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Abstract

For branching processes with immigration, this study considers testing criticality
of offspring mean against sub (or super) close-to-criticality alternative hypotheses.
The effect of initial values, sample sizes on the test results and the effectiveness of
the local alternatives are discussed. First, fixed-sample-size criticality tests (FCT)
are advocated. Second, sequential criticality tests (SCT) using stopping times based
on observed Fisher information are explored. Third, to clarify the effectiveness of
the testing methods for the local hypotheses in the above two tests, comparisons are
made with the testing methods for non-local stationary hypotheses: for the FCT,
comparisons of power are made, and for the SCT, comparisons of the joint moments
of the stopping time and sequential test statistics are made. It is checked whether
the simulation results conform to the theoretical values computed from the local
model or from the stationary model.

The FCT in this study is analyzed in the same method as the Dickey-Fuller unit
root test in autoregressive models. Namely, the limiting test statistic is represented
as the ratio of a squared Bessel process (BESQ) and its integral, whose joint
density can be derived from the theory of Bessel bridge in Pitman and Yor (1982).
Rejection regions for the left-tailed and right-tailed criticality tests are determined
and asymptotic powers are computed. It can be seen that as the initial value
increases, the power of the test increases. The dimension of a BESQ process
determines the critical value of the FCT rejection region. For the estimated dimension,
the critical value is determined in the following way. Critical values for sufficiently
many dimensions are calculated, and that for the estimated dimension is determined
by linear interpolation. Numerical results show that this interpolation method works
well for left-sided critical tests with sample sizes above 100 and right-sided critical
tests with sample sizes above 50.

The test statistic for the SCT is found to be represented as a time-changed
Brownian motion with the local parameter as drift, indicating that the SCT is
actually a Z-test and that the initial value have no effect on the rejection region or
the power. On the other hand, the stopping time is terminated earlier as the initial
value is larger. The SCT also sets an upper bound on the stopping time based
on the observed Fisher information. One attempt in this study is that the upper
bound is placed at the 99th percentile point of the distribution of the stopping time
under the null hypothesis. This prevents the sample size of the sequential test from
becoming too large. If the stationary alternative hypothesis is true, the stopping
time tend to be terminated later. Therefore, a test is also performed to reject the
null hypothesis when the stopping time exceeds the 99 percentile point.

In the case of the FCT, as is well known, the test statistic is normally distributed
under the non-local stationary alternatives when the initial value can be neglected.
Thus, the powers of the non-local FCT are computed via Z-test, and compared to
those of the local FCTs. For the SCT, the joint moments can be computed via
the joint Laplace transform of the stopping time and the sequential test statistic.
The theoretical values computed from the local model fits well with the simulation
outcomes for offspring mean close to 1. It is possible to specify the appropriate
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range of offspring means when local alternative hypotheses are valid, and thereby
also the range of offspring means when non-local stationary alternative hypotheses
are effective.
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1 Introduction

Branching processes serve as a mathematical model of a population in which each
individual in generation n produces some random number of offspring in generation
n + 1. This study considers the simplest case in which the offspring of each individual
in each generation have the same fixed probability distribution that does not vary from
generation to generation, or from individual to individual. Branching processes can be
used to model not only population growth, but also cell kinetics, spreads of an infectious
disease, etc.

A central problem in the theory of branching processes is whether the population in
question is to explode or to extinct after some finite number of generations. It can be
shown that starting with one individual in generation zero, the expected size of generation
n equals to mn where m is the expected number of offspring of each individual. If m
< 1, the expected number of individuals goes rapidly to zero, which implies ultimate
extinction with probability 1 by Markov’s inequality. This study uses a branching model
with nonnegative immigration in each generation, so that the population does not become
extinct.

Since the behaviors of branching processes differ depending on whether the offspring
mean m is greater or less than 1. When m = 1 (m < 1, m > 1), the process is
called a critical (resp. subcritical, supercritical) process. This study considers tests for
the criticality of the offspring mean against the local alternatives including both super-
critical and sub-critical hypotheses.

This study is organized as follows. Section 2 describes the model and testing hypotheses,
and gives the estimator of offspring mean as a test statistic and estimators of other
parameters with preliminary asymptotic results.

I with respect to the fixed-sample-size criticality test (FCT) gives the asymptotic
distribution of the test statistic, and computes the power of the criticality test including
both sub and super critical local alternative hypotheses. Numerical calculations with
Mathematica and simulations with R are carried out to validate the asymptotic theory,
considering both zero and positive initial values.

II with respect to the sequential criticality test (SCT) adopts a stopping rule based
on the observed Fisher information of the offspring mean, and finds that the sequential
criticality test is a Z-test via the Dambis-Dubins-Schwarz (D.D.S.) time-changed theorem.
Furthermore, to prevent the stopping time from being terminated late, the second
stopping rule is defined by truncating the first stopping rule at the 99th quantile of
the distribution under the critical hypothesis. Numerical calculations and simulations
are conducted to show that the asymptotic theory with respect to the two stopping times
fits well with the simulation results. A combined sequential criticality test is proposed.

III validates the effectiveness of the testing methods used in the FCT and the
SCT. It is checked whether the simulation results conform to the theoretical values
computed from the local model or from the stationary model. It turns out that power
performances of the FCT in I are always better than that computed by a Z-test under
the stationary alternative hypotheses. As for SCT, the joint moments of the stopping
time and sequential test statistic are computed via the joint Laplace transform, and
the results show that when the offspring mean is close to 1, the theoretical values of
the moments calculated from the local model agree well with the simulation results..
This made it possible to identify the appropriate range of offspring means when local
alternative hypotheses are effective.
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2 Model Setting

A Branching process {Zn} with immigration {Yn} is given by the following;

Zn =

Zn−1∑
k=1

ξn,k + Yn (1)

where Zn represents the population size of generation n, ξn,k is the number of offspring
of the k-th individual in period n and Yn is the number of immigration in period n. Let
{ξn,k} and {Yn} be independent stochastic sequences consisting of independent random
variables, and let each sequence be independently and identically distributed with a non-
negative integer-valued distribution; that is, ξn,k ∼ i.i.d.(m,σ2)⊥⊥Yn ∼ i.i.d.(λ, σ2Y ).
The initial value of Z0 is a random variable which is independent of {ξn,k} and {Yn}.

Main purpose of this study is to test the criticality of offspring mean m. The
maximum likelihood estimator (M.L.E.) of m based on a given sample (Zn, Yn) of sample
size N is obtained as follows (see Lemma 14 in Appendix IV for derivation);

m̂N =

∑N
n=1(Zn − Yn)∑N

n=1 Zn−1

(2)

The left-tailed test examines the subcritical null hypothesis against the supercritical
alternative hypotheses;

H0 : m ≤ 1 vs H1 : m > 1.

The right-tailed test confirms the supercritical null hypothesis against the subcritical
alternative hypotheses;

H0 : m ≥ 1 vs H1 : m < 1.

Considering the situation where the offspring mean m approaches 1 as sample size N
increases, large, the statistical properties of the test with the MLE are investigated by
expressing m using a local parameter δ as:

m = 1 +
δ

N
. (3)

Thus, the hypotheses for the left-tailed sided test and the right-tailed are formulated
respectively as follows:

H0 :δ ≤ 0 vs H1 : δ > 0,

H0 :δ ≥ 0 vs H1 : δ < 0.

The test statistic in the criticality test is defined as

δ̂N ≡ N(m̂N − 1). (4)

The estimators of parameters σ2, λ and σ2Y are

s2N =
1

N

N∑
n=1

(Zn − Yn − m̂NZn−1)
2

Zn−1
1{Zn−1>0} (5)

λ̂N =Ȳ (N), σ2Y,N =
1

N

N∑
n=1

(Yn − Ȳ (N))2
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where Ȳ (N) is the sample mean of Y1, . . . , YN .

Part I

Non-sequential Criticality Tests
This part examines the fixed-sample-size criticality tests (FCT) .

In Section 3, the discrete-time branching process {Zn}n=1,2,... with immigration
{Yn}n=1,2,... in (1) with close-to-one offspring mean is first approximated to the continuous-
time squared Bessel (BESQ) process qt with drift δ for t ∈ [0, 1], and the limit of test
statistic δ̂N in (4) is found to be the ratio of q1 and integral

∫ 1
0 qs ds. Combining the

conditional Laplace transform E[exp(−γ
∫ t
0 qsds)|qt], called Pitman and Yor’s (1982)

Bessel bridge, and the transition density of qt, the joint density of (q1,
∫ 1
0 qs ds) can be

derived to obtain the asymptotic distribution of δ̂N .
In Section 4, the theoretical values of the asymptotic distribution of δ̂N and the

asymptotic power of the FCT are calculated using Mathematica and shown to be consistent
with the simulation results. The critical value of the rejection region of the FCT is
determined by the initial value and dimension of the BESQ process. The asymptotic test
powers are calculated in the following steps. First, the critical values for a sufficiently
large number of combinations of initial values and dimensions are calculated in advance.
Second, the critical value corresponding to the initial value and estimated dimension
obtained from the data is determined by linear interpolation among those values calculated
in the first step. Numerical results show that this interpolation method performs successfully
for left-sided critical tests with sample sizes greater than 100 and for right-sided critical
tests with sample sizes greater than 50. The initial value and sample size affect the power
of the FCT, i.e. the power increases as the initial value increases and as the sample size
N increases.

