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Abstract— We investigate the spectral efficiency of non-
orthogonal frequency division multiplexing (NOFDM). NOFDM
is regarded as a frequency-domain faster-than-Nyquist (FTN)
signaling with block transmission, where each subcarrier is
compressed in the frequency domain by utilizing the discrete
fractional Fourier transform (DFRFT). Since pulse shaping filters
are not employed, the effective bandwidth of the NOFDM
signal should take into account the resulting out-of-band (OOB)
radiation. Therefore, we derive a closed-form expression for
the power spectral density (PSD) of the NOFDM signal with
windowing for OOB reduction. Through numerical comparison,
it is shown that NOFDM outperforms OFDM in view of the
effective signal bandwidth if they are compared under the same
number of subcarriers. On the other hand, by the capacity
analysis based on the asymptotic spectral efficiency with a large
number of subcarriers, we elucidate that NOFDM may not
outperform OFDM from an information-theoretic perspective.

Index Terms— Capacity, discrete Fourier transform (DFT),
discrete fractional Fourier transform (DFRFT), faster-than-
Nyquist (FTN) signaling, non-orthogonal frequency division mul-
tiplexing (NOFDM), orthogonal frequency division multiplex-
ing (OFDM), spectral efficiency.

I. INTRODUCTION

A drastic enhancement of spectral efficiency is urgently
required in future wireless communications such as the sixth
generation mobile communications standard (6G) [1]. In con-
trast, the spectral efficiency close to the Shannon limit has
been achieved by state-of-the-art physical layer techniques. In
modern high speed wireless communication systems such as
cellular networks and wireless LAN, the block transmission
scheme based on orthogonal frequency division multiplex-
ing (OFDM) has been a de-facto standard, partly due to
its efficient implementation based on the fast Fourier trans-
form (FFT).

In order to enhance the utilization of limited frequency re-
sources, several non-orthogonal multi-carrier-based techniques
have been proposed, such as non-orthogonal frequency divi-
sion multiplexing (NOFDM) (i.e., non-orthogonal counterpart
of OFDM) [2] and spectrally efficient frequency division mul-
tiplexing (SEFDM) [3]. These schemes are based on frequency
division multiplexing (FDM) with non-orthogonal subcarriers,
where the adjacent subcarriers are allocated with a smaller
spacing compared to OFDM [4].
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Nearly five decades ago, faster-than-Nyquist (FTN) signal-
ing was proposed for single-carrier transmission with pulse
shaping filters, where each symbol is transmitted at faster
than the Nyquist rate by intentionally violating the Nyquist
criterion [5]. FTN signaling compresses adjacent orthogonal
resources in the time domain, whereas NOFDM performs that
in the frequency domain. Therefore, NOFDM has also been
regarded as a variant of FTN signaling [6]. Furthermore, FTN
can be simultaneously implemented in the time and frequency
domain, and this approach is called multiple-carrier FTN (MC-
FTN) [7]. In this paper, these non-orthogonal resource alloca-
tion approaches performed in the time-frequency domain are
collectively referred to as FTN.

The major challenge of FTN signaling is how to deal with
the interference among non-orthogonal resources, i.e., inter-
symbol interference (ISI) in the time-domain FTN (TD-FTN)
and inter-carrier interference (ICI) in the frequency-domain
FTN (FD-FTN). Furthermore, the amount of ISI and ICI
depends on the type of filters employed [8]. Therefore, in the
previous studies, the achievable performance of FTN signaling
with a variety of pulse shaping filters has been investigated
from an information-theoretic perspective [9–12]. In practice,
the root raised cosine (RRC) filter is employed for single-
carrier transmission with pulse shaping. In this context, FTN
signaling achieves higher capacity compared to the classical
Nyquist transmission with the same RRC filter except for the
case without roll-off, i.e., the ideal rectangular filter [13]. This
result also holds for FD-FTN employing RRC filtering [14, 15]
based on filter bank multiple carrier (FBMC). In addition, MC-
FTN with RRC and Gaussian filters achieves higher capacity
compared to the Nyquist transmission with the same pulse
shaping filters [16].

The potential advantage of FTN signaling over the Nyquist
schemes has been analyzed in terms of capacity [13]. The case
for FD-FTN signaling with RRC filters has been investigated
in [15]. It is important to note that the conventional analy-
sis for the achievable spectral efficiency of FTN signaling
is based on the excess bandwidth introduced by the pulse
shaping filter. In practice, however, pulse shaping filters are
not employed in most existing broadband wireless communi-
cation standards, such as cellular networks (4G and 5G) and
wireless LAN, since they adopt block transmission based on
OFDM signaling [6]. Therefore, the above-mentioned analysis
is not applicable to these block transmission systems since the
spectrum is controlled by windowing rather than filtering [17].
Nevertheless, to the best of the authors’ knowledge, the
information-theoretic analysis of the FTN signaling with block
transmission over the conventional OFDM signal has not been
well investigated.
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Motivated by the above fact, in this work, we focus on FTN
signaling with block transmission, which corresponds to FD-
FTN of OFDM, and we refer to this simply as NOFDM1.
NOFDM can be efficiently implemented by discrete frac-
tional Fourier transform (DFRFT) instead of discrete Fourier
transform (DFT) in OFDM systems [3]. Since pulse shaping
filters are not employed due to the block transmission, out-
of-band (OOB) radiation of the NOFDM signal degrades its
spectral efficiency similar to OFDM, and thus windowing
should be employed at the transmitter [17]. Therefore, we
evaluate the spectral efficiency of the NOFDM signal in terms
of the effective bandwidth determined based on its power
spectral density (PSD) by taking the effect of windowing into
account. To this end, we derive the closed-form expression
of the PSD for the NOFDM signal and analyze the effective
signal bandwidth. Furthermore, we develop a capacity of the
NOFDM signal as an asymptotic spectral efficiency with a
large number of subcarriers, based on which we conclude
that OFDM (or orthogonal subcarrier allocation) is in fact the
optimal form of NOFDM. The primary contributions of this
paper are summarized as follows:

• We analyze the spectral efficiency of FTN signaling with
practical block transmission in terms of the effective
signal bandwidth achieved by windowing.

