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Abstract

The well known divergences due to the energy conservations in the
intermediate states are considered, from the point of view of the graphical
structure and of the field reactions.

§1. Introduction

In contrast to the vitraviolet divergence, the low frequency divergences
due to the coincidence of poles in transition matrices or in transition probali-
ties in the quantum field theory are generally regarded as a defect of the
perturbation theory. These difficulties should disappear in principle. How-
ever, they stand sometimes in the way of computational works with the
Feynman-Dyson’s covariant S-matrix formalism, especially in the proczss
involving mesons. Therefore, the special discussion of these divergences is
also a matter of practical importance. :

In quantum electrodynamics, the low frequence divergences are conveni-
ently classified into three cathegories; the first of them appears from the
single pole of matrix elements corresponding to the energy conservation in
the intermediate states. As is well known, the divergences of this type are
of quite formal nature and they raise no difficulties, as they are removed by
well known procedure of the amplitude-renormalization of the wave functions,
or by other suitable limiting processes, such as the principal value evalua-
tion, etc. Therefore, they are out of our consideration. The second type
divergence originates from the matrix element which is finite certainly but
not uniformly. A typical example of this divergence is so called infra-red
catastroph”, that is, the matrix elements of bremsstrahlung are certaintly
finite, but their total transition probability diverges at the low frequency
limit. The divergence of the third kind comes from the coincidence of poles
in a transition matrix. As is well known, the coincidence of the displaced
poles corresponds to the excitation of the real process or to other competing
processes. Therefore, the divergence of this type is regarded as a “ resonance

*) The content of the present work was published in Japanese more one or two
years ago, separated to several papers. So, we summarize here our main considerations.
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catastrophe” and they will disappear whenever the effects of field reactions,
i.g., the effect of radiation damping, etc,, are properly taken into account.

In the meson theory, it is evi-
dent that no infra-red catastrophe
can appear on account of the non-
vanishing meson mass. The reason
why this is so is readily seen if we
note the fact that the infra-red
catastrophe originates from the
vanishing energy denominators in
the perturbation theory: As a simp-
lest example we consider the process
of bremsstrahlung in Fig.1. As the
real emission of a quantum % on
the transition from free particle
state p into a free state p—Fk is
prohibited by the conservation law,
the matrix element of this process
is certainly finite, except only for
one case k=0, where the energy
denominator of the
propagator vanishes.
is finite in almost

intermediate
The element
everywhere,
however, it is not uniform. But in
the corresponding meson process,
k=0 is excluded by non-vanishing
meson mass. This is the reason
why no infra-red catastrophe ap-
pears in the emission process of
meson. ,
But in the case of the corres-
ponding process of meson-decay
where the meson p in intermediate
state decays into two lighter parti-
cles, a free particle state is allowed
as the intermediate state. There-
fore, new divergence corresponding
to “infra-red catastrophe” re- ap-
pears in this decay-process. Let us

\ £ i

Fig. 1. V:
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now consider this “infra-red-like catastrophe” divergence. For this purpose,
it is convenient to introduce a Feynman-diagram of transition probability.
This diagram ‘is constructed from two ordinary Feynman-diagrams G; and
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G,, as follows. We define here the conjugate diagram G* of G, which is
obtained by reversals of all direction of the propagating particles in G. Put
G} at the right edge of G; and join each lines smoothly as illustrated in
Fig. 2, then we obtain the Feynman-diagram of the transition probabilities
constructed from G; and G,. In the same way, we have Fig. 3 as a Feynman-
diagram of a radiative correction term for the transition probability of the
elastic scattering by an external field of force. Here it is notable that Fig.
2 has the same structure as that of Fig. 3 with different position of the
“line of observation” (+ ). A part of the transition probability, which
results from a cross term of the matrix elements H, and H; corresponding
to the graphs G; and G, respectively,

W= %}71 < H, Hy> &)

is readily obtained from these diagrams according to the usual rules of
Feynman, provided that the “internal” lines which cross the line (+ ) in
Fig. 2 must be regarded as the out-going free waves in the final state, that
is to say, the observation- (or projection-) operators to the final states are
hidden on this line,

