Differentiable odd functions

By

Hirofumi KONDO* and Etsuo YOSHINAGA**

0. Introduction

In 1942, H.Whitney showed that the differentiable even function f(x) defined in a neighborhood of the origin in R was written as $g(x^2)$ and the odd function f(x) was written as $xg(x^2)$ ([1]). In this note we will try to extend this result in the case of a gereral differentiable function $f(x_1, \dots, x_n)$ defined in a neighborhood of the origin in \mathbb{R}^n . We obtained the following result.

Theorem

If $f(x_1, \dots, x_n)$ is a differentiable odd function for all variables x_1, \dots, x_n which means

 $f(x_1, \dots, x_n) = -f(x_1, \dots, x_{i-1}, -x_i, x_{i+1}, \dots, x_n)$ for all x_i, there exists a differentiable function $g(x_1, \dots, x_n)$ such that

$$f(x_1, \dots, x_n) = x_1 \dots x_n g(x_1^2, \dots, x_n^2).$$

About similar result for an even function, T.H.Bröcker deals with it in his text ([2]) as an Exercise.

This note is organized as follows. In § 1, we introduce the tool, called Mather-Malgrange preparation theorem, which is used in the proof of our result. In § 2, we shall prove our result.

1. Preliminaries

Let \mathcal{E}_n be an R-algebra consist of smooth function germs at $0 \in \mathbb{R}^n$ and let \mathfrak{m}_n be a maximal ideal of \mathcal{E}_n i.e.

$$\mathbf{m}_{n} = \{ \phi \ \varepsilon \ \mathcal{E}_{n} \mid \phi(0) = 0 \}.$$

Let m_n^k be a k-th product ideal and let $m_n^{\infty} = \bigcap_{k=1}^{\infty} m_n^k$. Let $f:(\mathbb{R}^n, 0) \to (\mathbb{R}^p, 0)$

^{*} Yoshidajima Agricultural High School, Kaisei-machi, Kanagawa-ken.

^{**} Department of Mathematics, Faculty of Education, Yokohama National University.

be a smooth map germ and let $f^*: \mathcal{E}_P \to \mathcal{E}_n$ be a homomorphism induced by f. For $\phi \in \mathcal{E}_n$ we use the following notations

$$\begin{split} \hat{\phi} &= \phi + m_n^{\infty} \ \varepsilon \ \mathcal{E}_n \not m_n^{\infty}, \\ \bar{\hat{\phi}} &= \phi + f^* m_p \ \mathcal{E}_n + m_n^{\infty} \ \varepsilon \ \mathcal{E}_n \not (f^* m_p \ \mathcal{E}_n + m_n^{\infty}). \end{split}$$

Mather-Malgrange preparation theorem

The following two conditions for $\phi_1, \dots, \phi_k \in \mathcal{E}_n$ are equivalent:

- (1) ϕ_1, \dots, ϕ_k generate \mathcal{E}_n as \mathcal{E}_p -module via f^* ,
- (2) $\overline{\hat{\phi}}_{1}, \dots, \overline{\hat{\phi}}_{k}$ generate $\mathcal{E}_{n} \nearrow (f^{*} m_{P} \mathcal{E}_{n} + m_{n}^{\infty})$ as R-module.

2. Proof of Theorem

Let $\phi : (\mathbb{R}^n, 0) \rightarrow (\mathbb{R}^n, 0)$ be the map germ given by $\phi (\mathbf{x}_1, \dots, \mathbf{x}_n) = (\mathbf{x}_1^2, \dots, \mathbf{x}_n^2).$

Since

 $\mathcal{E}_{n} / (\phi * m_{n} \mathcal{E}_{n} + m_{n}^{\infty}) = \mathcal{E}_{n} / (\langle x_{1}^{2}, \dots, x_{n}^{2} \rangle \mathcal{E}_{n} + m_{n}^{\infty})$ $= \langle x_{1} r_{1} \tilde{\cdot} \dots r_{n} r_{n} | r_{i} = 0 \text{ or } 1, 1 \leq i \leq n > R,$

we have

$$\mathcal{E}_{n} = \langle x_{1} x_{1} \cdots x_{n} x_{n} | r_{i} = 0 \text{ or } 1, 1 \leq i \leq n > \phi^{*} \mathcal{E}_{n}$$

from Mather-Malgrange preparation theorem.

