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Branching processes serve as a mathematical model of a population in which each individual in
generation n produces some random number of offspring in generation n+1. This study considers the case in
which the offspring of each individual in each generation have the same fixed probability distribution that
does not vary from generation to generation, or from individual to individual. Branching processes can be
used to model not only population growth, but also cell kinetics, spreads of an infectious disease, etc.

A central problem in the theory of branching processes is whether the population in question is to explode
or to extinct after some finite number of generations. It can be shown that starting with one individual in
generation zero, the expected size of generation n equals to m"n  where m is the expected number of
offspring of each individual. If m < 1, the expected number of individuals goes rapidly to zero, which implies
ultimate extinction with probability 1. This study uses a branching model with nonnegative immigration in
each generation, so that the population does not become extinct.

Since the behaviors of branching processes differ depending on whether the offspring mean m is greater or
less than 1. When m=1 ( m<1 , m>1 ), the process is called a critical (resp. subcritical, supercritical) process.
This study considers tests for the criticality of the offspring mean against the local alternatives including both
super-critical and sub-critical hypotheses for branching processes with immigration. The effect of initial
values, sample sizes on the test results and the effectiveness of the local alternatives are discussed.

This study is organized as follows. After the introduction of this study in Section 1, Section 2 describes the




model and testing hypotheses, and gives the estimator of offspring mean as a test statistic and estimators of
other parameters with preliminary asymptotic results.

Part I advocates the fixed-sample-size criticality tests (FCT). The FCT in this study is analyzed in the same
method as the Dickey-Fuller unit root test in autoregressive models. First, the discrete-time branching process
with immigration and close-to-one offspring mean is approximated to the continuous-time squared Bessel
(BESQ) process with drift. Then the limiting test statistic is represented as the ratio of a BESQ and its integral,
whose joint density can be derived from the theory of Bessel bridge in Pitman and Yor (1982). Rejection
regions for the left-tailed and right-tailed criticality tests are determined and asymptotic powers are computed.
The theoretical values of the asymptotic distribution of test statistic and the asymptotic power of the FCT are
calculated using Mathematica and shown to be consistent with the simulation results. Numerical results show
that for all m, the power of FCT increases as the sample size N increases. It is found that the dimension of
the BESQ process determines the critical value of the FCT rejection region. The difficulty in the empirical
analysis is that the dimension is usually unknown. This study provides a linear interpolation solution via using
the estimator of the dimension. For the estimated dimension, the critical value is determined in the following
way. First, critical values for sufficiently many dimensions are calculated, and that for the estimated
dimension is determined by linear interpolation. Numerical results show that the linear interpolation method
works well under the subcritical alternative hypothesis and under the supercritical alternative hypothesis,
especially in the neighborhood of m=1. More specifically, the powers calculated by the linear interpolation
fit with the theoretical results over the entire range of m under the subcritical alternative hypothesis with
sample size N more than 100, or under the supercritical alternative hypothesis with sample size N more than
50. As for the circumstances when sample size N is less than 50 for the left-tailed test, or when sample size
N is less than 30 for right-tailed tests, the simulated powers using the linear interpolation do not fit with the
theoretical values when the local parameter drifts away from 0, but these powers still fit with the theoretical
results well for m in (0.95,1.05), which is sufficient for the needs of criticality tests. Non-local alternative
hypotheses should be used in such cases for m not in (0.95,1.05).

If the initial value is not negligible, the figures indicate that the linear interpolation method is valid in either
the right-tailed or left-tailed test not only for local parameters close to 1, but also for nonlocal parameters
away from 1.

Part II explores Sequential criticality tests (SCT) using stopping times based on observed Fisher
information. The time change method is also implemented to transform the BESQ process into a Bessel (BES)
process, thereby the asymptotic properties of the sequential test statistic for the SCT are investigated.
Especially, Part II succeeds in deriving the asymptotic joint distribution of the sequential test statistic and the

stopping time via the time change of the joint density, derived in Part I, of the BESQ and its integral. The




sequential test statistic is found to be represented as a time-changed Brownian motion with the local parameter
as drift, indicating that the SCT is actually a Z-test and that the initial value has no effect on the rejection
region or the power. On the other hand, the stopping time is terminated earlier as the initial value is larger.

If the stationary alternative hypothesis is true, the stopping time tends to be terminated later. Therefore, in
the SCT an upper bound is set at the 99th percentile point of the distribution of the stopping time under the
null hypothesis. One attempt in this study is to perform a combined sequential test that rejects the null
hypothesis when the stopping time exceeds the 99th percentile point. This prevents the sample size of the
sequential test from becoming too large. The operating characteristics of the combined tests can be computed
from the joint density of the sequential test statistic and the stopping time.

Part III validates the effectiveness of the testing methods for the local hypotheses in the FCT in Part I and
the SCT in Part II. Comparisons are made with the testing methods for non-local stationary hypotheses: for
the FCT, comparisons of power are made, and for the SCT, comparisons of the joint moments of the stopping
time and sequential test statistics are made. It is checked whether the simulation results conform to the
theoretical values computed from the local model or from the stationary model. It is confirmed that the local
models perform better than the stationary model in the neighborhood of m=1.

In the case of the FCT, as is well known, the test statistic is normally distributed under the non-local
stationary alternatives when the initial value can be neglected. Thus, the powers of the non-local FCT are
computed via Z-test and compared to those of the local FCTs. It turns out that the power performances of the
FCT in Part I are always better than that computed by a Z-test under the stationary alternative hypotheses for
all m, but the difference between these two tests decreases as m drifts away from 1.

For the SCT, the sequential test statistics are normally distributed under both the non-local stationary
alternatives and the local alternatives, thus comparisons of the joint moments of the stopping time and
sequential test statistic are made. The joint moments of the stopping time and sequential test statistic under
the null hypothesis are computed via the joint Laplace transform. Girsanov transformation is used to obtain
the joint Laplace transform under the alternative hypothesis. The moments calculated from the local model
fit well with the simulation results in the neighborhood of m=1. In other words, the local model performs
better than the stationary model at the neighborhood of m=1, especially when the level c of the observed
Fisher information is small. More specifically, the local model performs better for 0.9<m<1.1 when the level
¢ is around 2500, or for 0.95<m<1.05, when the level c¢ is around 10000. At the same time, moments
calculated by the stationary model fit with the simulation results for m<0.9 when the level ¢ is around 2500,
or for m<0.95 when c is around 10000. These results imply that when the level c of the observed Fisher
information is large enough, the stationary model could perform well even in the neighborhood of m=1.

However, when the c is small, the range in which the stationary model performs well becomes narrow. This




study helps to decide whether local or non-local stationary models should be applied in inference. Those

decisions differ depending on the value of c.
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