3 Limiting approximations of test statistic

Let {Fn} = {σ(Z1, Z2, ..., Zn, Y1, Y2, ..., Yn)}, then

E[Zn|Fn−1] = mZn−1 + λ.

Define εn ≡ Zn − E[Zn|Fn−1]− (Yn − λ), so that

εn = Zn − Yn −mZn−1 =

Zn−1∑
k=1

(ξ
(n)
k −m)

which implies εn is a martingale difference with respect to Fn;

E[εn|Fn−1] =

Zn−1∑
k=1

E[ξ
(n)
k −m] = 0.

The following Lemma 1 provides the fundamental functional central limit theorem for the
diffusion approximation of the branching process with immigration derived in Lemma 2.
Let D[0, 1] be the set of continuous functions with left limits (càdlàg functions) on [0, 1]
and “⇒” denote weak convergence. See Billingsley (1999) for the weak convergence on
D[0, 1].
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Lemma 1. (Martingale difference and Brownian motion) Assuming that offspring ξ(n)k

has the fourth moment. Then, as N → ∞
⌊Nt⌋∑
n=1

εn
σ
√
NZn−1

⇒Wt on D[0, 1]; (6)

where Wt is a Brownian motion for 0 ≤ t ≤ 1.

Proof. This result holds due to Theorem 15: fundamental functional central limit theorem,
since the second moment of εn is E[ε2n|Fn−1] = σ2Zn−1.

Assuming that initial value Z0/N → X0 as N → ∞, the following Lemma 2 shows
that the branching process with immigration can be approximated to a Cox-Ingersoll-
Ross (CIR) process with initial value X0. The existence of such an X0 is not plausible,
but since N is fixed in empirical analysis or simulation, there is no choice but to set
X0 = Z0/N . In doing so, comparisons of the simulations with the theoretical results
derived from the following proposition show that the influence of initial values is correctly
illustrated. See Definition 16 for the CIR process.

Lemma 2. (Approximation of branching process) Assume that Z0/N → X0 as N → ∞
with L2 random variable X0. For t ∈ [0, 1], let X(N)

t ≡ Z⌊Nt⌋/N and Xt be a CIR process
as follows:

Xt = X0 + σ

∫ t

0

√
XsdWs + δ

∫ t

0
Xsds+ λt.

Then, as N → ∞, on D[0, 1],(
X

(N)
t ,

∑⌊Nt⌋
n=1 (Zn − Yn − Zn−1)

N
,

∑⌊Nt⌋
n=1 Zn−1

N2

)
(7)

⇒
(
Xt, Xt −X0 − λt,

∫ t

0
Xsds

)
(8)

where Wt is a Brownian motion constructed in (6).

Proof. Using a telescoping sum and Lemma 1,
Z⌊Nt⌋

N
=
Z0

N
+

∑⌊Nt⌋
n=1 Zn − Yn − Zn−1

N
+

∑⌊Nt⌋
n=1 Yn
N

=
Z0

N
+

∑⌊Nt⌋
n=1 Zn − Yn −mZn−1

N
+ (m− 1)

∑⌊Nt⌋
n=1 Zn−1

N
+

∑⌊Nt⌋
n=1 Yn
N

=
Z0

N
+

∑⌊Nt⌋
n=1

∑Zn−1

k=1 (ξn,k −m)

N
++δ

∑⌊Nt⌋
n=1 Zn−1

N2
+

∑⌊Nt⌋
n=1 Yn
N

=
Z0

N
+ σ

⌊Nt⌋∑
n=1

√
Zn−1

N

εn
σ
√
NZn−1

+ δ

∑⌊Nt⌋
n=1 Zn−1

N2
+

∑⌊Nt⌋
n=1 Yn
N

⇒ Xt = X0 + σ

∫ t

0

√
XsdWs + δ

∫ t

0
Xsds+ λt.

The above approximation includes(∑⌊Nt⌋
n=1 (Zn − Yn − Zn−1)

N
,

∑⌊Nt⌋
n=1 Zn−1

N2

)

⇒
(
σ

∫ t

0

√
XsdWs + δ

∫ t

0
Xsds,

∫ t

0
Xsds

)
=

(
Xt −X0 − λt,

∫ t

0
Xsds

)
.
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Furthermore, the CIR process is transformed into a squared Bessel process with
drift. The squared Bessel process with drift is a Girsanov transformation of the ordinary
squared Bessel (BESQ) process. See Definition Definition 17 for the BESQ process.
Thus, qt ≡ 4Xt/σ

2 is a 4λ/σ2-dimensional squared Bessel process with drift δ;

qt =
4X0

σ2
+ 2

∫ t

0

√
4Xs

σ2
dWs + δ

∫ t

0

4Xs

σ2
ds+

4λ

σ2
t

= q0 + 2

∫ t

0

√
qsdWs + δ

∫ t

0
qsds+

4λ

σ2
t (9)

where q0 ≡ 4X0/σ
2. Under the null hypothesis,

qt = q0 + 2

∫ t

0

√
qsdWs + (4λ/σ2)t

which is denoted as qt ∼ BESQd
q0 . The testing hypotheses are reduced to the followings

in continuous time:

UnderP 0 :dqt = 2
√
qtdWt + 4λ/σ2 dt, (10)

UnderP δ :dqt = 2
√
qtdWt + (4λ/σ2 + δqt)dt. (11)

3.1 Asymptotic distribution of test statistic

The estimator of the local parameter δ is used as a test statistic. It can be seen that
the test statistic is expressed as the ratio of the squared Bessel process with drift and its
integral.

Lemma 2 implies that as N → ∞, the test statistic δ̂N in (4) has the following
limiting approximation;

δ̂N = N(m̂N − 1)

=

∑N
n=1(Zn − Yn − Zn−1)∑N

n=1 Zn−1

⇒ X1 −X0 − λ∫ 1
0 Xsds

=
σ
∫ 1
0

√
XsdWs∫ 1

0 Xsds
+ δ. (12)

Then using qt = 4Xt/σ
2, the ratio representation is obtained;

δ̂N ⇒ q1 − q0 − d∫ 1
0 qsds

(13)

where d = 4λ/σ2 is the dimension of qt.
Thus, once the joint density of (qt,

∫ t
0 qsds) with respect to the BESQ process qt with

drift δ and initial value q0 is obtained, the limiting CDF of the test statistic δ̂N is derived
as follows:

F (z) = P (
q1 − q0 − d∫ 1

0 qsds
≤ z)

=


∫ q0+d
0

∫ (y−q0−d)/z
0 f

q1,
∫ 1
0 qsds

(y, v) dvdy z < 0∫ q0+d
0 fq1(y) dy z = 0

1−
∫∞
q0+d

∫ (y−q0−d)/z
0 f

q1,
∫ 1
0 qsds

(y, v) dvdy z > 0

(14)

where fq1(y) is the PDF of q1, given in (17).
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3.2 Joint density of (qt,
∫ t

0
qsds)

The following is function is used to derive the joint density of (qt,
∫ t
0 qsds) under H0 :

δ = 0;

isy(ν, t, r, z, x) = L −1
γ

( √
2γ

sinh t
√
2γ

exp

{
−r
√
2γ − z

√
2γ cosh t

√
2γ

sinh t
√
2γ

}
Iν

(
2x

√
2γ

sinh t
√
2γ

))
(y)

where L −1
γ

(∫∞
0 e−γyf(y)dy

)
(y) = f(y) is the inverse Laplace transform, ν = d/2− 1 >

−1/2 is the index of BESQ process with dimension d > 0, and Iv is the modified Bessel
function defined as

Iν(x) =

∞∑
k=0

1

k!Γ (k + ν + 1)

(x
2

)2k+ν
. (15)

For the definition of the is, see Definition 19 in Appendix and Borodin & Selminen
(2002)[6].

Theorem 3. The joint density of (qt,
∫ t
0 qsds) with respect to BESQd

x with positive initial
value x > 0 under the null hypothesis has the following representation with ν = d/2− 1;

fqt,
∫ t
0 qsds

(y, v) =
1

2

(y
x

)ν/2
isv(ν, t, 0,

x+ y

2
,

√
xy

2
). (16)

=
1

2
(
y

x
)ν/22ν

∞∑
l=0

∞∑
k=0

∞∑
j=0

(
√
xy/2)ν+2l(−(x+ y)/2)k
√
2πj!k!l!Γ (ν + l + 1)

× exp(−((ν + 2l + 1 + k)t+ (x+ y)/2 + kt+ 2jt)2/4v)Γ (ν + 2l + 1 + k + j)

v1+(ν+2l+1+k)/2Γ (ν + 2l + 1 + k)

×D2+ν+2l+k

(
(ν + 2l + 1 + k)t+ (x+ y)/2 + kt+ 2jt√

v

)
Proof. According to Pitman&Yor(1982) [15], BESQ process qt with initial value x > 0
and order v > −1/2 has a density in y equal to

fqt(y) = qdt (x, y) =
1

2t

(y
x

)ν/2
exp

(
−x+ y

2t

)
Iν

(√
xy

t

)
, t > 0 (17)

Pitman&Yor(1982) [15] also gives the Bessel bridge of BESQ process, which is the
conditional Laplace transformation of

∫ t
0 qsds given qt;

Ed
x[exp

(
−b

2

2

∫ t

0
qsds

)
|qt = y] (18)

=
bt

sinh bt
exp

{
x+ y

2t
(1− bt coth bt)

}
Iν

( √
xyb

sinh bt

)
/Iν

(√
xy

t

)
. (19)

Letting b2/2 = γ in the the Bessel bridge and multiplying it by qdt (x, y), the expression
of the Laplace transformation of the joint density fqt,

∫ t
0 qsds

(y, v) is obtained;

Ed
x[exp(−γ

∫ t

0
qsds)|qt = y] · fqt(y)

=

∫ ∞

0
e−γvf∫ t

0 qsds|qt(v|y)fqt(y) dv (20)

=

∫ ∞

0
e−γvfqt,

∫ t
0 qsds

(y, v) dv

=
1

2

(y
x

)ν/2 √
2γ

sinh
√
2γt

exp

(
−x+ y

2

√
2γ coth

√
2γt

)
Iν

( √
xy

√
2γ

sinh
√
2γt

)
(21)
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Inverting this Laplace transform with respect to γ yields the first expression in (16), and
the last expression is obtained from the formulas in Definition 19.