• The closed-form PSD expressions of the NOFDM signal
are derived for rectangular and raised-cosine windows,
based on which the spectral efficiency of NOFDM sys-
tem is derived by utilizing the eigenvalue decomposi-
tion (EVD) of the equivalent channel matrix of NOFDM.

• We demonstrate that NOFDM may outperform OFDM
in terms of spectral efficiency in view of the effective
bandwidth if they are compared under the same number
of subcarriers, but we also show that its benefit is limited
to the case with a small number of subcarriers.

• We analyze the capacity of the NOFDM signal derived
from the asymptotic behavior of the spectral efficiency
with a large number of subcarriers, and show that OFDM
is the optimal form of NOFDM.

This paper is organized as follows. In Section II, we describe
the system model of the NOFDM signal. Section III focuses
on the effective bandwidth of the NOFDM signal based on the
PSD derived in closed-form. Theoretical analysis of NOFDM
is given in Section IV, where the spectral efficiency and
capacity are investigated and compared with OFDM. Finally,
Section V concludes this work.

II. SYSTEM MODEL

In this section, we describe the system model of FTN sig-
naling with block transmission using DFRFT. For the purpose
of the mathematical analysis presented later, we introduce the
system in a framework of the precoded NOFDM signal [18],
and its block diagram is shown in Fig. 1. We note that the
classical OFDM corresponds to the special case of NOFDM.

1As in [15], the term NOFDM is also used as an alternative to FD-FTN
of FBMC. Strictly speaking, NOFDM should be interpreted as an FD-FTN
extension of the conventional OFDM, which will be adopted throughout this
paper.
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Fig. 1. A block diagram of the NOFDM transmitter and receiver with the
compression factor α.

Throughout this work, we focus on the fundamental perfor-
mance of the NOFDM signal over an additive white Gaussian
noise (AWGN) channel. Thus, the insertion of the cyclic
prefix (CP) that compensates for the ISI caused by multi-path
fading is not considered.

A. Discrete Fractional Fourier Transform

DFRFT is a linear transform similar to DFT, and the
kth output sample of N -point DFRFT with the input b =
[b0, b1, · · · , bN−1] ∈ CN is defined as [19]

Bk =
1√
N

N−1∑
n=0

bne
−j2πkna/N , (1)

where a ∈ R denotes the order of DFRFT. It is obvious
from (1) that DFRFT is a generalization of DFT as they coin-
cide when a = 1. Therefore, DFRFT can also be implemented
efficiently with its complexity order O (N logN) [20].

We define the DFRFT matrix with the order a and size N
denoted by FN,a ∈ CN×N as

FN,a ≜

1√
N



ωa(0·0) · · · ωa(0·n) · · · ωa(0·(N−1))

...
. . .

...
. . .

...
ωa(k·0) · · · ωa(k·n) · · · ωa(k·(N−1))

...
. . .

...
. . .

...
ωa((N−1)·0) · · · ωa((N−1)·n) · · · ωa((N−1)(N−1))

 ,

(2)

where ω ≜ e−j2π/N . The inverse DFRFT (IDFRFT) is defined
by changing the sign of the DFRFT order [21], and the
IDFRFT matrix is given by FN,−a = FH

N,a ∈ CN×N with
XH representing Hermitian transpose of a matrix X. Since
the DFT and IDFT matrices correspond to the special cases
of the DFRFT and IDFRFT matrices with a = 1, we define
their shorthand notations as FN ≜ FN,1 and F−1

N ≜ FH
N =

(FN,1)
H, respectively.

B. Transmitter

In this subsection, we describe the NOFDM transmitter.
Its signal processing is regarded as a generalization of the
conventional OFDM, and they can be extended by generalizing
DFT in OFDM to DFRFT as illustrated in Fig. 1.
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We first consider the conventional OFDM signal with the
symbol period T and N subcarriers. The frequency interval
between the adjacent subcarriers, commonly referred to as the
subcarrier spacing (SCS), is given by

∆f =
1

T
, (3)

and the orthogonality among subcarriers is guaranteed in
OFDM. As a result, N data symbols are transmitted by the
OFDM signal with N subcarriers during the symbol period T .
Hence, the rate per each data symbol corresponds to the
Nyquist interval, which is given by

∆t =
T

N
. (4)

The sampling frequency is then expressed as

fs ≜
1

∆t
=

N

T
, (5)

whereas the corresponding Nyquist frequency is defined as

fn ≜ fs
2

=
1

2∆t
=

N

2T
. (6)

On the other hand, the SCS of NOFDM is adjusted by
introducing the compression factor denoted by α = (0, 1] ∈ R
as

α∆f =
α

T
. (7)

Let x = [x0, x1, · · · , xN−1]
T ∈ CN×1 denote the data

symbol vector with xn ∈ C representing the nth complex data
symbol. For information-theoretic analysis, it is assumed to
be an independent and identically distributed (i.i.d.) complex
Gaussian random variable with the average symbol power Es,
i.e., xn ∼ CN (0, Es). Thus, its covariance matrix is given by
E
{
xxH

}
= EsIN with IN representing the identity matrix of

size N . The transmitted signal of NOFDM with N subcarriers
is expressed as

s (t) =
1√
N

N−1∑
n=0

xne
j2πnα∆ft =

1√
N

N−1∑
n=0

xne
j2πntα/T ,

(8)

where the symbol period of NOFDM remains the same as that
of OFDM, i.e., T .

From (8), the average transmission power of the NOFDM
signal is calculated by

1

T

∫ T

0

E
{
|s(t)|2

}
dt =

1

T

∫ T

0

E {s(t)s∗(t)} dt

=
1

NT

∫ T

0

E

{(
N−1∑
n=0

xne
j2πntα/T

)(
N−1∑
m=0

x∗
me−j2πmtα/T

)}
dt

=
1

NT

N−1∑
n=0

N−1∑
m=0

E {xnx
∗
m}
∫ T

0

ej2π(n−m)tα/T dt

=
1

NT

N−1∑
n=0

E {xnx
∗
n}
∫ T

0

e0dt

= Es, (9)

where by assumption E {xnx
∗
m} takes Es when n = m and

0 otherwise. Hence, the transmission power of the NOFDM
signal in (8) does not depend on the compression factor α.

