
博士論文

大規模断熱量子磁束パラメトロン回路設計
法の研究

Study on the design methodology of large-scale
adiabatic quantum-flux-parametron circuits

指導教官　吉川　信行 教授

2023年 3月 10日

横浜国立大学 大学院理工学府　数物・電子情報系理工学専攻

20QC502

田中　智之
Tomoyuki Tanaka

ii

Abstract

The amount of data handled by humankind is increasing every year. The data center
which provides services such as Internet commerce and video streaming services has
a market share that is expected to increase by USD 615.96 billion from 2020 to 2025,
and the market’s growth momentum will accelerate at a compound annual growth
rate (CAGR) of 21.98% [1]. This growth means that data centers will deploy many
more computers, and one projection predicts that data centers will consume 8% of
the earth’s electricity in 2030 [2]. The information society faces the problem of power
consumption.

CMOS circuits used in computers as arithmetic circuits have a problem with minia-
turization. For example, TSMC, a leading foundry for logic circuits, has announced
that it will begin mass production of N3 (3 nm) technology in the second half of 2022.
However, given that the diameter of an atom is about 0.1 nm, it is clear that further
miniaturization will be even more difficult. Computers with low power consumption
and high performance are needed in the future. We have been working on the realiza-
tion of next-generation computers, focusing on adiabatic quantum-flux-parametron
(AQFP) circuits. A superconductor circuit is a device based on Josephson junctions,
which can operate faster and consume much less power than CMOS circuits[3]. The
AQFP circuit is an even more energy-efficient logic device among superconductor
circuits, consuming 1/100,000 of the energy of CMOS[4, 5].

There are many hurdles to overcome one by one in order to put AQFP circuits
into practical use. This thesis improves the design environment for AQFP circuits by
addressing the application of variable-length wiring and methods to achieve the same
level of the environment in AQFP circuits as in CMOS circuit design.

1

Contents

Chapter 1 Intrduction 3
1.1 Limitation of CMOS based computer 3
1.2 Increased demand for computing resources 4
1.3 Superconductor post-CMOS computing 6
1.4 Structure of this paper . 8

Chapter 2 Theory of adiabatic quantum-flux-parametron 9
2.1 Introduction . 9
2.2 Potential energy of AQFP circuit 9
2.3 Data propagation of AQFP circuits 13
2.4 Excitation of AQFP circuit . 13
2.5 Logic circuit using the AQFP circuit 16

Chapter 3 RTL to GDS flow for large AQFP circuits 27
3.1 Introduction . 27
3.2 Full-custom environment setup and cell library development . . 27
3.3 AQFP RTL-to-GDS flow . 30
3.4 Conclusion . 37

Chapter 4 Channel routing for AQFP circuits 39
4.1 Routing structure of AQFP cirucits 39
4.2 Channel routing optimization with Glitter 46
4.3 Glitter, variable-width channel router 46
4.4 Conclusion . 51

Chapter 5 Ciruit design and test 53
5.1 Adder(Kogge-Stone adder) . 53
5.2 bfloat 16 floating point adder 69
5.3 Conclusion . 77

Chapter 6 Conclusion 79

Acknowledgements 81

Appendix A Synthesis results 83

本研究に関する発表 101

2 Contents

Bibliography 105

3

Chapter 1

Intrduction

1.1 Limitation of CMOS based computer
Computers are the infrastructure of human life. Computers control everything and
anything, and they have become so important that many people might lose their
lives if they suddenly become unable to use computers. Since the invention of the
transistor, complementary metal oxide semiconductor-based computers (CMOS) have
experienced explosive growth and have contributed significantly to the advancement
of human society.

CMOS will soon face a miniaturization problem. The most advanced process rules
have reached around 3 nm in 2022, and the leading research laboratory of semicon-
ductors; Interuniversity Microelectronics Centre(imec) claims it will be possible to
get 0.2 nm by 2040[6]. Since the atomic radius of silicon and metals used in wiring
is about 0.1 nm, the process rule cannot be smaller than 0.1 nm due to physical limi-
tation. This limitation means that semiconductor growth will stagnate in 2040, after
which computers may be left to structures that are not CMOS. In other words, near
2040, we will face a problem with the stagnation of providing calculation resources.

4 CHAPTER 1. INTRDUCTION

Figure 1.1: Loadmap of miniaturization of CMOS transistor[6]. They said the process
rule of state-of-the-art CMOS will reach 0.2 nm in the 2040s.

1.2 Increased demand for computing resources
Think about the projections for the demand for computing resources: the metaverse
with virtual reality and mixed reality, the Internet of things where various devices are
connected to the Internet, on-demand video streaming such as Youtube and Netflix,
etc. It is not difficult to believe that the demand for computing is only going to
increase. Indeed, according to an article reported in Nature in 2018, networks and
computers are expected to use 20% of the electricity consumed on the planet in the
2030s, and the increase in computers is considered one of the major obstacles to
decarbonization, which is the current trend[2].

1.2. INCREASED DEMAND FOR COMPUTING RESOURCES 5

Figure 1.2: Projected power consumption by information and communication devices,
which around 2022 was about 10% of total power consumption, but is expected to
exceed 20% around 2030[2]. In particular, the infrastructure side, namely networks
and data centers, will increase dramatically.

Figure 1.3: A graph showing the increase in learning models, which had been gradu-
ally increasing since around 1950, but increased dramatically after 2010. No sign of
stagnation in the increase can be observed[7].

Further progress is also needed in terms of computer quality. One application
that uses large amounts of computing resources is machine learning. Examples of
applications include automated driving and chatbots. In particular, chatbots have

6 CHAPTER 1. INTRDUCTION

made significant progress in recent years, but they are still in their infancy[8]. In
order to improve performance, it is necessary to expand learning models. Already the
pace of growth of learning models is extremely fast, doubling in size every six months
since 2010, and there is no indication yet that this trend will slow down. There is a
reason why the field of machine learning requires high-performance computers[7].

1.3 Superconductor post-CMOS computing
Superconductor circuits are a typical example of Post-CMOS circuits. It uses the
Josephson junction as an active element for arithmetic operations and has excellent
high-speed operation and low power consumption.

1.3.1 Single flux quantum circuit
Single flux quantum (especially RSFQ) circuits are digital devices with excellent high-
speed operation, and have been successfully demonstrated in 4-bit microprocessors.
In addition, 8-bit microprocessor designs and component operation demonstrations
are underway, mainly at Nagoya University and Kyushu University, and a complete 8-
bit microprocessor is nearing completion[9, 10]. The operating clock of this processor
is 50GHz, and power consumption is estimated to be 1013 ops/W. The operation of
a 32-bit arithmetic unit has been verified in simulations, and steady progress is being
made toward practical application[11].

If the RSFQ circuit can be put to practical use, it would raise the clock frequency of
computers by a factor of 10. This would be a great boon for applications where real-
time performance is important, such as weather simulation for weather forecasting.

Unfortunately, however, even if RSFQ circuits are commercialized, decarbonization
will not progress.

Superconducting circuits operate at cryogenic temperatures of around 4K, which
means that the chips must be constantly cooled. Cooling from room temperature to
operating temperature 300K to 4.2K requires an extra power consumption of around
400W to 5000W[3]. To make a fair comparison with a conventional computer oper-
ating at room temperature, this power needs to be added to the power consumption
of the circuit.

The Green 500 is a contest for the lowest power consumption of supercomputers,
and the winner of the Green 500 announced in the fall of 2022 was a supercomputer
called “Henri” installed at the Flatiron Institute in the U.S., with the energy efficiency
is 65.091GFlops/W. The results already show that conventional computers are more
energy efficient, although this is not a strict comparison because of the different bit
widths and architectures[12].

SFQ circuits also have various innovations to reduce power consumption, but they
have problems such as lowering the operating frequency, and SFQ circuits are not a
silver bullet that can solve all the problems that computers face[13, 14].

1.3. SUPERCONDUCTOR POST-CMOS COMPUTING 7

1.3.2 Adiabatic quantum-flux-parametron circuit
In order to balance the problem of increasing the amount of information handled
by mankind with power savings, we need digital devices that can operate moderately
faster than CMOS circuits and consume three or more orders of magnitude less power
than that one. Adiabatic quantum-flux-parametron (AQFP) circuits are an alterna-
tive circuit technology to CMOS circuits. AQFP circuits are superconductor circuits
that operate at5GHz to 10GHz and consume 5 to 6 orders of magnitude less power
than CMOS circuits at the same operating frequency[5].

Previously, the AQFP, a 4-bit microprocessor, MANA, was demonstrated in op-
eration[15]. This processor was designed to operate at 5GHz and consumed 3.2 ×
1013 ops/W. To compare this circuit to the RSFQ circuit, it is extended to 8-bit
width. Even if the power consumption were increased by a factor of 8 in the pes-
simistic scenario, the power consumption would still be 4× 1012 ops/W. The CMOS,
RSFQ, and AQFP circuits are compared in table 1.1. Even with rough reasoning,
the AQFP circuit can consume up to 100 times less power than the CMOS circuit.
In addition, AQFP can operate at up to 10 GHz, which is slow compared to RSFQ
circuits, but fast enough compared to current CMOS circuits. In other words, if a
computer can be realized using AQFP circuits, the two immediate problems of insuf-
ficient computing resources and increased power consumption can be solved.

Table 1.1: Comparison of the architecture of digital device

Clock frequency Efficiency at 300K The architecture
CMOS[12] 5GHz 6.5× 1010 Flops/W 64-bit
RSFQ[9] 50GHz 1010 ops/W soon 8-bit
AQFP [15] 5GHz (max. 10GHz) 4× 1012 ops/W 4-bit

Basic research on how to drive AQFP circuits and investigation of power consump-
tion has progressed to date, and the next step is to work toward more practical
applications. Practical circuits will need to be 10 or 100 times larger than the circuits
designed to date, requiring ingenuity in circuit design and software development.

