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We systematically investigate the relationship between the nuclear structure and reaction in
the 10Be nucleus using a theoretical framework. The structure of the 10Be nucleus is con-
structed with a cluster model based on a microscopic viewpoint. In this paper, the 10Be
nucleus is prepared with different structures by manipulating the parameters of an effec-
tive nucleon–nucleon interaction. The nuclear structure and expectation values of physical
quantities are drastically changed by the modification. We summarize such changes and
show the effects on the elastic and inelastic scatterings for proton and 12C targets in the
microscopic coupled-channel calculation. Of especial interest, we recently reported the vi-
sualization of the dineutron correlation in 10Be on proton inelastic scattering in [Phys. Rev.
C 104, 034613 (2021)]. In this preceding work, we found that changing the degree of dineu-
tron correlation in 10Be leads to drastic changes of the inelastic cross section for the 2+

2 state.
The development (or breaking) of the dineutron correlation is governed by the strength of
the spin–orbit interaction of the structure calculation. However, in the previous work, some
of the realistic physical points were missing, for example, the binding energy (BE). There-
fore, we reconstruct the 10Be nucleus by adjusting the effective nucleon–nucleon interaction
to obtain a reasonable BE of the ground state. With this improvement, we again discuss the
dineutron correlation in the 10Be nucleus. We reconfirm the way to measure the degree of
development (or breaking) of the dineutron cluster structure: its sensitivity to the inelastic
cross section of the 2+

2 state of 10Be. Subject Index cluster model, folding model, dineutron
correlation, effective nucleon-nucleon interaction.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Subject Index D06, D12, D13, D27

1. Introduction
For decades, the microscopic description based on the nucleon–nucleon (NN) interaction for
the nuclear structure and reaction has been developed. These microscopic approaches are suc-
cessful in describing and understanding the properties of the nuclear structure and reaction
quite well. Although the NN interaction has been investigated since the discovery of the pro-
ton and neutron, its behavior is still not fully understood, especially in the nuclear medium.
Therefore, in these microscopic structure and reaction calculations, the effective NN interac-
tion with parameters has often been used. There are many microscopic models based on the
(effective) NN interaction for the nuclear structure [1–14]. The microscopic description has led
to the understanding of a great deal of nuclear structure information. Recently, improvements
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in computational technology have made it possible to perform even more precise nuclear struc-
ture calculations. Most microscopic approaches to nuclear reactions are based on the folding
model. This has been developed for the nucleon and heavy-ion scatterings [15–31]. It is remark-
able that the recent microscopic description of the nuclear structure and reaction is based on
the realistic NN interaction.

Through these analyses, enhancing the connection between the microscopic nuclear struc-
ture and reaction models has been attempted. By the connection, microscopic nuclear reac-
tion calculations accurately incorporating nuclear structure information were performed, and
many experimental data were successfully reproduced [32–37]. In addition, this approach to
the microscopic nuclear structure and reaction gives interesting predictions [30,38–40]. In such
approaches, density is one of the key intermediaries because it is one of the inputs in the micro-
scopic folding model and one of the outputs in the microscopic nuclear structure model. The
diagonal and transition densities contain a large amount of nuclear structure information. The
microscopic folding model tells us the nuclear structure information in the observable through
the density. Therefore, to derive the diagonal and transition densities not only microscopically
but also macroscopically is important to connect nuclear structure and reaction. Here, we note
that it is possible to observe the structure information in experimental data if the diagonal and
transition densities have a sensitivity to the nuclear structure. Therefore, it is important to make
the relationship among density, nuclear structure, reaction mechanism, and observable clearer.

Here, we demonstrate an example of how changing the nuclear structure in an artificial way
affects the reaction. The change is closely related to the development and breaking of the dineu-
tron correlation as reported in Ref. [41], where we discussed the dineutron correlation and its
breaking because of the spin–orbit interaction. The persistence of the dineutron cluster is sen-
sitive to the choice of the strength of the spin–orbit interaction in the structure calculation,
even if the binding energy (BE) of the neutrons from the threshold is kept constant. Although
the dineutron structure is favored when the spin–orbit interaction is weak, the spin–orbit inter-
action with realistic strength significantly breaks the dineutron structure. In Ref. [40], we found
that the inelastic cross section of the 2+

2 state is drastically dependent on the development and
breaking of the dineutron correlation. With the advancement of microscopic approaches, such
a reliable and interesting analysis is now feasible. This is because the ground (0+

1 ) and 2+
2 states

belong to the K = 0 and K = 2 rotational bands, respectively, and the transition between them
is suppressed when the two valence neutrons perform independent particle motion around the
core with the two α structure. However, forming the dineutron configuration breaks the axial
symmetry and allows the inter-band transition. Here the spin–orbit interaction is the essential
factor.

In this study, we perform systematic calculations to reveal the relation between the nuclear
structure and reaction of the 10Be nucleus. The present 10Be nucleus is constructed under the
assumption of the four-body (α + α + n + n) cluster model. The stochastic multi-configuration
mixing method enables the description of many exotic cluster structures [42,43]. We focus on
the low-lying (0+

1 , 2+
1 , and 2+

2 ) states. In the microscopic cluster model, we modify the vari-
ous parameters for the effective NN interaction. The energies, nuclear size, and expectation
values of 〈L · S〉 (one-body operator) and 〈S2〉 (two-body operator) are calculated to investi-
gate the dependence of the parameters for the NN interaction. The transition strengths with
multipolarity λ = 2 are listed for the proton, neutron, isoscalar (IS), and isovector (IV) parts,
respectively. The diagonal and transition densities are also calculated. The densities are applied
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to the microscopic coupled channel (MCC) calculation. With the MCC model, we calculate
10Be elastic and inelastic scatterings by proton and 12C targets at E/A = 59.4 and 200 MeV. The
present model well reproduces the experimental data up to backward angles. In addition, we
provide the inelastic cross section of the 2+

2 state. The effect of the change of the parameters
in the microscopic structure calculation is discussed on the elastic and inelastic scattering cross
sections derived from the MCC calculation. In addition, we reconstruct the 10Be nucleus by
adjusting the BE, which was ignored in the previous systematic calculation. With this improve-
ment, we again discuss the possibility of observing the degree of development and breaking of
the dineutron correlation in 10Be through the 2+

2 inelastic cross section.
This paper is organized as follows. In Sect. 2, we briefly introduce the present structure and

reaction models. In Sect. 3, we list the results of the microscopic cluster model with the mod-
ified parameters. We also show the results of the elastic and inelastic cross sections with the
modified nuclear structure information. We will discuss the effect of the value of the parame-
ters in the nuclear structure calculation. In addition, we show the results of the reconstructed
10Be nucleus by reproducing the BE by simultaneously adjusting the spin–orbit strength and
the Majorana parameter. The development and breaking of the dineutron correlation in 10Be
are again discussed. Lastly, we summarize this paper in Sect. 4.

