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Abstract. We shall give a classification of normal surface singularities
with C*-action with respect to the behavior of some pluri-genera d, for m.
Moreover, as its application we obtain a few relations between the deformation
theory and d,-genera of such singularities.

1. Introduction and Statements of results. Let (X, x) be a normal surface
singularity. Let U be a stein neighborhood of x in X and K the canonical line
bundle of U-{x} and ©@(mK) the invertible sheaf of sections of m-th power of
K. For an element o of I'(U—{x}, ®mK)), by using local coodinates
{Ua, (24, 28} a of U—{x}, we write @ as w=¢.(z.)(dziAdz;)™ and define a
continuous (2, 2)-form (wA@)"™ as follows :

(@AB™|U o =] ha(zs)] 2/m<717t—)2dz}, AdELAdZENdZ .

Let L?»™U—{x}) be the vector subspace of I'(U— {x}, ©(mK)) consisting of all

elements which satisfy SV }(a)/\a)”m<oo for some neighborhood V of x in U.

Then, K. Watanabe [17] defined following pluri-genera of (X, x).

DEFINITION 1.
On=dimc'(U—{x}, 0(mK))/L*™(U—{x}) (m=1).

This integer is determined independently by the choice of the Stein neighborhood
U. On the other hand, in [1] M. Artin defined the geometric genus p, -of
normal surface singularities. Here we note that if m=1, 6,=p, by H.B. Laufer

[6].

DEFINITION 2.
0 :=lim sup 0, /m?>.

In [177], Watanabe shows thét 0 < o0,
Let #: Z— X be the minimal good resolution of normal surface singularity
(X, x). When (X, x) has a (good) C*-action, P. Orlik-P. Wagreich [9] have
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proved that the weighted dual graph can be written as follows:
E,,, Ey,

(1)

where —b, —b,; are selfintersection numbers and g is genus of the center E in

the graph, all curves E,; in branchs are P*. We set d;/e; ::bﬂ:ﬁ;— _M_IE;

(continuous fractional number), with e;<d;, and e¢; and d; are relatively prime.
Now we state our results in the following.

THEOREM 1. Normal C*-surface singularitieis are classified as follows by
behaviors of Om-genera for m:

0 Om structure
>0 When m — oo, §,, diverges (i) g=2
with second order (ii) g=1 and n=1
(i) g=0 and 341 <o
=1 di
(1) 0n=1 for any m=1 g=1 and n=0 (i.e, simple

elliptic singularities)

0 if m=£=0 (mod L)

=0 | (1) 5m={ g=0 and 3 dizl _,
1 if m=0 (mod L) =1 dy
=0 and -4 oo
M) 6,=0 for any m=1 g=0and 3 —7—<
or cyclic quotient singularities
where we set L:=l.c.m.(d,, ---, d,). And furthermore if >0, then we have
y (2g—2+ 3 (di—1/d.)"
0=— Lt .
2 b— ‘_lei/di

REMARK. We may assume that b— i e¢;/d; is always positive (cf, [12] p.
| 1=1
185).

CORdLLARY 1. Let (X, x) be a normal C*-surface sigularity with data as
above (1), then following three conditions are equivalent ;
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i) 0,=0 for any m=1,
d;—1
d;
iii) quotient singularities.

n
iil) g=0 and ¢Z="’1 <2, or cyclic quotient singularities,

The deformation theory of normal C*-surface singularities has been studied
by H. Pinkham [13]. From his results and Theorem 1, we obtain a few rela-
tions betweem ¢ and the deformation theory.

COROLLARY 2. Let (X, x) be a normal C*-surface singularity, then we have
i) If 8<b—2ei/d;, then Tx(w)=0 for v>0,

iy If 40<b—3>ei/d;, then any deformations of Z to which extends blows
?
down to deformations of X.
Furthermore we consider the case that X is an affine cone of a projective curve,

THEOREM 2. Let Y be an embedded non-singular curve in P™ by a holo-
morphic line bundle L with b:=C\(L)=2g+1, g genus of Y. Then, for (Cy, {0}),
following three conditions are equivalent;

i) Tty(»)>0 for any v>0, ii) 83<b, iily 4g—4<b.

We would like here to express our gratitude to Dr. Kimio Watanabe for
many suggestions for this paper.

2. Classification of normal C*-surface singularities with respect to the
behavior of d,,. The conditions which determine the analytic types of normal
C*-surface singularities were clearly described by H. Pinkham in [12, Th. 2-1]
by using the results of P. Orlik-P. Wagreich [9]. And he showed how to obtain
the geometric genus p,=d, from its conditions (cf [12, Th. 5-1]). Recently K.
Watanage-S. Ohyanagi proved the extended formula of Pinkham’s.