1.3.3 Purpose of this research
The current state of research on AQFP circuits is limited to a small scale compared
to RSFQ circuits. This is due to the fact that most of the circuit design needs to
be done manually, which requires a long time to design, and because of this, it is
difficult to optimize the circuit structure. There have been several studies to improve
the efficiency of designing AQFP circuits, but the main focus is on logic synthesis
to optimize the graph of the circuit. While this is an important task because graph
optimization reduces the area and latency of the circuit, it is more important to
generate the physical circuit. Therefore, this study addressed both the routing and
placement of AQFP circuits.

8 CHAPTER 1. INTRDUCTION

1.4 Structure of this paper
This paper consists of three major parts. The first part explains the basic theory
of superconducting circuits and the principle of operation of AQFP circuits. Next,
it describes the design flow of the AQFP circuit, and finally, it describes the actual
circuit’s design and measurement results. Chapter 2 explains the basic theory of
AQFP and how to design the circuit. Chapter 4 explains to alleviate the limitation of
the data propagation length limit of the AQFP circuit by introducing variable wiring
height. Chapter 3 describes the automatic design of circuits similar to CMOS circuits
to improve the design capability of AQFP circuits dramatically.Chapter 5 reports on
the design and operational demonstration of AQFP integer and floating-point adders
using the methods proposed in chapters 3 and 4 for designing large AQFP circuits.
Chapter 6 reports a summary of the contents of this thesis.

9

Chapter 2

Theory of adiabatic
quantum-flux-parametron

2.1 Introduction
This chapter first provides an overview of adiabatic quantum-flux-parametron
(AQFP) circuits and their principle of operation. Then, how the AQFP circuit
defines the binary information of ‘0’ and ‘1’ is explained, and the circuit design
procedure is described.

Goto et al. at the University of Tokyo developed the quantum-flux-parametron
circuit (QFP) in 1985. It can operate at several GHz and has one of the lowest
power consumption among superconductor circuits. They have demonstrated the
operation of an analog-to-digital converter operating at 18GHz, high-speed operation
at 36GHz, and the design and operational implementation of an arithmetic logic unit
(ALU) [16, 17, 18].

We are investigating adiabatic quantum-flux-parametron (AQFP) circuits, which
operate adiabatically in QFP circuits. AQFP circuits have no static power consump-
tion because they are driven by AC flux bias, and their dynamic power consumption
is minimized because the potential of the circuit changes adiabatically.

Figure 2.1 shows the schematic of the AQFP circuit, in which the Josephson junc-
tion of the RF-SQUID is replaced by a DC-SQUID. The circuit parameters are sym-
metrical. In addition, since there are no resistors in the circuit, static power con-
sumption is not generated.

2.2 Potential energy of AQFP circuit
In this section, the potential energy of the QFP circuit is explained. figure 2.1 shows
the circuit diagram of a QFP circuit, and assuming these relationships Lx1 = Lx2 =
Lx, L1 = L2 = L, k1 = k2, J1 = J2 that the QFP circuit has a symmetrical structure,
euqation (2.1) shows the potential energy[19, 20].

10 CHAPTER 2. THEORY OF ADIABATIC QUANTUM-FLUX-PARAMETRON

Iin

Iout

Ix
Lx1

L1 L2

Lx2
k2k1

J1 J2Lq

Figure 2.1: Schematic of AQFP circuit. It consists of two superconductive loops with
Josephson junctions (x mark in the figure). In addition, unlike RSFQ circuits, for
example, there is no static power consumption because the circuit has no resistance.

U = E

[
(φx − φ−)

2

βL
+

(φin − φ+)
2

βL
2βq − 2 cosφ− cosφ+

]
(2.1)

E =
IcΦ0

2π
(2.2)

φx = 2π
k
√
LLxIx

Φ0
(2.3)

φin = 2π
LxLin

Φ0
(2.4)

φ+ =
φ1 + φ2

2
(2.5)

φ− =
φ1 − φ2

2
(2.6)

βL = 2π
LIc

Φ0
(2.7)

βq = 2π
LqIc

Φ0
(2.8)

Ic is the critical current value of J1, J2, and φ1, φ2 are the phase difference of J1, J2,

2.2. POTENTIAL ENERGY OF AQFP CIRCUIT 11

input '0'

output '0'

IinIx

Iout

(a) The logic state is ‘0’.

input '1'

output '1'

IinIx

Iout

(b) The logic state is ‘1’.

Figure 2.2: Two states of the AQFP circuits. When the current of the center induc-
tance of AQFP flows upwards, this is state “0”. If the current flows downwards, it is
state “1”.

-2.5

-1.5

-0.5

0.5

1.5

2.5

3.5

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

φx

U
/E

(a)

-2.5

-1.5

-0.5

0.5

1.5

2.5

3.5

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

φx

U
/E

(b)

Figure 2.3: The figure shows the potential change of the AQFP circuit. The trajectory
of the potential is shown by red dots and dashed lines. (a) corresponds to a positive
input current and (b) corresponds to a negative input current.

12 CHAPTER 2. THEORY OF ADIABATIC QUANTUM-FLUX-PARAMETRON

respectively. βL, βq denote the normalized inductance L,Lq, respectively.
And assuming φ− = φx, euqation (2.1) is changed as follow.

U

E
=

[
(φin − φ+)

2

βL + 2βq
− 2 cosφx cosφ+

]
(2.9)

This equation is plotted graphically in figure 2.3. In the initial state, Ix = 0, i.e.,
Φx = 0, the potential of the circuit has a single-well structure. When Ix is increased,
the cosine term in the potential becomes dominant, and the structural changes to a
double-well structure. Whether the minimum point of the potential takes a right or
left is uniquely determined by the polarity of the current in Φin given as the signal
input. When the potential tilts to the right, as in Figure figure 2.3(A), it means state
“0”, and when the potential tilts to the left, as in figure 2.3(B), it means state “1”.

Energy dissipation of the AQFP during the clocking cycle Esw is described below.

Esw ' 2IcΦ0
τj

τx
(2.10)

τj ' 2π
Lj

R
=

Φ0

IcR
=

√
2πΦ0Cs

βcJc
(2.11)

Lj =
Φ0

2πIc
(2.12)

βc = Q2 =
2πR2CIc

Φ0
(2.13)

Esw '
2Φ2

0
Rτx

(2.14)

Lj, R, Cs,C,Jc and βc are Josephson inductance, the equivalent resistance of the sub-
gap resistance and shunt resistor, junction capacitance per area, junction capacitance,
the critical current density and McCumber parameter[21], respectively. τx is the
duration time of the switching process and τj is the time constant that comes from
the characteristic of Josephson junctions. As can be seen from the equations (2.10),
(2.11) and (2.14), power consumption can be reduced by flowing modification.

• Using high-Jc fabrication process.
• Using high-βc Josephson junctions. In other words, to use unshunted JJ (to

increase shunt resistance).

The typical energy dissipation of AQFP is Esw '10 × 10−19 J for Ic = 25µA, C
= 1 pF, R = 1Ω[22]. The combination of βL and B determines the adiabatic change
in the potential of the circuit. Decreasing βL and βq decreases the energy consumed.
Also, decreasing βL and increasing βq increases the operating margin of the circuit
for the excitation current. There is a trade-off between the operating margin of the
circuit and the energy consumption, and the value of βq determines it. For the AQFP
circuit in the AIST HSTP process, a combination of βL and βq of 0.2 and 1.6 is used.

2.3. DATA PROPAGATION OF AQFP CIRCUITS 13

2.3 Data propagation of AQFP circuits
Microstrip or strip lines are used for signal propagation in the AQFP circuit. The
circuit diagram is shown in figure 2.4. The AQFP circuit has a transformer in the
output of the signal current. Since the binary of the AQFP circuit is determined
by the polarity of the current, reversing the coupling direction of the transformer
allows for NOT operation without additional implementation cost. When the buffer
gate switches, a quantum magnetic flux Φ0 = 2.067 851 × 10−15Wb penetrates the
superconducting loop. A circulating current flows through the loop to counteract
the magnetic flux, and the current is determined by Iloop = Φ0/L[A]. Since the
coupling coefficient of the transformer is about k � 0.5, the current flowing in the
superconducting loop including the signal line is Isignal � 0.5Φ0/Lstripline[A]. The
input current to the gate Isignal must be sufficiently larger than the gray zone of
the AQFP buffer gate. The minimum required current has been studied based on
simulation and measurement results, and it is assumed to be Ith =7µA. Considering
the standard microstrip lines in use, the wiring length is about 1000 µm.

Iin

Iex(i) Iex(i+1)

AQFP buffer gate AQFP buffer gate

Stripline / Microstripline

Figure 2.4: Signal propagation of AQFP circuit. The AQFP buffer gate contains a
transformer, and the output current of the buffer gate propagates the signal through
the transformer and stripline or microstrip line to the next gate. The inductance of
the superconducting loop determines the current flowing in the signal line.

2.4 Excitation of AQFP circuit
AQFP circuits can be operated by applying a periodic current, and the current wave-
form can be sinusoidal, square, or triangular. However, since AQFP circuits can
reduce power consumption by slowing the switching process, providing discontinuous
waveforms will increase power consumption. Therefore, a sine wave is usually used
to excite the circuit. A three-phase excitation scheme was first proposed, in which
the phase difference between the excitation currents applied to the sending gate and
the receiving gate is 120◦. Then, it is followed by a four-phase excitation scheme in
which the phase difference is 90◦[23]. The four-phase excitation method has a broader
timing margin of the circuit, and the stability of the circuit at high-speed operation is
improved. There are also proposals for 8- and 12-phase excitation schemes and delay

14 CHAPTER 2. THEORY OF ADIABATIC QUANTUM-FLUX-PARAMETRON

input data

output data

IIx1

Iac1
Idc1
Iac2

AQFP

Φ1

Φ2

Φ3

Φ4

Φ1

Figure 2.5: Diagram of the circuit configuration for the 4-phase excitation scheme
of the AQFP circuit. There are three excitation currents are wired in meander form
from left to right. The DC current is wired sequentially from the top to bottom, and
the AC currents are wired from top to bottom by skipping one phase in sequence. As
shown in figure 2.6, the two currents have a phase difference of 1/2π. The interaction
of the AC and DC currents flow directions excites the circuit four times per cycle.
Therefore, the i-th and (i+ 4)-th gates from the top are excited at the same time.

line clock, which uses on-chip delay lines to create a phase difference[24, 25]. How-
ever, unless otherwise noted, this paper will focus on the 4-phase excitation scheme.
Figures 2.5 and 2.6 shows 4-phase clocking scheme and placement of the gate.

