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    1. Introduction.

    Recently, Philipp [15] established functional laws of the iterated logarithm

for the empirical distribution functions of some weakly dependent random var' i-

ables. Philipp's method relies on the exponential bounds which are obtained by

the martingale approximation of a sequence of bounded random variables (Pro-

positions 3.3.1 and 4,2.1 in Philipp [15]).

    Yoshihara [19] proved that the analogous exponential bound is obtained from

the convergence rate to normality and showed that the above Philipp's result

remains valid under less restrictive conditions in the mixing case.

th, l:.Y,'21g.P.ai Pie,r.' U,Sfi",gh,Pl,i,ilP.P,8Sd tie,C,h.n,ISh".e afn,d, Yoshihq.r. q's one, weii shaii prove

                                                               '                               N(1.1) fN(t)==(2A[loglogIV)-i'2 ,Z=,{HNle(t,6le)-EHNk(t,ek)},Nll3, '

under some conditions, (Theorem 2). In Section 5, among others, we show some

examples which are new, (Theorems 3-5).

   2. Assumptions and the main results.

   Let {6i} be a (not necessarily strictly stationary) e-dimensional vector-valued

sequence of weakly dependent random variables. Let

(2.1) {H.le(t, y), fe=1, 2, ･･';n=1, 2, '''} '
                                                                     '                                                                 ,
be a sequence of Borel measurable functions definedtlonlg.TxRe, where T.is a

finite closed interval or an infinite one.

   In what follows, we always assume that

(2.2) EHZk(t,ek)<oo (le=I,2,･･･;n=1,2,･･･)
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for all tET and for any integer n (.<.1), put

<2.3) rpnle(t)=Hn fe(t, 6le)-EHnk(t, 6k),
  '
                                 n(2･4) Sn(t)==2rpnle(t),                                h=1

and

(2.5) sa(t)=EiS.(t)l2.
   Next, Iet D(T) be the space of functions f on T that are right continuous

and have finite left-hand limits. Let {Cj} be a monotoneincreasing sequence of

                               oofinite closed intervals such that T== V Cj. The mapping p,･:D(T)-->Ri defined as
                              J'=1

(2.6) pj(x)= sup lx(t)1                                 tEaj-

is a seminorm. We shall endow D(T) with the topology defined by the metric

d which constructed in the following way:

                         co(2.7) d(x, y)= Z2-'{Pj(x-y)/(1+A(x-y))}･
                         j' --1

    For x, x.ED(T), let

<2.8) x(J)=xlcJ; x£')=xnlcJ･
    We shall consider the following assumptions:

    AssuMpTioN I. For each 1' (1'----1, 2, ･･-), there exist a positive number T and

a closed interval [cj, dj](cCj) such that for each n the interval [c,･, dj] can be

devided into disjoint intervals Ine･ (i=1, 2, ･･･) for which

                                 oo(2,9) IIS･?e･il.lrn-T, VIve･=[cbdj],
                                i=1

where III denote the Iength of the interval I, and

(2･10) IHnk(4 Y)-Hnle(S, Y)1$Moit-Sl
provided that s and t belong to the same interval IS･re･.

    AssuMpTioN II. (IIA). There exist a nonnegative function v on TxT and

positive number r, cri, a2, Ai and A2 such that for each 7' and N(fixed) and

for any s,t(s#) in Cj and m and n (O$m<m+nSiV) the following inequalities

hold:

(2.11) v2(s, t) S. M?, ,･lt-sir
(2.12) ln-iE(.n,lll)℃,(rp.,(t)-rp.,(s)))2-v2(s,t)i:ilA,lt-strn-ai,

                               m+n(2.12) A(s,t)=:suplP(v-i(s,t)(.Z(rpNj(t)-rpNj(s)))<･v'ii-z)-di(z)1

                   z j=m+1 ,     '
                 SA2n-a2 ･ for ls-tl>=N-i and v(s, t)>O.