2. Formalism
We first construct the 10Be nucleus within the 4-body (α + α + n + n) cluster model. With the
diagonal and transition densities obtained from the microscopic cluster calculation, the 10Be +
p and 10Be + 12C elastic and inelastic scatterings are given by the MCC calculation in the same
manners as in Refs. [39,40]. To avoid repetition, we mainly give additional points in this section.
The details of the structure and reaction calculations are provided in Refs. [39,40,44,45].

2.1. Microscopic cluster model
The 10Be nucleus is constructed by the stochastic multi-configuration mixing method based on
the microscopic cluster model [42,43]. The calculation method is almost the same as in Ref. [40].

The additional calculation in this paper is as follows. For the Hamiltonian, the two-body
interaction includes the central, spin–orbit, and Coulomb parts. The Volkov No.2 effective po-
tential is applied to the central part [46] as,

V (central)(r) = (W − MPσ Pτ + BPσ − HPτ )

× (
V1 exp

(−r2/c2
1

) + V2 exp
(−r2/c2

2

))
, (1)

where c1 = 1.01 fm, c2 = 1.8 fm, V1 = 61.14 MeV, V2 = −60.65 MeV, and W = 1 − M. Here,
we often use the parameter setting as M = 0.60 and B = H = 0.08 [39,40,44], which reproduces
the α-α scattering phase shift. Meanwhile, different values for the parameters M and B = H
are employed in the investigations of various nuclei [10,47–49]. Therefore, we examine in the
range of 0.52, 0.54, 0.56, 0.58, 0.60, 0.62, and 0.64 for M in this paper. We also investigate the
effect of B = H in the range of 0–0.20. However, the effect is minor in the calculated results.
Therefore, we omit to show the results of B = H in this paper. In addition, we again introduce
the spin–orbit term of the G3RS potential [50,51],

V (spin−orbit)(r) = VLS(e−d1r2 − e−d2r2
)P(3O)L · S, (2)

3/17

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2023/6/063D

02/7187508 by Yokoham
a N

ational U
niversity user on 11 D

ecem
ber 2023



PTEP 2023, 063D02 T. Furumoto et al.

where d1 = 5.0 fm−2 and d2 = 2.778 fm−2. The operator L represents the relative angular mo-
mentum, and S represents the spin (S1 + S2). P(3O) is the projection operator onto the triplet
odd state. As in Ref. [40], the strength of the spin–orbit interaction, VLS, is also treated as a
parameter in this paper. This value is often fixed around 2000 MeV to reproduce the data of
the 10Be nucleus. In this paper, we show the results with VLS = 0, 500, 1000, 1500, and 2000
MeV to compare the development and breaking of the dineutron correlation while the effect
was investigated in the range of VLS = 0–4000 MeV in Ref. [40]. In addition, we give an addi-
tional calculation which is simultaneously adjusted for the VLS and M parameters to reproduce
the BE of the ground state in this paper.

To connect the nuclear structure and reaction calculations, we prepare the diagonal and tran-
sition densities in the same manner as in Ref. [5].

2.2. MCC model
Next, we introduce the MCC model based on the MPa interaction [52,53]. The present MCC
model has been successful in reproducing and predicting experimental data [31,36,45,54]. The
detailed MCC calculation procedure for the folding potential is described in Refs. [28,40,45,55].
Then, we briefly introduce the single- and double-folding model calculations.

The single-folding model potential is simply described as

U (SF )
α→β (R; E/A) =

∫
ρIα→Iβ

(r)v(s, ρ; E/A)dr, (3)

where R is the radial distance between the incident 10Be nucleus and the target proton. α and β

mean the channel number of the initial and final states, respectively. Iα and Iβ are spins of the
initial and final states, respectively. E/A is the incident energy per nucleon. ρIα→Iβ

is the diago-
nal (α = β) and transition (α �= β) densities; s is the radial distance between a nucleon in the
projectile nucleus and the target proton, and s = r − R. We note that the description of Eq. (3)
is simplified; in the actual calculation, the proton and neutron densities are separately folded
with the proton–proton and proton–neutron interactions, respectively. The Coulomb potential
is also obtained by folding the NN Coulomb interaction and proton density. The knock-on
exchange part and the spin–orbit part are obtained in the same manner as in Refs. [40,45].

The double-folding model potential is also provided, as

U (DF )
α→β (R; E/A) =

∫
ρIα→Iβ

(r)ρ ′
I ′
α→I ′

β
(r′)v(s, ρ; E/A)drdr′, (4)

where I ′
α and I ′

β are the spins of the initial and final states for the target nucleus, respectively.
ρ ′

I ′
α→I ′

β
is the diagonal (α = β) and transition (α �= β) densities for the target nucleus. Here,

s = r − r′ − R. The frozen density approximation is applied to ρ in v. The frozen density ap-
proximation is the standard prescription to describe the nucleus–nucleus system and its effi-
ciency is verified in Refs. [29,31]. The knock-on exchange part is obtained in the same manner
as in Refs. [38,39].