2.4. EXCITATION OF AQFP CIRCUIT 15

Φ2 Φ4

Φ1 Φ3 0.5 × Φ0

-0.5 × Φ0

Iac2 Iac1

90 deg

Figure 2.6: A method of creating four phase differences by the interaction of DC and
AC currents. The magnitude of the three currents is equivalent to 1/4φ0, and the
two AC currents have a phase difference of 1/2π. The DC current is used to provide
an offset to the AC current, and when wired as shown in figure 2.5, the AC and DC
currents are positively biased when they are in the same direction and negatively
biased when they are in opposite directions. Since the AQFP circuit has no polarity,
the circuit switches when the total input current exceeds ±1/2φ0, so wiring it as
shown in the figure can create four phase differences.

16 CHAPTER 2. THEORY OF ADIABATIC QUANTUM-FLUX-PARAMETRON

1 0

buffer not constant1 constant0 branch3
Figure 2.7: Basic symbols for AQFP circuits. From left to right: buffer, not, con-
stant0, constant1 and branch3. Branch circuits have different numbers of branches,
branches 2, 3, 4, and 5.

2.5 Logic circuit using the AQFP circuit
2.5.1 Basic cells of AQFP logic circuits
The AQFP circuit has four basic gates [26]. The respective circuit symbols are shown
in figure 2.7.

buffer Figure 2.1 shows schematic of buffer gate. When the circuit is excited, a
current in the same direction as the input current is generated. Since the gate
does not perform logic operations, it is used to synchronize signal timing or to
amplify current for long-distance propagation.

not(invert) In figure 2.4, the circuit with a negative coupling coefficient for the output
transformer is the inverter gate. A current in the opposite direction of the input
current is generated.

constant A gate with no input terminals, only output terminals. A gate in which
the loop inductance of the superconducting loop is asymmetric, biasing the ease
of switching the left and right Josephson junctions. The const0 gate and the
const1 gate are mirror images of each other.

branch A gate for splitting and merging currents. It is used to create branching and
majority gates as described below.

The majority gate is used as basic gates for operations in AQFP circuits. A majority
gate is a logic circuit that has 2n+ 1 fan-in and 1 fan-out. It is a gate that outputs
“0” when n+1 inputs are “0” and outputs “1” when n+1 inputs are “1” and outputs
the one with the higher number of logic inputs. So far, 3-input, 1-output and 5-input,
1-output majority logic gates have been designed and included in the cell library [27].
Logic equations of the 3-input majority gate and the 5-input majority gates are shown
in euqation (2.15) and euqation (2.16), respectively.

Maj(a, b, c) = ab+ bc+ ca (2.15)
Maj(a, b, c, d, e) = abc+ abd+ abe+ acd+ ace+ ade+ bcd+ bce+ bde+ cde

(2.16)

The principle of operation of majority logic gates is explained qualitatively: a three-

2.5. LOGIC CIRCUIT USING THE AQFP CIRCUIT 17

input majority logic gate has a structure that uses branch3 to join the outputs of three
buffer gates. As shown in the figure, when a 3-input majority logic gate receives inputs
{“0”, “1”, “1”}, the AQFP circuit assigns the logic state to the direction of current
flow, so the direction of the output current is “1” according to Kirchhoff’s law. A
5-input majority logic gate works in the same way by using a 5-input branch cell.

In principle, a majority gate can be created using only a branch circuit, since
the current merging is used for the calculation. However, since the input current is
determined by the magnitude of the wiring inductance, it is difficult to match the
amount of current. For this reason, the majority logic gate in the cell library has a
buffer gate attached to the input section to align the input current level. figure 2.9
shows a block diagram of a majority logic gate and its symbol.

+1

+3

+1 +1 -1

+1

+1 +1

Figure 2.8: Inside the majority logic gate, currents are merged, which represents
majority logic. “-1” means upward current and “1” means downward current.

As can be seen from euqation (2.15), the majority logic gate is a combination of
AND and OR operations. By performing conversions such as those in equations (2.17)
to (2.19), they can be used as majority logic gates AND, OR, and NOR gates. fig-
ure 2.10 shows schematic of each gates.

AND : a · 0 + 0 · c+ ca = ac (2.17)
OR : a · 1 + 1 · c+ ca = a+ c (2.18)

NOR : ¬a · 1 + 1 · ¬c+ ¬a¬c = ¬a¬c = ¬ (a+ c) (2.19)

a b c

d

(a)(a) (b)

a b c

d

M

Figure 2.9: (a)Block diagram of a 3-input majority logic gate. buffer is attached to
the input of the branch block to align the magnitudes of the input currents. Since the
magnitude of the output current of the buffer and the not gate is equal, the majority
logic operations with negative inputs are also possible by installing a not gate instead
of a buffer gate. (b) Symbol of 3 input majority gate

18 CHAPTER 2. THEORY OF ADIABATIC QUANTUM-FLUX-PARAMETRON

a c

d

1

(a)(a)

1

a c

d

(c)

a c

d

0

(b)
Figure 2.10: Schematic of (a) OR gate, (b)AND gate, and (c) NOR gate. Equa-
tions (2.17) to (2.19) bring these conversions. The gate placed center in the schematic
is the constant output gate.

2.5.2 Energy dissipation of AQFP logic gate
Evaluating the energy consumption of AQFP circuits is more difficult than for RSFQ
or CMOS circuits. This is because AQFP circuits do not have static power con-
sumption, and because it is an adiabatic circuit, all energy received by the circuit is
not dissipated during the calculation. The power consumption of an AQFP buffer
gate EAQFP is calculated by the following equation, where IL(t) is the current in the
excitation line, VL(t) is the potential difference of the excitation line, and f is the
operating frequency.

EAQFP =

∫ 2π
f

0
IL(t)× VL(t)dt (2.20)

As shown in the figure 2.11, the power consumption of the AQFP buffer gate is
proportional to the frequency, and the power consumption is zero when the circuit
is excited using infinite time. The majority gate used for logic operations is energy
saturated because any buffer whose input direction differs from that of another buffer
causes that buffer to operate non-adiabatically. The most power-hungry gate is spl2L,
a branch cell using a Josephson junction with a critical current of 100 µA.

2.5. LOGIC CIRCUIT USING THE AQFP CIRCUIT 19

0.01z

0.1 z

1 z

0.01a

0.1 a

1 a

10M 100M 1G 10G

En
er

gy
di

ss
ip

at
io

n
[J

]

Frequency [Hz]

spl2L

maj5(11000)

maj3(100)

bfr

Figure 2.11: The graph shows the frequency dependence of the power consumption of
the AQFP circuit. The energy consumption of the AQFP buffer gate is proportional
to frequency. AQFP logic gates consume different amounts of energy depending on
the input combination, and the combination with the largest energy consumption is
shown as a representative example.

In the range above 5GHz, energy consumption increases a little faster. This is due
to the effect of plasma oscillations determined by the parameters of the Josephson
junction. This effect is based on the AIST HSTP process and can be mitigated by
using a process with a higher critical current density.

Evaluating the energy of gates that perform logic operations is a bit more com-
plicated. This is because energy is exchanged between logic gates, and a method
of evaluating energy that takes this effect into account is necessary. A systematic
method has been proposed and is described below [28]. First, a somewhat long buffer
chain is connected above and below the circuit to be measured and simulated, as
shown in the figure 2.12. Total energy Etot and consumed energy in the device under
the test(DUT) EDUT can be calculated in following equations.

Etot = Eac1 + Eac2 =

∫
Wac1 +

∫
Wac2 (2.21)

EDUT = Eac1-DUT + Eac2-DUT =

∫
Wac1-DUT +

∫
Wac2-DUT (2.22)

Then, to find a linear approximation function of Ediff, the difference of Etot−EDUT.
The constant term of this function is the energy received by the DUT from the outside
as signal current. Therefore, the energy consumed by the AQFP circuit, Ecircuit, is
Ecircuit(f) = EDUT(f) + Ediff + const Figure 2.13 shows curve of measured energy.
The difference of energy Ediff becomes almost linear.

20 CHAPTER 2. THEORY OF ADIABATIC QUANTUM-FLUX-PARAMETRON

DUT

....

....

AC1
AC2

Vac1-DUT

Vac1Iac1

Iac2

Vac2-DUT

Vac2

Figure 2.12: Circuit diagram for measuring the energy consumption of an AQFP
circuit. A buffer chain is connected to the input and output ends of the Design Under
Test (DUT), and the energy of the entire circuit and the energy consumed by the
DUT are obtained from the simulation.

2.5. LOGIC CIRCUIT USING THE AQFP CIRCUIT 21

y = 10-23 + 8 x 10-20

0.01 a

0.1 a

1 a

0.01f

1 M 10 M 100 M 1 G 10 G

En
er
gy

di
ss
ip
at
io
n
[J
]

Frequency [Hz]

Etot
EDUT
Ecircuit
Etot-EDUT
Liner fitting

Figure 2.13: An example of how to calculate energy consumption. Calculate the
energy consumed by the entire circuit, Etot, and the energy consumed by the DUT,
EDUT, and then find the difference between Etot and EDUT, Ediff. Since the constant
term in the linear approximation of Ediff is the energy received and consumed by the
DUT from sources other than the excitation line, the sum of EDUT and the constant
term is the energy consumed by the circuit, Ecircuit.

Figures 2.14 and 2.15 show the energy consumption of a 3-input majority logic gate
and a 5-input majority logic gate.