  ' t-
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where Mij i's some constant and

(2.14) di(2)=vl;.r !Z-.e-U2'2du.

    (IIB) for eacht(iET,

(2.15) sn(t)=na2(t)(1+o(1)) asn-oo,
if a2(t)>O.

    (IIC) Let 1' be an arbitrary positive integer. For arbitrary m, tiECj (i=

1, 2, ･･･,m) and &GRi (i==1, ･･･,m) such that

                                 nm(2.16) v2=lig.} ggnf nMiE(,¥, ,1.?, Pirpn, le(ti))2>O

the inequality

                          nm                         l 2( 2 Pi37nle(ti))l

(2'17) lieg.S.UPvk'iSnZl-'oiglogn)ii2gl a'S'

holds.

   Let X={X(t):tET} be a separable real-valued, sample continuous Gaussian

process with mean zero and continuous covariance R(s, t) satisfying

(2.18) E(X(t)-X(s))2;:;lg(lt-s]), t,sEC,･

for any j' (fixed) where g is a oontinuous nondecreasing function such that

g(]za1)$A1u1a4 for some a4>O･

   Now, let

                              SN(t)
(2.19) f.(t)=                                           te T.
                         (2N log log N)'f2 '

                 '
Then, we have the following theorem.

   THEoREM 1. Let {6i, -oo<i<oo} be astrictly stationary sequence of random

variables. LetX=={X(t),tET} bea Gaussian Process defined above. SuPPose that

Assumptions (I), (IIA) and (IIB) are satisfied. SuPPose that

                                   D

(2,20) N-i/2S.(･).X.
Furthermore, szaPPose that there is a p (O<p<r) such that

(2.21) (1-p)/2<S=min (ai, cr2).
                                                         tt.tt
Then, for each 1' (>=1) and e (>O), there is with Probability one a random index

Alb==IVb(e) such that ,                                                                 ..tt t/

(2.22) IfN(t)-fN(s)l;:;lc[t-sl(r'-P)i2+e
for all pairs (s, t) (s,tEC,･) and all NllNo, where fN(t) (tGT) i's the fumpction

defin2d by (2.19), and c z's an absolute constant,

   Next, let H(R) be the reproducing kernel (r. k.) Hilbert space with r. k. R(s, t)
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and Il･ilH the norm of H(R). The following theorem is a general functional law

of the iterated Iogarithm which can be applied to.many satistical problems.

    THEoREM 2. SuPPose that in addition'to the hyPotheses of Theorem 1 As-

sumption (IIC) is satisy7ed and the covariance function R(s, t) is posz'tive definite

Then, the seqzaence {fN(t), Nll3} is with Probability one relatively compact in

D(T) and the set of lz'mit Points of the sequence coincz'des with the set

(2.23) K=={hEH(R)111hll.;iSll}.

(cf. PhiliPP [15],Berlees and PhiliPP [3] and Yoshihara [19]).

    REMARK. Using Theorem 2, we can prove new results. As examples, we

show Theorems 3-5 in Section 5.

   3. Proofs.

   The following lemma is prove by the same method used in the proof of

Lemma 2 in Yoshihara [19].

   LEMMA 3.1. Let 7' andNbe .fZxed. if the hyPotheses of Theorem 1 are
satisfied, lhen

             H+Q                        H+Q          P(I Z                         Z rpNk(s)ill3Al(r-P'/2(2QloglogQ)ii2)                 rp N k(t) ---

             k=H±1 k=H+1

(3.1) ･ ･                 -<Hc{exp(-Mtrl-PA2loglogQ)+A-'2Q-616}

zanijbrmly for all Pairs (s, t) (s, tECj), all Hand all Q, where A and c ar2 some

Positive constants and l=lt--s1>=N-i.