We now consider the baseband symbol representation of (8).
In the NOFDM signal, data symbols with N subcarriers are
transmitted with the symbol interval of T regardless of the
compression factor α. Hence, the rate per each data symbol
corresponds to the Nyquist interval of (4). As a result, the
sampling at the receiver is performed in the same principle as
OFDM. Thus, the kth element of the discrete-time baseband
signal discretized with the Nyquist interval of ∆t = T/N is
expressed as

sk ≜ s (k∆t) =
1√
N

N−1∑
n=0

xne
j2πknα/N ,

k ∈ {0, 1, · · · , N − 1} . (10)

From (1) and (10), the baseband symbol of the NOFDM
signal with the compression factor α is generated by IDFRFT
operation with the order of a = α [22]. The transmitted
symbol vector s = [s0, s1, · · · , sN−1]

T ∈ CN×1 of NOFDM
with linear precoding is expressed as

s = FH
N,αPx ≜ FH

N,αx̃, (11)

where P ∈ CN×N denotes the precoding matrix and x̃ ≜
Px = [x̃0, x̃1, · · · , x̃N−1]

T ∈ CN×1 represents the precoded
data symbol vector.

C. Receiver

The received signal over an AWGN channel is expressed as

r (t) = s (t) + n (t) , (12)

where n (t) is the AWGN term. The receiver first samples the
received signal with the Nyquist interval ∆t = T/N , which is
matched with the sampling rate of the baseband symbol at the
transmitter. The kth sample of the received baseband signal is
given by

rk ≜ r (k∆t) = s (k∆t) + n (k∆t)

=
1√
N

N−1∑
n=0

xne
j2πknα/N

︸ ︷︷ ︸
sk

+nk, k ∈ {0, 1, · · · , N − 1} ,

(13)

where nk ≜ n (k∆t) represents the kth noise sample with zero
mean and complex variance of N0, i.e., nk ∼ CN (0, N0).

The received symbol vector r = [r0, r1, · · · , rN−1]
T ∈

CN×1 is expressed as

r = s+ n, (14)

where n = [n0, n1, · · · , nN−1]
T ∈ CN×1 is the AWGN

vector. Therefore, from (9), the received signal-to-noise power
ratio (SNR) denoted by γs is defined as

γs ≜
E
{
|sk|2

}
E
{
|nk|2

} =
Es

N0
, (15)
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which does not depend on the compression factor α either.
Similar to the conventional precoded OFDM signal, such

as DFT-precoded OFDM [23], the receiver employs the post-
coding after NOFDM demodulation performed by DFRFT
operation. Let W ∈ CN×N denote the postcoding matrix. The
received symbol vector of the NOFDM signal after DFRFT
operation and postcoding is expressed as

y = WFN,αr = WFN,α (s+ n)

= WHN,αPx+WFN,αn, (16)

where the equivalent channel matrix of NOFDM with the
compression factor α and N subcarriers, referred to as the
NOFDM matrix, is defined as

HN,α ≜ FN,αF
H
N,α. (17)

The (k, n) element of the NOFDM matrix with k, n ∈
{0, 1, · · · , N − 1}, denoted by HN,α[k, n], is calculated as

HN,α [k, n] =

N−1∑
i=0

FN,α [k, i]FH
N,α [i, n]

=

N−1∑
i=0

(
1√
N

e2πkiα/N · 1√
N

e−2πinα/N

)
=

1− ej2πα(k−n)

N
{
1− ej2πα(k−n)/N

}
= ejπα(k−n)(1− 1

N ) sin {πα(k − n)}
N sin

{
π
N α(k − n)

} . (18)

We observe that setting α = 1 (for OFDM), the NOFDM
matrix reduces to the identity matrix with size N as

HN,1 = FNFH
N = IN . (19)

D. EVD Precoding
In order to evaluate the spectral efficiency, we introduce the

eigenvalue decomposition (EVD) precoding scheme for the
NOFDM signal [15, 18].

Let λk denote the kth eigenvalue of the NOFDM matrix,
and all the eigenvalues are assumed to be sorted in descending
order with respect to the index k. Since the NOFDM ma-
trix HN,α is Hermitian, i.e., (HN,α)

H
=
(
FN,αF

H
N,α

)H
=

FN,αF
H
N,α = HN,α, it can be rewritten by EVD as

HN,α = UΛUH, (20)

where Λ = diag (λ0, λ1, · · · , λN−1) ∈ CN×N represents
the diagonal matrix composed of eigenvalues, and U =
[u0,u1, · · · ,uN−1] ∈ CN×N is the unitary matrix whose kth
column uk is the eigenvector corresponding to λk.

From (20), the precoding and postcoding matrices based on
EVD are given by

P = U, (21)

W = UH. (22)

Therefore, from (16), the resulting received symbol vector of
EVD-precoded NOFDM signal is expressed as

y = UHHN,αUx+UHFN,αn

= Λx+ z, (23)

where z ≜ UHFN,αn = [z1, z2, · · · , zN−1]
T ∈ CN×1

denotes the equivalent noise vector. Its covariance matrix is
given by

E
{
zzH} = E

{
UHFN,αnn

HFH
N,αU

}
= N0

(
UHHN,αU

)
= N0Λ. (24)

Since the precoding matrix of EVD-precoded NOFDM
signal is unitary from (21), the covariance matrix of the
precoded data symbol vector x̃ = Px in (11) is given by

E
{
x̃x̃H} = E

{
PxxHPH} = E

{
UxxHUH} = EsIN .

(25)

Therefore, EVD-precoding does not affect the resulting trans-
mission power in (9).

III. POWER SPECTRAL DENSITY AND EFFECTIVE
BANDWIDTH

The primary issue in block transmission of the NOFDM
signal is that its power does not localize in the frequency
domain since pulse shaping filters are not employed. It leads to
high OOB radiation and degrades the spectral efficiency unless
a suitable windowing is applied [17]. Motivated by this fact,
we define the effective bandwidth of the NOFDM signal for a
given acceptable OOB radiation value. To this end, we derive
closed-form expressions of the PSD for the NOFDM signal
with and without windowing. Based on this PSD property, we
evaluate the bandwidth of the NOFDM signal compared to the
conventional OFDM signal.

A. Power Spectral Density

We first consider the power spectrum of the continuous-
time signal so as to estimate the effective bandwidth of the
NOFDM signal.