22 CHAPTER 2. THEORY OF ADIABATIC QUANTUM-FLUX-PARAMETRON

0.01 z

0.1 z

1 z

0.01a

0.1 a

100 M 1 G 10 G

Ediss_000 Ediss_001
Ediss_010 Ediss_011
Ediss_100 Ediss_101
Ediss_110 Ediss_111
bfr bfr x 3

Frequency [Hz]

En
er
gy

di
ss

ip
at
io
n
[J
]

minority = 1

all 1/ all 0

Figure 2.14: The graph shows the frequency dependence of the power consumption of
the AQFP 3-input majority gate. The three-input majority logic gate consists of three
buffers, and when all inputs are equal (Ediss000, Ediss111), the energy consumed is
approximately equal to the energy of the three buffers. In other cases, the operation
is non-adiabatic and there is a lower bound on the energy consumption, which is
approximately 0.01 aJ.

2.5. LOGIC CIRCUIT USING THE AQFP CIRCUIT 23

0.01 z

0.1 z

1 z

0.01 a

0.1 a

100M 1G 10G

En
er

gy
di

ss
ip

at
io

n
[J

]

Frequency [Hz]

Ediss_00000 Ediss_00001
Ediss_00010 Ediss_00011
Ediss_00100 Ediss_00101
Ediss_00110 Ediss_00111
Ediss_01000 Ediss_01001
Ediss_01010 Ediss_01011
Ediss_01100 Ediss_01101
Ediss_01110 Ediss_01111
Ediss_10000 Ediss_10001
Ediss_10010 Ediss_10011
Ediss_10100 Ediss_10101
Ediss_10110 Ediss_10111
Ediss_11000 Ediss_11001
Ediss_11010 Ediss_11011
Ediss_11100 Ediss_11101
Ediss_11110 Ediss_11111
bfr bfrx5

minority = 2

minority = 1

all 1/ all 0

Figure 2.15: The graph shows the frequency dependence of the power consumption
of the AQFP 5-input majority gate. A 5-input majority logic gate consists of five
buffers, and when all inputs are equal (Ediss00000, Ediss11111), the energy consumed
is approximately equal to the energy of five buffers. It also has two ranks of energy
consumption when operating in a non-adiabatic manner, which is determined by the
number of minority inputs, and the energy consumption when there are two minority
inputs is greater. Minority = 1 and minority = 2 indicate the number of minority
inputs.

24 CHAPTER 2. THEORY OF ADIABATIC QUANTUM-FLUX-PARAMETRON

2.5.3 Design flow of AQFP circuit
AQFP circuit basic cells and logic cells can be combined to create a circuit that
operates. A 1-bit full adder is used as an example. The function for a full adder is
shown in equations (2.23) and (2.24).

Cout = ab+ bc+ ca (2.23)
S = a⊕ b⊕ c (2.24)

Logic synthesis

Cout = Maj (a, b, c) = ab+ bc+ ca (2.25)
S = Maj (¬Maj (a, b, c) ,Maj (a, b,¬c) , c) (2.26)

a, b denote the inputs, c denotes the lower bit carry input, Cout denotes the carry
output, and S denotes the sum output.

First, consider what kind of logic gates are used to create a structure that satisfies
the logical equation. Since the equation written in equations (2.23) and (2.24) is in
disjunctive canonical form, we use methods [29, 30] to transform it into the following
equation.

S =

{
¬ab(a+ b) = (¬a+ ¬b)(a+ b) = a⊕ b (c = 0)
¬(a+ b) + ab = (¬a¬b) + ab (c = 1)

(2.27)

= ¬c(a⊕ b) + c(¬a¬b) + ab = a⊕ b⊕ c (2.28)

This logical equation equations (2.25) and (2.28) are expressed in terms of a network
graph as shown in figure 2.16.

a

Maj1 Maj2

c

Maj3

b

Cout

S

Figure 2.16: Network graph of full adder circuit by using majority logic gate. In this
graph negative connection decreases as dot input.

2.5. LOGIC CIRCUIT USING THE AQFP CIRCUIT 25

Since the branching of signals in the AQFP circuit requires branching gates (SPL2
and SPL3), the appropriate branching tree is connected below the logic gates. The
network graph of the full adder after connecting the branch gates is shown in fig-
ure 2.17.

a

spl1

c

spl2

b

spl3

cout

S

Maj1 Maj2

Maj3

spl4

Figure 2.17: Circuit diagram of figure 2.16 with the split cells added.

Finally, a buffer is inserted to adjust the signal timing as shown in figure 2.18.

a

spl1

c

spl2

b

spl3

Cout S

Maj1 Maj2 bf r1

spl4

bf r3 Maj3

bf r4 bf r2

Figure 2.18: Network graph of the full adder, correctly designed as a logic circuit.
Signal branch cells and buffer cells to adjust signal timing are inserted. This circuit
is referred to as a type-A total adder for convenience.

26 CHAPTER 2. THEORY OF ADIABATIC QUANTUM-FLUX-PARAMETRON

We refer to this graph structure shown in figure 2.18 of full adder as type-A. It is a
well-balanced structure in terms of energy consumed and latency. The graph shown in
figure 2.19 is a type-B full adder, which has a shorter latency of Cout than type-A. This
feature is effective to design ripple carry adder. However, it consumes more energy
than type-A due to a large number of branch cells and majority gates. As described
above, even circuits with the same logic formulas have various characteristics, and it
is very important to consider the implementation that suits the purpose.

a

spl1

b

spl2

c

spl3

S

Cout maj1

maj4spl11 spl12 spl13 bfr1

maj2

maj3

bfr2

Figure 2.19: Network graph of the full adder called type-B, has a shorter latency of
Cout than type-A. The two majority gates enclosed by the red dashed line perform
the same operation.

27

Chapter 3

RTL to GDS flow for large AQFP
circuits

3.1 Introduction
In previous, various circuits have been designed and demonstrated using AQFP cir-
cuits. Examples of large-scale circuits include the 4-bit microprocessor MANA and
the 16-bit Kogge-Stone adder[15, 31]. We designed these circuits mostly by hand,
which required a long time to design. In particular, we spent much time verifying
the designed layout. To use AQFP circuits in practical applications, even larger de-
signs with more complexity are needed. The design environment must be improved
to enable efficient circuit design.

There have been reports on the construction of semi-custom design flows for AQFP
circuits[32] and methods for efficient placement of standard cell designs [33, 34, 35].
This chapter reports on the construction of a highly integrated full-custom design
flow and a top-down design flow that outputs GDS from RTL in a fully automated
manner, using Synopsys tools.

3.2 Full-custom environment setup and cell library
development

3.2.1 Full-custom setup
We have created an environment that allows designers to design custom AQFP circuits
on a schematic layout editor known as Synopsys Custom Compiler. This tool is
integrated with an analog/digital simulator and layout verification tool.

For analog simulation, PrimeSim HSPICE is used [36]. Compared to the previ-
ously used superconductor circuit analog simulators such as jsim[37], JoSIM[38], and
WRSpice, it is a user-friendly simulator because it can use a variety of configurable
voltage sources and can interactively set up simulation from the circuit design win-
dow [39]. It is also available to simulate circuits with sweeping parameters. This
feature is convenient for checking the robustness of the designed circuit against fab-
rication parameter spread. Digital simulation is also available through PrimeSim XA

28 CHAPTER 3. RTL TO GDS FLOW FOR LARGE AQFP CIRCUITS

(mixed signal mode) by invoking the System Verilog views developed for each AQFP
logic cell.

We set up the layout versus schematic (LVS) on Custom Compiler for the layout
verification tool. It is of great interest to circuit designers to know whether the circuit
layout they have created correctly corresponds to a specified schematic. This checking
is done carefully, but a minor design error can lead to a large failure[40]. LVS performs
a mechanical comparison of the circuit layout and schematic, and plays a vital role
in circuit design.

Our LVS tool currently supports checking the topology of graphs extracted from
the schematic and layout. Figures 3.1 and 3.2 show the schematic and layout of
the buffer gate of the AQFP, and LVS has verified the equivalence of these two.
When the circuit is verified to be equivalent, the notification shown in listing 3.1 is
obtained. LVS is available not only for the cell designed under the full-custom flow
but also for larger circuits designed such as those built from the standard cell library.
Inductor parameter checks are normally done via simple sheet inductance calculations
which are not suitable for the complex multi-layer inductances that the AQFP has.
Integration with a 3D solver such as STAR or InductEx [40] is necessary and will be
in consideration in the future.

These developments have made designing AQFP circuits much more convenient
than before. We used this environment to create cell libraries for the RTL-to-GDS
flow of AQFP circuits.

3.2. FULL-CUSTOM ENVIRONMENT SETUP AND CELL LIBRARY DEVELOPMENT29

in
LP

ktr

LQ
out

Trans.

A

Q

ACL ACR

DCL DCR
in

out
Transformer

L1
CL

kx1

kd1 kd2

kx2

J1 J2
CR

Ld

Lin

LX

L2

Figure 3.1: Schematic of an AQFP circuit.Lin =1.67 pH, L1 = L2 =1.42 pH,
Lx =5.19 pH, Ld =5.17 pH, Lp =8.39 pH, Ls =30.9 pH, CL = CR =2.90 fF,
kx1 = kx2 = −0.22, kd1 = kd2 = −0.14, ktr = 0.49 and critical current of J1 and
J2 are 50 µA. Parasitic couplings are ommited in this figure.

30 CHAPTER 3. RTL TO GDS FLOW FOR LARGE AQFP CIRCUITS

ACL

A

Q

DCL

ACR

DCR
GND GND

15 μm

30
μm

I

II

Figure 3.2: Layout view of the buffer gate. ‘A’ is the data input, ‘Q’ is the data output,
‘ACL’ and ‘ACR’ are the left/right AC power-clock ports, and ‘DCL’ and ‘DCR’ are
the left/right DC offset ports. The virtual GND lines for LVS in the standard cell
design of the AQFP circuit are located below DCL and DCR. Blue rectangles in the
dotted line box (I) and (II) are examples of using the inductance annotation layers
for LVS. (I) indicates the primary inductor of the transformer and (II) indicates the
individual inductance L1.