For any integer m=1 and £=0, let D¥ be the divisor on E:

D :=kD— 3 [~————~—kei+”;(_di_l)] -P;

where D is an associated divisor to the conormal sheaf of F in (1) and P;:

=E;NE, and for a€ R, [a] is the greatest integer less than, or equal to a.

THEOREM [17, Th. 2.217.
Om= kZ‘O dimcHY(E, 0(1—m)Kg+DP)) .

K. Watanabe has given some formula of 4, for other singularities of several
types ([177]).

PrROOF OF THOREM ‘1. By Riemann-Roch theorem on E [4], we rewrite the
formula of Theorem P-W-0O as follows;
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= 2 {C:imKz—DP)—g+1}

ksl
— 2 {dimcH(E, 0((1—m)Kgz+DP)+CiimKz—DE)—g+1} (1)
rea?,

where we set AL :={kcZ"; C(mKg—D¥)>2g—2}, A% :={kcZ*; 0=C,(mKg
—DP)<2g—2} and Z* the set of non-negative integers. Now we put

. kel—l—m(dz—l) kel—l—m(d,-—l)
(¢ Jry— (k) — (k)
Ay = d-,; l: di - :I , Z: (4 944

t.hen 0§a§{'&<1 and 0=Za®<n. And if we put D: ——Zg——Z—l—i d;l , then

we have , ,
Cy(mKg—D®)=mD— k(b— Zez/dw) al - 2)

So by easy computat10ns we can see

L . mD a®—(2g—2) -
Am—{kezv’ ba/d, >k}'
. .. mD— a§,’§?——(2g 2) —p e mD—a®
2g—2

Therefore $42, = +1, and moreover when m— oo, dimcH(E, &((1

"= b— 2ei/d

—m)Kg+DR)) diverges at most first order. So that ‘the second term of (2)
diverges at most first order. Now we use the notation ~ in the sense that
both terms are equal up to the parts which dwerges at most ﬁrst order. Hence
we consider three cases; D>0, D=0, D<0. Let D>O then

O~ 2 {CmKg—DR)—g+1}

keA}n
> {C:mKg—DP)} = {mD—k(b— Z e/d;)—ap
keAl re }n
~ 5 {mD—kG— zez/d,>}~ mt. 3
kedy, Z(b'“ 2 ei/di>
So that if D>0, then
. .
o= >0.

20— 3 ei/d)

And the singularities satisfying D>O are .classiﬁed in next three cases; i) g=2,

11) g—~1 and n>0, iii) g=0 and Z d >2

Next we consider the case: D=0. They are classified two cases; i) g=I

and n=0 (i.e, simple elliptic singularities [14]), ii) g=0 and Z}i"gi:Z.- For
i i
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case i) we can easily see by Theorem P-W-O that §,=1 for any m=1. For
cace ii) we have

Cl(mKE—D%)>:'—k(b"z,ei/di)’ag?éo .
Since b—>le;/d;>0, if £>0, then C;(mKz—DE)<0. So we may only consider

the case: £#=0. Since C\(mKr—D®=—a®<0, we have d,=—afy+1. Hence
we have

{ 0 if m(d;—1)=0 mod d; for all 7, “
" 11 m(d;—1)=0 mod d; for all 7,
Moreover since d; and d;—1 are relatively prime, and a%’i:ﬂ%_——l)“
!’_*___m(di—l) we obtain '

T4, } |

0 if m=0 mod l.c.m.(d;, -+, da),

On= (5)
1if m=0 mod l.c.m.(dy, -, d4), :

Finally we consider the remainder case: D<0. Since C,mKz—D®)=
mD—Fk(b— éei/di)waﬂ?<0 for any m=1, we have that 0,=0 for any m=1.
Therefore we have the desired classification saying in Theorem 1.

REMARK. We consider the singularities belonging to the type II) of the

case d=0. The combinations (dy, -+, dy) of positive integers which satisfies
-22 diﬁ;l =2 are only following four types: (2, 2, 2, 2), (2,3,6), (2,4,4), (2, 3, 3).

Therefore the weighted dual graphs of these singularities are exhausted by the
following list : '

2,2,2,2)
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2,4,4)9

3,33 ﬁ

where we adopted the convention that O= @ Moreover we note that above

singularities are rational, but not Gorenstein. So it seems that the equations of
above singularities are fairly complicated. For (2, 2, 2, 2)-type, when b=3, H.
Pinkham computed its equation ([12]).