When the single- and double-folding potentials are applied to the nuclear reaction, we often
modify the strength of the imaginary part of the potential to reproduce the data. We apply
the incident-energy-dependent renormalization factor, NW = 0.5 + (E/A)/1000 [54], for the
imaginary part in this paper. We note that no additional parameter is needed to calculate the
10Be scatterings by the proton and 12C targets.
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3. Results
The calculated results will be introduced and discussed in this section. We first show the de-
pendence on the parameters (VLS and M) for the BE, radius, and expectation values of 〈L · S〉
and 〈S2〉 of the 0+

1 , 2+
1 , and 2+

2 states, respectively. Here, 〈L · S〉 is the expectation value of the
one-body operator and the sum of the spin–orbit operator of the nucleons, whereas 〈S2〉 is the
two-body operator, which is the square of the sum of the one-body spin operator over the nu-
cleons. In the investigation of the dependence on the parameters (VLS and M), we regard the
standard values of VLS = 2000 MeV, M = 0.60, and B = H = 0.08 as references. The quadrupole
transition strength between each state is also introduced. In addition, we discuss the effect of
change in the nuclear structure on the elastic and inelastic cross sections.

When we calculate the 10Be + 12C system, we apply the 12C density obtained by 3α-RGM [3]
to the MCC calculation. The 0+

1 , 2+
1 , and 0+

2 states of the 12C nucleus are included because
the excitation states are well known to have a strong channel coupling effect. In this paper, all
combinations of the spin states of each of the incident and target particles are incorporated
into the coupled-channel calculations.

After that, we discuss the relation between the dineutron correlation and the inelastic cross
section at the realistic physical point. Concretely, we show additional results in which the M
and VLS parameters are simultaneously adjusted without changing the BE of the ground state
as in Ref. [41]. In order to evaluate the effect of the dineutron correlation on the structure and
reaction, we prepare the pure dineutron basis and compare it with a more realistic one.

3.1. Systematic calculation with microscopic cluster model
Here we show the dependence of the structure on the parameters (VLS and M). The parameters
give various BEs, radii, and expectation values of 〈L · S〉 and 〈S2〉 for the 0+

1 , 2+
1 , and 2+

2 states.
This systematic analysis clarifies the role of each parameter (VLS and M) in 10Be. In addition,
the quadrupole transition strengths between each state are examined. The transition strengths
are also changed together with the property of the nuclear structure. We will discuss the effect
of the property of the nuclear structure on the elastic and inelastic cross sections.

3.1.1. Dependence on VLS. Here, we show the obtained nuclear structure and reaction’s de-
pendence on VLS in the Hamiltonian of the nuclear structure calculation. The results are es-
sentially the same as in Ref. [40]. However, we show the calculation results as a table instead of
a figure to discuss the 10Be structure in this paper.

Table 1 shows many calculated results. However, we already discussed the detail of the calcu-
lated BEs; root mean squared radii for the point proton (rp), point neutron (rn), and point nu-
cleon matter (rm); the expectation values of 〈L · S〉 and 〈S2〉 for the neutron; and the quadrupole
transition strengths of B(E2) and the neutron part B((E2)n) in Ref. [40]. From another perspec-
tive, we see IS and IV transition strengths. The obtained IS transition strengths from 2+

1 to
0+

1 stay in the range of 30–60 fm4. The IV transition strengths from 2+
1 to 0+

1 get gradually
smaller as VLS grows. On the other hand, the IS transition strengths from 2+

2 to 0+
1 are dras-

tically changed by the VLS value. This effect on the cross section will be discussed later. Here,
we also discuss the transition strength from the 2+

2 state to the 2+
1 state. The B(E2: 2+

2 → 2+
1 )

value becomes smaller when the strength of the VLS value becomes larger. In Ref. [41], it is
mentioned that the increase of the B(E2: 2+

2 → 2+
1 ) value with the decrease of the VLS value
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Table 1. BE, point-proton radius (rp), point-neutron radius (rn), point-nucleon-matter radius (rm), ex-
pectation values of 〈L · S〉 and 〈S2〉 for the neutron, and transition strengths (B(E2), the neutron part
(B(E2)n), B(IS2), and B(IV2)) for VLS = 0–2000 MeV.