The transmitted NOFDM signal with windowing is ex-
pressed as

sw (t) =
∑
ℓ

s(ℓ) (t) g (t− ℓTw) , (26)

where g(t) is a window function, Tw (≥ T ) represents the total
NOFDM symbol length with windowing, and s(ℓ) (t) denotes
the ℓth NOFDM symbol. By writing the nth data symbol of
the ℓth NOFDM symbol as x

(ℓ)
n , we have

s(ℓ) (t) =
1√
N

N−1∑
n=0

x(ℓ)
n ej2πnα∆ft. (27)

From (26), the autocorrelation function of the NOFDM signal
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Fig. 2. NOFDM signal structure with rectangular and raised-cosine window.

is given by

Rs (τ) = lim
T0→∞

1

2T0

∫ T0

−T0

E {sw(t)s∗w(t− τ)} dt

=
1

Tw

∫ Tw

0

∞∑
ℓ=−∞

∞∑
i=−∞

E
{
s(ℓ)(t)s(i)

∗
(t− τ)

}
× g(t− ℓTw)g

∗(t− τ − iTw)dt

=

∞∑
ℓ=−∞

N−1∑
n=0

N−1∑
m=0

E
{
x̃(ℓ)
n x̃(ℓ)∗

m

}
ej2πnα∆fτ

× 1

Tw

∫ Tw

0

g(t− ℓTw)g
∗(t− τ − iTw)dt

= Es

N−1∑
n=0

ej2πnα∆fτ ·Rg (τ) , (28)

where Rg (τ) represents the autocorrelation function of the
window function [17]. It should be noted that EVD-precoding
considered in this work does not affect the autocorrelation
function since, from (25), E

{
x̃
(ℓ)
n x̃

(ℓ)∗

m

}
in (28) takes the

same value as that without precoding2, i.e., E
{
x̃
(ℓ)
n x̃

(ℓ)∗

m

}
=

E
{
x
(ℓ)
n x

(ℓ)∗

m

}
. Thus, the PSD of the NOFDM signal is

calculated as

Ps (f) =

∫ ∞

−∞
Rs (τ) e

−j2πfτdτ

= Es

N−1∑
k=0

∫ ∞

−∞
Rg (τ) e

−j2π(f−kα∆f)τdτ

=
Es

Tw

N−1∑
k=0

|G (f − kα∆f)|2 , (29)

where G (f) is the Fourier transform (or spectrum) of g(t).
Replacing the index k by k − (N − 1)/2 leads to the

symmetric PSD expressed as

Psym (f) =
Es

Tw

N−1∑
k=0

∣∣∣∣∣G
(
f − α

k − N−1
2

T

)∣∣∣∣∣
2

. (30)

2As in the conventional precoded FTN signaling, the power allocation may
improve the spectral efficiency of the NOFDM signal since the eigenvalues
of the NOFDM matrix are unbalanced except when N → ∞. However, it
affects the resulting PSD property even under the constant transmission power
condition [24] since the spectrum corresponding to the nth subcarrier depends
on its allocated power, denoted by pn, due to E {x̃nx̃∗

n} = pnEs from the
covariance matrix of the precoded data symbol vector given in (25). Moreover,
its optimization should be performed for each combination of the number of
subcarriers N and the compression factor α. Therefore, in this work, we do
not pursue the power allocation optimization but leave it as our future work.

In what follows, as a practical windowing approach, we
consider the rectangular window and the raised-cosine window
illustrated in Fig. 2 [25].

1) Rectangular Window: The block transmission without
smooth windowing is equivalent to employing a rectangular
pulse, and it is known as the rectangular window. As illustrated
in Fig. 2(a), the symbol length with rectangular window Tw is
identical to that of the original NOFDM signal, i.e., Tw = T .
With the NOFDM symbol interval of T , it is given by

g(t) =

{
1, 0 ≤ t < T,

0, otherwise.
(31)

Hence, its Fourier transform (or spectrum) is expressed as

G(f) =
1√
T

∫ T

0

e−j2πftdt =
√
Te−j2πfT sinc(fT ), (32)

where

sinc (x) ≜ sin (πx)

πx
. (33)

From (30) and (32), the symmetric PSD of the NOFDM
signal with rectangular window is given by

Psym (f) = Es

N−1∑
k=0

sinc2
[
T

(
f − α

k − N−1
2

T

)]
. (34)

2) Raised-Cosine Window: In practical block transmission
with the OFDM signal, smooth windowing is applied so as
to mitigate the OOB radiation caused by the discontinuity
of successive OFDM symbols. In this work, we consider
the raised-cosine window (also known as Hann window) as
an example [25], which is commonly employed in practical
systems.

The NOFDM signal structure with raised-cosine window
is illustrated in Fig. 2(b), where δT represents the transition
period and δ denotes a fraction of the symbol length corre-
sponding to the transition period. This transition period of δT
is inserted at the head and tail of each NOFDM symbol. Hence,
the resulting symbol length with raised-cosine window is given
by Tw = T + 2δT . Its window function is expressed as [17]

g(t) =

1√
(4−5δ)Tw

{
1− cos

(
π t

δTw

)}
, 0 ≤ t < δTw,

2√
(4−5δ)Tw

, δTw ≤ t < (1− δ)Tw,

1√
(4−5δ)Tw

{
1− cos

(
π Tw−t

δTw

)}
, (1− δ)Tw ≤ t < Tw,

0, otherwise,
(35)

and its Fourier transform is given by

G(f) =√
(1− δ)2Tw

1− 5
4δ

e−jπfTw
cos (δTwπf)

1− (2δfTw)
2 sinc (f (1− δ)Tw) .

(36)
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Therefore, from (30) and (36), the symmetric PSD of the
NOFDM signal with raised-cosine window is expressed as

Psym (f) = Es
(1−δ)

2

1− 5
4δ

N−1∑
k=0

cos2
(
π δ

1−2δT
(
f−α

k−N−1
2

T

))
[
1−
(

2δ
1−2δT

(
f − α

k−N−1
2

T

))2]2
× sinc2

(
(1− δ)T

1− 2δ

(
f − α

k − N−1
2

T

))
.