For BESQ process with initial value x = 0, the joint density fqt,
∫ t
0 qsds

(y, v) is
represented via the following es function;

esy(µ, ν, t, x, z) = L −1
γ

(
(2γ)µ/2

sinhν t
√
2γ

exp(−x
√

2γ − z
√
2γ coth t

√
2γ)

)
(y)

For details of es function, see Definition 19 and Borodin & Selminen (2002) [6].

Theorem 4. Joint density of (qt,
∫ t
0 qsds) with respect to BESQd

x with initial value x = 0
under the null hypothesis has the following expression with ν = d/2− 1;

fqt,
∫ t
0 qsds

(y, v) =
yν2−(ν+1)

Γ (ν + 1)
esv(ν + 1, ν + 1, t, 0, y/2) (22)

=
yν

Γ (ν + 1)

∞∑
k=0

∞∑
j=0

(−y)k exp(−((ν + 1 + k)t+ y/2 + kt+ 2jt)2/4v)Γ (ν + 1 + k + j)√
2πj!k!v1+(ν+1+k)/2Γ (ν + 1 + k)

=×D2+ν+k

(
(ν + 1 + k)t+ y/2 + kt+ 2jt√

v

)
.

Proof. The modified Bessel function (15) reduces to the following;

lim
x→0

Iν(x) = lim
x→0

(x
2

)ν 1

Γ (ν + 1)

so that the density of qt in (17) reduces to

qdt (0, y) =
yν(2t)−(ν+1)

Γ (ν + 1)
exp(− y

2t
).

The Laplace transformation of the joint density in (16) reduces to the following when
x = 0;

∫ ∞

0
e−γvf∫ t

0 qsds|qt(v|y)fqt(y)dv

=
2−

ν
2
− 1

2 yνγ(ν+1)/2 exp
(
−

√
γy√

2 coth
√
2
√
γt

)
Γ (ν+1)sinhν+1

√
2
√
γt

=
yν(2γ)(ν+1)/2

Γ (ν + 1) sinhν+1 t
√
2γ

exp

(
−

y
√
γ

√
2 coth t

√
2γ

)
.

The first expression in (22) follows by inverting this Laplace transform with respect to
γ, and the last expression is obtained from the formulas in Definition 19.

As it has been shown in (11), the BESQ process has a drift δ under the alternative
hypothesis. Girsanov transform theorem is used to eliminate the drift and thus obtain
the joint density of (qt,

∫ t
0 qsds) under the alternative hypothesis. Details of Girsanov

transform theorem is given in Theorem 20.

Theorem 5. Joint density of (qt,
∫ t
0 qsds) with respect to BESQd

x under the alternative
hypothesis has the following relationship with that under the null hypothesis;

f δ
qt,

∫ t
0 qsds

(y, v) = exp

{
δ

4
(y − q0 − d)− δ2

8
v

}
· f0

qt,
∫ t
0 qsds

(y, v). (23)
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Proof. Letting Wt to be a Brownian motion under P 0, define a Girsanov transformation
dW̃t = dWt − δ

2

√
qtdt so that W̃t is a Brownian motion under P δ which has the Radon–

Nikodym derivative with respect to P 0;

Lt ≡
dP δ

dP 0
|Ft = exp

(
δ

2

∫ t

0

√
qsdWs −

δ2

8

∫ t

0
qsds

)
= exp

(
δ

4
(y − q0 − d)− δ2

8
v

)
.

4 Test power and simulation results

4.1 asymptotic CDFs and simulations of the test statistic

The asymptotic CDFs of the test statistic δ̂N in (14) under H0 with x > 0, H0 with
x = 0, and H1 can be computed numerically from (16)(22) and (23) respectively.

Numerical results in Figure 1, Figure 2 and Figure 3 are calculated with parameter
σ2 = 2, λ = 3, the initial value of CIR process X0 = 0, 1 respectively. It can be seen that
they conform to the simulation outcomes under both the null hypothesis H0 : δ = 0, the
supercritical alternative hypothesis H1 : δ = −2 and supercritical alternative hypothesis
H1 : δ = 2.

Simulations are conducted with replication times 10000, generation size N=100,
offsprings ξn,k ∼ i.i.d.Negative Binomial(k; p) and immigrations Yn ∼ i.i.d.Poisson(λ).
Note that the parameter (k, p) of Negative Binomial distribution correspond to (m,σ2)
through the relationship p = m/σ2 and k = mp/(1− p).

Figure 1: asymptotic CDFs and simulations of δ̂N with N=100, δ = 0

X0 = 0 X0 = 1

Figure 2: asymptotic CDFs and simulations of δ̂N with N=100, δ = −2

X0 = 0 X0 = 1
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Figure 3: asymptotic CDFs and simulations of δ̂N with N=100, δ = 2

X0 = 0

4.2 Power of criticality tests

From (16) and (22), it can be seen that the asymptotic distribution of test statistic δ̂N
under the null hypothesis depends only on the initial value x and dimension d of the
BESQ process.

For x ≥ 0, d ≥ 0, the critical value of the reject region for left tailed test δ∗ and δ∗

for right tailed test at significance level α are defined as

Left-tailed FCT: P 0
{
δ̂N < δ∗(d, x)

}
= α, (24)

Right-tailed FCT: P 0
{
δ̂N > δ∗(d, x)

}
= α.

The asymptotic power of each FCT is the probability of rejecting the null hypothesis
when the alternative hypothesis is true and can be computed from the theoretical
computations of the CDFs.

Left-tailed FCT: P δ
{
δ̂N < δ∗

}
,

Right-tailed FCT: P δ
{
δ̂N > δ∗

}
.

(d, x) is determined on (λ, σ2) by the relationship x = 4X0/σ
2, d = 4λ/σ2, where the

initial value X0 of CIR process Xt is set as X0 = Z0/N and considered to be a known
constant. Figure 4 and Figure 5 are the theoretical and simulation results of asymptotic
power at significance level α = 0.05, with parameters λ = 3, σ2 = 2 (d = 6) and
X0 = 0, 1 (x = 0, 2) respectively. It turns out that the simulations conform to the
asymptotic powers for both left-tailed and right-tailed FCT, and the initial value affects
the power in such a way that the power increases as the initial value increases.
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Figure 4: Effect of initial value for left tailed test, with α = 0.05 d = 6, σ2 = 2, N = 50

Figure 5: Effect of initial value for left tailed test, with α = 0.05 d = 6, σ2 = 2N = 30

For a fixed X0, it has been explained that (d, x) is determined on (λ, σ2). Therefore
the asymptotic distribution of δ̂N is actually dependent on the pair (λ, σ2) under H0 and
so is the critical value of the reject region. The difficulty in empirical analysis is that
λ and σ2 are usually unknown. This study provides a linear interpolation solution via
using the estimator d̂N = 4λ̂N/s

2
N and σ̂2N = s2N at (5) in the following way. First, the

critical values for sufficiently many pairs of (d, 4X0/σ
2) with a fixed X0 are calculated

in advance. Second, the critical value corresponding to (d̂N , 4X0/s
2
N ) is determined by

linear interpolation among those values calculated in the first step.
For simplicity, the work below considers x = 4X0/σ

2 to be a known constant. Figure 6
and Figure 7 illustrate the critical values corresponding to a sequence of d starting from
0.1 to 10 in steps of 0.1 at significance level α = 0.05, with σ2 = 2 and X0 = 0, 1
respectively.
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Figure 6: Critical values for left tailed test with α = 5%, σ2 = 2

Figure 7: Critical values for right tailed test with α = 5%, σ2 = 2

Table 1: Critical values at α = 5%, σ2 = 2
X0 = 0 X0 = 1

d left side right side left side right side
0.5 -31.44715345 1.320331553 -6.289399114 3.197180412
1 -16.0782248 1.296952928 -5.359260793 2.57091506
1.5 -10.95319619 1.271413653 -4.693935738 2.241002715
2 -8.389253303 1.245477305 -4.19434231 2.027988701
2.5 -6.849814339 1.21998296 -3.805456556 1.874612134
3 -5.82265827 1.195320733 -3.494157512 1.756639538
3.5 -5.088303624 1.171650416 -3.239301313 1.661642672
4 -4.537000737 1.149006693 -3.026718935 1.582836035
4.5 -4.107733937 1.127358214 -2.846575108 1.515866565
5 -3.763867919 1.106688336 -2.691822707 1.457923658
5.5 -3.482081135 1.086815601 -2.557308038 1.406993444
6 -3.246808719 1.067689923 -2.439195698 1.361725024
6.5 -3.047279313 1.049233803 -2.334539508 1.321055693
7 -2.875772728 1.031327844 -2.24108737 1.284185846
7.5 -2.726679282 1.01384849 -2.157040181 1.250488304
8 -2.595768712 0.996683356 -2.080977064 1.219455005
8.5 -2.479819484 0.979706422 -2.011762285 1.190666883
9 -2.376330796 0.962796169 -1.948457502 1.16376197
9.5 -2.283327774 0.945825821 -1.890298884 1.138405365
10 -2.199235442 0.928670154 -1.836640777 1.114391217
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Since the critical value is monotonic with respect to d, the estimator d̂N is used to
determine the corresponding critical value δ∗(d̂N ) and δ∗(d̂N ) by linear interpolation,
and thus the rejection regions of FCT are determined as follows;

Left-tailed FCT: Reject H0 when δ̂N < δ∗(d̂N ),

Right-tailed FCT: Reject H0 when δ̂N > δ∗(d̂N ).