VLS (MeV) 0 500 1000 1500 2000

BE (0+
1 ) (MeV) −59.29 −59.54 −60.27 −61.43 −62.97

BE (2+
1 ) (MeV) −57.14 −57.23 −57.57 −58.37 −59.78

BE (2+
2 ) (MeV) −55.52 −55.79 −56.44 −57.14 −57.72

rp (0+
1 ) (fm) 2.548 2.535 2.498 2.448 2.393

rp (2+
1 ) (fm) 2.521 2.518 2.503 2.451 2.380

rp (2+
2 ) (fm) 2.546 2.526 2.489 2.476 2.474

rn (0+
1 ) (fm) 2.815 2.797 2.746 2.677 2.598

rn (2+
1 ) (fm) 2.791 2.787 2.765 2.693 2.597

rn (2+
2 ) (fm) 2.812 2.791 2.749 2.737 2.737

rm (0+
1 ) (fm) 2.712 2.695 2.650 2.588 2.518

rm (2+
1 ) (fm) 2.686 2.682 2.663 2.599 2.512

rm (2+
2 ) (fm) 2.709 2.688 2.648 2.636 2.635

〈L · S〉 (0+
1 ) −0.0002832 0.3766 0.6783 0.8871 1.025

〈L · S〉 (2+
1 ) −0.0007262 0.09012 0.2824 0.6649 0.9164

〈L · S〉 (2+
2 ) −0.002162 0.3583 0.4459 0.2394 0.1156

〈S2〉 (0+
1 ) 0.001527 0.06294 0.2080 0.3717 0.5181

〈S2〉 (2+
1 ) 0.002947 0.02264 0.1166 0.3520 0.5470

〈S2〉 (2+
2 ) 0.002436 0.1035 0.2126 0.1503 0.09792

B(E2: 2+
1 → 0+

1 ) (e2 fm4) 2.952 3.615 6.473 11.14 11.82
B((E2)n: 2+

1 → 0+
1 ) (fm4) 18.12 18.47 19.47 17.46 12.72

B(IS2: 2+
1 → 0+

1 ) (fm4) 35.69 38.42 48.39 56.49 49.06
B(IV2: 2+

1 → 0+
1 ) (fm4) 6.442 5.740 3.491 0.7058 0.01631

B(E2: 2+
2 → 0+

1 ) (e2 fm4) 16.14 14.56 9.867 3.228 0.6455
B((E2)n: 2+

2 → 0+
1 ) (fm4) 5.861 4.443 1.108 0.4739 2.640

B(IS2: 2+
2 → 0+

1 ) (fm4) 41.46 35.09 17.59 1.228 0.6747
B(IV2: 2+

2 → 0+
1 ) (fm4) 2.549 2.917 4.363 6.175 5.897

B(E2: 2+
2 → 2+

1 ) (e2 fm4) 12.75 15.30 22.45 15.92 4.390
B((E2)n: 2+

2 → 2+
1 ) (fm4) 0.5122 1.971 12.25 25.59 17.21

B(IS2: 2+
2 → 2+

1 ) (fm4) 18.37 28.25 67.87 81.88 38.98
B(IV2: 2+

2 → 2+
1 ) (fm4) 8.149 6.288 1.531 1.142 4.213

supports a triaxial α + α + dineutron clustering configuration. However, the B(E2: 2+
2 → 2+

1 )
values with VLS = 0 and 500 MeV are smaller than that with 1000 MeV. This is considered to
be caused by the further development of the dineutron cluster. Namely, the coupling pattern of
the angular momentum among the two α clusters and the dineutron cluster is different in the
2+

1 and 2+
2 states. Concretely, when the small VLS value is adopted, it is considered that the two

α clusters with relative angular momentum L = 0 are synthesized with the dineutron around
them with L = 2 in the 2+

1 state. On the other hand, the two α clusters with relative angular
momentum L = 2 are synthesized with the dineutron moving around them with L = 0 in the
2+

2 state. The decrease of the B(E2: 2+
2 → 2+

1 ) value and the increase of the B(IV2: 2+
2 → 2+

1 )
value corroborate the situation. We will discuss this situation again in Sects. 3.2 and 3.3.

Figure 1 shows the elastic cross section and inelastic cross section for the 2+
1 state, and inelastic

cross section for the 2+
2 state of the 10Be nucleus obtained by the proton target at E/A = 59.4

and 200 MeV. The two-dot-dashed, dot-dashed, dashed, dotted, and solid curves are obtained
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Fig. 1. (a1) Elastic cross section, (b1) inelastic cross section for the 2+
1 state, and (c1) inelastic cross

section for the 2+
2 state of the 10Be + p system at E/A = 59.4 MeV. (a2) Elastic cross section, (b2) inelastic

cross section for the 2+
1 state, and (c2) inelastic cross section for the 2+

2 state of the 10Be + p system at E/A
= 200 MeV. The two-dot-dashed, dot-dashed, dashed, dotted, and solid curves are obtained with VLS =
0, 500, 1000, 1500, and 2000 MeV, respectively. The experimental data are taken from Refs. [56–58].

Fig. 2. Same as Fig. 1 but for the 12C target. The experimental data are taken from Refs. [56,57].

with VLS = 0, 500, 1000, 1500, and 2000 MeV, respectively. The experimental data are well
reproduced in a wide range of the VLS values. We can see the drastic change of the inelastic
cross sections for the 2+

2 state depending on the VLS value adopted in the structure calculation.
This result has already been presented and discussed in Ref. [40]. However, we again show this
result to compare with the additional calculation in this paper.

We also calculate the elastic and inelastic cross sections for the 10Be + 12C system at E/A =
59.4 and 200 MeV to investigate the effect of a different target. Figure 2 shows the elastic cross
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Table 2. Same as Table 1 but for M = 0.52–0.64.