3.3 AQFP RTL-to-GDS flow
3.3.1 Cell libarary development
We have designed a standard cell library for the MIT Lincoln Laboratory SFQ5ee
process [41] for automated design flows. The critical current density of the Josephson
junction (JJ) is 100A/µm2, and it has eight superconductor Nb layers available for
circuit design [42]. The basic structure of the cell follows previous studies with some
improvements to enable the previously mentioned verification flows [43].

We prepared two types of cells with the same function, one is an “odd” cell, and
the other is an “even” cell, which is a mirrored image of the odd cell. The clocking
of the AQFP circuit uses a method called 4-phase clocking[44], in which the DC
bias current and two AC currents with phase differences of 90 degrees are wired in a
meander pattern. Therefore, the DC bias currents flow from the left for cells excited
by an odd numbered phase and from the right for cells excited by even numbered

3.3. AQFP RTL-TO-GDS FLOW 31

Listing 3.1: LVS execution log. It shows the results of comparing the netlist extracted
from schematic and layout. The last line’s “bfr == bfr” indicates that two netlists
are matched.

Results Summary

LVS Device Extraction Error Summary
2 total rules were run.
0 rules NOT EXECUTED.
0 rules have violations.
There are 0 total violations.
Refer to bfr.LAYOUT_errors

LVS Compare Summary

LVS Compare Result: PASS
TOP equivalence point: [bfr,bfr]

equivalence points checked: 1
passed 1
failed 0

Refer to bfr.LVS_ERRORS for LVS Error Diagnostics

[PASS] bfr == bfr (level 0)

phases. Some gates, such as AND/OR gates, have a specific direction for DC bias
currents due to the asymmetry of the AQFP circuit inductance in the constant cells
needed to perform AND/OR. To treat this problem previously, the designer must
manually turn the cell when they placed these gates in even-numbered positions. We
decided to add the even cells that were initially flipped over to the standard cell
library. Figure 3.3 shows AQFP AND/OR full adder circuit. Cells placed on φ2, φ4

receive DC from right to left and thus “even” cells are chosen from the cell library
for these phases. For φ1, φ3, “odd” cells are chosen. Making these odd/even cells
explicitly available simplifies the modifications needed to obtain a correct placement.

AQFP circuits also have the problem of low circuit drive power, which is a ma-
jor obstacle for long internal wiring and large branches/splitters. A circuit called
a booster can solve this problem. Since it can reduce circuit latency and area. A
four-branch cell using the booster and a long-distance wiring cell are included in the
cell library. Further, cells are individually characterized to identify the maximum
interconnect length they can drive. This information is included in a Liberty file that
describes the driving strength of each cell for use in the top-down design flow.

The larger the circuit, the more the effect of signal delay time needs to be consid-
ered. Since AQFP circuits have logic gates connected in a daisy chain to the clock
(excitation current), attention must be paid to the clock delay time. The wiring which
provides the excitation current is changed from a simple inductor model to an LC

32 CHAPTER 3. RTL TO GDS FLOW FOR LARGE AQFP CIRCUITS

ladder model [45]. The excitation current overlaps the inductance of the SQUID part
of the AQFP circuit. Therefore, there are both magnetic, and capacitive coupling
effects. It is now possible to evaluate the excitation timing discrepancy due to the
propagation delay of the excitation current.

a

S C

b c

AC1

AC2

φ1

φ2

φ3

φ4

φ1

φ2

DC
Logic

Logic

Logic

Logic

Logic

Logic

Routing

Routing

Routing

Routing

Routing

Figure 3.3: Schematic of AQFP AND/OR full adder. Two AC lines and one DC line
are wired in a meander shape like this figure. The region of routing and logic cells
are placed alternately. The buffer gate depicted by the dashed line is inserted during
the path-balancing process. “Even” cells are used which belong to φ2, φ4.

3.3. AQFP RTL-TO-GDS FLOW 33

Input files
• HDL(.v/ .vhd)
• Makefile

Gate level

Tech mapping

Cell placement

Generate GDS

Report QOR

Path balancing
• buffer insertion
• multi-fanout tree

Figure 3.4: Two files are prepared: a Makefile and an HDL file describing the circuit
to be designed. The Makefile contains the binary path and the module name, and
the top-down flow begins by executing the Makefile with the “make” command.

3.3.2 AQFP RTL-to-GDS flow
Cell placement and routing are done within Synopsys’s framework of the Fusion Com-
piler system. The tool set is highly customizable through TCL scripting, with a very
flexible and complete interface to the design database. Our AQFP flow consists of a
master script, which calls subsidiary scripts to perform the various tasks, from library
compilation through synthesis, formality checking, place and route, and documenta-
tion. Figure 3.4 shows a rough flowchart of this top-down flow.

Initially, technology mapping to the AQFP library is performed. Synthesis uses
abstract cells that avoid issues particular to AQFP, such as using a multi-phase clock,
so mapping to the “real” library cells is required. Once mapped, the next operation
is path balancing, ensuring that the combinational cells’ inputs originate from the
same logic depth within a pipeline. This process involves adding AQFP buffer cells
into the design, generally in large numbers. As a by-product, all combinational cells
are assigned a logic level number, starting from one at the beginning of each pipeline
state.

A floor plan for the design is generated from the per-level gate counts and externally-
set variables. This assembles the cell placements into rows, where each logic level has a
corresponding cell row, starting from the top. A fixed-height wiring channel separates

34 CHAPTER 3. RTL TO GDS FLOW FOR LARGE AQFP CIRCUITS

the rows. As a consequence of path balancing, all routes will connect adjacent rows,
like figure 3.3. Cell placement and routing are usually done within this floor plan,
minimizing a cost function that depends heavily on the total wire length. The routing
flow is timing dependent and can compensate for timing errors by adding buffering or
adjusting path length. Our flow uses four physical routing layers and horizontal and
vertical strip passive transmission lines. These lines have a known delay proportional
to distance. Clock delay is obtained from cell clock terminal placement, as the clocking
routes are predictable from the floor plan. Again, the delay is proportional to the
distance along the clock lines from a reference point.

Once placement and routing are complete, the GDS layout file and a QoR report
are generated. The report identifies possible DRC errors and timing violations. In a
typical design, there are often congestion points where routing effectively fails.

3.3.3 Quality of result
Implementation results are shown in table 3.1 and figure 3.5. In the appendix, there
are raw data to make this table. We compiled a set of ISCAS-85 benchmarks [46] and
multi-bit adders to compare with a previous study, ASAP [33]. Among the ISCAS-
85 benchmarks, the C6288 circuit (a 16× 16 array multiplier comprising half-adders
and full-adders) yielded the largest JJ count at over 220k JJs. To investigate the
scaling limitations of the tool, we included a simple, parameterized multi-bit adder
with data word sizes ranging from 8-bit to 1024-bit. The comparison results are not
completely fair because of the different cell libraries and different hardware used to
compute the results, but nonetheless we can gain some insight into the differences
between the approaches. Clearly, ASAP is superior in terms of execution speed.
The overall JJ usage (fewer JJs is better) is also superior in ASAP as its usage is
slightly better for some benchmarks, and much better in others, particularly the
C6288 benchmark. One explanation for this is that ASAP was built from the ground
up to support AQFP logic specifically. The RTL-to-GDS flow in this study still uses
algorithms made for semiconductor circuits but with customized tool control via TCL
scripting. For example, ASAP has a more proper treatment of AQFP buffer insertion
and optimization (retiming). While buffer insertion is implemented in this study, it
was not optimized to the extent ASAP was. Given that buffering can contribute to
more than 90% of the JJs of an AQFP circuit [32], the lack of extensive buffering
optimization can explain why the JJ usage is higher in this study.

However, our tool has successfully synthesized much larger circuits than ASAP. It
consistently demonstrated its capability to realize designs in the range of 100k JJs to
over one million JJs. The largest circuit successfully designed is a 1024-bit adder with
two million JJs. The design took two days on a server with 1024GB of memory in the
cloud. Further, the internals of the RTL-to-GDS engine is shared between RSFQ and
AQFP logic. The only difference is the customization of the flow through scripting.
ASAP only supports AQFP logic. Lastly, the top-down design flow is well-integrated
with the full-custom flow which provides a seamless user experience compared to the
standalone flow available via ASAP.

3.3. AQFP RTL-TO-GDS FLOW 35

Table 3.1: Comparison of placement results between ASAP[33] and proposal.

Proposal ASAP
name #JJs time (s) #JJs time (s)
C17 72 35 50 9
C432 3958 193 2474 26
C499 6656 238 5046 41
C880 7546 363 6480 55
C1355 6584 333 4918 42
C1908 10112 557 5680 60
C2670 16258 570 7884 81
C3540 20520 973 17420 95
C5315 31352 1326 29454 374
C6288 220428 6383 49394 158
C7552 35066 1246 33530 591

8-bit adder 1072 288
16-bit adder 2966 252
32-bit adder 8028 936
64-bit adder 20636 2124
128-bit adder 53290 4608
512-bit adder 567616 49536
1024-bit adder 2275472 187200

1

10

100

1k

10k

100k

1M

1 10 100 1k 10k 100k 1M 10M

Ex
ec
ut
io
n
tim
e[
se
c]

Number of JJs

Proposal
ASAP

Figure 3.5: Graph of the number of Josephson junctions(JJs) vs. execution time.
ASAP in the previous study is superior in both execution time and scalability. How-
ever, our method successfully designs circuits with larger JJs.

36 CHAPTER 3. RTL TO GDS FLOW FOR LARGE AQFP CIRCUITS

3.3.4 Discussion
During this study, the following was elucidated in regard to the characteristics of
AQFP circuits compared to the conventional RSFQ circuits from perspective of RTL-
to-GDS challenges.

In AQFP logic, the gates that make up the architectural latches are also clocked by
the global excitation current[47]. These latches are composed of multiple cells and thus
require multiple clock phases. It is difficult to resolve the timing of the combinational
logic with architectural latch macros composed of multiple gates, so sequential circuits
cannot be automatically synthesized at this moment. The quantum-flux-parametron
latch (QFPL) is an AQFP-compatible latch without a feedback path, but it requires
an additional control line[48] and still requires additional logic gates to interface with
it. In addition, there have not been many reports of sequential circuit design using
AQFP circuits. Methodologies have been proposed in [49, 50], but it still remains
unclear how to properly automate the physical placement of the architectural latches
together with the combinational logic, which all can influence the spacing between
logic rows and apply even more interconnect constraints on a heavily constrained
problem (interconnect length limitation).