   LEMMA 3.2. SuPPDse that AssuinPtion (I) is satisfr2d. Let m and p are arbi-

trary Positive integers. if s and s+mPECb then

     . sup l "l'Sf2 rpiv･k(t)- HiiliQ rpNle(s)l

              sstss+mple==H+1 ,k=H+1
(3.2)

                      ll+Q              ;$3maxl 2 (rpNle(s+ip)-rpNk(s+(i-1)P)l+MopQ
                 ISi$m le=H+1

uniformly in HllO, where Q is an arbitrary Positive integer.

    PRooF. We shall only consider the case H==O. The proofs of other cases

are analogous, If both s and t lie in an interval IS･Yt', then by (2.10)

    '                   '               t'/'' tl''''

             QQQ(3･3) l,¥,rpNle(t)-,¥,rpNle(s)1IS,;,lrpNle(t)-rp.,(s)1;il;IM,p(?.

                       '
If s Ei lSN' and tEi l;", ki (ISU,' and I;-pt,4i being adjacent intervals), then s+pEI;", Pi

and so by (2.10) / ,'

1･.
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              Q
             lIZ)(rp.,(t)-rp.,(s))l
             k=O

                QQ(3.4) ;$I,E.,(byk(s+p)-rpNk(s))l+1,II.l],(befe(s+P)-rpNk(t))[

                                                 '                                                '                Q
            ISI12(rp.,(s+p)-rp.,(s)))+M,pQ.
               k=O
                                                   '
Thus, we have (3.2) from (3.4) and trie proof is completed.

   (a) Now, we proceed to prove Theorem 1. To prove Theorem 1, it is:
enough to show that the conclusio.n of Theorem 1 holds for each Cj (7'--1, 2, ･･･).

Since C,･ is finite and closed for each 1'().1), so if we can show that the conclu-

sion holds for the interval [O, 1],,then.the conclusions in the general cases are

epsily obtained by the completely analogous method to the above special case.
Hence, we shall consider the case where the interVal [O, 1]. We use Philipp's

method in [15]. , '    ForintegersPandQ(>-ml),iet ' '

           tt                          P+Q
(3.5) ･Z(R,Q,t,,t,)=1,,.IIII.,(rpN,(t,)-rpN,(t,))1 (OS-t,<t,;-:$1)

                                                       tt             '                                             '                                          '
Let IV be sufficiently large. Put n =[log N/log2] and m=[(log Ar)ii2] where [s]

denotes the largest integer p such that PSs. We write AZ) ti and t2 as follows:

                          nn                  N=2n+ Z ej2j-'=2"+ Z ej2j-i+0,2d

' j'=1 j'--d(3.6)

                              d                  ti=ai2-m+ Z bile2-le+0i2-dt (i==1,2)
                            h=m+1

where ej=O, 1, bi,k=O, 1 and O.<,.0t<1 (i==O, 1, 2), and d=[n/2].                                                              We note

thatfromLemma3.2(withm==1) '･' ･
                                                   '
(3.7) Z(EQ,h2-d,(h+0)2-d)SZ(Ae,h2-d,(h+1)2-d)+M,Q2-d

                                                             '                                     '                        tt             tt

             Z(A Q, s, t):IIZ(E Q, ai2-M, a22'M)

                                                '(3.s) +.>Il].SI) z(R Q, aj,i2-g (aj,i+i)2-i)
                   1==M+1                '==l

               + £ Z(e Q, aj,d+i2mdi, (aj,d+,+1)2-d)+2M,Q2-d.

                 j'--1 .                                                      '
                '

(3.9) Z(fe)==(2leloglogle)i/2 (le>=3). .
                                     J
gveetntAt:be a POSitiVe nUMber Sueh that AMZ/Mbl2･ We define the following
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        En(ai, a2)=={Z(O, 2n, ai2HM, a22-'M)>=A((a,-a,)2-m)(r-p)/2x(2n)}