M 0.52 0.54 0.56 0.58 0.60 0.62 0.64

BE (0+
1 ) (MeV) −77.07 −73.08 −69.39 −66.01 −62.97 −60.26 −57.90

BE (2+
1 ) (MeV) −74.22 −70.17 −66.38 −62.91 −59.78 −57.05 −54.73

BE (2+
2 ) (MeV) −69.52 −66.18 −63.11 −60.29 −57.72 −55.40 −53.34

rp (0+
1 ) (fm) 2.160 2.205 2.258 2.320 2.393 2.479 2.579

rp (2+
1 ) (fm) 2.139 2.180 2.231 2.296 2.380 2.488 2.617

rp (2+
2 ) (fm) 2.237 2.286 2.341 2.404 2.474 2.557 2.660

rn (0+
1 ) (fm) 2.298 2.357 2.426 2.506 2.598 2.702 2.816

rn (2+
1 ) (fm) 2.292 2.346 2.411 2.494 2.597 2.722 2.863

rn (2+
2 ) (fm) 2.446 2.509 2.579 2.655 2.737 2.828 2.933

rm (0+
1 ) (fm) 2.244 2.297 2.360 2.433 2.518 2.615 2.724

rm (2+
1 ) (fm) 2.232 2.281 2.341 2.416 2.512 2.631 2.767

rm (2+
2 ) (fm) 2.365 2.423 2.487 2.558 2.635 2.723 2.827

〈L · S〉 (0+
1 ) 1.210 1.177 1.136 1.085 1.025 0.9571 0.8816

〈L · S〉 (2+
1 ) 1.121 1.091 1.050 0.9938 0.9164 0.8123 0.6919

〈L · S〉 (2+
2 ) 0.08979 0.08770 0.08810 0.1038 0.1156 0.1560 0.2073

〈S2〉 (0+
1 ) 0.7115 0.6723 0.6271 0.5755 0.5181 0.4560 0.3915

〈S2〉 (2+
1 ) 0.7017 0.6742 0.6416 0.6011 0.5470 0.4731 0.3835

〈S2〉 (2+
2 ) 0.1009 0.09268 0.08663 0.08654 0.09792 0.1241 0.1542

B(E2: 2+
1 → 0+

1 ) (e2 fm4) 6.049 7.000 8.226 9.811 11.82 14.26 17.17
B((E2)n: 2+

1 → 0+
1 ) (fm4) 3.916 4.981 6.557 8.970 12.72 18.35 26.07

B(IS2: 2+
1 → 0+

1 ) (fm4) 19.70 23.79 29.47 37.54 49.06 64.96 85.55
B(IV2: 2+

1 → 0+
1 ) (fm4) 0.2309 0.1713 0.09447 0.01885 0.01631 0.2579 0.9271

B(E2: 2+
2 → 0+

1 ) (e2 fm4) 0.02127 0.04007 0.09132 0.2363 0.6455 1.704 3.907
B((E2)n: 2+

2 → 0+
1 ) (fm4) 2.793 3.039 3.202 3.141 2.640 1.592 0.4369

B(IS2: 2+
2 → 0+

1 ) (fm4) 2.327 2.382 2.212 1.654 0.6747 0.001903 1.731
B(IV2: 2+

2 → 0+
1 ) (fm4) 3.302 3.777 4.375 5.100 5.897 6.589 6.958

B(E2: 2+
2 → 2+

1 ) (e2 fm4) 0.09201 0.2346 0.6204 1.666 4.390 10.60 21.48
B((E2)n: 2+

2 → 2+
1 ) (fm4) 4.574 5.816 7.856 11.32 17.21 26.41 38.68

B(IS2: 2+
2 → 2+

1 ) (fm4) 5.963 8.387 12.89 21.68 38.98 70.46 117.8
B(IV2: 2+

2 → 2+
1 ) (fm4) 3.368 3.715 4.061 4.302 4.213 3.548 2.513

section, inelastic cross section for the 2+
1 state, and inelastic cross section for the 2+

2 state of
the 10Be + 12C system at E/A = 59.4 and 200 MeV. The difference in the nuclear size has a
minor effect on the elastic cross sections for the 12C target. The effect of Coulomb excitation
on the inelastic cross section is minor. The inelastic cross sections for the 2+

1 state for the 12C
target have similar behavior to each other. Also, we can see the drastic change of the inelastic
cross sections for the 2+

2 state. Here, we note that the calculated inelastic cross sections for the
2+

2 state show different behavior in comparison with the proton target for the solid and dotted
curves. The results are caused by the weak IS transition strength shown in Table 1. In the present
calculation for the 12C target, the IV component has no effect on the cross section. Comparing
the proton target with 12C, the effect of the IS and IV components can be seen.

3.1.2. Dependence on M. Next, we investigate the dependence on the Majorana (M) param-
eter. The M parameter is responsible for describing the NN exchange effect and is related to the
Wigner (W) parameter as W = 1 − M. Values of 0.56–0.63 are widely used in cluster model
calculations. For the 10Be nucleus, 0.56 or 0.60 is usually adopted. Therefore, we investigate the
range of M = 0.52–0.64, which is wider than the usual cases, in this paper.

Table 2 shows the calculated values of BEs, radii, expectation values, and quadrupole tran-
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Fig. 3. Same as Fig. 1 but for M = 0.52–0.64. The two-dot-dashed, dot-dashed, dashed, dotted, bold-
solid, bold red dotted, and bold red dashed curves are obtained with M = 0.52, 0.54, 0.56, 0.58, 0.60,
0.62, and 0.64, respectively.

sition strengths. Not only the VLS parameter but also the M parameter give drastic changes
in the BEs. With the increase of M, the repulsive effect becomes larger. Therefore, the large
(small) M value gives weak (strong) binding. However, it is found that M has a minor effect
on the excitation energy of the 2+

1 state. On the contrary, when the M parameter is large, the
difference of the energies between the 2+

1 and 2+
2 states becomes small. The sizes of the ground

and excited states are also influenced by the change in the BE. Strong binding gives a small
size for the ground and excited states. Therefore, the trend of the dependence of size on the M
parameter is simple. Also, the expectation values show a simple increase or decrease, except for
the 〈S2〉 value of the 2+

2 state, which shows minor dependence on the M value.
Next, we discuss the transition strength. Both of the proton and neutron parts of the tran-

sition strengths from the 2+
1 state to the 0+

1 state simply increase with the M parameter. The
increase is concerned with the IS component. For the transition strength from the 2+

2 state to
the 0+

1 state, the proton part increases, but the neutron part decreases with the M parameter.
The increase of the proton part and the decrease of the neutron part give complicated transi-
tion strengths of the IS and IV components. The IV component of the transition strength from
the 2+

2 state to the 0+
1 state is always larger than the IS component. This result is also different

in comparison with the VLS case. In addition, the transition strength from the 2+
2 state to the

2+
1 state gets larger with the M parameter. This indicates that we cannot ignore the multistep

reaction effect on the inelastic cross section caused by the strong transition from the 2+
1 state

to the 2+
2 state.

Figure 3 shows the elastic and inelastic cross sections calculated for the proton target with
the experimental data. The two-dot-dashed, dot-dashed, dashed, dotted, bold-solid, bold red
dotted, and bold red dashed curves are obtained with M = 0.52, 0.54, 0.56, 0.58, 0.60, 0.62,
and 0.64, respectively. The effect of changing the nuclear size is barely visible on the elastic
cross section. We will discuss the effect of the BE, nuclear size, and elastic cross section again
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Fig. 4. Same as Fig. 3 but for the 12C target.

in Sect. 3.2. The effect of the change of the transition strength from the 2+
1 state to the 0+

1

state is barely visible on the inelastic cross section for the 2+
1 state. On the contrary, we can

see the drastic change of the inelastic cross sections for the 2+
2 state. In Ref. [40], we expected

that the change of the M parameter would not have much impact on the inelastic cross section.
However, it indeed does give the change. Here, we compare the inelastic cross sections for the
2+

2 state at E/A = 59.4 with 200 MeV. At 59.4 MeV, the multistep reaction effect caused by
the strong transition strength from the 2+

2 state to the 2+
1 state gives a complicated angular

distribution. On the other hand, we can discuss the effect of changing the M parameter on the
inelastic cross section for the 2+

2 state at 200 MeV because the multistep reaction effect can be
ignored at higher incident energy. The effect of changing M is indeed seen on the inelastic cross
section for the 2+

2 state at 200 MeV as shown in Fig. 3. Although this is smaller compared with
the change of the VLS parameter shown in Fig. 1, we cannot ignore the effect. Therefore, we
will discuss the contribution of the VLS and M parameters simultaneously in Sect. 3.2.