If a finite group G acts on C*? and no elements g=G fixes a line C?, then
the quotient space C?/G is a normal analytic space ([3]). The singularity which
holomorphically isomorphic to a singularity on C?/G is called the quotient singu-
larity. In [2], E. Brieskorn proved that the analytic type of the quotient singu-
larity is determined only by the graph of the minimal resolution and classified
the dual graphs of quotient singularities.

PROOF OF COROLLARY. 1. The equivalence i) < ii) follows from Theorem
1, and it is easy to see that iii) & ii) from Definition 1 and the definition of
the quotient singularity. So it suffices to show that ii) = iii). The combina-

i

tions (dy, +-+, d,) of positive integers which satisfies é <2 are following

=1 d;
four types: (2,2, n) n=2, (2,3, 3), (2, 3,4), (2,3,5. So by the results of E.
Brieskorn [27], these singularities are quotient singularities.

REMARK. The equivalence i) < iii) was already proved by K. Watanabe,
without the assumption “with C*-action”.
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3. Deformations and 0 of normal C*-surface singularities. For defini-
tions of the deformation of singularities and 7%(v), we do not describe them in
here. We refer [117], [13], [15] as good references for these articles. In this
section we study a few relations of deformations and ¢ of normal C*-surface
singularities as applications of Theorem 1.

Let (X, x) be a normal C*-surface singularity with a data of (1)in 1. Then
H. Pinkham [13] proved following two theorems.

THEOREM P-1. If b>4g—4+2n+il(ei—2)/di, then T%()=0 for any »>0
(i. e., negative grading).
THEOREM P-2. If b>2g—2—|—n+2n(ei—l)/di, then any deformation of Z to
i=1

which extends belows down to a deformation of X.

Now we prove Corollary 2. | (2g—2+3(di—1/d )

PROOF OF COROLLARY 2. 1), if 6>0, since 6=— 2

; . 2 b—2le:/d;
obtain the equivalence: [

80<b—2le;/d; © b>4g—4+2(e;—1)/d;.

, we

If 6=0, then by Theorem 1 we can see that such singularities are all satisfying
the inequality in Theorem P-1.

Proof of ii) is similary done as i) from Theorem P-2.

Let Y be a non-singular curve with genus g and embedded in P™ by a
holomorphic line bundle L. D. Mumfold [7] proved that if b=C,(L)=2g-1,
then the affine cone Cy is normal. And in [8], he proved that if b6>4g—4,
then T%,(v)=0 for all v>0. H. Pinkham [11] gave the elementary proof for
the latter results, and generalized the results to Theorem P-1 for normal C*-
surface singularities. In the following, we prove the converse of Mumfold’s
result by using Pinkham’s technique.

PROPOSITION. Let b=2g+1. If Tt,(v)=0 for all v>0, then we have b>
4g—4. :

PrROOF. We may only consider the case: g=2. Let @ be the tangent
sheaf of ¥ and Ny the normal sheaf of the embedding ¥ <. P*. Then we have
following sheaf exact sequence:

0 — Op(v) —> Oy(V+1)"*' —> Opr |y ROy (v) —> 0

0 —> Op(v) —> Opn|y QOr(v) Ny(v) 0,

where we use the notation F(v) for the tensor product of a locally free sheaf
& with the sheaf of sections of the v-th power v-L of L. By the definition of
Tt,(v), we have an exact sequence ([117], p. 38):

HY, op(v+1)*" —> HYY, Ny(v)) —> Tty (v) —> 0.

From above sequences we obtain the following commutative diagram :
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H\(Y, @Pn |Y®0Y(V))

H(Y, Or() HY(Y, 65()

N . 7

HYY, Oyt 1) —— > HY, Ny(v)) —— T}, () —= 0
‘Bu\ ) /;v
HY, O pn |y Q0O5(0)

So that it suffices to show that if b<4g—4, then there is »>0 such that 7, is
not surjective. From sheaf isomorphism :

Opn|y=(Op(v+1)"+,
we have
HYY, Opn|yQ0Oyw)=(H'(Y, Or(y+1)"**

=(H(Y, Op(Ky—(v+1)- L))***
Since g=2 and b=2g-+1, then

CiKy—(+1)-L) =2(g—1)—@+1b<0 for any v=0.

Hence we have that HY(Y, Opn|yQ0Oy(v))=0 for any v=0.' Therefore it suf-
fices to show that if b=<4g—4, then there is v>0 such that H*(Y, @y(v)) is not
zero. But from eqivalence: b=4g—4 o C,(2Ky—L)=0, and isomorphism :
Y, O,0)=HYY, 0(2Ky— L)), we have the desired result. ’ o

PROOF OoF THEOREM 2. The equivalence ii) & iii) follows from Theorem

1, and iii) = i) from Theorem P-1. Moreover i) = iii) follows from the above
proposition.
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