        En== V En(ai,a2)
            O$a1,a2<2M

        F.(le, b)== {Z(O, 2n, b2- le, (b+ 1)2- le)>= A2-k(r-p)/2x(2n)}

        I%=V V                     Fn(le･ b)
            m<kSd O$b<2 le ･
         G.(b,, b,, 1', h)=={Z(2n+h2j, 2j-i, b,2-m, b,2-m)(3.1O)

                    >-.A((b2-bi)2-M)(r-p)/2(n-1')-2x(2n)}

        G"=:osbiYt2<2m d$VJ･sn oshY2...jGn(bb b2, ]', h)

        H.(le, b, i, h)= {Z(2"+h2", 2"-i, b2-k, (b+1)2dk)

                   IA2-(r-p)ki2(n-]')-2z(2n)}

        H"=d$Vts. .<YLdi2 o$Y<,le oshYt.-jHn(le, b, ]', h)

   LEMMA 3.3. SuPPose that the conditions of Theorem 1 are satisLf7ed. Then,

with probability one only a finite number of events En, Fn, Gn and Hn occzar･

   The proof of this lemma is completely analogous to the proof of Lemma 3.3,8

in Philipp [15] and so is omitted.

   PRooF oF THEoREM 1. The proof is easily obtained from Lemma 3.3 (see,

the proof of Theorem 3,1 in Philipp [15]).

   (b) Next, we shall consider Theorem 2. For the sequence {fN}, defined by

(2.19), let

(3･11) fff'=fnla, (i==1,2,''')
where {Cj} is the sequence of the closed intervals defined in Assumption (I).

Let Hj(R) be the r.k. Hilbert space with r.k. R(t, s) restricted to CjxCj and

ll･llH, the norm of Hli(R).

   LEMMA 3.4. SuPPose that the hyPotheses of Theorem 2 are satisLfi2d. 111C for

each 1' and for almost all tu the set of limit Points of {fX"', IV).3} concides with

the s2t

(3.12) Kli={hGHI)J(R)lllhll.,.Sl},

then the conclusion of Theorem 2 holds.

   PRooF. The proof is easily obtained by the same method as the one used

in the proofs of Lemma 3.4 and 3.5 in Mangano [9]. '
   PRooF oF THEoREM 2. By Lemma 3.4, it suffices to prove that the conclu-

sion of Theorem 2 holds for each i Hence, as in the proof of Theorem 1, we

need only to show the case Cj'--ri[O, 1]. But the proof in the case is obtained by

the completely same method as the' one used in the proof of Theorem 3.2 in

Philipp [15] and so is omitted.

tL
-
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   4. Modification. .
   In this section, we shall consider the case where HN,･(t, x) (O:;lt;$1) (1'=1,

･･･ , N) do not satisfy (2.10), but

(4.1) C.,(t,x)=H.,([tNN],x)(O;:$t;;ll)(7'=1,･･･,N)

                           'satisfy (2.10).

   For a sequence {6j} of random variables, let

(4.1) C.,･(t)==G.j(t,8j)-EG.j(t,6,･) (OISt;:;ll).

Further, put

                           IN
(4･3) XN(t)==.vxNj..,rpNj'(t) (O:St;Iill1)

where rpN,･(t)'s are the ones defined by (2.3) and

                           IN
(4･4) Y,iv(t)=.v,r?sx;=,4Nj(t) (O;:;lt;:;ll1)･,

Then itisobviousthat '

(4,5) IY'.(t)=X,,([tNN]) (Os.t,<,.1).

   PRoposlTIoN. SuPPose that for some a (>O), 6 (>O) and K(>=O)

                                     K
(4,6) . EIX.(t)-X.(s)fia;;IN,.,[t-SI

if lt-sl:.{1/N. Then, for any e>O

           '(4.7) P{ sup IXN(t)-YN(t)i>e i. o.} ==O.
                     0$tSl

   PRooF, Firstly, we nete that

            P(suplXN(t)-YN(t)l>e)
              05t$1

                 :ilIIII)iP(,s.u,g. XN(t+£)'XN(ifl) >e)･ .