The following figures are the numerical results of the asymptotic powers and simulations
of the linear interpolation method.

Figure 8: Power of left tailed test by linear interpolation method, with α = 5%, d = 6,
X0 = 0

Figure 9: Power of left tailed test by linear interpolation method, with α = 5%, d = 6,
X0 = 1
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Table 2: Power of the left tailed test with α = 5%, d = 6, N = 100
X0 = 0 X0 = 1

δ asymptotic
power

simulation linear
interpolation

asymptotic
power

simulation linear
interpolation

-1 13.76% 14.12% 15.87% 18.21% 17.75% 18.55%
-2 29.75% 30.72% 32.41% 43.59% 44.63% 44.82%
-3 51.27% 50.52% 51.82% 72.18% 72.36% 71.83%
-4 72.44% 72.97% 72.32% 90.90% 91.02% 90.38%
-5 87.67% 87.70% 86.25% 98.09% 98.13% 97.41%
-6 95.70% 95.76% 93.99% 99.74% 99.61% 99.30%
-7 98.83% 98.74% 97.77% 99.98% 99.98% 99.80%
-8 99.75% 99.74% 99.03% 100.00% 99.99% 99.77%
-9 99.96% 99.94% 99.58% 100.00% 100.00% 99.76%
-10 99.99% 100.00% 99.68% 99.99% 100.00% 99.75%

Figure 10: Power of right tailed test by linear interpolation method, with α = 5%, d = 6,
X0 = 0

Figure 11: Power of right tailed test by linear interpolation method, with α = 5%, d = 6,
X0 = 1
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Table 3: Power of the right-tailed tests with α = 5%, d = 6, N = 100
X0 = 0 X0 = 1

δ asymptotic
power

simulation linear
interpolation

asymptotic
power

simulation linear
interpolation

0.5 11.99% 13.89% 14.04% 16.43% 16.22% 16.34%
1 26.91% 27.19% 27.48% 39.43% 39.10% 39.11%
1.5 47.62% 48.18% 48.53% 66.52% 66.70% 67.01%
2 68.59% 69.87% 70.24% 86.08% 87.02% 87.23%
2.5 84.12% 84.93% 85.01% 95.17% 95.93% 95.85%
3 92.86% 93.53% 93.56% 98.77% 99.06% 98.94%
3.5 96.78% 97.75% 97.66%
4 98.28% 99.27% 99.18%

As it is shown in Figure 8~ Figure 11, for all m, the power of FCT increases as
the sample size N increases. The linear interpolation method works well under the
subcritical alternative hypothesis and under the supercritical alternative hypothesis,
especially in the neighborhood of m = 1. More specifically, the powers calculated by
the linear interpolation fit with the theoretical results over the entire range of m under
the subcritical alternative hypothesis H1 : δ < 0 with sample size N more than 100,
or under the supercritical alternative hypothesis H1 : δ > 0 with sample size N more
than 50. As for the circumstances when sample size N less than 50 for left-tailed test,
or when sample size N less than 30 for right-tailed tests, the powers calculated by the
linear interpolation do not fit with the theoretical values when δ drift away from 0, but it
still fits the theoretical results well at m ∈ (0.95, 1.05), which is sufficient for the needs of
criticality tests. Otherwise a non-local stationary alternative hypothesis should be used
in such cases when m < 0.95.

If the initial value is not negligible, the figures indicate that the linear interpolation
method is valid in either the right-tailed or left-tailed test not only for local parameters
close to 1, but also for non-local parameters away from 1.

5 Conclusions

This part succeeds in deriving the asymptotic distribution of the test statistics δ̂N via
the joint density of BESQ process qt and its integral

∫ t
0 qs ds. Numerical calculations are

conducted via Mathematica and found to be consistent with the simulation outcomes.
In addition, a linear interpolation method is implemented to calculate the asymptotic
power of the fixed-sample-size criticality tests. The effectiveness of the interpolation
method is discussed through numerical results with respect to the influence of the initial
value and the sample size. Especially，when the initial value is not negligible, the linear
interpolation method is effective in either the right-tailed or left-tailed test.

Part II

Sequential Criticality Tests with Stopping
Time
This part explores the sequential criticality tests (SCT) using a stopping time τc based
on observed Fisher information of m.
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In Section 6, the sequential test statistic δ̂τc for the SCT is found to be represented
as a time-changed Brownian motion B1 with the local parameter δ as drift, therefore the
SCT is actually a Z-test and the initial value has no effect on the rejection region or the
power. On the other hand, the stopping time τc is terminated earlier as the initial value
is larger.

The asymptotic distribution of τc is right-skewed, and tends to be terminated later
under the subcritical alternative hypothesis H1 : δ < 0 than under the (super) critical
hypothesis. Therefore Section 8 sets an upper bound πc at the 99th percentile point
of the distribution of stopping time τc under the null hypothesis. Further, one attempt
in this study is to propose a combined sequential criticality test using the sequential
test statistics δ̂τc and estimator π̂c of πc, where the test procedure is to reject the null
hypothesis immediately after the stopping time exceeds π̂c. This prevents the stopping
time τc from being terminated late so that sample size of the SCT does not become too
large.

Numerical calculations and simulations are conducted to show the asymptotic distributions
of τc, τ̂c and π̂c.

6 Stopping times based on the observed Fisher information

For any fixed c > 0, define stopping times τc and τ̂c based on the observed Fisher
information In =

∑N
n=1 Zn−1/σ

2 of m derived at Lemma 14 in Appendix;

τc = inf

{
N > 1 :

N∑
n=1

Zn−1/σ
2 ≥ c

}
; τ̂c = inf

{
N > 1 :

N∑
n=1

Zn−1/s
2
N ≥ c

}
. (25)

where s2N is the estimator of σ2 given in (5).

Lemma 6. s2N is the consistent estimator of σ2, i.e.

S2
N →p σ2 as N → ∞.

Proof. Use the notation εn = Zn−Yn−mZn−1 =
∑Zn−1

k=1 (ξ
(n)
k −m) in Section 3, so that

s2N − σ2 =
1

N

N∑
n=1

(Zn − Yn − m̂NZn−1)
2

Zn−1
1{Zn−1>0} − σ2

=
1

N

N∑
n=1

(εn + (m− m̂N )Zn−1)
2

Zn−1
1{Zn−1>0} − σ2

=
1

N

N∑
n=1

(
ε2n
Zn−1

− σ2)1{Zn−1>0} + 2(m− m̂N )
N∑

n=1

√
Zn−1

N

εn√
NZn−1

1{Zn−1>0}

+N(m− m̂N )2
N∑

n=1

Zn−1

N2
1{Zn−1>0}

The convergence of the second and third term can be concluded from Lemma 2, it remains
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to investigate that of the first term;

P

{
| 1
N

N∑
n=1

(
ε2n
Zn−1

− σ2
)
1{Zn−1>0}| > ϵ

}

≤E

( N∑
n=1

(
ε2n
Zn−1

− σ2
))2

/N2ϵ2


≤

N∑
n=1

E

[(
ε2n
Zn−1

− σ2
)2

/N2ϵ2

]
→ 0, N → ∞.

The above result yields from E[ε2n|Fn−1] = σ2Zn−1.

In sequential analysis, it is assumed that that initial value Z0/
√
c → X0 as c → ∞.

Since c is fixed in empirical analysis or simulation, X0 is actually set as X0 = Z0/
√
c.

The following Lemma 7 approximate the branching process with immigration to the
Cox-Ingersoll-Ross (CIR) process with initial value X0.

Lemma 7. Assume that Z0/
√
c → X0 as c → ∞ with L2 random variable X0. For

t ∈ [0,∞), let X(c)
t ≡ Z⌊√ct⌋/

√
c and Xt to be a CIR process as follows;

Xt = X0 + σ

∫ t

0

√
XsdWs + δ

∫ t

0
Xsds+ λt (26)

Then, as c→ ∞, on D[0,∞),X(c)
t ,

∑⌊√ct⌋
n=1 (Zn − Yn − Zn−1)√

c
,

∑⌊√ct⌋
n=1 Zn−1

c


⇒
(
Xt, σ

∫ t

0

√
XsdWs + δ

∫ t

0
Xsds,

∫ t

0
Xsds

)
where “⇒” stands for weak convergence, W is a standard Brownian motion.

