suppose that there is
an edge e = uv in G and define Vi’s similarly for another vertex v ∈ V (G). Since
α(e) = ρe, any vertex u × τ ∈ Ui must be joined to the vertex v × (ρe · τ) ∈ Vj

for some j by an edge in Gα. Here, we have τ(1) = i and hence ρe · τ(1) = ρe(i).
This implies that j = ρe(i) and that such edges form a matching between the
vertices in Ui and those in Vρe(i), corresponding to the edge uv in G.

• Connectedness
We should confirm that the coverings that we deal with in this section are

all connected, to use the classification of covering spaces. Both G and Gρ are
connected by the assumption itself in the theorem. On the other hand, the regular
covering Gα constructed above may be disconnected in general. However, Since
ρ is normalized, if A = ⟨ρ⟩, then Gα must be connected by Lemma 4. Hereafter,
we assume that Gα is connected, setting Gα = G⟨ρ⟩.

Recall that Gρ itself is assumed to be connected. This guarantees that ⟨ρ⟩
is transitive over {1, . . . , n} by Lemma 3. Thus, there exists an element τ in A

such that τ(1) = i for any i = 1, . . . , n, and hence all Ui’s are non-empty.

• Projections
Let pα : Gα → G be the projection of the regular covering Gα and discuss

how pα factors through the projection pρ : Gρ → G of Gρ. Since the pre-images
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of each vertex u ∈ V (G) in Gρ correspond to the numbers 1, . . . , n by definition,
we denote them by u1, . . . , un and let v1, . . . , vn be the pre-images of another
vertex v ∈ V (G). Suppose that these two vertices are joined by an edge e = uv

in G. Then each ui is joined to vρe(i) by an edge in Gρ.
Define a map q : V (Gα) → V (Gρ) by q(u × τ) = ui for u × τ ∈ Ui ; recall

that τ(1) = i by the definition of Ui. Each edge in Gα can be expressed as
(u× τ, v× (ρe · τ)). Since ρe · τ(1) = ρe(i), q carries this edge to the edge uivρe(i)
in Gρ, which exists actually as seen above. Therefore, the map q so defined works
as a covering projection from Gα onto q(Gα). Since Gρ is connected, the image
q(Gα) must coincide with the whole Gρ. We have pρ ◦ q(u × τ) = pρ(ui) = u if
u× τ ∈ Ui. This implies that pα = pρ ◦ q, as we want.

NOTE: The assumption of Gρ being connected is very important in the pre-
vious argument. If Gρ is not connected, the projection q may not be surjective.
For example, consider a graph over four vertices u, v, w and x0 having five edges
x0u, x0v, x0w, uv and vw, as G. Then G has a spanning tree T induced by
three edges x0u, x0v and x0w. Assign (1) to uv, (23) to vw and the identity
permutation id = (1) to the other edges.

This permutation voltage assignment ρ : E(G) → S{1,2,3} is normalized along
T . Since ⟨ρ⟩ = ⟨(1), (23)⟩ = ⟨(23)⟩ is not transitive over {1, 2, 3}, the covering
Gρ is not connected by Lemma 3. Actually, Gρ has two components, one of
which consists of the vertices numbered by 1 and the other vertices form another
component. On the other hand, G⟨ρ⟩ is a 2-fold covering of G since |⟨ρ⟩| = 2

and it is connected. Thus, there exists no sujection from G⟨ρ⟩ to Gρ in this case.
However, our assumption excludes such a case.

If we dare to follow the previous argument for the above example, then we
would have A1 = A, A2 = ∅ and A3 = ∅ since the voltage (23) on vw does not
move 1, and the projection q maps the whole Gα to the first component of Gρ

described above; q is not surjective at all. If we use A
(2)
i = {τ ∈ A : τ(2) = i}

instead of Ai, then we have A
(2)
1 = ∅ and q will map Gα isomorphically to the

second component of Gρ.

Since we have confirmed the connectedness of both Gρ and Gα, we can apply
the classification of covering spaces to these coverings. That is, Gρ and Gα are
associated with subgroups H and N in π1(G) and N is normal in particular.
Thus, we have Gρ = G̃H and Gα = G̃N . We shall use the notations pH : Gρ → G

and pN : Gα → G below, instead of pρ and pα.