So, by the method of the proof of Theorem 12.3 in Billlngsley [4] and (4.6)

                                  N-i K1 K ' P(,S-.V,P,1XN(t)-YN(t)l>e);I;l,¥,,aNi+6I2g7==ealvi+6'

Hence, by the Borel-Cantelli lemma, we have the desired conclusion.

   By Proposition, we can easily prove the analogous result to Theorem 2 if

we use {YN(t), O:-f{ts-gl} instead of {XN(t), O:-f{;tsm{;1}.
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    5. Examples.

    (I) Strassen's version of the loglog law. Let

<5.1) HNle(t,x)==i,I(t-Iilir),, le=1,･･･,N)tlO

where I(x)==1 if x>=O, I(x)==O if x<O. Let {6j} be a sequence of random vari-

ables with Egj=O and Elejl2'6<oo for some 6,>,.O. Then

                                  1 [Nt]

<5.2) S.(t)==-Z6j                                  a j'=1

where a is some positive constant suitably chosen. Hence, Theorem 2 implies

Strassen's version of loglog law for the sequence {G･} (cf. Strassen [15], Oodaira

:and Yoshihara [12], Yoshihara [18]). We remark here that analogous results

for weighted sums or some weakly dependent random variables such as martin-

gale, mixingale, etc. are easily obtained. (cf. Chow and Teicher [4] and McLeish

[9]). '･    (II) Normalized sums of movingaverage processes. Let {xj} be a sequence

of i.i.d. random variables with zero mean. Define gj by

                                oo<5.3) 6,･-----Z                                  cle-j･xle
                               le=-oo

       eowhere 2 cZ<oo. Further, let X. be the process defined by
      k==-oo

                                               '<s.4) x.(t)={gp<n)}-"2,z..le ,ej fort=tn,le==iillEle.i (le=o,i,･･',n)

                                          '
where Ur(n)=Var (S.) T oo(n-->oo) and Br is the Gaussian process with correlation

function

<5.5) B,(s, t)==(s+t-lsiir-ti/rlr)/2.

Using the method of the proof of Theorem 2 in Davydov [6] we can prove that

if ElxM2h<oo, k).2, and glr(n)==nrh(n), 2/(le+2)<r-<.1 where h(n) is a slowly

                 ･: ,varying function, then X.LBr in D[O, 1]. Hence, putting I;'Ple'=[tn,k,tn,fe+i)

                                              t.
                               nl/2
(5.6) Hnk(t, X)= Tif2(n) XI(t-tn･k),
                                                    '
from Theorem 2 we ha,.,ye the following theorem which is new.

   THEoREM3.gLet . v. ,L･:･･ '
(5･7) fn(t)= (2Ni,i:g'g) Xi"),/,', }'( 'T'')"''i'(n)-i);

Suppose that the above conditions are satisfied. Then, the sequence {fn} is rela-

s

v
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tively comPact and the set of its limit Points coincides wz'th the unit ball of the

r. k. Hilbert sPace H<B,) with r. k. B, defined by (5.5).

    (III) Functional laws of the iterated !ogarithm for empirical distribution

functions. Next, let

(5,8) HNle(t,x)=I(t-x), k=1,･･･,Al)Ol:lt-<.1.

Let {6j} be a sequence of random variables distributed uniformly over [O, 1].

Then
                             '
                               N(5.9) S.(t)=Z{I(t-ej)-t}.' - '                              j'=1

Hence, in this case, Theorem 2 implies a functional law of the iterated Iogarithm

SOhrii,e.pMpP'[/r]Ca5.dGSty'8b,"htiihO,",.fU["iCgti9."S' (Cf･ Fi"keistein [7], Phiiipp [ls], Berkes ang.