(37)

B. Effective Bandwidth

In this subsection, we discuss the bandwidth of the NOFDM
signal. From (34) and (37), we observe that the bandwidth
corresponding to the sidelobe spreads without limitation. In
other words, the energy of the NOFDM signal does not
localize in the frequency domain. Therefore, in this work, we
evaluate the bandwidth of the NOFDM signal with respect to
the acceptable OOB radiation value, which we define as the
effective bandwidth.

Let ptarget denote the target (or acceptable) PSD value for
NOFDM systems. We define the maximum frequency fmax as
the maximum frequency that exceeds this target PSD ptarget
derived from (34) and (37). It is expressed as

fmax ≜ arg max
f∈R+

Psym (f) > ptarget, (38)

where R+ represents a set of real positive numbers. By the
use of the maximum frequency fmax, we define the effective
bandwidth of the NOFDM signal for a given PSD value ptarget
as

Weff ≜ 2max {fn, fmax} = max {fs, 2fmax} . (39)

C. Spectrum of Baseband NOFDM Signal

We consider the spectrum of discrete-time NOFDM signal.
Fig. 3 illustrates the spectrum of the baseband symbol of
OFDM and NOFDM signals sampled at the Nyquist interval
of ∆t = T/N in (10). By the sampling theorem, the spectrum
of the baseband NOFDM signal should be periodic, and its
period corresponds to the sampling frequency fs. In Fig. 3,
Wmain denotes the bandwidth corresponding to the mainlobe
in the NOFDM signal with the compression factor α. It is
generally defined as

Wmain ≜ ∆f + |fc,N−1 − fc,0| =
1 + α (N − 1)

T
, (40)

where fc,k represents the central frequency of the kth subcar-
rier in the NOFDM signal, which is given by

fc,k = α
k − N−1

2

T
. (41)

It is clear from (40) that the bandwidth of the mainlobe
decreases as the compression factor α decreases. Hence, it
is considered in the previous studies on FD-FTN signaling
that its bandwidth can be reduced arbitrarily by compress-
ing the subcarrier spacing [3, 15, 26]. However, this often
misleads the actual spectral efficiency of FD-FTN signaling

fn−fn

(a) OFDM

(b) NOFDM

f

(

= −

N

2T

) (

=
N

2T

)

(

= −

N

2T

) (

=
N

2T

)

Wmain =

N

T

Wmain =
1 + α (N − 1)

T

!!

!!

fs 2fs−2fs −fs

fn−fn
f

fs 2fs−2fs −fs

Fig. 3. The spectrum of baseband OFDM and NOFDM signals sampled at
the sampling frequency of fs = N/T .

since, in practice, the effect of sampling should be taken
into account. In the NOFDM signal, the sampling frequency
and the Nyquist frequency are given by fs = N/T in (5)
and fn = fs/2 = N/2T in (6), respectively, regardless of the
compression factor α, as its baseband symbol is sampled at
the Nyquist interval of ∆t = T/N so as to detect the symbols
corresponding to all subcarriers. Therefore, the sampling rate
is always larger than the bandwidth corresponding to the
mainlobe for the NOFDM signal, i.e., fs ≥ Wmain due to the
fact that 0 < α ≤ 1. As a result, the spectrum of the baseband
NOFDM signal with α < 1 contains its sidelobe below the
Nyquist frequency as illustrated in Fig. 3, since the sidelobe
cannot be removed in the NOFDM signal due to the block
transmission structure. In other words, the bandwidth of the
NOFDM signal should be determined not by the compression
factor α but by the sampling frequency fs = N/T , and
its bandwidth should never be smaller than the sampling
frequency fs since the sidelobe is still a part of the baseband
signal. This fact indicates that if there exists any interference
in the range of |f | ≤ fn, it may not be negligible, even if it
falls outside the mainlobe.

In summary, the main difference between the NOFDM and
OFDM signals is that the mainlobe of the NOFDM signal
occupies a bandwidth smaller than that of OFDM. Therefore,
it is important to note that the effective bandwidth of the
NOFDM signal, according to the definition of (39), is no
smaller than the sampling frequency fs, even though its
mainlobe can be made narrower by controlling α.

D. Numerical Results

Without loss of generality, we introduce the normalized
frequency, denoted by f̃ , defined as

f̃ ≜ f

fs
, (42)
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Fig. 4. The PSDs of OFDM (α = 1) and NOFDM (α = 0.25, 0.5, 0.75)
signals with respect to the normalized frequency f̃ , where the number of
subcarriers is set as N = 256. Note that rectangular window is employed for
all the signals evaluated here.
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Fig. 5. The PSDs of OFDM (α = 1) and NOFDM (α = 0.5) signals with
respect to the normalized frequency f̃ , where the number of subcarriers is
set as N = 256. The results with rectangular and raised-cosine (δ = 1/64)
windows are plotted by dashed and solid lines, respectively.

and the corresponding normalized Nyquist frequency is intro-
duced as

f̃n ≜ fn
fs

=
1

2
. (43)

Fig. 4 shows the PSD of the NOFDM signal with rectangu-
lar window as a function of f̃ , where the compression factor
is set as α = 0.25, 0.5, 0.75, and 1 (OFDM), and the number
of subcarriers is set as N = 256. From Fig. 4, the bandwidth
corresponding to the mainlobe of the NOFDM signal becomes
narrower by reducing the compression factor α according
to (40). As a result, OOB radiation is also improved. The
maximum frequency fmax in (38) and corresponding effective
bandwidth Weff in (39) are also illustrated in Fig. 4 for the
target PSD of ptarget = −30 dB, where we observe that fmax of
the NOFDM signal becomes smaller than that of the OFDM
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Fig. 6. The effective bandwidth and maximum frequency of the NOFDM
signal with respect to the normalized frequency f̃ , which are plotted by solid
and dashed lines, respectively. The number of subcarriers is set as N =
128, 256, and 512.

signal evaluated at the same value of ptarget. It follows that
the effective bandwidth can be improved by NOFDM. On
the other hand, in the case of α = 0.25, the maximum
frequency fmax is smaller than the Nyquist frequency fn for the
target PSD value of ptarget = −30 dB. Thus, further reduction
of the compression factor α does not provide any gain in terms
of the effective bandwidth Weff for ptarget = −30 dB.