• Group actions
As we have already seen, the covering pN : Gα → G is regular and the group

A = ⟨ρ⟩ acts on Gα as its covering transformation group. On the other hand, the
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subgroup H in π1(G) is isomorphic to π1(G̃H) as shown in Section 1 and H∩N is
a normal subgroup in H. This implies that the covering q : Gα → Gρ is a regular
covering of Gρ = G̃H associated with the normal subgroup H ∩N and the group
isomorphic to H/(H ∩N) acts on Gα = G̃N as its covering transformation group
theoretically. We would like to know what group acts on Gα as the covering
transformation group of q : Gα → Gρ concretely.

The answer is A1 = {τ ∈ A : τ(1) = 1}, which is a subgroup in A. If τ ∈ A1

and τ ′ ∈ Ai, then τ ′ · τ(1) = τ ′(1) = i and hence the group action by A1 leaves
each Ai invariant. This implies that u × τ ∈ Ai are all equivalent under the
group action by A1 and are projected to the same vertex ui by the projection
q : Gα → Gρ. Note that Ai does not become a group at all for i ̸= 1.

• Minimality
Now we shall show that the covering index of Gα is the smallest among those

regular coverings of G that cover Gρ. This is a preparation to prove that Gα is
actually the minimal one in a stronger sense discussed in the next part.

Let B be any finite group and let β : E(G) → B be an ordinary voltage
assignment of G. This derives the regular covering p : Gβ → G with its covering
transformation group B. Suppose that this projection p factors through pH :

Gρ → G, that is, there exists a covering projection q : Gβ → Gρ with pH ◦ q = p.
This implies that p#(π1(G

β)) is a normal subgroup in H and hence q#(π1(G
β))

also is normal in π1(Gρ). Thus, Gβ can be regarded as a regular covering of Gρ,
and its covering transformation group, say B1, becomes a subgroup in B.

Let u be any vertex of G. Then each pre-image of u in Gβ can be presented as
ui×τ for some τ ∈ B1 if it projects to ui in Gρ. Put Ui = {ui×τ : τ ∈ B1}. Then
p−1(u) decomposes into the n mutually disjoint sets U1, . . . , Un and q(Ui) = {ui}.
Conversely, put Bi = {τ ∈ B : u× τ ∈ Ui}; recall that each vertex in p−1(u) has
an expression u× τ for some τ ∈ B, according to the definition of Gβ.

Since B1 leaves each Ui invariant, there exists an element τ1 ∈ B1 with
b τ1 = b′ for any two elements b, b′ ∈ Bi. This means that b and b′ are contained
in a common coset of B1 in B and that biB1 = Bi for some element bi ∈ B;
b1 = id in particular. Thus, B = B1 ∪ · · · ∪ Bn gives a left coset decomposition
of B1 in B.

Take an edge e = uv of G and define the n mutually disjoint sets V1, . . . , Vn

with p−1(v) = V1 ∪ · · · ∪Vn for the vertex v, as well as U1, . . . , Un for u. Then we
have q(Vi) = {vi} and the action by B1 leaves each Vi invariant. By the definition
of Gβ, a voltage β(e) is assigned to this edge e and an edge in Gβ joins u× τ to
v × (β(e) · τ).

Suppose that u× τ ∈ Ui and v× (β(e) · τ) ∈ Vj. Then we have u× τ = ui× τ ′

and v × (β(e) · τ) = vj × τ ′′ for some τ ′, τ ′′ ∈ B1. Since any edge between Ui
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and Vj projects to the edge uivj, the number j is determined, not depending
on the choice of u × τ ∈ Ui, and must be equal to ρe(i). Thus we can define
a correspondence Φ between the ordinary voltages for Gβ and the permutation
voltages for Gρ by Φ(β(e)) = ρe for each edge e ∈ E(G).

Let ⟨β⟩ denote the subgroup in B generated by the elements given as β(e)

for all edges e of G and extend Φ naturally to a correspondence from ⟨β⟩ to
⟨ρ⟩. The product of any element b in ⟨β⟩ from the left side preserves the coset
decomposition B1 ∪ · · · ∪Bn of B and shuffles these indexes, which corresponds
to a permutation over {1, . . . , n} given as the product of ρe’s.

This means that the extended Φ becomes a group homomorphism between
⟨β⟩ and ⟨ρ⟩. Since Φ is surjective, we have |⟨β⟩| ≥ |⟨ρ⟩| and hence |B| ≥ |A|.
This implies that the regular covering Gα of G with α(e) = ρe (e ∈ E(G)) has
the smallest covering index among all regular coverings of G that cover Gρ.