   (IV) An estimator of a biometric function. Yang [17] proved a weak con-

vergence theorem for a sequence of estimators eSn) of the life expectancy at

stage x, 1.e.

(5.10) . ' ..r.==
S:T(v)dv/T(x) forxE[O,oo)

where'T(x)tl-F(x)isthesurvivalfunction. ' '
   Let {6j} be a sequence of i.i.d. nonnegattive random variables each having

Pdf f(x), xllO and df F. Suppose that El6j14<oo. Let .

(5.11) . T.(x)=S}I(6j-x) foreveryxE[O,oo) '
                      J'=1

                                             '

(5.12) e(."'==(T.(x)):i S℃(T.(v))dvl(e(.)-x)

                                               '                                            'where 6(n) = max 6j.
           1$7'-Sn

   Now, put
                            '
               '(5.13) G.,(t,x)=xl(F(x)-[tNN]), (O;:$lt;Sl)(le=1,2,･･･,AF')

              t t.                                                'and

                                              '                         N(5.14) S*.(t)== 2{G.j(4 6j)-EGNj(4 6j)}.
                        j'=1

Hence, the remark in Section 4 is applicable to the sequence {V.}, defined by

(5.15) Vn(t)=n-i'2S:(t), tllilO･ ' '
Thus, from the proof of Theorem 1 in Yang [17], we have the following theo-

rem which is new.

   THoREM 4. Let t=F(x). Let e. and e(."' be as given i'n (5.8) and (5.10).
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Let U=={U(t)ltE[O, b]} (O<b<1) be a Gaussian Process with mean 2ero and co-

t,ariance function

(5.16) I'(s,t)==(1-s)-2(1-t)"2{(1-s)(1-t)o2(41)-t(1-s)02(t,1)}

                            Ol:Ss:St:llb,

'where

(5,17) 0(t,u)==E{6il(t,.](F(ei))},anda2(t,u)=Var{gil(t,u](F(8i))}

and I(t,u](a) is the indicator of the semi-closed interval (t, u].

    11/r the covariance function T(s,t) is Positive dofnite, then the sequence

{fN(t), N2-)3} doj7ned by

(5.18) fN(t)=(IVIoglogN)-"2(ek,"-,l-eF,H,}) fortE[O,b],

Zof'S YZteh serqOzabeanbcZbiiiiinOcniedeZeiwazt.l'VheitYheCOsMetPact in D [O, oo) and the set of iimit points

                                       '                                                              L
(5,19) K={hEH(T)lllh".i.:i{1}.
    REMARK. It is obvious from the proof of Yang [17] that the above result

is easily extended to the mixing case. (cf. Oodaira and Yoshihara [12]).

    (V) Normalized sums of induced order statistics. Let {Zj}={(Xj, Y,･):

-oo<1'<co} be a sequence of i.i.d. two-dimensional random vectors. Let F(x)

denote the marginal cdf of Xi which is continuous, We define induced order

statistics Yni, ･'', Ynn as Ynk==Yj if Xnk=Xj. Let m(x) denote the conditional

expectation and a2(x) the conditional variance of Yi given Xi==x, and let

(s.2o) ur(t)=Seasi(`'a2(x)dF(x)andg(t)=:T-i(tZIT'(1)), o;$t;$1.

Bhattacharya [1] proved that under some additional conditions the sequence of

the processes X. defined by ,                          '
                            [np(t)]
(5.21) Xn(t)=(nZP'(1))-"2 ,l-m,(Ynj-M(Xnj)), OStSl, ''

converges weakly to a Brownian motion. Now, define another sequence of the

processesY.(appearedinadifferentfrominBhattacharya[2])by ,

(5.22) Y.(t)=(nZV'(1))-i'22(Yj-m(Xj)),OStSl.
                           F(IJ･)$p(t)

Then, the sequence {Y.} also converges weakly to a Brownian. Now, we put

(5.23) H.,･(t, (x, y)) = T(1)-"2(y-m(x))I(g(t)-F(x))

and

(5.24) rpnj(t)=Hnj'(t, (Xj, Yj))-EHnj(t, (Xb Yj'))･

The following result is new.

x
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    THEoREM 5. SuPPose that (i) F is continuous, (ii) a2(x) is of bounded varia-

tion, (iii) for some M(>O) '
(5.25) P.(x)SMo2(x), p=3,4,6,
where

(5.26) P.(x)=E{IYi-m(x)IPIXi=x}
and

(iv) Sg,(j,'a2(x)dF(x)SKIt-sl.