Figure 4 shows the elastic and inelastic cross sections calculated for the 12C target with the
experimental data. Again, the change in the nuclear size has a minor effect on the elastic cross
sections for the 12C target. The inelastic cross sections for the 2+

1 state for the 12C target show
similar behavior to that for the proton target. Also, we can see the drastic change of the inelastic
cross sections for the 2+

2 state. However, the behavior of the inelastic cross sections obtained
with weak IS transition to the 2+

2 state is slightly different in comparison with the proton target.
This is caused by the small transition strength of the IS component. Again, we note that the
IV component has no effect on the present calculation for the 12C target.

3.2. Effect of BE of the ground state
In the above subsections, we have only discussed the parameter dependence in nuclear structure
calculations. That is, we did not specifically consider realistic physical points (e.g. BEs). In this
subsection, we adjust the VLS and M parameters so that the BEs of different parameter sets are
reproduced consistent with each other as in Ref. [41]. In this paper, we first fix the VLS value in
the range of 0–2000 MeV and adjust the M parameter to obtain the appropriate BE. On the
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Table 3. Same as Table 1 but for (VLS (MeV), M) = (0, 0.57), (500, 0.57), (1000, 0.58), (1500, 0.59), and
(2000, 0.60).

VLS (MeV) 0 500 1000 1500 2000
M 0.57 0.57 0.58 0.59 0.60

BE (0+
1 ) (MeV) −62.79 −63.15 −62.79 −62.77 −62.97

BE (2+
1 ) (MeV) −60.78 −60.90 −60.05 −59.72 −59.78

BE (2+
2 ) (MeV) −59.27 −59.64 −59.04 −58.40 −57.72

rp (0+
1 ) (fm) 2.433 2.418 2.418 2.408 2.393

rp (2+
1 ) (fm) 2.410 2.407 2.419 2.402 2.380

rp (2+
2 ) (fm) 2.388 2.374 2.397 2.438 2.474

rn (0+
1 ) (fm) 2.681 2.660 2.651 2.628 2.598

rn (2+
1 ) (fm) 2.660 2.655 2.666 2.634 2.597

rn (2+
2 ) (fm) 2.639 2.621 2.645 2.695 2.737

rm (0+
1 ) (fm) 2.585 2.566 2.560 2.542 2.518

rm (2+
1 ) (fm) 2.563 2.559 2.570 2.544 2.512

rm (2+
2 ) (fm) 2.542 2.525 2.549 2.595 2.635

〈L · S〉 (0+
1 ) −0.00007341 0.4572 0.7533 0.9237 1.026

〈L · S〉 (2+
1 ) −0.0006060 0.1090 0.3788 0.7384 0.9164

〈L · S〉 (2+
2 ) −0.001788 0.4060 0.4069 0.1962 0.1156

〈S2〉 (0+
1 ) 0.001095 0.08877 0.2521 0.4007 0.5181

〈S2〉 (2+
1 ) 0.002028 0.02980 0.1667 0.3979 0.5470

〈S2〉 (2+
2 ) 0.001607 0.1232 0.1971 0.1250 0.09792

B(E2: 2+
1 → 0+

1 ) (e2 fm4) 1.817 2.594 6.401 10.67 11.82
B((E2)n: 2+

1 → 0+
1 ) (fm4) 13.53 13.95 16.05 14.83 12.72

B(IS2: 2+
1 → 0+

1 ) (fm4) 25.26 28.58 42.73 50.67 49.06
B(IV2: 2+

1 → 0+
1 ) (fm4) 5.429 4.514 2.181 0.3407 0.01631

B(E2: 2+
2 → 0+

1 ) (e2 fm4) 11.77 10.32 6.559 2.117 0.6455
B((E2)n: 2+

2 → 0+
1 ) (fm4) 3.594 2.303 0.1438 1.022 2.640

B(IS2: 2+
2 → 0+

1 ) (fm4) 28.38 22.38 8.646 0.1970 0.6747
B(IV2: 2+

2 → 0+
1 ) (fm4) 2.358 2.874 4.760 6.081 5.897

B(E2: 2+
2 → 2+

1 ) (e2 fm4) 8.154 11.22 18.98 11.34 4.390
B((E2)n: 2+

2 → 2+
1 ) (fm4) 0.002228 0.9923 13.58 22.47 17.21

B(IS2: 2+
2 → 2+

1 ) (fm4) 8.426 18.89 64.66 65.73 38.98
B(IV2: 2+

2 → 2+
1 ) (fm4) 7.886 5.539 0.4507 1.886 4.213

contrary, if the M parameter was first fixed in the range of 0.52–0.64, the appropriate VLS value
could not be obtained for the small M values of 0.52–0.56, when the constraint of reproducing
the BE was imposed. The results are summarized in Table 3.

Table 3 shows the values of BEs, radii, expectation values, and quadrupole transition
strengths calculated when using the VLS and M values as parameters adjusting the BE of the
ground state. The BEs of the ground state are obtained within a deviation of 1 MeV from the
set of VLS = 2000 MeV and M = 0.60. The parameter set is also shown in Table 3. On the
other hand, the excitation energies of the 2+

1 and 2+
2 states still depend on the set of the VLS

and M values. Here, we notice that the effect of the VLS parameter is dominant for the excita-
tion energy. By adjusting the BE of the ground state, the nuclear sizes of the ground state are
obtained almost consistently. Namely, we can discuss other information without considering
the effect of the size of the ground state, especially for the transition. The expectation values
of 〈L · S〉 and 〈S2〉 are drastically dependent on the parameter set; they are strongly dependent
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Fig. 5. Same as Fig. 1 but with the modification of M. The two-dot-dashed, dot-dashed, dashed, dotted,
and solid curves are obtained with (VLS (MeV), M) = (0, 0.57), (500, 0.57), (1000, 0.58), (1500, 0.59), and
(2000, 0.60), respectively. In addition, the bold red solid curve is the result obtained with the dineutron
basis. The detail of the bold red solid curve is introduced in the next section.

on the VLS parameter. Namely, the property of the 10Be nucleus strongly depends on the VLS

parameter even if we adjust the BEs of the ground state.
For the proton part of the transition strength from the 2+

1 state to the 0+
1 state, the difference

of the VLS and M values is not clearly seen. On the other hand, the neutron part shows that
the change of the VLS parameter has a significant effect. As a result, the IS and IV terms are
strongly affected by the VLS value for the transition from the 2+

1 state to the 0+
1 state. Also,

the VLS parameter has a dominant role to fix the transitions from the 2+
2 state to the 0+

1 state.
Namely, the development and breaking of the dineutron correlation by the VLS parameter ap-
pears through the transition from the 2+

2 state to the 0+
1 state as discussed in Sect. 3.1.1 and

Ref. [40]. For the transition strength from the 2+
2 state to the 2+

1 state, the contribution of the
VLS parameter is dominant. Namely, the obtained nuclear structure information is strongly af-
fected by the VLS parameter even if the energies of the ground state are consistently reproduced
by simultaneously changing the VLS and M parameters.