We next evaluate the PSD of OFDM and NOFDM (α = 0.5)
signals achieved by the different windows in Fig. 5, where
rectangular and raised-cosine windows are compared for N =
256. Here, we set the transition period of raised-cosine window
as δ = 1/64. As a result, raised-cosine window significantly
improves OOB radiation compared to rectangular window for
both OFDM and NOFDM signals.
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Based on the above observation on the PSD, we evaluate
the bandwidth with respect to the compression factor α. The
effective bandwidth Weff in (39) and maximum frequency fmax
in (38) are plotted for the normalized frequency f̃ in Fig. 6,
where the cases with N = 128, 256, and 512 are evaluated.
For reference, the normalized Nyquist frequency f̃n in (43)
and the normalized sampling frequency f̃s = fs/fs = 1
are also shown in the same figure. In all cases compared
in Fig. 6, the effective bandwidth achieved by raised-cosine
window is smaller than that with rectangular window, since
OOB radiation is improved as shown in Fig. 5. From (39),
when fmax > fn, the effective bandwidth of the NOFDM
signal is twice as large as the maximum frequency, i.e., Weff =
2fmax. Since this condition is satisfied for all α in the case
of rectangular window with N = 128, the resulting effec-
tive bandwidth can be improved as the compression factor
decreases. In contrast, the maximum frequency becomes lower
than the Nyquist frequency with the small compression factor
for the other cases. As a result, the effective bandwidth is
determined by the sampling frequency as the compression
factor decreases. Therefore, the optimal compression factor
may exist for each number of subcarriers N and each window.

IV. SPECTRAL EFFICIENCY AND CAPACITY

Based on the discussion on the bandwidth of the NOFDM
signal in the previous section, we derive the achievable spectral
efficiency and capacity based on EVD-precoding.

A. Mutual Information

From (23), the kth received symbol of EVD-precoded
NOFDM signal is expressed as

yk = λkxk + zk, (44)

where zk is an i.i.d. Gaussian random variable with zero
mean and complex variance of λkN0 from (24), i.e., zk ∼
CN (0, λkN0). Therefore, the NOFDM signal with N sub-
carriers can be divided into N parallel complex Gaussian
channels, and the equivalent SNR corresponding to the kth
NOFDM channel is given by

Γk ≜
E
{
|λkxk|2

}
E
{
|zk|2

} = λk
Es

N0
= λkγs. (45)

The mutual information between the data symbol vector x ∈
CN×1 and the received symbol vector y ∈ CN×1 of the
NOFDM signal in (23) is expressed as

I (x;y) = h (y)− h (y|x) = h (y)− h (z) , (46)

where h (·) represents the differential entropy. For mathemat-
ical analysis, we assume that each data symbol xk is an i.i.d.
complex Gaussian random variable, i.e., xk ∼ CN (0, Es).

Hence, the mutual information in (46) can be rewritten as

I (x;y) =

N−1∑
k=0

[h (yk)− h (zk)]

=

N−1∑
k=0

[
log2

(
πe
(
λ2
kEs + λkN0

))
− log2 (πeλkN0)

]
=

N−1∑
k=0

log2

(
1 + λk

Es

N0

)

=

N−1∑
k=0

log2 (1 + Γk) [bits]. (47)

Since the diagonal element of the NOFDM matrix is given
by HN,α[k, k] = 1 from (18), the sum of the eigenvalues is
expressed as

N−1∑
k=0

λk = tr(HN,α) =

N−1∑
k=0

HN,α [k, k] = N, (48)

where tr (X) represents the trace of a matrix X. Therefore,
from Jensen’s inequality and (48), the mutual information of
the NOFDM signal in (47) can be bounded as

I (x;y) ≤ N log2

(
1 +

1

N

N−1∑
k=0

Γk

)
= N log2 (1 + γs) ,

(49)

where the equality holds if and only if the compression factor
is chosen as α = 1 from (19). Therefore, NOFDM with α < 1
is inferior to OFDM (α = 1) in terms of mutual information.

B. Spectral Efficiency

We develop the achievable spectral efficiency of the
NOFDM signal considering its PSD. The spectral efficiency
of the NOFDM signal is expressed from (47) as

ηNOFDM (ptarget) ≜
1

TWeff
I (x;y)

=
1

TWeff

N−1∑
k=0

log2 (1 + Γk)

=
1

TWeff

N−1∑
k=0

log2 (1 + λkγs) [bits/s/Hz],

(50)

where Weff is the effective bandwidth of the NOFDM signal
for a given target PSD value ptarget defined in (39). In the
case of raised-cosine window, the time duration T in (50)
is replaced by (1 + δ)T since the support of g(t) in (35) is
(0, T + 2δT ) and the tail part of δT overlaps with the head
part of the next NOFDM symbol [17]. Hence, the rate loss by
raised-cosine window is expressed as T/ (T + 2δT − δT ) =
1/ (1 + δ).

When α = 1, since λk = 1 holds for all k ∈
{0, 1, · · · , N − 1} from (19), the spectral efficiency of the
OFDM signal is derived as

ηOFDM (ptarget) =
N

TWeff
log2 (1 + γs) [bits/s/Hz]. (51)
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As demonstrated in Section III, NOFDM can be made supe-
rior to OFDM in terms of the effective bandwidth compared at
the same target PSD value. Hence, there may be the case that
NOFDM outperforms OFDM in terms of spectral efficiency,
whereas it is not advantageous in terms of mutual information
as described in the previous subsection.

C. Capacity

Finally, we investigate the asymptotic behavior of the spec-
tral efficiency of the NOFDM signal with a large number of
subcarriers. In this work, we define the capacity of block trans-
mission systems as the asymptotic spectral efficiency achieved
by N → ∞. Since the normalized spectrum of the NOFDM
signal is strictly limited to [−α/2, α/2] (see Appendix A),
the NOFDM matrix HN,α with N → ∞ has only ⌈αN⌉
eigenvalues of 1/α, while the remaining eigenvalues approach
zero [27]. From (50), the capacity of the NOFDM signal is
expressed in terms of α as

lim
N→∞

ηNOFDM (ptarget) = lim
N→∞

1

TWeff

N−1∑
k=0

log2 (1 + λkγs)

=
1

T
(
fnW̃inf

) ⌈αN⌉−1∑
k=0

log2

(
1 +

1

α
γs

)

=
1

N

⌈αN⌉−1∑
k=0

log2

(
1 +

γs
α

)
= α log2

(
1 +

γs
α

)
≜ CNOFDM (α) [bits/s/Hz], (52)

where W̃inf ≜ limN→∞ (Weff/fn) = 1 denotes the normalized
bandwidth with rectangular window when N → ∞ (see
Appendix A)3. By substituting α = 1 into (52), the capacity
of the OFDM signal agrees with the Shannon capacity:

COFDM ≜ CNOFDM (1) = log2 (1 + γs) [bits/s/Hz]. (53)

As a result, the capacity of the NOFDM signal in (52) takes
the maximum value of (53) when the compression factor is
α = 1. In other words, the capacity of the OFDM signal is
identical to the Shannon capacity, which cannot be achieved
by the NOFDM signal with α < 1.