7)Vien, the sequence {fN(t), Nll3} defined by

                                   N(5.27) fN(t)=(2NloglogN)-i/2ZrpNj(t), O::St;$1,
                          - j'--1
is with Probability one relatively comPact in D [O, !] and the set of limit points

of the sequence coincides with the set

(5.28) K=={hEC[O, 1] Si(ht(t))2dt$1, h(O)=O}.

    PRooF. To prove Theorem 5, it is enough to show (4.6). In fact, if lt-sl

$1/N, then

         E1YN(t)-YN(s)16
                           '
            SNK,[NS:[t,]P,(x)dF(x)+IV2S:(,l]P,(x)dF(x)S:[:IP,(x)dF(x)

                                        '              +N2S:[,tlP4(x)dF(x)j:[`,lo2(x)dF(x)

              +N3{S:[t,]a2(x)dF(x)}3]

            ;$ K{ltN-,Sl+ itlii(iS1 + lt-,13} ,<=, ivK., 1t-s1,

which implies (4,6). Hence, we have the desired conclusion.

   REMARK. When {Zj} is a strong mixing stationary process, then {Y.(t)}

converges weakly to a Gaussian process (not necessarily Brownian motion) under

some conditions on the mixing coefficient. Hence, in this case, we can also

obtain by Theorem 2, a result corresponding to Theorem 5 under suitable addi-

tional conditions.

   6. Concluding remarks.

   Throughout the paper, we have treated the family of random variables de-

fined by (2.3), i.e. rpNle(t)=Hn,le(t,8k)-EHn,k(t,6k) (fe=1, ･･･,n;n=1, 2, ･･･).
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Yoshihara [20] have obtained some results concerning the weak convergence

                nproblemof{n-ii2Zrp.,･(t),tE[a,b]}. .
               j'=1
   However, in general cases, the sequences {rpNJ･(t)} and {rpNJ<t)-rpNj･(s)} con-

stitute triangular arrays of random variables for every fixed t and s, even if

{&} is a sequence of independently and identically distributed random variables.

So, it seems to be uneasy to find general methods which assert the validity of

Assumptions (IIA) and (IIC).

    But, if {rpNj(t)-rpN,<s)} is a sequence of independent random variables or a

certain sequence of weakly dependent random variables, then using the known

results (especially, convergence rates to normality) we can.easily check whether

(IIA) holds or not.

    For example, let N==len where n=O(N")(O<v<1). If for some absolute

constant K>O, for lt-sl)N-i and for any m(OS.mSN-n)

                                 '                        m+n -･ ･                  EInri. Z (,7Nj(t)-?7Nj(s))13;SIK223(s, t),
                       j=M+1

then the sequence

    '
              {･v'ii-vl(s, t) ,.,(,$i'l)..,(rp"j(t)-rpNj(s)), 7'=1, ''', k}

becomes a sequence of weakly dependent random variables with uniformly bounded

third moments. So, we can obtain the rate of convergence to normality.

    Similarly, if for any m-tuple (Pi, ･･･, P.) of real numbers and any m-tuple

(ti, ･･･,tm) {il}Pirpnle(ti)} constitute a sequence of independent random variables

            i
or a certain sequence of weakly dependent random variables, then to the sequence

we can apply the known results concerning the laws of the iterated logarithm

and ascertain the validity of Assumption (IIC).
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