Proof. This is an extension of Lemma 2 in I, and can be proved in the same way.

Lemma 6 and Lemma 7 implies that τc and τ̂c have the following asymptotic distribution
as c→ ∞, denoted as U1;

τc/
√
c⇒ U1 ≡

{
t :

∫ t

0

Xs

σ2
ds = 1

}
. (27)

For t ∈ [0,∞), let qt ≡ 4Xt/σ
2 so that qt is the squared Bessel process (BESQ) with

drift as in (9). Therefore, U1 can be represented as

U1 =

{
t :

∫ t

0

qs
4
ds = 1

}
.

The distribution of
∫ t
0 qs ds with respect to the ordinary BESQd

x is studied in Pitman&Yor(1982)
[15] and is represented as the following ec function;

f∫ t
0 qsds

(v) = L −1
γ

(
cosh−d/2

√
2γt exp(−x

√
2γ tanh

√
2γt

2
)

)
= ecv(0, ν + 1, t, 0, x/2).
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where

ecy(µ, ν, t, x, z) = L −1
γ

(
(2γ)µ/2

coshν t
√
2γ

exp(−x
√

2γ − z
√
2γ tanh t

√
2γ)

)
.

For details of the ec function, see Definition 19 in Appendix and Borodin & Selminen
(2002) [6].

Therefore, the distribution of U1 under the null hypothesis H0 : δ = 0 is derived.

Theorem 8. The CDF of U1 under the null hypothesis is

P{U1 ≥ t} = P{
∫ t

0
Xs/σ

2 ds ≤ 1} = P{
∫ t

0
qs ds ≤ 4}. (28)

6.1 asymptotic distribution of τc/
√
c

Figure 12 are the numerical results and simulations outcomes of the distributions of U1

computed from (28), with δ = 0, σ2 = 5, d = 6, X0 = 0, 1 respectively. Simulations
are conducted with replication times 10000 and c = 5002. Figure 13 show that τc is
terminated earlier as the initial value is larger.

Figure 12: Distribution of U1 under H0 : δ = 0 with σ2 = 5, d = 6 c = 5002
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Figure 13: CDF of U1 under H0 : δ = 0 with σ2 = 5, d = 6 c = 5002

7 Joint asymptotic distribution of sequential test statistic
and stopping time

Define a martingale Mt together with its quadratic variation as follows;

Mt ≡
∫ t

0

√
Xs

σ2
dWs, ⟨M⟩t =

∫ t

0

Xs

σ2
ds. (29)

Extend the stopping time U1 to stopping times Uv for v ≥ 0;

Uv ≡ inf {t ≥ 0 : ⟨M⟩t = v} .

According to Theorem 23: Dambis-Dubins-Schwarz’s Time-change Theorem, Bv ≡MUv

is a time-changed Brownian motion and ⟨M⟩Uv
= ⟨B⟩v = v.

Lemma 9. Letting ρ0 = X0/σ
2, ρv = XUv/σ

2 is a Bessel (BES) process with drift δ
and dimension 2λ/σ2 + 1(= d/2 + 1);

ρv = ρ0 +Bv + δv +
d

4

∫ v

0

1

ρs
ds.

Furthermore, Uv has the following representation;

Uv =

∫ v

0

1

ρs
ds. (30)

Proof. The definition of Uv implies v =
∫ Uv

0 Xs/σ
2 ds, and dv/du = Xu/σ

2. Then the
inverse function theorem, du/dv = 1/(XUv/σ

2) implies (30). Dividing both sides of (26)
by σ2 and substituting t with Uv yield the result;

ρv = XUv/σ
2 = X0/σ

2 +

∫ Uv

0

√
Xs

σ2
dWs + δ

∫ Uv

0

Xs

σ2
ds+

λ

σ2
Uv

= ρ0 +MUv + δ ⟨M⟩Uv
+
d

4
Uv

= ρ0 +Bv + δv +
d

4
Uv

= ρ0 +Bv + δv +
d

4

∫ v

0

1

ρs
ds. (31)
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Theorem 10. The sequential test statistics δ̂τc and stopping time τc/
√
c have the following

joint limit as c→ ∞.
(δ̂τc , τc/

√
c) ⇒ (B1 + δ, U1). (32)

Proof. The limit of τc/
√
c in (27) and Lemma 7 imply that

δ̂τc ⇒
σ
∫ U1

0

√
Xs dWs∫ U1

0 Xs ds
+ δ

=

∫ U1

0

√
Xs/σ2 dWs∫ U1

0 Xs/σ2 ds
+ δ

=
MU1

⟨M⟩U1

+ δ

= B1 + δ. (33)

Therefore the test procedure of left sided SCT with rejection rate 5% is to reject H0

when δ̂τc < −1.645, and that of the right sided SCT is to reject H0 when δ̂τc > 1.645.

7.1 Joint density of (B1 + δ, U1)

Lemma 11. Joint density of (ρv, Uv) under the null hypothesis is derived from the
following relationship with that of (qt,

∫ t
0 qsds);

fρv ,Uv(y, t) = 16y fqt,
∫ t
0 qsds

(4y, 4v). (34)

Proof. Let u = Uv so that v =
∫ u
0 Xs/σ

2 ds =
∫ u
0 qs/4 ds, and dv = qu/4du. Then the

Laplace transform of the joint CDF is∫ ∞

0
e−γvP 0 {ρv ≤ y, Uv ≤ t} dv = E0

[∫ ∞

0
e−γv1{ρv≤y,Uv≤t} dv

]
= E0

[∫ ∞

0
e−γ

∫ u
0 qs/4 ds1{qu/4≤y,u≤t} qu/4 du

]
=

∫ t

0
E
[
e−γ/4

∫ u
0 qsds1{qu≤4y}qu/4

]
du.

Take the derivative with respect to t by both sides;

∫ ∞

0
e−γv ∂

∂t
P 0 {ρv ≤ y, Uv ≤ t} dv = E0

[
e−γ/4

∫ t
0 qsds1{qt≤4y}qt/4

]
=

∫ 4y

0

∫ v

0
e−γv/4fqt,

∫ t
0 qsds

(4y, v)y dvdy

and take the the derivative with respect to y by both sides;∫ ∞

0
e−γv ∂

∂t∂y
P 0 {ρv ≤ y, Uv ≤ t} dv =

∫ ∞

0
e−γv/4fqt,

∫ t
0 qsds

(4y, v)4y dv

The result follows by inverting this Laplace transform with respect to v.

22



Since ρv has the expression of ρv = ρ0 + Bv + d
4Uv under the null hypothesis,

fBv ,Uv(z, t) is derived as

fBv ,Uv(z, t) = fρv ,Uv(ρ0 + z +
d

4
t, t) (35)

where z satisfies z ≥ −ρ0 − d
4 t.

Theorem 12. Like that in the non-sequential theory, the drift δ can be removed via the
Girsanov transform, so that the joint density of (ρv, Uv) under alternative hypothesis is

f δB1+δ,U1
(z, t) = exp

(
δz − δ2

2
v

)
fB1,U1(z, t). (36)

Proof. Under Alternative hypothesis, ρv has the expression (31): ρv = X0/σ
2 + B̃v +

δv + d
4Uv. Suppose Bv is Brownian motion under P 0, define a Girsanov transformation

dB̃v = dBv − δdv so that B̃v is also Brownian motion under P δ. Then ρv has the
expression of ρv = X0/σ

2+Bv+
d
4Uv under the null hypothesis and the Radon–Nikodym

derivative is represented as

Lv ≡ dP δ

dP 0
|Fv = exp

(∫ v

0
δ dBs −

δ2

2

∫ v

0
d ⟨B⟩s

)
= exp

(
δz − δ2

2
v

)

Therefore, the marginal distribution of U1 is obtain from fB1,U1(z, t);

fU1(t) =

∫ ∞

−∞
fB1,U1(z, t) dz.

8 Stopping time with upper bound

There is a possibility that the estimator s2N underestimates σ2 when N is small, so that
the sampling procedure prematurely stops before sufficient data is collected. To prevent
such cases, a minimum sample size N0 should be set. On the other hand, τc or τ̂c in
(25)tend to be terminated later when the subcritical alternative hypothesis H1 : δ < 0 is
true. This study proposes the following combined sequential tests with the pair (τc, δ̂τc)
to prevent τc from being terminated too late. That is, if the dimension d = 4λ/σ2 and
the initial value x = 4X0/σ

2 of the BESQ process and are known, the upper bound πc
is determined by

πc =
⌊√

cu∗(d, x)
⌋
with P 0 {U1 < u∗(d, x)} = 0.99. (37)

Then, the left tailed test ϕ rejects H0 when τc exceeds πc and, otherwise, when δ̂τc is
below z∗. The right tailed test ψ rejects H0 when δ̂τc exceeds z∗, i.e.

ϕ =

{
1 if τc ≥ πc or

(
τc < πc, δ̂τc < z∗

)
0 otherwise

ψ =

{
1 if δ̂τc>z∗

0 otherwise.
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The critical values u∗ = u∗(d, x), z∗ = z∗(d, x) and z∗ = z∗(d, x) are determined in the
following way via the joint density of (B1, U1) in (35).