In comparison, RSFQ logic has a high degree of freedom with the clock, making it
easy to design complex circuits and cells with internal states. However, the overall
number of JJs in the circuit increases because of the need for active JJ circuits to
distribute the clock. Also, RSFQ logic tends to have more JJs per cell compared
to AQFP logic [51]. Thus, synthesis flows for RSFQ logic can more easily approach
higher JJ counts for the above reasons, especially because the lower cell count (with
more JJs per cell) reduces the computation/memory load for the RTL-to-GDS flow
when compared to AQFP logic.

AQFP physical synthesis is hindered by a more heavily constrained placement flow
as cells cannot be placed on any arbitrary row, but only on a row that provides the
required clock phase it needs to be excited by. For example, an AQFP cell that must
be excited by φ2 must be placed only on φ2 equivalent rows in 4-phase clocking. This
constrains the placement of the cell to just 25% of the rows available for a given circuit
design which may be challenging for a placer to find a good solution.

RSFQ circuits allow transmission over long distances using passive transmission
lines (PTLs)[52]. AQFP circuits use buffers as repeaters to transmit across long
distances, which increases latency and creates more constraints on the place-and-
route solution because the repeaters themselves also require a power-clock. This
can be partially mitigated by the aforementioned boosters in Section 3.2. Another
approach is to convert the AQFP signal to SFQ pulses to enable ballistic propagation
using PTLs. However, the energy consumption of the RSFQ circuit to support this
is 1000 times higher than that of the AQFP circuit, limiting its adaptability[53].
An intensive trade-off analysis needs to be conducted to determine what is the most
suitable strategy.

Fewer JJs are required to perform arithmetic operations in AQFP logic. This is
because it intrinsically uses majority logic as the basis of logic computation. Majority
logic has been shown to be much more efficient for arithmetic [54, 29]. That is not to

3.4. CONCLUSION 37

say that RSFQ logic cannot do majority logic, but the implementation of a 3-input
majority gate (MAJ3) in RSFQ logic requires 23 JJs [55], while the MAJ3 in AQFP
logic requires only 6 JJs [26].

3.4 Conclusion
We developed full-custom and top-down design flows using Synopsys EDA tools for
AQFP circuits. The full-custom flow is integrated with simulation and verification
tools such as analog/digital simulators and LVS. This provides an improved design
efficiency and user experience.

The top-down flow is the first attempt to build a tool that fully automates the
design from RTL to physical information that can be taped out. This is the first
successful design of AQFP circuits exceeding millions of JJs.

The next steps for this work include the following: (1) enable circuit parameter
verification of complex inductor structures by integrating 3D solvers into the LVS
flow, (2) provide an easy way to adjust optimization constraints such as relaxing
interconnect constraints or area constraints, and (3) provide support for novel clocking
methodologies such as power-divider clocking [56] and delay-line clocking [57] as they
may provide substantial opportunities to reduce latency and buffering [25, 58].

39

Chapter 4

Channel routing for AQFP circuits

This chapter describes the left edge algorithm, which is widely used in AQFP circuits,
and the Glitter routing algorithm used when the routing width is not constant. Then,
the Glitter-based routing inductance optimization algorithm is described and the
results of its execution are discussed.

4.1 Routing structure of AQFP cirucits
The HSTP process has four metal layers (layers made of Nb): GP, BAS, COU, and
CTL. The strip line structure is a structure in which a ground surrounds the top and
bottom of the line through which the signals pass, and the GP layer covers the signal
wire as the bottom ground and the COU layer for the top ground. Figure 4.1 shows
the layer structure of the stripline at the HSTP process. Figure 4.2 shows the cross-
section of signal lines. The CTL layer covers the signal wire as the upper ground, and
the BAS and COU layers are used to cross the signals. Therefore, only two layers are
available for signal routing.

The channel routing algorithm for AQFP circuits uses the most popular left-edge
method[59].

40 CHAPTER 4. CHANNEL ROUTING FOR AQFP CIRCUITS

GP
BAS
COU

Figure 4.1: AQFP wiring stripline structure. The signal current passes through the
BAS layer, with the COU and GP layers covering the top and bottom of the BAS
layer. On the sides of the signal lines, the BAS layer wired along the signals connects
the top and bottom grounds.

GP
BAS
COU
CTL

signal1

signal2

Figure 4.2: Diagram of a cross-section of signal lines in an AQFP circuit. The CTL
layer covers the upper side, and the GP layer covers the lower side to protect the
signal lines of the BAS and COU layers that cross.

4.1. ROUTING STRUCTURE OF AQFP CIRUCITS 41

4.1.1 Left edge algorithm
Left edge algorithm(LEA)[60, 61] is so named because it scans the signal edge from
the left edge of the routing area and assigns the track (horizontal routing grid in the
channel area) that the wires use. The algorithm creates two graphs from the state
of the channel region and processes the graphs to perform the routing. figure 4.3 (a)
shows an example of a wiring region.

1

3

4

5

6
2

(c)

1

3

42

5

6

(b)(a)

0 16 2 51 3

6 45 23 0 4

Ch
an
ne
l

Figure 4.3: (a) Example of the channel area. Numbers indicate the connection rela-
tionship of each terminal. 0 indicates no terminal. (b) VCG created from Figure (a).
(c) HCG created from Figure (a).

Vertical Constrain Graph
A vertical constrain graph (VCG) is a directed graph for determining the order in
which to route. The VCG corresponding to (a) in figure 4.3 is (b). The left edge
algorithm has the possibility of incorrect routing depending on the order of track
assignment. For example, as shown in figure 4.4 (a), if signal lines ‘1’ and ‘2’ are
placed in order from the bottom, there will be no vertical wiring area for signal line
‘2. This mistake can be solved by wiring signal line ‘2’ first, as in figure 4.4 (b).
The wiring order is specified in this situation by adding the edge ‘1’ to ‘2’ to the
VGC. Wiring can be done without overlap by sequentially wiring from the signal line
corresponding to the node of the leaf of the final created VCG. In the case of Figure
4.3(b), wiring ‘2’ is permanently wired before wiring ‘1’. In addition, since wiring ‘2’
and ‘4’ have no relationship in VCG, there is no restriction on the wiring order.

42 CHAPTER 4. CHANNEL ROUTING FOR AQFP CIRCUITS

1 2

12

1 2

12
(a) (b)

Figure 4.4: Cases where wiring must be constrained using VCG. In case (a), the
vertical wiring on the left side is crossed, but this is eliminated in state (b). Changing
the order of the horizontal wiring can control the crossing wires.

Horizontal Constrain Graph
The horizontal constrain graph (HCG) is an undirected graph describing the possi-
bility of horizontal wiring overlap. figure 4.3 (c) is the HCG generated from (a). If
two nodes of the HCG are adjacent to each other, the signal lines corresponding to
those nodes cannot be routed on the same track. In figure 4.5 (a), node ‘1’ and node
‘2’ are connected, and in (b), there is no edge between node ‘1’ and node ‘2’. In other
words, in (b), wires ‘1’ and ‘2’ can be placed on the same track.

1 2

12

1 2

1 2
(a) (b)

Figure 4.5: (a) has a relationship in the HCG, while (b) does not. In (a), assigning
horizontal signal lines to the same track causes overlap, while in (b), this does not
occur.

Algorithm flow of left edge algorithm
Algorithm 4.1 shows pseudocode of LEA.

4.1. ROUTING STRUCTURE OF AQFP CIRUCITS 43

Algorithm 4.1 Left edge algorithm
1: repeat
2: node-set ← set of leaves in VCG
3: wires ← set of node-set where wire not connected in HCG
4: Putting wires
5: Delete wires from HCG and VCG
6: until HCG and VCG are empty

1

3

2

6

0 16 2 51 3

6 45 23 0 4

1

3

2

5

6

0 16 2 51 3

6 45 23 0 4

1

3

42

5

6

0 16 2 51 3

6 45 23 0 4

1

3

0 16 2 51 3

6 45 23 0 4

0 16 2 51 3

6 45 23 0 4

1

4 5

1 2 3

Figure 4.6: The left edge algorithm allocates the wires to the track, and when the
VCG is empty, it means that the wire allocation has been completed.

There is a restriction in this algorithm that wiring cannot be performed unless the
VCG is a directed acyclic graph (DAG). This means that even if the order of wiring
placement is changed, there exists a situation where vertically oriented signal lines
overlap as shown in figure 4.7. It is necessary to arrange the logic cells in such a way

44 CHAPTER 4. CHANNEL ROUTING FOR AQFP CIRCUITS

that this constraint is satisfied.

1 2

12
dog leg

1

2

(a) (b)
Figure 4.7: Wiring example when VCG is not a DAG. (a) If such a combination of
terminals is present in the circuit, the wiring will fail if the signal line bends only
twice. Therefore, adding a structure called DOGLEG, which wires by bending four
times. (b) The VCG generated from (a) has no leaves and cannot be wired because
of the circulation.

In the AQFP circuit, the upper and lower cells are positioned at different positions,
as shown in figure 4.8, to prevent the VCG from becoming a cyclic graph. The I/O
pin spacing of the AQFP circuit is 20µm, and the width of the signal lines is 10µm,
including the shield. By shifting the placement of the upper and lower cells by 10µm,
the vertical wiring of the upper and lower cells will not collide, which can be attributed
to the wiring problem of no VCGs, and the left edge algorithm can always be used
for wiring.

4.1. ROUTING STRUCTURE OF AQFP CIRUCITS 45

20 um

10 um

10 um

Figure 4.8: The method to avoid making cycle in VCG of AQFP circuit routing
problem. By shifting the placement of the upper and lower cells by 10µm, the vertical
wiring of the upper and lower cells will not collide.