Therefore for f $\varepsilon \ \mathcal{E}_n$, there exist hr₁ $\varepsilon \ \mathcal{E}_n$ such that

(1) $f(x_1, \dots, x_n) = \sum_{r_1, \dots, r_n} hr_1, \dots, r_n (x_1^2, \dots, x_n^2) x_1^{r_1} \dots x_n^{r_n}$. Because $f(x_1, x_2, \dots, x_n) = -f(-x_1, x_2, \dots, x_n)$, we obtain

(2)
$$f(x_1, \dots, x_n) = \sum_{r_2, \dots, r_n} h_1, r_2, \dots, r_n (x_1^2, \dots, x_n^2) x_1 x_2^{r_2} \dots x_n^{r_n} - \sum_{r_2, \dots, r_n} h_0, r_2, \dots, r_n (x_1^2, \dots, x_n^2) x_2^{r_2} \dots x_n^{r_n}.$$

From (1) and (2), we obtain

(3) $f(x_1, \dots, x_n) = \sum_{r_2, \dots, r_n} h_1, r_2, \dots, r_n (x_1^2, \dots, x_n^2) x_1 x_2^{r_2} \dots x_n^{r_n}.$ Similarly, since $f(x_1, \dots, x_n) = f(x_1, -x_2, x_3, \dots, x_n)$, we obtain

(4)
$$f(x_1, \dots, x_n)$$

= $\sum_{r_3, \dots, r_n} h_{1, 1, r_3, \dots, r_n} (x_1^2, \dots, x_n^2) x_1 x_2 x_3^{r_3} \dots x_n^{r_n}$
- $\sum_{r_3, \dots, r_n} h_{1, 0, r_3, \dots, r_n} (x_1^2, \dots, x_n^2) x_1 x_3^{r_3} \dots x_n^{r_n}.$

From (3), (4), we obtain

 $f(x_{1}, \dots, x_{n}) = \sum_{r_{3}, \dots, r_{n}} h_{1,1}, r_{3}, \dots, r_{n} (x_{1}^{2}, \dots, x_{n}^{2}) x_{1}x_{2}x_{3}^{r_{3}} \dots x_{n}^{r_{n}}.$ Similarly, using $f(x_{1}, \dots, x_{n}) = -f(x_{1}, \dots, x_{i-1}, -x_{i}, x_{i+1}, \dots, x_{n})$

for $3 \leq i \leq n$, finally we obtain

 $f(x_{i_1}, \dots, x_n) = x_1 x_2 \cdots x_n h_{1,1} \cdots f_1(x_1^2, x_2^2, \dots, x_n^2)$

hence let $g = h_{1,1}, \dots, n$. This completes the proof.

References

- [1] H.Whitney, Differentiable even functions, Duke Math. Journal, 10, (1942), 159-160.
- [2] T.H.Bröcker, Differentiable germs and catastrophes, London Math. Soc. Lecture note series 17, Cambridge Univ. Press, (1975).
- [3] B.Malgrange, Le théorème de préparation en géometrie différentiable, Séminaire, H.Cartan 15, 1962/63, exposés 11,12,13,22.
- [4] ______, The preparation theorem for differentiable functions, In Differential Analysis, papers presented at Bombay Colloquium, 1964, Oxford Univ. Press, (1964), 203-208.
- [5] —, Ideals of differentiable functions, Oxford Univ. Press, (1966).
- [6] J.Mather, Stability of C[∞]mappings: III, Finitely determined map-germs, Publ. Math.I.H.E.S.35, (1968), 127-156.
- [7] _____, On Nirenberg's proof of Malgrange's preparation theorem in [10].
- [8] L.Nirenberg, A proof of the Malgrange preparation theorem in [10].
- [9] C.T.C.Wall, Introduction to the preparation theorem in [10].
- [10] ——— ed., Proceedings of Liverpool singularities symposium I, Springer Lecture notes in Math. 192, Springer-Verlag, (1971).