Figure 5 shows the elastic and inelastic cross sections calculated for the proton target with the
experimental data. The two-dot-dashed, dot-dashed, dashed, dotted, and solid curves are ob-
tained with (VLS (MeV), M) = (0, 0.57), (500, 0.57), (1000, 0.58), (1500, 0.59), and (2000, 0.60),
respectively. The meaning of the bold red solid curves will be explained in the next subsection.
As mentioned before, adjusting the BE results in a similar nuclear size. We found that this gives
similar elastic cross sections. The inelastic cross section for the 2+

1 state is slightly affected by
the set of VLS and M parameters adopted. It is rather similar to results obtained by the VLS

parameter. On the other hand, a drastic change can be seen in the inelastic cross section for the
2+

2 state. In addition, the results are similar to Fig. 1 which is obtained by changing only the VLS

parameter. Namely, the VLS parameter has a dominant role for the inelastic cross section for
both the 2+

1 and 2+
2 states even if the BE is adjusted by the VLS and M parameters. In addition,

the VLS parameter has a role in the development and breaking of the dineutron correlation. If
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Fig. 6. Same as Fig. 5 but for the 12C target.

the VLS value is small and the dineutron is well developed, K-mixing occurs and the inelastic
cross section for the 2+

2 is large. On the other hand, when the VLS value is large and the dineu-
tron structure is broken, no K-mixing occurs. Then, the inelastic cross section for the 2+

2 state
is small. However, we note that the inelastic cross section for the 2+

2 state is slightly larger for
larger spin orbitals such as 4000 MeV as shown in Ref. [40].

Figure 6 shows the elastic and inelastic cross sections calculated for the 12C target with the
experimental data. Again, we can see the consistent results of the elastic cross sections owing to
a similar nuclear size. In addition, we can see the drastic change of the inelastic cross section for
the 2+

2 state. These results are also similar to Fig. 2. Namely, the obtained results support the
strong contribution of the VLS parameter even if the energy of the ground state is consistently
reproduced by varying the VLS and M parameters simultaneously. Again, we see the effect of
the IV term for the inelastic cross section for the 2+

2 state in the comparison with the proton
target.

3.3. Reconfirmation of behavior of inelastic cross section dependent on development
and breaking of dineutron correlation

Next, we reconfirm the characteristic behavior of the inelastic cross section for the 2+
2 state

depending on the development and breaking of the dineutron correlation. We use the wave
function constructed in the previous subsection and investigate the dineutron correlation in
10Be. To describe the dineutron correlation, we prepare the dineutron cluster as

	i = A
[
φα(r1−4, R1)φα(r5−8, R2)φ2n(r9−10, R3)

]
i, (5)

where the positions of the centers of the wave packets for the two valence neutrons are the
same. Here, the valence neutrons have spin up and down. Therefore, the dineutron cluster fully
satisfies the condition of the dineutron correlation (S = 0 and large spatial overlap). We fix the
M parameter to be 0.54 to reproduce the BE of the ground state in the same manner as in the
previous subsection.

With the dineutron cluster wave function, the obtained BEs are −63.46, −61.33, and −60.40
MeV for the 0+

1 , 2+
1 , and 2+

2 states, respectively. The calculated radii are 2.318, 2.289, 2.256,
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2.445, 2.401, 2.386, 2.395, 2.357, and 2.335 fm for rp (0+
1 ), rp (2+

1 ), rp (2+
2 ), rn (0+

1 ), rn (2+
1 ), rn

(2+
2 ), rm (0+

1 ), rm (2+
1 ), and rm (2+

2 ), respectively. The transition strengths are 1.677, 8.898, 18.30,
2.849, 7.940, 1.647, 16.82, 2.354, 7.434, 0.2712, 10.54, and 4.865 (e2)fm4 for B(E2: 2+

1 → 0+
1 ),

B((E2)n: 2+
1 → 0+

1 ), B(IS2: 2+
1 → 0+

1 ), B(IV2: 2+
1 → 0+

1 ), B(E2: 2+
2 → 0+

1 ), B((E2)n: 2+
2 → 0+

1 ),
B(IS2: 2+

2 → 0+
1 ), B(IV2: 2+

2 → 0+
1 ), B(E2: 2+

2 → 2+
1 ), B((E2)n: 2+

2 → 2+
1 ), B(IS2: 2+

2 → 2+
1 ), and

B(IV2: 2+
2 → 2+

1 ), respectively. The excitation energy is similar to the case with the weak VLS

parameter rather than the large one. The nuclear size obtained with the pure dineutron cluster
is smaller than all other results in this paper. It is obvious that the expectation values of 〈L · S〉
and 〈S2〉 are zero. The transition strengths are also similar to the weak VLS cases rather than the
large one while the nuclear size is small. We note that the B(E2: 2+

2 → 2+
1 ) value is smaller than

the results obtained with VLS = 0–1000 MeV shown in Table 1. This small B(E2: 2+
2 → 2+

1 ) value
implies the development of the α + α + dineutron cluster picture. Again, the coupling pattern
of the angular momentum among the two α clusters and the dineutron cluster is different in the
2+

1 and 2+
2 states. Concretely, when the small VLS value is adopted, it is considered that the two

α clusters with relative angular momentum L = 0 are synthesized with the dineutron around
them with L = 2 in the 2+

1 state. On the other hand, the two α clusters with relative angular
momentum L = 2 are synthesized with the dineutron moving around them with L = 0 in the 2+

2

state. The decrease of the B(E2: 2+
2 → 2+

1 ) value and the increase of the B(IV2: 2+
2 → 2+

1 ) value
corroborate the situation. In addition, the result of the pure dineutron cluster implies that the
developed dineutron cluster can be generated by employing the weak VLS parameter.