The problem of the infra-red catastrophe has been discussed by many
authors,? and clarified that the infra-red divergence appeared in the brems-
strahlung is cancelled out by that of the radiative correction of the elastic
scattering process. Recently, T. Kinoshita? analyzed this problem in more
detail and demonstrated that cancellations are accomplished term by term
between the parts of transition probabilities that have the Feynman-diagram
of same structure. Extending his result, it is shown that the same procedure
can be successfully applied to the case of the infra-red-like catastrophe diver-
gence in the meson-decay process and finite rate of decrease of initial state
probality is obtained in each order approximation of perturbation. This
method gives, however, no finite results for each one of the component
process. This situation often limits the practical applicability of this method,
inspite of its theoretical interest. In order to obtain the finite result for
each component process, we have to take into account the effects of the field
reactions, such as the effects of radiation damping. The effect of radiation
damping is introduced here entirely within the frame-work of Feynman-
Dyson’s covariant theory of S-matrix. A covariant generalizatien of Heitler’s
theory of radiation damping has been proposed by T. Miyajima and N.
Fukuda® So far as the effect of radiation damping is concerned, our

1) F. Bloch and A. Nordsieck, Phys. Rev. 52 (1937), 1045 (L)
W. Pauli and M. Fierz, Nuovo Cimento 15 (1938), 167.
B VV Braunbek and E. Wemmann, Z.S. f. phys. 110 (1938), 360
2) T. Kinoshita, Prog. Theor. Phys. 5 (1950), 1045 (L) '
'3)- N. Fukuda and T. Miyajima, Prog. Theor. Phys. 5 (1950), 849.
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method gives, of course, equivalent results with that of Miyajima and Fukuda.
The difference consists in the way of taking into account the virtual processes.
As our method is developed completely in conformity with the Dyson’s S-
matrix theory®, it is convenient for the renormalization, for S-matrix theore-
tical characterization and for application to the practical problems.

§2. Infra-red-like catastrophe aspects 5,6

In this section, let us. show that the mfra red-like catastrophe divergence
which appeared in the meson-decay process is removed by the same procedure
as used in the theory of infra-red catastrophe. In order to clarify the cor-
respondence to the ordinary infra-red catastrophe, we consider the meson-
analogue of bremsstrahlung, i.e. the process in which a heavy meson (mass
M) decays into two lighter mesons (mass and #/) in the course of deflec-
tion by an external field of force V. (See Fig. 1) In contrast to the ultra-
violet divergence, the type of the relevant particles is of minor importance.
Therefore, we may choose the simplest model for each particle without any
loss of generality. As an illustrating example, let us consider a part of the
transition probability, the Feynman-diagram which is illustrated in Fig. 4.
Using following the simplest model ;

U(x) . charged heavy scalar field of mass M
Jr(x) : charged light scalar field of mass m : 2.1
d(x) . neutral scalar field of mass e/
Vix) ;. external field
and their mutual interactions;
H(x) =g(Ty +¥U)$ @2
Kx)=U0UV o o (2.3)
E®=¥Y¥V @b
the transition probability W4 of the decay process A ™ is calculated as
Wae & _LS'" dK f ar |V(P—P) P
47 4em)® Ey 2 S COR LEZ—E%1es-r—ep-r]

X O(Ep—ep-r—Ep) (25)

where (Ep, €5, €) =V PE1 (M2, m?, ji%) respectlvely. The integand has two
poles. As is easily seen, one of them corresponds to the energy conservation

4) F.J. Dyson, Phys. Rev. 75 (1949), 1736.

5) D. Ito, Prog. Theor. Phys. 6 (1951), 1020 (L) and 1022 (L)
6) J. Edden, Proc. Roy. Soc. 210 (1952), 388.

*) The process “A” in Fig. 4 is the same with Flg 2.
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in the intermediate state B, in Fig. 4, and the other corresponds to the energy
conservation in the intermediate state C. In the vicinity of these poles, W4
diverges logarithmically and takes the following asymptotic forms.

