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0. Introduction

In 1942, H.Whitney showed that the differentiable even function f (x) defined
in a neighborhood of the origin in R was written as & (x*) and the odd function
f (x) was written as x 8 (x2) ([11). In this note we will try to extend this result
in the case of a gereral differentiable function f (x:,:-+, xa) defined in a neighbor-
hood of the origin in R® . We obtained the following result.

Theorem
If f(xi,--+, xa) is a differentiable odd function for all variables xi, -, Xa

which means

f(xi,eeey X)) = — £ (X1,v0+, Xic1, —Xi, Xi41,+++, Xn)
for all x;, there exists a differentiable function & (xi1,-+- ,Xn)
such that
f(x1,+++, %) = X1---%Xa8(xs, -+, x2).

About similar result for an even function, T.H.Brécker deals with it in his text
([2]) as an Exercise.

This note is organized as follows. In § 1, we introduce the tool, called Mather-
Malgrange preparation theorem, which is used in the proof of our result. In § 2,
we shall prove our result.

1. Preliminaries
Let €. be an R-algebra consist of smooth function germs at 0 & R™ and let
M. be a maximal ideal of € i.e. »

mn={¢8 8n| ¢(0)=0}.

Let M:* be a k-th product ideal and let M =kO1 m:*. Let f:(R", 00—=(R", 0
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be a smooth map germ and let f*: €, = €= be a homomorphism induced by f.
For ¢ & E. we use the following notations

¢:¢ + My € 8n/mnm,
b=¢ + f" My Eat+Ma e Ea/ (£* Mo Ea+ M),

Mather-Malgrange preparation theorem
The following two conditions for ¢ ,---, ¢« &€ En are equivalent:

(1) ¢1,---, ¢« generate €. as Es-module via f *,

Q) G-, ¢ « generate €./ (f* M, €. + Ms”) as R-module.

2. Proof of Theorem

Let ¢ : (R®, 0) = (R", 0) be the map germ given by
¢ (Xl e :X“) = (Xlzy"' 7Xﬂ2)-
Since

En/ (¢"Ma En + Mo™) = En / (<x2 oo x> €0 + M)

=<z ' ..... 2" | r; =0o0rl,1 <i=<n>R,

we have
En=<x,THoennn 2" | ri =00rl,1<i<n>¢"¢g,

from Mather-Malgrange preparation theorem.
Therefore for f & €., there exist hr1 € €= such that

1) f e ,x0) = h> . hry eoo, 10 (R2,0ee, xn2) x0T eee xa TP,
1, rn

Because f (x1, Xz2,-++,%a) = —f(—x1, X2,---, Xn ), We obtain

@ fGu--x) = X hirs e, (xf e, %) ST TR P
2, .. n

E ho g ¢««, In (Xlz,'-' an)Xz 2--'Xn n'
H » ’ ’
rz,...,rn

From (1) and (2), we obtain
(3) f(X1,--- ,Xn) :r 2 r hl,I’z, cee, Tn (Xlz,"‘ ,an) X1X2 Ta,.. Xn I‘n.
Similarly, since f (%1,-++, %a) = f (x:,— X2, X3,-++, Xa), We obtain

4) fxi,ee, )

= ) hiiTs ~ov,Tn (X0 ee, Xn? ) X1X2Xs L% eee Xa 17

I3, In

— ¥ hiors eeo,rn (X,ee,Xa?) X1X3 TP e xa I,
rs,..,I'n
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From (3), (4), we obtain

f (Xl,"" an) = Z h1,1,1‘3, cee, I'n (X12,'-- , an) X1X2X3 Ts ... Xn r“.
rs,..,In
Similarly, using f (X1,--- , Xn) = —f (Xl,"‘ y Xi—1, 7 Xi, Xi+1,""°, Xn)
for 3 £ 1 £ n, finally we obtain
f(Xye++, Xn) = X1Xz-+» Xnhia00+, 1 (x, x£,-++, Xn?)
hence let 8 =h 1,1, -+, 1. This completes the proof.
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