Figures 5 and 6 show the results for the pure dineutron cluster state with the bold red solid
curves. The effect of the nuclear size is not clearly seen on the elastic cross section. The results
for the pure dineutron cluster state are consistent with those obtained with the weak VLS value,
especially for the inelastic cross section of the 2+

2 state. Again, the development of the dineutron
structure by the weak VLS parameter is supported.

To confirm the development of the dineutron structure by the weak VLS parameter, we cal-
culate the component of the dineutron cluster, while this component is sensitive to basis states
dependent on the random number. Here, we confirmed that the dependence of the basis states
does not affect our conclusion. The component of the dineutron cluster for each state is listed
in Table 4. Here the dineutron cluster component (Cdineutron(Iπ

i )) for the state �(Iπ
i ) is defined

as

Cdineutron (
Iπ

i

) =
∑

k

〈
�

(
Iπ

i

) |ψdineutron
k

〉 〈
ψdineutron

k |� (
Iπ

i

)〉
, (6)

where ψdineutron
k is the k-th orthonormal state obtained by diagonalizing the Hamiltonian matrix

only within the basis states of dineutron clusters introduced in Eq. (5). To clarify on which
parameters the dineutron cluster component depends, we show in Table 4 not only the realistic
cases but also cases where only the VLS parameter or the M parameter is changed. The 0+

1 ,
2+

1 , and 2+
2 states with the weak VLS value have strong overlaps with the pure dineutron cluster

state. With the increase of the VLS value, the dineutron component becomes small. On the
other hand, the components of dineutron configurations have a minor dependence on the M
parameter for the 0+

1 and 2+
1 states. The dependence on the M parameter for the 2+

2 state can
be seen; however, the magnitude is smaller than the dependence on the VLS parameter. This
supports that the weak VLS parameter gives the development of the dineutron cluster state in
the 10Be nucleus.
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Table 4. The components of dineutron configurations Cdineutron(Iπ
i ) defined in Eq. (6). The components

are obtained with the wave functions constructed in Sects. 3.1.1, 3.1.2, and 3.2.

VLS (MeV) 0 500 1000 1500 2000
M = 0.60

Cdineutron (0+
1 ) 0.8516 0.8162 0.7562 0.6952 0.6424

Cdineutron (2+
1 ) 0.8125 0.7955 0.7555 0.6634 0.5763

Cdineutron (2+
2 ) 0.8345 0.7740 0.7074 0.7067 0.7129

VLS = 2000 MeV
M 0.52 0.54 0.56 0.58 0.60 0.62 0.64

Cdineutron (0+
1 ) 0.5764 0.6003 0.6197 0.6338 0.6424 0.6465 0.6476

Cdineutron (2+
1 ) 0.4951 0.5187 0.5401 0.5589 0.5763 0.5936 0.6095

Cdineutron (2+
2 ) 0.7811 0.7761 0.7632 0.7421 0.7129 0.6777 0.6432

VLS (MeV) 0 500 1000 1500 2000
M 0.57 0.57 0.58 0.59 0.60

Cdineutron (0+
1 ) 0.8794 0.8376 0.7603 0.6939 0.6424

Cdineutron (2+
1 ) 0.8524 0.8336 0.7628 0.6540 0.5763

Cdineutron (2+
2 ) 0.8762 0.8016 0.7316 0.7276 0.7129

4. Summary
We summarized the relationship between the nuclear structure and reaction within the 10Be
nucleus by systematic analysis. The 10Be nucleus is constructed by changing the parameters of
the effective NN interaction in the microscopic cluster model. The elastic and inelastic cross
sections for proton and 12C targets at E/A = 59.4 and 200 MeV were calculated with diagonal
and transition densities obtained with various interaction parameters in the MCC calculation.
The calculated elastic and inelastic cross sections well reproduce the experimental data.

In the construction of the 10Be nucleus, the strength of the spin–orbit potential (VLS) and
the NN exchange effect (M) are modified. The VLS parameter has a strong effect on the nu-
clear structure. The BE, nuclear size, expectation value, and transition strength are drastically
changed by the VLS value. The elastic and inelastic cross sections are also dependent on the VLS

parameter. Especially, the value has an important role in the inelastic cross section of the 2+
2

state. A difference in the IV component is slightly seen in the comparison of the proton and
12C targets. The M parameter also has an effect on the nuclear structure information. The cal-
culated cross sections are also affected by this difference. The multistep reaction effect is also
visible at E/A = 59.4 MeV because the transition strength from the 2+

2 state to the 2+
1 state

increases with the M parameter. On the other hand, we see a clear result without the multistep
reaction effect at E/A = 200 MeV. Comparing the results at 200 MeV, the effect of the VLS

parameter on the inelastic cross section of the 2+
2 state is found to be larger than that of the M

parameter. It is the VLS parameter that changes the inelastic cross section of the 2+
2 state most

drastically. Since the degree of development of the dineutron correlation is highly dependent
on the strength of the spin–orbit interaction, the structure of 10Be changes significantly and
the cross section also changes with the VLS parameter.

Next, we adjusted the VLS and M parameters simultaneously to reproduce the BE of the
ground state. We prepared different sets of these parameters and compared the obtained struc-
ture and the effect on the reaction. As a result, the property of the nuclear structure is found
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to strongly depend on the VLS parameter rather than the M parameter. The calculated cross
sections are also dependent on the VLS parameter. In addition, we prepared the pure dineutron
cluster wave function to investigate the dineutron component in the 10Be nucleus by adjust-
ing the VLS and M parameters. It is found that the 10Be nucleus with the weak VLS value has
a large overlap with the pure dineutron cluster model. Therefore, we again conclude that the
development and breaking of the dineutron correlation in 10Be are sensitive to changes in the
spin–orbit contribution, thereby resulting in drastic changes in the inelastic scattering for the
2+

2 state.
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