ϕ :P 0 {U1 ≥ u∗(d, x)} = 0.01, (38)

P 0 {U1 < u∗(d, x), B1 < z∗(d, x)} = α− 0.01;

ψ :P 0 {B1 > z∗(d, x)} = α.

(d, x) is determined on (λ, σ2) by the relationship x = 4X0/σ
2, d = 4λ/σ2, where the

initial value X0 of CIR process Xt is set as X0 = Z0/
√
c and considered to be a known

constant. Thus u∗ is actually dependent on the pair (λ, σ2). The difficulty in empirical
analysis is that λ and σ2 are usually unknown. This study provide a linear interpolation
solution via using the estimator d̂N = 4λ̂N/s

2
N and σ̂2N = s2N given in (5) in the following

way. First, u∗, z∗ and z∗ in (38) for sufficiently many pairs of (d, 4X0/σ
2) are calculated

with a fixed X0 in advance. Second, u∗, z∗ and z∗ corresponding to (d̂τ̂c , 4X0/s
2
τ̂c
) is

determined by linear interpolation among those values calculated in the first step.
Define upper bound π̂c for τ̂c using u∗(d, x),

π̂c = inf
{
N > N0 : N ≥

√
cu∗(d̂τ̂c , 4X0/s

2
τ̂c)
}
.

The left tailed test ϕ̂ rejects H0 when τc exceeds π̂c and, otherwise, when δ̂τc is below
z∗. The right tailed test ψ rejects H0 when δ̂τc exceeds z∗, i.e.

ϕ̂ =

{
1 if τ̂c ≥ π̂c or

(
τ̂c < π̂c, δ̂τc < ẑ∗

)
0 otherwise

ψ̂ =

{
1 if δ̂τc>ẑ∗

0 otherwise

where critical values are ẑ∗ = ẑ∗(d̂τ̂c , 4X0/s
2
τ̂c
) and ẑ∗ = ẑ∗(d̂τ̂c , 4X0/s

2
τ̂c
). The powers

and the expected sample sizes of these tests can be computed from (36).
For simplicity, the work below considers x = 4X0/σ

2 to be a known constant.
Figure 14 illustrate the value of u∗ calculated with corresponding to a sequence of d
starting from 0.1 to 10 in steps of 0.1, with σ2 = 2, and X0 = 0, 1 (x = 0, 2) respectively.

Figure 14: 99th percentile point of U1 under the null hypothesis, σ2 = 2

Since u∗ is monotonic with respect to d, the estimator d̂N is used to determine the
corresponding u∗. Figure 15 is the simulation result of u∗ by the linear interpolation. It
indicates that π̂c is normally distributed as c→ ∞.
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Figure 15: asymptotic distribution of u∗, X0 = 0, d = 6, c = 5002

9 Conclusion

This part considers the stopping time τc based on observed Fisher information of m and
succeeds in deriving the asymptotic distribution of τc/

√
c via the density of the integral∫ t

0 qs ds of BESQ process qt. A time change method is implemented to investigate the
asymptotic distribution of the sequential test statistic δ̂τc for the sequential criticality
test. It is found to be a time-changed Brownian motion B1 with the local parameter δ
as drift, therefore the SCT is actually a Z-test. The joint density fB1+δ,U1 is obtained
from fqt,

∫ t
0 qsds

.
In addition, an upper bound u∗ is set at the 99th percentile point of the distribution

U1 under the null hypothesis. An attempt in this part is to propose a combined sequential
test with upper bound π̂c of τ̂c to prevent τ̂c from being terminated too late so that
sample size of the SCT does not become too large. The combined test also rejects the
null hypothesis when the stopping time τ̂c exceeds the upper bound π̂c. The operating
characteristics of the combined tests can be computed from the joint density fB1+δ,U1 .

Part III

Effectiveness of Local Model
This study localize the parameter by m = 1+ δ

N in I and m = 1+ δ√
c
in II to carry out

the FCT and the SCT. In order to clarify the effectiveness of the local hypotheses in the
above two tests, it is checked whether the simulation results conform to the theoretical
values computed from the local model or from the stationary model.

For the FCT, the powers under the non-local stationary alternatives H1 : m < 1 are
computed as a Z-test since the sequential test statistic is normally distributed in the
case that the initial value can be neglected. Comparisons of the powers from non-local
stationary test and the powers from local FCT Section 4 are made.

For the SCT, the test statistics m̂τc are normally distributed under both the non-
local stationary alternatives and the local alternatives, thus comparisons of the joint
moments of the stopping time τc and sequential test statistic δ̂τc are made. In detail, the
theoretical value of E[τc], SE[τc] and cov[τc, δ̂τc ] under local alternatives are computed
for a sequence of m starting at 0.8 to 1.2 in steps of 0.1 in the following way. First,
the modified Laplace transform E [exp(−αρv − βUv)/ρv] under the null hypothesis is
obtained. Girsanov transformation is used to obtain the joint Laplace transform under
alternative hypothesis.
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The simulation results conform to the theoretical values computed from the local
model only when m is close to 1, otherwise they conform to those computed from the
stationary model. This study helps to decide when to adapt local models and when to
adapt non-local stationary models. Those decisions differ depending on the value of c.

10 Effectiveness of Local Model in Non-Sequential Analysis

For a non-local stationary branching model with initial values Z0 = 0, or assuming
Z0/N → 0 as N → ∞, the test statistic m̂N are normally distributed; see Sriram,
Basawa & Huggins (1991) [18] for details.

√
N(m̂N −m) ⇒ N(0, (1−m)σ2/λ)

Therefore the powers in such cases can be computed as a Z-test by the following;

Pm

{
m̂N <

δ∗
N

+ 1

}
=Φ

(
δ∗
N

+ 1; m,
(1−m)σ2

λN

)
where Pm is the probability measure under H1 : m < 1, δ∗ is the critical value of the
reject region for left tailed test, computed from (24) in I Section 4, Φ(x; µ, σ2) is the
CDF of Normal distribution N(µ, σ2).

Figure 16: Comparison of theoretical powers of non-local stationary and local alternatives
when Z0 = 0, d = 6

It is clear that the power of FCT calculated under the local alternatives is greater
then that under the non-local stationary alternatives for all m, but the difference between
these two decreases as m drift away from 1.

11 Effectiveness of Local model in Sequential Analysis

The test statistics m̂τc are normally distributed under both the non-local stationary
alternatives and the local alternatives, thus comparisons of the joint moments of the
stopping time τc and sequential test statistic δ̂τc are made. E[τc], SE[τc] and cov[τc, δ̂τc ]
under local alternatives are computed in the following way. First, to obtain the modified
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joint Laplace transform E [exp(−αρv − βUv)/ρv], from which the joint moment E[U1], E[U2
1 ], E[ρ1U1]

are obtained. Second, Girsanov transformation is used to obtain joint Laplace transform
under alternative hypothesis.

11.1 Joint moment of (ρv, Uv)

Theorem 13. Modified Laplace transform under the null hypothesis has the expression
of

E0

[
exp(−αρv − βUv)

ρv

]
=

∞∑
n=0

∞∑
j=0

∞∑
l=0

xnαjβl

n!j!l!

∫ 1

0

J(s, v, n, j, l) ds (39)

where x(m) stands for the factorial power x(m) = x(x − 1)...(x − (m − 1)), 2F1 stands
for the hyper-geometric function 2F1(a, b, c; z) =

∑∞
k=0

a(k)b(k)

c(k)
zk

k! in the following explicit
expression of J .

J(s, v, n, j, l) =
(−1)ns

ν−3
4 (1−

√
s)

j+n
logl(s)(−n− ν − 1)(j) (

√
s+ 1)

−j−ν−n−1

Γ
(
1
2(j + l − n+ 1)

)
× 2

1
2
(−j−3l−3n−1)+νv

1
2
(j+l−n−1)

2F1

(
−j,−n;−j − n− ν;

(
√
s+ 1)

2

(
√
s− 1)

2

)
.

Proof. Recall that under the null hypothesis, fqt,
∫ t
0 qsds

(y, v) has the expression (21) that

Lγ(fqt,
∫ t
0 qsds

(y, v)) =
1

2

(y
x

)ν/2 √
2γ

sinh
√
2γt

exp

(
−x+ y

2

√
2γ coth

√
2γtIν

( √
xy

√
2γ

sinh
√
2γt

))
Taking the Laplace transform with respect to y gives the modified Laplace transform of
(qt,

∫ t
0 qsds):

E0

[
exp(−αqt − γ

∫ t

0
qsds)

]
=

∫ ∞

0

∫ ∞

0
e−αye−γvfqt,

∫ t
0 qsds

(y, v) dvdy

=

∫ ∞

0
e−αyLγ

(
fqt,

∫ t
0 qsds

(y, v)
)
dy

=2
ν+1
2 γ

ν+1
2 exp

−
γx+

√
γt√
2
αx coth

√
γt√
2

2α+ 2
√
2γ coth

√
γt√
2

(α sinh

√
γt

√
2

+
√

2γ cosh

√
γt

√
2

)−ν−1

Take the following Laplace transform of the modified joint moment generating function of
(ρv, Uv), and change the integral variable by letting u = Uv, so that v =

∫ Uv

0 Xs/σ
2 ds =∫ u

0 qs/4 ds, and du = 1/ρs dv. Therefore∫ ∞

0
e−γvE0

[
exp(−αρv − βUv)

ρv

]
dv

=E0

[∫ ∞

0
e−γv exp(−αρv − βUv) du

]
=E0

[∫ ∞

0
e−βu exp(−αqv/4− γ

∫ u

0
qs/4 ds) du

]
=

∫ ∞

0
e−βuE0

[
exp(−αqv/4− γ

∫ u

0
qs/4 ds)

]
du
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Since this expression can not be computed directly, Taylor expansion is implemented at
the neighborhood of x = 0. Then replace the integral variable by u = exp

(
−2

√
2
√
γs
)
;∫ ∞

0
e−γvE0

[
exp(−αρv − βUv)

ρv

]
dv

=
∞∑
n=0

xn

n!