D. Numerical Results

We evaluate the spectral efficiency of the NOFDM signal
derived in (50) compared to that of OFDM in (51). The results
with rectangular and raised-cosine (δ = 1/64) window are
shown in Fig. 7 evaluated for the target PSD of ptarget =
−30 dB at the different SNR of γs = 0, 10, and 20 dB, and
the number of subcarriers is set to be N = 128, 256, and 512.
As a reference, NOFDM capacity in (52) and the Shannon
capacity in (53) are also plotted in the same figure. The
smaller compression factor α improves the effective bandwidth

3When a raised-cosine window is employed, the capacity in (52) is simply
degraded by the rate loss of 1/ (1 + δ). This is due to the fact that the
eigenvalues of the NOFDM matrix are not affected by windowing since the
transition period of δT inserted at the head and tail of each NOFDM symbol
is removed before NOFDM demodulation at the receiver.
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Fig. 7. The spectral efficiency of NOFDM signal with respect to the
compression factor α, which is evaluated for the target PSD value ptarget =
−30 dB and the SNR of γs = 0, 10, and 20 dB. The number of subcarriers is
set as N = 128, 256, and 512. The Shannon capacity and NOFDM capacity
are also plotted by chain and solid lines, respectively.

given by (39), but it degrades the mutual information derived
in (47). As a result, as observed from Fig. 7, the optimal
compression factor exists for each parameter, i.e., the number
of subcarriers N and the received SNR γs. Furthermore, the
spectral efficiency achieved with raised-cosine window signif-
icantly outperforms that with rectangular window compared
at the same number of subcarriers. It should be noted that
the optimal compression factor also depends on the type
of window employed at the transmitter. In both windowing
approaches, the spectral efficiency ηNOFDM approaches the
capacity CNOFDM (α) as N increases according to (52).

We finally evaluate the spectral efficiency of the NOFDM
signal with respect to γs. Fig. 8 shows the spectral efficiency
and capacity of OFDM and NOFDM signals with rectangular
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Fig. 8. The spectral efficiency of NOFDM signal (α = 0.92) with rectangular
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Fig. 9. The spectral efficiency of NOFDM signal (α = 0.92) with raised-
cosine window (δ = 1/64) for the target PSD value ptarget = −30 dB
compared to that of OFDM signal, where the number of subcarriers is set
as N = 64, 256, and 1024. The Shannon capacity and NOFDM capacity are
also plotted.

window, where we set the number of subcarriers as N =
64, 256, and 1024. From Fig. 7, the compression factor takes
different optimal values depending on the parameters. Thus,
we evaluate the case with α = 0.92 in Fig. 8 for the NOFDM
signal as an example. The corresponding NOFDM capacity
in (52) with α = 0.92 is also plotted along with the Shannon
capacity in (53). As the number of subcarriers N increases,
the spectral efficiency of both OFDM and NOFDM improves
since the OOB radiation can be decreased with the number
of subcarriers. In contrast, the superiority of NOFDM over
OFDM decreases as N increases. For example, the spectral
efficiency of NOFDM is 1.24 times higher than that of OFDM
compared with N = 64, but it becomes 1.07 times when N =
1024. Furthermore, the spectral efficiency of the NOFDM
signal almost approaches its capacity when N = 1024, and

its further improvement may not be expected. The spectral
efficiency in the case of raised-cosine window with transition
period δ = 1/64 is compared in Fig. 9. For all cases compared
here, the spectral efficiency improves by raised-cosine window
due to lower OOB radiation shown in Fig. 5. However, the
advantage of NOFDM over OFDM is decreased even with
N = 64 and 256. Furthermore, when N = 1024, the
spectral efficiency of NOFDM with α = 0.92 is inferior to
OFDM, since OFDM achieves spectral efficiency higher than
the NOFDM capacity with α = 0.92. As a result, the optimal
compression factor with raised-cosine window should be larger
in this case.

In conclusion, NOFDM may have the potential advantage
over OFDM in terms of spectral efficiency when they are
compared with the same small number of subcarriers since
non-orthogonal subcarrier allocation may reduce the effective
bandwidth defined by (39) at the expense of the mutual infor-
mation in (46). However, the gain achieved by non-orthogonal
subcarrier allocation decreases as the number of subcarriers
increases. Furthermore, OFDM (α = 1) is superior to NOFDM
with α < 1 in terms of mutual information and capacity. In
other words, OFDM is the optimal form of NOFDM from the
viewpoint of information-theoretic analysis4.

Remark: The gain of NOFDM in terms of spectral effi-
ciency can be achieved when we consider the degradation
of spectral efficiency caused by OOB radiation associated
with block transmission [17]. However, the performance of
NOFDM is bounded by the Shannon capacity in terms of both
spectral efficiency in (50) and capacity in (52), as demon-
strated in Figs. 8 and 9. Therefore, our derived results do not
contradict the existing analysis for FTN signaling with pulse
shaping filters [13]. As a reference, the connection between
our analysis of the NOFDM signal and that of conventional
FTN signaling is described in Appendix B.

V. CONCLUSION

In this work, we have investigated the achievable spectral
efficiency of the NOFDM signal, which is defined as the
frequency-domain FTN signal with block transmission gener-
ated by DFRFT. To this end, we have derived the closed-form
expressions of the PSD for the NOFDM signal with rectan-
gular and raised-cosine windows, and the achievable spectral
efficiency has been developed by utilizing EVD precoding.
As a result, NOFDM can achieve higher spectral efficiency
compared to OFDM with the same number of subcarriers. On
the other hand, by the capacity analysis of the NOFDM signal,
we have elucidated the fact that OFDM turns out to be optimal
when the number of subcarriers is large.