• Canonicity
We have just shown that G⟨ρ⟩ = Gα is the minimum regular covering of G

that covers Gρ. This covering Gα is associated with a normal subgroup N in
π1(G) and N is contained in the subgroup H in π1(G) that Gρ is associated
with. Let pM : G̃M → G be another regular covering of G whose projection pM
factors through pH : Gρ → G and which is associated with a normal subgroup
M in π1(G). Then M must be contained in H as well as N is.

Consider the set NM = {n ·m : n ∈ N,m ∈ M}. It is easy to see that NM

is contained in H and is a normal subgroup in π1(G) since so are both N and
M . Under this situation, if M ̸⊂ N , then NM would be a normal subgroup in H

which contains N as its proper subset; N ⊊ NM . This implies that G̃N would
cover G̃NM and |V (G̃NM)| < |V (G̃N)|. This contradicts the minimality of G̃N .
Therefore, N must contain M and hence G̃M covers G̃N . That is, the projection
pM : G̃M → G factors through pN : G̃N = G⟨ρ⟩ → G.

It is not so difficult to show group-theoretically that any subgroup H of finite
index in a group Γ contains a normal subgroup in Γ which also has finite index.
Notice that the normal subgroup N corresponding to G⟨ρ⟩ must coincides with
such a normal subgroup maximal in H, by the minimality of G⟨ρ⟩.

COROLLARY 5. The n-fold covering Gρ of a connected graph G derived by a
permutation voltage ρ is regular if and only if |⟨ρ⟩| = n.

Proof. Since G⟨ρ⟩ is the minimum regular covering of G which covers Gρ by
Theorem 2, it is clear that Gρ is regular if and only if Gρ = G⟨ρ⟩. In this case,
G⟨ρ⟩ itself must be an n-fold covering and hence we have |⟨ρ⟩| = n.
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NOTE: A graph G is said to be bipartite if it has a vertex coloring with two
colors, say black and white, such that any two vertices having the same color
are not adjacent in G and it is well-known that G is bipartite if and only if G
contains no odd cycle. A covering G̃ of G is called a bipartite covering of G if G̃
is bipartite. It has been known in [14] that there exists the canonical bipartite
covering b : B(G) → G of G such that any bipartite covering of G covers B(G),
as well as the canonical regular covering G⟨ρ⟩.

Unfortunately, “the canonical planar covering” of G does not exist in general
even if G has a planar covering. If Planar Cover Conjecture is true, then any
nonplanar graph G having a planar covering must have a 2-fold planar covering.
Thus, if G had the canonical planar covering, this 2-fold planar covering of G

would be canonical. However we can construct easily a nonplanar graph which
has two inequivalent 2-fold planar coverings, according to the result in [13]; they
cannot cover each other and hence they are not canonical.

5. Abelian coverings

A covering of G is said to be abelian if it is a regular covering and if its
covering transformation group is an abelian group. We may be able to discuss
many things within the category of abelian coverings since abelian groups have
the well-known strictures. We shall show here an application of our arguments in
the previous section, which joins abelian coverings and coverings whose regularity
is uncertain.

The following lemma gives an essential fact on abelian coverings, but it will
lose its raison d’etre after we established Theorem 7, which will present the exact
fact on abelian coverings:

LEMMA 6. A covering Gρ of a connected graph G with a permutation voltage
assignment ρ is covered by an abelian covering of G if and only if the canonical
regular covering G⟨ρ⟩ of G over Gρ is abelian.

Proof. The sufficiency is clear since G⟨ρ⟩ itself covers Gρ. Put G̃H = G⟨ρ⟩ for
the subgroup H in π1(G) that G⟨ρ⟩ is associated with, to use the topological
arguments developed in Section 1.

Suppose that an abelian covering G̃N of G covers Gρ. Then there is a covering
projection q : G̃N → G̃H with pN = pH ◦ q by the canonicity of G̃H = G⟨ρ⟩. This
implies that N < H. Since G̃H is a regular covering of G, H also is a normal
subgroup in π1(G) and the quotient π1(G)/H acts on G̃H as well as π1(G)/N

does on G̃N . Then we have a surjective homomorphism q̄ : π1(G)/N → π1(G)/H

such that q̄(Ng) = Hg for each element g ∈ π1(G). Since π1(G)/N is abelian,
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so is π1(G)/H and hence G̃H also is an abelian covering of G. Therefore, the
necessity follows.