∫ 1

0

(−1)nγν/22
3ν
2
−2ns

β

2
√
2
√

γ
+ ν+1

4
−1 ×

(√
2α

√
γ (

√
s+ 1)− 2γ (

√
s− 1)

)n(
α (1−

√
s) +

√
2
√
γ (

√
s+ 1)

)ν+n+1 ds.

Apply Taylor expansion again for multivariate variables α, β at the neighborhood of
α = 0 , β = 0;∫ ∞

0
e−γvE0

[
exp(−αρv − βUv)

ρv

]
dv =

∞∑
n=0

∞∑
j=0

∞∑
l=0

xnαjβl

n!j!l!

∫ 1

0

K(s, v, n, j, l) ds

where

K(s, v, n, j, l) =
(−1)ns

ν−3
4 (1−

√
s)

j+n
logl(s)(−n− ν − 1)(j) (

√
s+ 1)

−j−ν−n−1

Γ
(
1
2(j + l − n+ 1)

) .

× 2
1
2
(−j−3l−3n−1)+νv

1
2
(j+l−n−1)

2F1

(
−j,−n;−j − n− ν;

(
√
s+ 1)

2

(
√
s− 1)

2

)

The explicit expression of the modified moment generating function is obtained by
inverting this Laplace transform respect to γ, and J(s, v, n, j, l) given in (39) is the
inverse Laplace transformation of K(s, v, n, j, l).

Therefore, the moment of U1 and ρ1 is computed by

E0[U1] =
∂2

∂α∂β
E0

[
exp(−αρ1 − βU1)

ρ1

]
|α=0,β=0

=
∞∑
n=0

xn

n!

∫ 1

0

J(s, 1, n, 1, 1) ds;

E0[U2
1 ] = − ∂3

∂α∂β2
E0

[
exp(−αρ1 − βU1)

ρ1

]
|α=0,β=0

=

∞∑
n=0

xn

n!

∫ 1

0

J(s, 1, n, 1, 2) ds;

E0[ρ1U1] = − ∂3

∂α2∂β
E0

[
exp(−αρv − βUv)

ρv

]
|α=0,β=0

=
∞∑
n=0

xn

n!

∫ 1

0

J(s, v, n, 2, 1) ds.

Since ρ1 = ρ0+B1+
d
4U1 under the null hypothesis, E[B1U1] has the following relationship

with E[ρ1U1];

E[ρ1U1] = ρ0E[U1] + E[B1U1] +
d

4
E[U2

1 ].

Under Alternative hypothesis, ρv has the expression (31) that : ρv = ρ0 + B̃v + δv +
d
4Uv = ρ0 + Bv + d

4Uv. Suppose Bv is Brownian motion under P 0, define a Girsanov
transformation dB̃v = dBv − δdv so that B̃v is also Brownian motion under P δ, and the
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Radon–Nikodym derivative is represented as

Lv ≡ dP δ

dP 0
|Fv = exp

(∫ v

0
δdBs −

δ2

2

∫ v

0
d ⟨B⟩s

)
= exp

(
δ(ρv − ρ0 −

d

4
Uv)−

δ2

2
v

)
.

Therefore

Eδ

[
exp(−αρv − βUv)

ρv

]
=

∫
Ω

exp(−αρv − βUv)

ρv
dP δ

=

∫
Ω

exp(−αρv − βUv)

ρv
exp(δ(ρv − ρ0 −

d

4
Uv)−

δ2

2
v) dP 0

=exp(−δρ0 −
δ2

2
v)

∫
Ω

exp(−(α− δ)ρv − (β + dδ
4 )Uv

ρv
dP 0

=exp(−δρ0 −
δ2

2
v)E0

[
exp(−(α− δ)ρv − (β + dδ

4 )Uv

ρv

]

=exp(−δρ0 −
δ2

2
v)

∞∑
n=0

∞∑
j=0

∞∑
l=0

xn(α− δ)j(β + dδ
4 )

l

n!j!l!

∫ 1

0

J(s, v, n, j, l) ds

=exp(−δρ0 −
δ2

2
v)

∞∑
n=0

∞∑
M=0

M∑
j=0

xn(α− δ)j(β + dδ
4 )

M−j

n!j!(M − j)!

∫ 1

0

J(s, v, n, j,M − j) ds (40)

The moment of U1 and ρ1 can be computed in the same way as under the null hypothesis;

Eδ[U1] =
∂2

∂α∂β
Eδ

[
exp(−αρ1 − βU1)

ρ1

]
|α=0,β=0

= exp(−δρ0 −
δ2

2
)

∞∑
n=0

∞∑
M=0

M∑
j=0

xnM δ(−1)j(d4)
M−j

n!j!(M − j)!

∫ 1

0

J(s, v, n, j + 1,M − j + 1) ds;

Eδ[U2
1 ] = − ∂3

∂α∂β2
Eδ

[
exp(−αρ1 − βU1)

ρ1

]
|α=0,β=0

= exp(−δρ0 −
δ2

2
)

∞∑
n=0

∞∑
M=0

M∑
j=0

xnM δ(−1)j(d4)
M−j

n!j!(M − j)!

∫ 1

0

J(s, v, n, j + 1,M − j + 2) ds;

Eδ[ρ1U1] = − ∂3

∂α2∂β
Eδ

[
exp(−αρ1 − βU1)

ρ1

]
|α=0,β=0

= exp(−δρ0 −
δ2

2
)

∞∑
n=0

∞∑
M=0

M∑
j=0

xnM δ(−1)j(d4)
M−j

n!j!(M − j)!

∫ 1

0

J(s, v, n, j + 2,M − j + 1) ds.

Since ρ1 = ρ0 + δ + B1 + d
4U1 under the null hypothesis, E[B1U1] has the following

relationship with E[ρ1U1];

E[ρ1U1] = (ρ0 + δ)E[U1] + E[B1U1] +
d

4
E[U2

1 ].

11.2 Comparisons of the joint moments of (B1, U1)

The theory of the sequential analysis for stationary branching model are given as follows;
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1. τc
c → (1−m)σ2

λ ;

2.
√
c(m̂τc −m) ⇒ N(0, 1);

3.
√
c
(
τc
c − (1−m)σ2

λ

)
⇒ N

(
0, σ

4+(1−m)σ2

λ2

)
.

The following figures are the theoretical values and simulation results of the moments
E[τc], SE[τc] and cov[τc, δ̂τc ]. Computations are conducted as m varies from 0.8 to 1.2,
with σ2 = 1.2, d = 4, iteration times=10000, c = 502, 1002 and X0 = 0, 1 respectively.

Figure 17: effectiveness of local parameter: Compare E[τc];
σ2 = 1.2, d = 4, X0 = 0, iteration times10000, c = 502, 1002

Figure 18: effectiveness of local parameter: Compare SE[τc];
σ2 = 1.2, d = 4, X0 = 0, iteration times10000, c = 502, 1002
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Figure 19: effectiveness of local parameter: Compare Cov[δτc , τc];
σ2 = 1.2, d = 4, X0 = 0, iteration times10000, c = 502, 1002

Figure 20: effectiveness of local parameter: Compare E[τc];
σ2 = 1.2, d = 4, X0 = 1, iteration times10000, c = 502, 1002

Figure 21: effectiveness of local parameter: Compare SE[τc];
σ2 = 1.2, d = 4, X0 = 1, iteration times10000, c = 502, 1002

31



Figure 22: effectiveness of local parameter: Compare Cov[δτc , τc];
σ2 = 1.2, d = 4, X0 = 1, iteration times10000, c = 502, 1002

As it is shown in the figures, the moments E[τc], SE[τc] and cov[τc, δ̂τc ] calculated
from the local model δ =

√
c(m−1) fit well with the simulation results in the neighborhood

of m = 1. More specifically, in m ∈ (0.9, 1.1) when c = 502, or in m ∈ (0.95, 1.05) when
c = 1002. At the same time, moments calculated by the stationary model m < 1 fit with
the simulation results in m < 0.9 when c = 502, or in m < 0.95 when c = 1002. These
results imply that when the level c of the observed Fisher information is large enough,
the stationary model could perform well even at the neighborhood of m = 1. However,
when the c is small, the range in which the stationary model performs well becomes
narrow. In other words, the local model performs better than the stationary model at
the neighborhood of m = 1 especially when c is small.