1 ( dKdP'  |V(P—P) [ S(Ep—ep-p—ep)
- & 2.6
WA( ) 4(271')8 Ep j ZEp/ ep ~EEyp e%/_k——ei,ﬁk ep’—k‘i‘ek—Ep/ ( )
in this case (ex~Ep —ep-p),
2 1 dK dP' | V(P—P) |2 8(Ep—ep—j— €p)
Wa(C)= & —j OUEpep-k—€) (7
A( ) 4(271‘)8 Ep 26p—k€p/_k€k Ep—Eﬁ/ Cp/—p—Cp—p (

in this case (epr—z=ep-p)

In analogy with the theory of ordinary infra-red catastrophe, let us
examine the transition probability Wi of the elastic scattering process “B”
in Fig. 4™ In this case, we have to assume the line B as the line of the
observation. Wgp is calculated as follows :

W _ghzir dKS arp’ | V(P—P) |2
BT 4wy E, - €k ) Epr [€5-1—(Ep—e)2 A% - p—(Ep—er)?]
XS(Ep—Ep/) (28)
Two poles of the integrand correspond to the conservation of energy in the

intermediate states A and B respectively, and the asymptot1c forms at these
points are

1 ( dKdP |V(P—P)P S(Ey—Ep)
Ws(A)= 17 |
5(A)= 4(277‘)8 EﬂJZEp/ € -LEp ef,_k—e%;/_k ep/—p+ Ep— E @ 9
in this case (ex=Ep—ep-1)
£ 1 dKdP  |V(P—P) | S(Ey—Ep )
o=_£ L dKaP 10
WB( ) 4(2 )8 Eﬁj‘ 2E17/ Ep-k €L efo/_k—efo_~k ' e,;.-k+ek——-E¢, (21 )

in this case (€ =Ep—ep-1)

Further, we have to take into acount another process whose Feynman-diagram
is obtained from Fig. 4, assuming the line C as the observation line. This
is a process of meson-decay accompanied by the double scattering by the
external ﬁeld which has no analogue in the corresponding photon process.
The transition probability We of this process “C” turns out to be

W & 1 SEW dK j dap | V(P—P') 2 N
¢ 4(2m)8 E, , ep-x CEy—ES1[e% —1—5-1]
= : : :
XB(Ep—e_{)-k—ek) (2.11)

and the asymptotic forms at A and B are

*¥). The process “B” in Fig. 4 is the same with Fig. 3.
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Weo(d)=—%& LJ dKdP'  |V(P—P) [P §(Ep—ep-p—ei)
¢ 42w Ep) 2ep-pep-ner  Ep—EjF - epr-p—eps-p
in this case (ep/-z=ep-z) (212

We(B)= £ ; j dKdP' _ |V(P—P) | ¥Ey—ep-s—es)

— 213
42m)8 Ep ) 2Ep ep-pep e%/_k—eﬁ,_k Ep—ep_p—ep ; )

in this case (€x=Ep —ep-1)
Comparing these asymptotic forms of divergent integrals, we can readily
find out a kind of “reciprocity relation” holding between them,
Wa(B)=—Wg(A)
Ws(C) =—Wc(B) »
We(A)=—Wa(C) : : ' (214

From the view-point of the asymptotic forms of the diVergences, we may
summarize the above results as follows

Wa~ Wa(B) + Wa(C)
We~Wg(A) + Wg(C) , (2.15).
We~We(A)+ We(B)

On account of these asymptotic forms and the above reciprocity relations,
the infra-red-like catastrophe divergences are cancelled out from the total
rate of decrease of the initial state-probability.: \

In this way, the divergence appeared in the process of our meson-decay
is cancelled out by simultaneous consideration of the processes of the elastic
scattering and of the decay with double scattering. This is nothing but the’
way, by which the ordinary infra-red catastrophe has been removed. There-
fore, the divergences due to the energy conservation in intermediate states
of the meson process are of the same nature as that of the “infra-red
catastrophe” and they are removed by natural generalization of the method
used in the case of quantum electrodynamics.

Moreover, -the above consideration reveals us that the reason why the
cancellations of the infra-red-like divergences are possible, consists in the
validity of the reciprocity relations. Of course, these relations also have
played essential roles in the case of the ordinary infra-red catastrophe, but
we could not notice them on account of the over-simplifications of the mecha-
nism due to the simpler nature of photons. Accordingly, our method will be
extended to more general cases, if we are able to give a general pi'oof of
the validity of the reciprocity relations. In -order to give it, let us consider
a Feynman-diagram of the transition probability of more general form, as
illustrated in Fig. 5, where each one of Gj, G, and G represents arbitrary
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graph. Referring to this graph, the reciprocity relation to be proved is
formulated as follows; The asymptotic form of divergence Wa(B) due to
the energy conservation in intermediate state B of the process “ A ™ has just
the same form and opposite sign as the asymptotic form Wg(A) of similar
divergence due to the conservation in A of the process “B”. Assuming
again all relevant particles are scalar, we obtain the following asymptotic
forms after some elementary calculations.