46 CHAPTER 4. CHANNEL ROUTING FOR AQFP CIRCUITS

4.2 Channel routing optimization with Glitter
A stripline connects the AQFP gate and gate, and the strip line is part of the super-
conducting loop. Since the flowing current in the superconducting loop is inversely
proportional to the inductance of the loop, the current flowing in the long strip line
is small. The minimum sensitivity of the AQFP circuit designed for the HSTP pro-
cess is about 7µm, which is the current that flows when the parasitic inductance is
50 pH. If the inductance is higher than this, arithmetic errors due to thermal noise
will occur frequently, so this is a rule that must be followed in the design. Where µ0

is permeability in vacuum, w is width of signal wire, dn is ditstance between signal
wire to ground plane, and λn is London penetration depth.

Ln = µ0
(dn + 2λL) l

w
(4.1)

As can be seen from euqation (4.1), the parasitic inductance is inversely propor-
tional to the width. If the wiring width is wider, the inductance per length can be
reduced, which means that more extended wiring is possible.

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

0.0

5.0

10.0

15.0

20.0

25.0

30.0

0 10 20 30 40

M
ax
Pr
op
ag
ati
on
Di
sta
nc
e

[m
m
]

In
du
cta
nc
e
[p
H]

Wire width[um]

inductance[pH]
distance [mm]

Figure 4.9: Parasitic inductance per 100µm vs wire width. Inductance can be small
when wider wire is used.

The figure shows the relationship between wiring width and inductance per length
and between wiring width and maximum wiring length. 3mm wiring is possible if
30µm width wiring is used.

4.3 Glitter, variable-width channel router
Using wide signal lines can increase the data transmission distance, but it also in-
creases the area of the circuit. If wide wiring can be used for long-distance signal
lines and thin wiring for short distances, data can be propagated over long distances

4.3. GLITTER, VARIABLE-WIDTH CHANNEL ROUTER 47

without increasing the circuit area. This technique can be achieved using Glitter[62],
an algorithm that enables correct wiring in wiring areas where the wiring width is
not constant.

4.3.1 Routing Algorithm
In this section, the Glitter algorithm is briefly explained. Glitter is an algorithm that
is an extension of the left edge algorithm and generates a weighted constrain graph
(WCG) by generating a weighted VCG and HCG and combining them. Figure 4.11
shows HCG and VCG corresponding to figure 4.10, and figure 4.12 shows WCG
from figures 4.10 and 4.11. Since the generated WCG is a graph with a mixture of
undirected and directed edges, the orientation of the undirected edges is calculated
according to the algorithm to convert the WCG to a DAG. The direction is given
such that the channel area is minimized.

1

1

2

2

3

3

4

4

5

5

6

6

7

7
Figure 4.10: The example of routing problem for Glitter. Figures 4.11 and 4.12 is
generated from this problem.

48 CHAPTER 4. CHANNEL ROUTING FOR AQFP CIRCUITS

1

2

22

3

16

4

15

5

16

7

19

6

19

14

19 20

19

13 22

1

7

6

5

4

3

2

(a) (b)
Figure 4.11: (a) HCG of routing problem of figure 4.10. (b) VGC of routing problem
offigure 4.10.

4.3. GLITTER, VARIABLE-WIDTH CHANNEL ROUTER 49

1

7

19

2

22

20

Bottom

13

3

16

13

4

15

19

5

16

14

6

19

22

10

Top

12

15

1

7

2

22

Bottom

3

16

4

15

5

16

19

6

19

14

19 20

19

13

22

Top

(a) (b)
Figure 4.12: (a) Initial state of weighted constrain graph. This graph is generated by
merging HCG and VCG of figure 4.11. (b) Final state for WCG. This is DAG. The
wire is assigned from the edge with the smallest maximum weight from the top and
bottom.

50 CHAPTER 4. CHANNEL ROUTING FOR AQFP CIRCUITS

4.3.2 Flow to decide the width of wire
The algorithm for determining the wiring width is described below. The implementa-
tion is simple, since previous experimental results have shown that a simple algorithm
is sufficient.

Repeat the four steps as shown below to reduce the inductance of the wiring in the
channel to 50 pH or less.

1. Determine the required wiring width from the wiring length.
2. Using the Glitter algorithm, determine the wiring sequence. This determines

the channel width.
3. Update the channel width. Recalculate the inductance of the wiring.
4. Check if all inductances in the channel are below the target value (50 pH). If

confirmed, exit the program; otherwise, return to step 1.

When this algorithm is executed, wiring with shorter distances in the channel becomes
thinner, and wiring with longer distances becomes wider than the standard width of
AQFP wire. Since the channel length is the sum of the widths of each wire, as the
number of thicker wires increases, the channel length also increases. The increase
in channel length may cause positive feedback because the wires are incentivized to
be thicker. Therefore, thicker wiring in the initial conditions can prevent positive
feedback.

4.3.3 Test result
The proposed method was applied to a circuit with about 400 wires, and the results
obtained are shown in table 4.1.

Table 4.1: Test result of inductance optimization by using Glitter channel router.

LEA Glitter
#channel Max inductance pH # buffers Max inductance pH # buffers

1 81.8 44 46.6 0
2 77.4 40 43.6 0
3 94.6 48 41.1 0
4 82.4 42 48 0
5 151 174 71.9 58
6 110.1 78 48.5 0
7 97.3 26 47.5 0
8 79.8 18 46.7 0
9 78.3 10 47.5 0
10 67.8 8 46.4 0
11 41.2 0 41.2 0

Total 488 58

4.4. CONCLUSION 51

[pH]

Figure 4.13: Hisgram of parasitic inductance of wire in the benchmark circuits. With
the optimization, peaks are visible at less than the threshold value of 50 pH in Glitter,
whereas the values were scattered in LEA.

4.4 Conclusion
In this chapter, the routing method of the AQFP circuit is described. First, the
wiring structure in the HSTP process and the left edge algorithm, which is the basic
algorithm, are described.

There is a strict limit to the wiring distance in AQFP circuits, and this limit
is due to the parasitic inductance of the interconnections, which can be extended by
using interconnections with low inductance per unit length, i.e., wide interconnections.
However, increasing the wiring width leads to an increase in the circuit area, so the
wiring algorithm using Glitter that flexibly determines the wiring width is proposed.

As the clock frequency increases, the AQFP gate and the characteristic impedance
difference between the wiring and the AQFP gate may reflect due to the difference
in impedance[63], which may interfere with signal propagation. Therefore, it is nec-
essary to design wiring that includes a stripline filter and to calculate in advance
combinations of wiring widths and distances that cannot be used.

53

Chapter 5

Ciruit design and test

In this chapter, the actual circuits designed will be discussed.

5.1 Adder(Kogge-Stone adder)
The 16-bit majority-3 KSA and the 8-bit majority-5 KSA were designed and demon-
strated in operation. In addition, 4-, 8-, and 16-bit majority-3 and majority-5 KSAs
were designed to evaluate their performance in simulation, and a comparison of their
performance is also reported.

The adder is the fundamental operation in logic operations. The performance
improvement of the adders has a significant impact on the entire system.

5.1.1 Architecture
There are various adder architectures, including ripple carry adder (RCA), Carry Save
Adder (CSA), carry-lookahead adder(CLA), and carry prefix adder (CPA). The CSA
and CLA are speed-up techniques for RCA and CPA. Figure 1 shows the architecture
of RCA. (a) is a block diagram of the implementation method in CMOS circuits and
RSFQ, and (b) is a block diagram of the implementation method in AQFP circuits.
The RCA has a structure connecting all full adders’ carry signals in sequence. The
AQFP circuit cannot perform asynchronous operations, so data must be stored in
first-in-first-out memory using buffer gates until the carry signal arrives. Since a
large FIFO is required, the area and JJs are inefficient. When RCAs are implemented
in an AQFP circuit, the latency is O(N), and the JJs is O(N2).

CPA is known as a faster adder than RCA. The following is an overview of how
CPA works. Let the two n-bit operands be denoted as A = (an−1, an−2, ...a0) and
B = (bn−1, bn−2, ...b0) and the sum of A and B as S = (sn, sn−1, ...s0). And to
introduce intermediate answer pi, gi and it is defined as

gi = ai × bi
pi = ai ⊕ bi

(5.1)

gi equal to “1” indicates carry generates from i-th bit. pi equal to “1” indicate
carry generates if gi−1 equal to “1”. And also, an operator “o” is introduced which

54 CHAPTER 5. CIRUIT DESIGN AND TEST

1

1

2

2

3

3

4

45

HAFAFAFA 1234

input

output

(a) Block diagram of RCA in CMOS and
RSFQ circuits.

4 3 2 1

FA

FA

FA

FA

12345

input

output

1

2

3

4

(b) Block diagram of RCA in AQFP cir-
cuit. A lot of buffer gates (FIFO memory)
are needed, which were not shown in (a).

Figure 5.1: Block diagram of AQFP circuits.

works as following equations.

(g, p)o(g′, p′) = (g + g′p′, pp′) (5.2)

This operation works for contentious sequences bit i to bit j and (gi:j, pi:j) indicate
the result of operation “o” from i to j.

(gi:j, pi:j) = (gi, pi)o(gi−1, pi−1)o...o(gj+1, pj+1)o(gj, pj) (5.3)

It is continuance “o” is also adaptable for (gi:j, pi:j).

(gi:k, pi:k) = (gi:j, pi:j)o(gj−1:k, pj−1:k) (5.4)

gi−1:0 indicates carry will arrive bit-i th and finally result of addition can be derived
by

si = gi−1:0 ⊕ pi (5.5)

Finally, the summation result S can be derived by

S = (sn, sn−1 · · · s1, s0) = (gn, gn−1:0 ⊕ pn, gn−2:0 ⊕ pn−1, g1:0 ⊕ p1, p0) (5.6)

By setting j to j = (i + k)/2 in euqation (5.4), the computation of gi:j and pi:j
can be represented by a binary tree. Therefore, the computation time of this adder
is O(log2N), which is much faster than CSA.