12 Conclusion

This part validates the effectiveness of the local model used for the FCT in I and the
SCT in II. It is confirmed that the local models perform better than the stationary
model at the neighborhood of m = 1. In detail, the power of FCT calculated under the
local alternatives is greater then that under the non-local stationary alternatives for all
m, but the difference between these two decreases as m drift away from 1. As for SCT,
the local model performs better than the stationary model at the neighborhood of m = 1
especially when the level c of the observed Fisher information is small.

Part IV

Appendix & Reference
Lemma 14. (Maximum likelihood estimation of offspring mean m with power series
distribution) Suppose the number of offspring {ξn,k} and the number of immigration
{Yn} are non-negative, integer-valued and independent random variables.

Let the offspring distribution of {ξn,k} and the immigration distribution of {Yn} be
the identical power series distribution with non-negative real sequence {ai} and {bj}
respectively;

p(i, θ) = P{ξn,k = i} =
aiθ

i

g(θ)
, i = 0, 1, ...

q(j, η) = P{Yn = j} =
bjη

j

h(η)
, l = 0, 1, ...
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where θ and η are real parameters; g(θ) =
∑∞

i=0 aiθ
i, h(η) =

∑∞
j=0 bjη

j.
The sum ξn,1 + ξn,2 + ... + ξn,k also follows the power series distribution, with non-

negative sequence {a(k)l } satisfying
∑∞

l=0 a
(j)
l θl = gj(θ) as the coefficients, so that P{ξn,1+

ξn,2 + ...+ ξn,k = l} = a
(k)
l θl/gk(θ).

The following likelihood Ln(θ, η) of θ and η is given in [4]

Ln(θ, η) =
n∏

i=1

p(ξi,Zi−1 , θ) ·
n∏

j=1

q(Yj , η)

=
n∏

i=1

a
(Zi−1)
Zi−Yi

θZi−Yi

gZi−1(θ)

bjη
j

h(η)
.

The maximum likelihood estimation (M.L.E.) of offspring mean m is given to be

m̂n =
n∑

i=1

Zi − Yi
Zi−1

by letting

∂ logLn(θ, η)

∂m
=
∂ logLn(θ, η)

∂θ

∂θ

∂m

=

n∑
i=1

(
(Zi − Yi)

∂ log θ

∂m
− Zi−1

∂ log g(θ)

∂m

)

=

n∑
i=1

(
(Zi − Yi)

1

σ2
− Zi−1

m

σ2

)
= 0.

Further more, the observed Fisher information of m is

In(m) = −∂
2 logLn(θ, η)

∂m2

=

∑n
i=1 Zi−1

σ2
. (41)

Theorem 15. (Functional Central Limit Theorem for martingale difference [2]) For
a positive integer n, let {εn1, εn2, ...} be a martingale difference with respect to the σ-
fields {Fn

0 ,Fn
1 , ...}. Suppose εnk is a martingale difference with respect to Fn

k , i.e. εnk is
Fn
k -measurable and E[εnk|Fn

k−1] = 0. Suppose the second moments of εnk exist and let
σ2nk ≡ E[ε2nk|Fn

k−1] . Then
∑

k≤nt εnk ⇒ W in the sense of D[0,∞), where “⇒” stands
for weak convergence and W is a standard Brownian motion, if the following hold.

1.
∑

k≤nt σ
2
nk ⇒n t for every t,

2.
∑

k≤ntE[ε2nk1{|εnk|}>ϵ] →n 0 for every t and ϵ.

Definition 16. (CIR process) For any a ≥ 0, b ∈ R and σ > 0, the CIR model Xt is
given by the following stochastic differential equation:

dXt = (a− bXt) dt+ σ
√
Xt dWt (42)

where Wt is a Brownian motion.
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Definition 17. (squared Bessel process) For every d ≥ 0 and x ≥ 0, the unique strong
solution of the equation

qt = x+ 2

∫ t

0

√
qsdWs + dt (43)

is defined as the d-dimensional squared Bessel process started at x and denoted by
BESQd

x.
The number v = d/2 − 1 is the index of the corresponding process, and denote

BESQ
(ν)
x instead of BESQd

x when v is used instead of d.

Theorem 18. (Itô′s formula) Suppose f is of differentiability class C2 i.e. f ′ and f ′′

exist and are continuous. For a semimartingale Xt, the following hold with probability
one for all t ≥ 0;

f(Xt)− f(X0) =

∫ t

0
f ′(Xs)dXs +

1

2

∫ t

0
f ′′(Xs)ds.

Definition 19. (Special inverse Laplace transform [14] ) Here are some special form
of inverse Laplace transformation results which are used in Theorem 3 and Lemma 8
for calculations of the joint density of (q1,

∫ 1
0 qsds) and the density of

∫ 1
0 qsds. For

t ≥ 0, ν > −1/2

isy(ν, t, r, z, x) := L −1
γ

{ √
2γ

sinh t
√
2γ

exp

(
−r
√
2γ − z

√
2γ cosh t

√
2γ

sinh t
√
2γ

)
Iν

(
2x

√
2γ

sinh t
√
2γ

)}
=

∞∑
l=0

xν+2l

l!Γ (ν + l + 1)
esy(ν + 2l + 1, ν + 2l + 1, t, r, z)

forν ≥ −1, t+ νt+ r + z > 0, t > 0

esy(µ, ν, t, x, z) := L −1
γ

(
(2γ)µ/2

sinhν t
√
2γ

exp(−x
√

2γ − z
√
2γ coth t

√
2γ)

)

=
∞∑
k=0

(−z)k

k!
sy(µ+ k, ν + k, t, x+ z + kt)

forν ≥ 0, νt+ x+ z > 0, t > 0

sy(µ, ν, t, z) := L −1
γ

(
(2γ)µ/2

sinhν t
√
2γ

exp(−z
√

2γ)

)

= 2ν
∞∑
j=0

Γ (ν + j) exp
(
− (νt+z+2jt)2

4y

)
√
2πj!y1+µ/2Γ (ν)

Dµ+1

(
νt+ z + 2jt

√
y

)
forν ≥ 0, νt+ z > 0, t > 0
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ecy(µ, ν, t, x, z) = L −1
γ

(
(2γ)µ/2

coshν t
√
2γ

exp(−x
√

2γ − z
√
2γ tanh t

√
2γ)

)

=
∞∑
k=0

zk

k!
cy(µ+ k, ν + k, t, x+ z + kt)

forν ≥ 0, νt+ x+ z > 0, t > 0

cy(µ, ν, t, z) = L −1
γ

(
(2γ)µ/2

coshν t
√
2γ

exp(−z
√
2γ)

)

= 2ν
∞∑
j=0

(−1)jΓ (ν + j) exp
(
− (νt+z+2jt)2

4v

)
√
2πv1+µ/2Γ (ν)j!

Dµ+1

(
νt+ z + 2jt√

v

)
forν ≥ 0, νt+ z > 0, t > 0.

Theorem 20. (change of measure and Girsanov Theorem) Let {Wt} be a standard
Brownian motion under the probability measure P, and Xt be a measurable process
adapted to the natural filtration of the Brownian motion {FW

t }; assume that the usual
conditions have been satisfied . Given Xt as a continuous local martingale starting from
zero , define Zt to be the exponential semi-martingale associated with Xt, i.e.

Zt = E(X)t = exp

(
Xt −

1

2
⟨X⟩t

)
,

where ⟨X⟩t denotes the quadratic variation of X.
By the stability property of stochastic integration, that Zt is also a continuous local

martingale, and a new probability measure Q can be defined on by letting Radon-Nikodym
derivative be

dQ

dP
|Ft = E(X)t.

Then for each t the measure Q restricted to the augmented sigma fieldsF0
t is equivalent

to P restricted toF0
t . Furthermore if Mt is a local martingale under measure P then the

process

M̃t =Mt − ⟨M,X⟩t
is a Q-local martingale on the filtered probability space (Ω, F,Q, {FW

t }).

Corollary 21. Girsanov ’s theorem describes the distribution of the stochastic process
Wt under this new probability measure. Define

W̃t =Wt −
∫ t

0
fs ds,

then the stochastic process W̃t is a standard Wiener process under the probability measure
Q by letting

dQ

dP
|Ft = exp

(∫ t

0
fsdWs −

1

2

∫ t

o
f2s ds

)
. (44)

Remark. The fact thatW̃t is continuous is trivial; by Girsanov’s theorem it is a Q local
martingale, and by computing

〈
W̃
〉
t
= ⟨W ⟩t = t, it follows by Levy’s characterization

of Brownian Motion that this is a Q-Brownian Motion.

35



Lemma 22. (Lévy′s Characterization of Brownian Motion) Let B be a continuous local
martingale with B0 = 0. Then B is standard Brownian motion on the underlying filtered
probability space is and only if B has quadratic variation ⟨B⟩t = t.

Theorem 23. (Dambis-Dubins-Schwarz’s Time-change theorem) Let {Mt} be a continuous
local martingale with respect to filtration Ft such that M0 = 0 and ⟨M⟩∞ = ∞ almost
surely. For all t ≥ 0, define a stopping time τs based on the quadratic variation ⟨M⟩t:

τs = inf {t ≥ 0, ⟨M⟩t > s} = ⟨M⟩−1
s .

Then Bs ≡ Mτs is a time-changed Brownian motion with respect to filtration Gs = Fτs ,
and B⟨M⟩t =Mt.
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