_x( dP; =» dq; f(P,LE\(P);qy,e(q)3)
WA(B -—Hj——‘—ﬂs.q’
D=L E@y W etay T Seap—= BT

X 0(Epitiaqt — 21 e;(q;)) ' (2.16)
i=
in this case (2 e;=3 E;)

2 dP; = ( dq (P, Ex(PD) ;- sque(q) 3
Ws(A)= j—% _ S“i L
5(4) f=21 Ei(P;) El ¢;i(q;) S E(P)H—-Z ej(qy)

X

»n
x 6(Einitial — ) E(P)) (217
iz
in this case (R E=X¢e)
These results show that the reciprocity relation
Wa(B)=—Wg(A) (2.18)
holds for the most general cases. The possibility of the cancellation of the
divergences due to the energy conservations in intermediate states by means
of simultaneous consideration of related processes is an immediate conse-
quence of this reciprocity relation. Accordingly, the method once applied to

the cancellation of the infra-red catastrophe is now able to be extended to

more general cases of such low frequency divergences as arising in the
meson theory.

(~w) | A B (~e)
Fig. 5. E(P))="PAAM2 ¢j(q;)=""d’+m’
§3. Consideration of field reaction
In the previous section, it is clarified that the method used in the

theory of infra-red catastrophe can also be applied to cancellations of the
low frequency divergences appearing in the meson-decay processes. However,
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we could have only a finite rate of decrease of the initial state-amplitude.
The transition probability of each component process which transfers the
system in its initial state into each final state is still divergent, therefore,
we could have no information about these component processes. This situa-
tion limits considerably the applicability of this method, inspite of their
theoretical interest. In order to obtain a finite result for each component
process, the effects of field reactions must be taken into account. "

,f
/
P-p R/
' /
- il ""-“
P 7 _.' S ise P’<.
4 o ,I Sens? N,
- - N P-R
\l
N,

Fig.. 8
: (1) general surveji .

Let us begin with a simple eXample; the double-decay process of mesoris,
in which a heavy meson (mass- M) decays into -two ‘lighter mesons (masses
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m and m') and then one of them (say, mass m,) decays into two lighter
mesons (mass p and w/). The Feynman graph of this process  is illustrated
in Fig. 6. According to the perturbation theory, the lowest order approxi-
mation: of the total transition probability diverges at the point which cor-
responds to the free particle state of the intermediate particle m. As men-
sioned above, the divergence of this type is of the same nature as that of
the infra-red catastrophe in quantum electrodynamics and will be removed
by the same method.

Apart from the divergence-problem, however, the description by the
lowest order approximation of perturbation is expected to be qualitatively
very incomplete. Because, unstable mesons are fated to decay sooner or
later, and they will certainly decay into lighter mesons in a very long lapse
of time. And whenever the rate of decay of the intermediate meson m
is greater than that of the creation, the rate of the total process will be
determined by the decay probability of the mother meson M alone, that is,
the S-matrix element of the total process M-—>m+ w'—>m’ +up+p will be in
the limiting case independent of the detailed forms of the interaction operator
describing the latter process m—u+ /. It is probably impossible to describe
such situations by the lowest order approximation of perturbation alone.
The above situation is clearly a result of very long duration of time after
the creation of meson m in comparison with their life. The transition proba-
bility W~| <uw' | Hy | m><mm' | H; | M> |% calculated to the lowest order
approximation has its meaning only if the duration of time is very small in
comparison with the life time. Nevertheless, if we tend ¢ to infinity in order
to know about the situation in infinite future, W increases beyond all limits.”
This is nothing but the space-time interpretation of the infra-red-like cata-
strophe divergence, as the linear time dependence is a result of the energy
conservation in the intermediate states. Therefore, the divergence will dis-
appear in such theory as is able to describe correctly the behavior of transi-
tion probability of the total process.