As we have just discussed in the previous proof, it is easy to see that if an
abelian covering covers a regular covering, then the latter becomes ableian. We
shall not assume the regularity of a given covering in the following theorem:

THEOREM 7. Let G be a connected graph and let G̃ be a covering of G. Then
there exists no abelian covering of G which covers G̃ if G̃ is not abelian.

Proof. Suppose that there exists an ableian covering of G which covers a covering
Gρ of G. Then G⟨ρ⟩ is an abelian covering of G and ⟨ρ⟩ is an abelian group by
Lemma 6. First we would like to determine the order of this abelian group ⟨ρ⟩.

Since Gρ is assumed to be connected, ⟨ρ⟩ is transitive over {1, . . . , n} by
Lemma 3 and hence there exists an element τi,j in ⟨ρ⟩ such that τi,j(i) = j.
Consider τ1,j in particular and take any element τ ∈ ⟨ρ⟩ with τ(1) = j, as well
as τ1,j. Choose any number h ∈ {1, . . . , n} and confirm what is τ(h).

τ(h) = τ · τj,h(j) = τ · τj,h · τ1,j(1)

Since ⟨ρ⟩ is abelian, we may rearrange their order and hence:

τ(h) = τ1,j · τj,h · τ(1) = τ1,j · τj,h(j) = τ1,j(h)

This means that τ = τ1,j as permutations over {1, . . . , n} and τ1,j exists uniquely.
The n permutations τ1,1, . . . , τ1,n are all distinct and any element in ⟨ρ⟩ must

be identical to one of them, depending on which number it maps 1 to. Therefore,
we have {τ1,1, . . . , τ1,n} = ⟨ρ⟩ as sets, and hence |⟨ρ⟩| = n. By Corollary 5, the
n-fold covering Gρ must be identical to G⟨ρ⟩ and hence Gρ itself is an abelian
covering of G. Conversely, if Gρ is not abelian, then there does not exist any
abelian covering of G which covers Gρ.

Notice that the abelian covering in the statement of Theorem 7 is “ of G ”,
but it is not “ of G̃ ”. We can construct an abelian covering of G̃ freely as G̃α,
using an ordinary voltage assignment α : E(G̃) → A for any abelian group A.
However, if G̃ is not an abelian covering of G, then this covering G̃α is not an
ableian covering of G although G̃α covers G.

6. Examples

The first author has discussed an example of an irregular 4-fold covering of
K3,3 and its regular 8-fold covering in [26]. The former is a planar covering
while the latter is not planar but it can be embedded on the torus. If an m-fold
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covering of a graph covers its n-fold covering, then n divides m. This implies that
the 8-fold regular covering of K3,3 becomes the minimum regular covering which
covers the irregular 4-fold covering of K3,3 and hence the 8-fold one must be the
canonical regular covering of the 4-fold one. Thus, the 8-fold regular covering of
K3,3 can be obtained as G⟨ρ⟩ by the way described in our arguments.

Figure 2 The 4-fold covering of K3,3 with permutation voltages

Figure 2 presents the irregular 4-fold covering of K3,3 and its permutation
voltage assignment ρ. The labels on edges in the lower graph K3,3 indicate
the permutations over {1, 2, 3, 4} assigned to the edges. The edges with no label
receive the identity permutation id. Notice that the derived covering of K3,3 with
this permutation voltage ρ is not regular actually since two vertices black and
white projecting to the same vertex cannot be transfered by any group action.

Put σ = (12)(34) and τ = (13); the former is assigned to three diagonals 1a,
2b and 3c of the hexagon and the latter only to the edge 2c placed at the right
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end. Then we have στ = (1234) and hence σ2 = τ 2 = (στ)4 = id.

⟨ρ⟩ = ⟨σ, τ |σ2 = τ 2 = (στ)4 = id ⟩
= { id, (13), (24), (12)(34), (13)(24), (14)(23), (1234), (1432) }
∼= D4

This means that the group ⟨ρ⟩ generated by σ and τ is isomorphic to the dihedral
group D4 of order 8 and that D4 acts on the 8-fold regular covering K

⟨ρ⟩
3,3 , which

coincides with one given in [26]. Since D4 is not abelian, the 4-fold covering of
K3,3 given in Figure 2 admits no abelian covering of K3,3 which covers it.

Unfortunately, we have determined the concrete form of ⟨ρ⟩ by hand. If
there is a rapid algorithm to determine the full set of elements generated by
given generators, it will help us to analyze planar coverings of nonplanar graphs
according to the theory given in [26].
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