The optimal power allocation should be investigated for the
NOFDM signal with the limited number of subcarriers and
left as our future work.

4When N → ∞, the SNR of each channel becomes identical since all
non-zero eigenvalues take the same value of 1/α. Therefore, the non-uniform
power allocation does not enhance the capacity of the NOFDM signal derived
in (52).
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APPENDIX

A. Asymptotic Behavior of Normalized Bandwidth for
Large N

We derive the normalized bandwidth of the NOFDM sig-
nal for the cases of rectangular and raised-cosine windows,
capturing the asymptotic behavior as N increases.

We first consider the rectangular window case. By substi-
tuting (42) into (34), the PSD of NOFDM signal with respect
to the normalized frequency f̃ in (42) is expressed as

Psym

(
f̃
)
= Es

N−1∑
k=0

sinc2
[
N

(
f̃ − α

k − N−1
2

N

)]
. (54)

Furthermore, it can be bounded as

Psym

(
f̃
)
= Es

N−1∑
k=0

sin2
[
N
(
f̃ − α

k−N−1
2

N

)]
[
N
(
f̃ − α

k−N−1
2

N

)]2
≤

N−1∑
k=0

Es[
N
(
f̃ − α

k−N−1
2

N

)]2 ≜
N−1∑
k=0

ck

(
f̃
)
,

(55)

where

ck

(
f̃
)
≜ Es[

N
(
f̃ − α

k−N−1
2

N

)]2 . (56)

Here, the index k takes the discrete values in the range of 0 ≤
k ≤ N − 1. Thus, ck

(
f̃
)

in (56) is bounded as

Es

N2
(
f̃ + αN−1

2N

)2 ≤ ck

(
f̃
)
≤ Es

N2
(
f̃ − αN−1

2N

)2 . (57)

By taking the limit of ck with N → ∞ as

Es(
f̃ + α

2

)2 lim
N→∞

1

N2
≤ lim

N→∞
ck

(
f̃
)
≤ Es(

f̃ − α
2

)2 lim
N→∞

1

N2
,

(58)

we have

lim
N→∞

ck

(
f̃
)
= 0, for

∣∣∣f̃ ∣∣∣ > α

2
. (59)

From (54) and (59), the limit of the PSD of the NOFDM
signal is expressed as

lim
N→∞

Ps

(
f̃
)
= 0, for

∣∣∣f̃ ∣∣∣ > α

2
. (60)

Hence, the normalized maximum frequency with N → ∞ can
be derived as

f̃max =
α

2
. (61)

Therefore, from (39) and (43), the normalized bandwidth of
the NOFDM signal with N → ∞ is given by

W̃inf = 2max

{
fn
fs

,
fmax

fs

}
= 2max

{
f̃n, f̃max

}
= 2max

{
1

2
,
α

2

}
= 1. (62)

Note that the power spectrum of the NOFDM signal with N →
∞ is strictly limited to [−α/2, α/2] due to (61), and this
spectrum localization holds only for asymptotic case as N →
∞.

We next consider the raised-cosine window case. By sub-
stituting (42) into (37), an upper bound on the PSD of the
NOFDM signal with raised-cosine window with respect to the
normalized frequency f̃ can be derived as

Psym

(
f̃
)
= Es

(1−δ)
2

1− 5
4δ

N−1∑
k=0

cos2
(
π δ

1−2δN
(
f̃−α

k−N−1
2

N

))
[
1−
(

2δ
1−2δN

(
f̃−α

k−N−1
2

N

))2]2
× sinc2

(
1− δ

1− 2δ
N

(
f̃ − α

k − N−1
2

N

))

≤ (1− δ) (1− 2δ)

1− 5
4δ

N−1∑
k=0

ck

(
f̃
)

{
1−

(
2δ

1−2δ

)2
Es

ck(f̃)

}2 .

(63)

From (59) and (63), the asymptotic behavior of the PSD of
the NOFDM signal with raised-cosine window satisfies (60)
as well.

Therefore, the normalized bandwidth of the NOFDM signal
with N → ∞ agrees with (62) even with raised-cosine
windowing.

B. Connection With Conventional Time-Domain FTN Signal-
ing

Our analysis and results on the spectral efficiency of the
NOFDM signal are also applicable to conventional FTN
signaling with pulse shaping filters, where each symbol is
compressed by a factor of τ in the time domain [5]. First,
we note that our derived spectral efficiency is defined as (50)
in terms of the acceptable PSD value ptarget based on the
effective bandwidth Weff. Since the symbol time duration is
strictly limited for the NOFDM signal by windowing, its
power spectrum is unbounded. Fig. 10(a) and (b) illustrate
the relationship between the time domain window and the
power spectrum of the NOFDM signal with N subcarriers
compressed by a factor of α. Its spectral efficiency improves
as the sidelobe decreases rapidly since the effective band-
width Weff for a given acceptable OOB level can be reduced.
This is achieved by compressing the subcarrier spacing by
controlling α as demonstrated in Fig. 6. On the other hand, the
bandwidth of the conventional FTN signaling is strictly limited
by the pulse shaping filter, and thus its impulse response
observed in the time domain should be unbounded. Fig. 10(c)
and (d) show the signal bandwidth and time domain frame
structure illustrated for a given frame transmission containing
N symbols compressed by τ . Similar to the case of the
NOFDM signal, the spectral efficiency of conventional time
domain FTN signaling can be defined based on the effective
frame duration Teff, which is determined by the acceptable
inter-frame interference (IFI) level as illustrated in Fig. 10(d).
As a result, for a given type of frequency domain window (i.e.,
pulse shaping filter), reducing the symbol spacing controlled
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Fig. 10. NOFDM signal with N subcarriers compressed by a factor of α
for the orthogonal frequency spacing of 1/T : (a) time domain window
and (b) power spectrum, and conventional time-domain FTN signaling with
N symbols compressed by a factor of τ for the orthogonal time spacing of T :
(c) power spectrum and (d) time-domain frame structure.

by τ will also improve the overall efficiency as the guard
time between the successive frames (i.e., the effective frame
duration Teff) can be reduced. In conclusion, by switching the
domains, our analysis and results are equally applicable to
conventional FTN signaling with pulse shaping filters.
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