From above considerations, it seems natural to remove the divergence
by considering the effect of damping in the intermediate states. In view of
the characteristic features of damping, it is expected that the situation will
probably be described by the following natural interpolation, at least as an
approximation.

W~ | <mm' | H)| M> |2 (Eylife) '
W~ |<M|H |mm' > 2x
W~ <pw |Hy|m><mm! |Hy | M> 2t (& life)
X (1—e-I <m|Hzlpw >Pt) S (3.1

This is not an unfounded expectation, When the proper,frequency -of- the

7) B.A. Lippmann and J. Schwinger, Phys. Rev. 79 (1950), 469. .
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meson is larger than the uncertainty of energy due to the finite life time
%, that is, when the particles in intermediate state can be regarded as if

it were in its free particle- state, the whole process may be a series of the
natural radioactivity In the series A, B, C, of natural radioactivity, the
probabilities of finding the atomic nuclei A, B, C, respectwely, n4, ng and
nc are solutions of the followmg equation :

fia=—I1"n4, fp=—ynp+l'na, Hc=+yng
with initial condition
n4(0)=1, np(0)=nc(0)=0
where /', and ¢ represent the transition probabilities of the process A—B,
and B—C, respectively. The rate of the total process W = is calculated as
W=I"(1—e") G2

This is just the same form as (3.1). Therefore, the correct theory has to
have a solution which reduces to (3.1) when the intermediate state could be
regarded as a state of free particle. Such solution is really> obta‘ined if we
take into account the radiation damping in intermediate state in accordance
with the theory of Weisskopf and Wigner.®

(2) damping effect in intermediate state »
Suggested by the above rough consideration, let us consider the correc-
tions of the internal line by succession of the self-energy loops consisting of

the pair of lighter mesons p and W/, as illustrated in Fig. 7. Assuming alI
the particles are scalar and, their interactions are

Hi=gV*dd' +conj. Hy=g¢*ad +conj. (33)
-where 1, ¢,¢ a, and o' are fields of meson M, m,w/, p and ' respectwely

We obtain the following expression as total contribution to S-matrix from all
graphs having the forms given in Fig. 7.

_ s ‘ 1 1 (3.4)
(2m); V16E(Ep—es—Ep-p)er€py Pr+mi—i(e+I(p))

CLD)

- S
where I'(p)= (2;)4 CE2f @ —ie L(p—F" Y+ Wi—ie)

(3.5

represents the self energy operator of the internal line with propagation
vector p. The transition probability W is calculated from above S-matrix as

. (g182)? g dPdK 1
o (2m)> ) 16Ey(Ep—er —€p-p) €R€pp | P2+ mP—i(e+1"(p))

(3.6)

'8) V. Weisskopf and E. Wigner, Z.S.f. Phys. €3 (1930), 54 and 65 (1930), 18.
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In the decay process, I'(p) is, in general, complex and given by

—il(p) = Sm( ) +ipo YL <X
: SCo—H 2+ | SRR+ D)
— - & /" ;
T @)t S (ar"> [’T < F'2 4 p? * (p—F" )2+ p'2 ) +
2 8C( P BT Yt ) SR ;LZ)] (38)

where the real part Sm%(p) represents the self-energy of the intermediate
particle containing a correction of mass, an effect of level-shift etc., and was
a principal matter of concern in the theory of the renormalization. The

v(p)
2

imaginary part ip, contains in this case a non-vanishing part

dK/(2m)3
8po €rr(Po—Err)
As is readily seen this is nothing but the total transition probability of the
second decay process m—u+ /. Putting ep =1 P+ (m?+m?(p)) we have

_ (&a1g? j dPdpydK  §(ep +€p-s—10) (310)
T (2m) ) 16EXEy—py)eres-r (€— b2+ buy(0)/2) A
As y(p) does not vanish, we obtain always convergent W. The functional
forms of &m2(p) and y(p) are usually very complicated and it is not a simple
matter to evaluate the integral rigoroutly. It is not our present purpose to
calculate the transition probability exactly, but to verify the fact that the
result is divergence-free and is insensitive to the detailed nature of the
interaction describing the second decay process, whenever the free particle
state is dominant in the intermediate state and the latter decay is much
faster than the first. Therefore, we calculate it here approximately in the
case of “sharp resonance” where y(p) is small enough to replace the argu-’
ment p of m(p) and y(p) by its resonance value. Then, the evaluation of
the integral is elementary and reduces to

— o2 [ (dP)/C2m)3 9 dK/(2m)3
v nglj BE(Ep—ep)ep am XSepek»(ei,—ek)

S(po—€r—Ep-#) 3.9

¥(p) = 2m g E

w

x 6(ep—ep —e}_k)/% ’ (311) -
On account of the definition of (p), this reduces further to

(dpP)/(2m)3
8Es ep(Ep—ep)

W= ngﬁj (312)

This is nothing but the transition probability of ‘the decay process of the
first r‘stebp»M—,>~m+m’. « Thus,- under the condition described above, the transi-
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tion probability of the total process is determined by the first decay process
alone, and does not depend upon the detailed natures of the second decay as
expected before,

(3) time- dependence of transition probability

The above results are based upon the S-matrix theory and are able to
predict only the situation in infinite future. The next task is to examine
the time dependence of the transition probability.

The transformation function Ulo, o] of this process is written as®

Ulo, oq] = 55 dxdy dn !~ dn dio A A1) L&'~ x

n=1) o,
X A—x") L(x)/—2x3) X L(%y-1—%, ) 4(Xn—2%4') B(xn') (3.13)
where
ACx) =g ¥ () ¥(x) L(x) =—(g:/2)? Dp(x) Dyp(x) v
B(x) =g a(x) a'(%) } Dr(x—x)=<Pla(x),a(¥'))>, (3.14)
AD=14p®  iDp—)=<P@®,d@)>,

or in momentum space, 1t turns out to be

UEO—: UO]Zdep dpl dpz dpn Aﬂ'o(p) A(p) L:o(p’ﬂl) A(pl) - X ‘
X "'Lgo(pn'-l: pn) A(?ﬂ) B (Pn) (3-15)

- 1 iDx s 1 S -zﬁx i

Ao’o (2 )ZS A(x) e dx Lao(p, q) (2 )4 j L(x y)e + qydx dy (3 16)
o 1 S B(x) e zﬁxdx . A(p) — ,,___1__,___
T @y . W P2+ m2—ie)

As the contribution from each one of the loops L7 (p,q) can be written as

1

L=,

j e-iD- ll)xdxg f,‘(’f;) e~ ildy =87 (p—q) Lo~7(q) (3.17) iy
we have , | | "
Ulo, 00l = %)Sdf’ dpy - dpn 8, (p—p1) 85 (pn-1—Dn) Az, (D) 4(p) %

X Le=e0(py) A(p) -~ Le=0(pn) A(pn) Bo(p) ~ (3.18)
where

S (p—q) =

z
G )45‘ dx ~10~Dx = §(p—q) Z%L eiDo=a0t Jy! (3.19)

reduces to an ordinary é-functions when the time distance {—#,= T is large
enough. As we are interested in the effect of .the radiation damping, it is

9) D. Ito, H. Tanaka and M. Yamazaki, Prog. Theor. Phys. 7 (1952), 128 :(L). -
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of no use to consider the behavior of the transformation function U[e, o]
in such a region where the temporal distance T is comparable with the life

time % Consequently, we consider the case where mc» lel %/ T holds.

Then all 85,(p) may be replaced by ordinary 8(p), Le-20(p) by —'F(j;), and

A:p) + Le~29(p) by z[p + (m2+ Sm2(p))+ipy- 'y(le, so Ulo, a,] becomes
UL, o4] :rdx dx' A(%) § dp(x—=") B(x) (3.20)
where
=2 eibx ‘
e e e ey ymr el G OBMEES
=e~ VD 4}(x)
Performing the spé.ce integral, we have
dﬁo/ g
Ulo, ov] 22 (273 ACO B(O)jacP—K—K')dPS
o o] = EmPAD w =B+ ipay (D)2

1_ et(ek +€k/ -Pyt 1_ e"l(ﬂk+€k/—Po)(T~t)

i (3.22)
€ +€p—po € TE€r—Do

When the mass m of the intermediate particle is large, the second term is
small enough to be neglected in comparison with the first term in this sharp
resonance approximation Then,

(g1 22 j © dPdK 1
W) 3 7 —5
O @m) ) 16 Ex(Ep—ep) €x€p-r €3

b4 v
= (1——e’2")2+4e""2"sin2(po-—ep)*éf N PN
dP, S(py—€p —€Ep- 3.
L, ° (po—epy+ (v(p)/27 Bo—ea—€p-n)  (323)
Using the formula
+ oo
(1;sin2 %5 2 ( PP )
&_w P+ (y/2)? do ry 1; 1—e 27) (3.24)

we have .

(dP)/(2m)3
SE(Ep—ep) €p

W) =2m g%j (1—e-¥1) :SdP I'(P)(1—e-1®X)  (3.25)
This asymptotic time dependence of the transition probability has just the
same form as that of (3.1). It is observed here that the effect of the detailed
properties of the second decay is fading away eprnentially from the expres-
sion of the transition probability, and after a long time the expression tends
to the result previously calculated from the S-matrix. Thus, we have
obtained the divergence-free and physically acceptable result.
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(4) several remarks

In the same way as above, the incident line in Fig. 7 must be corrected
as illustrated in Fig. 8. Then, if the rate of the first decay is greater than
that of the second, the detailed nature of the first decay will fade away
from the expression of the transition probability as if the history of the
creation of intermediate state were completely forgotten. Such situation are
frequently met in the theory of the nucler reactions, such as the compound
nucleus etc., or in the case of the Hohlraumstrahlung and in the Fermi’s
theoryl® of multiple production of mesons.

In the nuclear processes, 7°-meson can decay into two photons through
the virtual as well as the real state. Roughly speaking with our method,
‘ Ty

2
the decay process through virtual states will be very rare.

the decay constant is so small compared with the meson mass #mc? that

Fig. 9. —————— nucleon line, —— meson line, ——---~ photon line.
m, m!, n and #/ are nucleon states. K and H are their interactions.

Next, we consider the photo-nuclear effect. It is often said that in these
processes the mesons emitted and then re-absorbed in the nucleus play the
- important rolesl)12 At high energy, the cross-section depends mostly on
the character of meson-production only and the detailed nature of meson-
absorption is not important. This is just the effect of damping by absorption,
and will be treated well according to our method. We take here only the
simplest case. (See Fig. 9) The transformation matrix MM becomes

M :SK(x) dp(x—a) H(x') = jd; dt K(rt) & Fn ~E't Sdg H(r+£,0) x

- oo

X S”d'r AD@, ) e *En~ ")7 jdrdr’ K(r) G(r—r’) H(r’) (3.26)

10) E. Fermi, Prog. Theor Phys 5 (1950), 570
11) S. Kikuchi, Phys. Rev. 85 (1951) 1062 and ibid 86 (1952) 41.
12) R. Wilson, Phys. Rev. 86 (1952), 125.
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where
- il . . —27 gib.r
G(r) =\ dp(r,f)e i4Etgf—-
) S (i) e dt (271')35‘ P2 2 (AE2—i[(4AE)
. is,
.4 @21

P=vV (4EVY—p2+il (dE), I'(4E)=AE-vy(4E)

Assuming the absorbing-source density is uniform in the nuclear radius R,
and after some approximate calculation we obtain the following form. thH

S R
| M |2~ 741? | K- H2AN(4E) (1—e *(4E7) (3.28)

1 vyW4E)

where NAE) = W4E)

W(4E)= 9%;?- P(4E) =V (4EY—i

Therefore, a picture of the free path of meson is asymptotically contained
in this problem. '

In our above treatment we have considered only a correction of the
internal line by the lowest order proper graph of self-energy. According to
Dyson’s integral equation, our method consists in the replacement of 33* by
its first term S5 in the expansion. So, this may be regarded as one-particle
analogue of the “ladder approximation * introduced by Bethe and Salpeter®
in their theory of the relativistic two body problem.

1) We expand P =V'(AE)2—p2+il'(AE) in powers of I'(AE)

AE
) v(AE)E—z%F—2
13) E.E. Salpeter and H. A. Bethe, Phys. Rev. 84 (1951), 1232..-

has some approximate meaniﬁg of (group) velocity of mesons.