There are many variations of the CSA, which differ in the number of fanouts,
the number of wire lengths, and the number of logic gates used. AQFP circuits
are suitable for adders with the Kogge-Stone structure, which are CSAs with fewer
fanouts because of the low gate driving power.

figures 5.2 and 5.7 shows block diagram of majority-3 based and majority-5 based
KSAs, respectively. There is a small difference in architecture, but the algorithm is
the same.

5.1. ADDER(KOGGE-STONE ADDER) 55

GP

CM

CM

CM

CM

CMCM

CM

CM

CM

CM CM

CM

CM CM

CM

CM CM

GPGP GPGP GPGP GP

SUM SUMSUM SUMSUM SUMSUM SUM

8

89

7

7

6

6

5

5

4

4

3

3

2

2

1

1

maj3 maj3 maj3maj3 maj3 maj3 maj3

Figure 5.2: Block diagram of 8-bit majority-3 KSA. Logic inside of the circuit is
shown in figure 5.3. To deduce latency, the SUM stage uses gi, pi, and a buffer chain
is required to propagate these signals.

Gv

G'v

GhPv

P'v

Pv Ph

M

(b)

M M

M

Gi Gi:0Pi

Si
(d)

ai

Pi

bi

Gi

(a) (c)

Gv

G'v

GhPv

P'v

Pv Ph

Figure 5.3: Inside of block diagram of majority-3 KSA. (a) GP block. (b)CM maj-3
block. (c) Standard CM block. (d) SUM block.

56 CHAPTER 5. CIRUIT DESIGN AND TEST

5.1.2 16-bit majority-3 based KSA
Figure 5.4 shows microphotograph of majority-3 based KSA. And, the circuit param-
eters are shown in the table 5.1. Figures 5.5 and 5.6 show measurement result.

We tried two sets of tests: critical tests and random tests. The critical tests were
five test vectors that we explicitly defined to demonstrate pass-through of propagate
signals, generation of carry from every bit, and full-propagation along the carry chain
from the least significant bit (LSB) to the most significant bit (MSB). If the carry
output is correct in the latter case, it is a very a good indication that the prefix signals
are properly propagating along the long interconnects between stages, and that the
carry prefix tree is working properly. Table 5.2 lists the critical test vectors we applied
and the expected result. We then proceeded to apply a set of random vectors for a
total of 110 random additions, as shown in Table 5.3.

figure 5.5 shows the results of the critical tests and 20 random tests, and figure 5.6
shows the results of 90 additional random tests at 100 kHz. The dc-SQUID-based
output interface of the KSA produces a unipolar return-to-zero signal. When the
output is a logic ‘1’, the output signal rises and then falls back to zero proportional to
the applied clock period of the AC clock. When the output is a logic ‘0’, the output
signal remains low. We confirmed that both the critical tests and the random tests
passed. Even though our experiment was not fully exhaustive, these successful tests
provide a strong indication that our design is working correctly.

Some of the outputs were rather noisy with S14, in particular, being very unstable.
We attribute this to the measurement equipment condition at the time of this writing.
Furthermore, we measured the operating margins of the circuit by adjusting how much
we can change the amplitudes of AC1 and AC2 before the circuit malfunctions. The
operating range is −4.29 dBm to 0.90 dBm for AC1, and −3.41 dBm to 1.02 dBm for
AC2. Both ranges are sufficiently wide.

Table 5.1: Specification of majority-3 based KSA

X mm 2.8
Y mm 3.6

Latency cycle 8.5
JJs 4976

5.1. ADDER(KOGGE-STONE ADDER) 57

Figure 5.4: Microphoto graph of 16-bit majority-3 based KSA.

AC1

S0

S12

S2

S14

S1

S13

S3

S15

S16

0.0 0.2 0.4 0.6 0.8 1.0

20 random testcritical test

[ms]

Figure 5.5: Measurement waveform of the 16-bit KSA for 5 critical test vectors shown
in Table 5.2 and the first 20 random test vectors shown in Table 5.3. The signals from
top to bottom are the excitation current, output bits 0 (LSB) to 3, bits 12-to-15, and
the output of the carry (MSB). Critical tests include test cases in which the carry
moves from the LSB to the MSB. All tests cases have been validated.

58 CHAPTER 5. CIRUIT DESIGN AND TEST

[ms]

AC1

S0

S12

S2

S14

S1

S13

S3

S15

S16

80 random test

0.0 0.2 0.4 0.6 0.8 1.0

Figure 5.6: Measurement waveform of the 16-bit KSA showing 90 random test vectors
listed as 21 through 110 in Table 5.3. The signals from top to bottom are the excitation
current, output bits 0 (LSB) to 3, bits 12 to 15, and the output of the carry (MSB).
All observable outputs have been validated. The waveform traces have been averaged
to show a clearer picture.

Table 5.2: List of critical test vectors applied in experiment.

Op. A Op. B Result Description
0xFFFF 0x0001 0x10000 Propagate carry through all bits
0x0001 0xFFFF 0x10000 Propagate carry through all bits
0xFFFF 0x0000 0x0FFFF Operand A passthrough
0x0000 0xFFFF 0x0FFFF Operand B passthrough
0xFFFF 0xFFFF 0x1FFFE Generate carry at all bits

5.1. ADDER(KOGGE-STONE ADDER) 59

Table 5.3: Full list of random test vectors applied in experiment.
Op. A Op. B Result # Op. A Op. B Result
1 0x00E4A 0x0075B 0x015A5 56 0x06C45 0x068A6 0x0D4EB
2 0x0349A 0x0BDB1 0x0F24B 57 0x0F8A2 0x0F681 0x1EF23
3 0x03291 0x005B0 0x03841 58 0x01514 0x0502C 0x06540
4 0x0AF9C 0x0234D 0x0D2E9 59 0x0FC3D 0x0004D 0x0FC8A
5 0x0D6CC 0x07EB3 0x1557F 60 0x001D2 0x0BBBB 0x0BD8D
6 0x03EDA 0x0120A 0x050E4 61 0x0A57A 0x037FF 0x0DD79
7 0x085FA 0x0F866 0x17E60 62 0x0D00E 0x04853 0x11861
8 0x078A4 0x08059 0x0F8FD 63 0x0D35E 0x019E1 0x0ED3F
9 0x0CA13 0x03397 0x0FDAA 64 0x0D4C9 0x0CA61 0x19F2A
10 0x0E972 0x075A9 0x15F1B 65 0x084AB 0x0D785 0x15C30
11 0x06B60 0x07107 0x0DC67 66 0x0BF4A 0x070B6 0x13000
12 0x04F84 0x0C01C 0x10FA0 67 0x093DC 0x073A3 0x1077F
13 0x0A2E6 0x03A5E 0x0DD44 68 0x0113F 0x0E1FF 0x0F33E
14 0x08C19 0x019D4 0x0A5ED 69 0x02164 0x040F9 0x0625D
15 0x01B0A 0x07944 0x0944E 70 0x0040F 0x0584F 0x05C5E
16 0x0B3FC 0x0CE35 0x18231 71 0x0BDF2 0x0A60D 0x163FF
17 0x060C3 0x02B20 0x08BE3 72 0x0A42F 0x0C89B 0x16CCA
18 0x04FEC 0x04CE9 0x09CD5 73 0x07B1D 0x08CA0 0x107BD
19 0x06661 0x013C2 0x07A23 74 0x0C6D8 0x025C5 0x0EC9D
20 0x0B11F 0x0FF4A 0x1B069 75 0x020D9 0x0876A 0x0A843
21 0x0B380 0x06BFB 0x11F7B 76 0x00BCD 0x0F39F 0x0FF6C
22 0x07C9D 0x03E3B 0x0BAD8 77 0x0BADB 0x0E50B 0x19FE6
23 0x0C93A 0x0836B 0x14CA5 78 0x03CC6 0x0EE08 0x12ACE
24 0x02204 0x0A274 0x0C478 79 0x06D36 0x0312F 0x09E65
25 0x02DEC 0x03876 0x06662 80 0x02DC6 0x0C74D 0x0F513
26 0x06D5B 0x0B819 0x12574 81 0x0335F 0x00204 0x03563
27 0x0F5DB 0x025BA 0x11B95 82 0x012A9 0x076DB 0x08984
28 0x09FE5 0x0F771 0x19756 83 0x069B4 0x01A8C 0x08440
29 0x0E74F 0x0C095 0x1A7E4 84 0x08984 0x0EFEB 0x1796F
30 0x0F4A2 0x09B2B 0x18FCD 85 0x0A5DF 0x0F479 0x19A58
31 0x06230 0x0579F 0x0B9CF 86 0x04F7B 0x0795E 0x0C8D9
32 0x00974 0x00209 0x00B7D 87 0x00210 0x02F62 0x03172
33 0x0C993 0x05F24 0x128B7 88 0x03748 0x0676E 0x09EB6
34 0x0EAB9 0x0B0ED 0x19BA6 89 0x0BDD1 0x013DD 0x0D1AE
35 0x0E074 0x02F86 0x10FFA 90 0x0315A 0x07E86 0x0AFE0
36 0x082E9 0x08309 0x105F2 91 0x0114D 0x00A20 0x01B6D
37 0x063A3 0x004B5 0x06858 92 0x06D6A 0x06551 0x0D2BB
38 0x01895 0x0F683 0x10F18 93 0x02259 0x0BE0A 0x0E063
39 0x03590 0x0C2BE 0x0F84E 94 0x02862 0x02DF4 0x05656
40 0x069C9 0x06D0D 0x0D6D6 95 0x08B3E 0x0FF92 0x18AD0
41 0x0267C 0x0B06B 0x0D6E7 96 0x032AF 0x0CD67 0x10016
42 0x0C602 0x05098 0x1169A 97 0x05C8B 0x042A1 0x09F2C
43 0x0D320 0x06D40 0x14060 98 0x03A3A 0x03AD2 0x0750C
44 0x095FB 0x06603 0x0FBFE 99 0x0CE5D 0x0742A 0x14287
45 0x0513A 0x06B27 0x0BC61 100 0x06619 0x0AFEB 0x11604
46 0x0DD7A 0x0FBD7 0x1D951 101 0x0987D 0x06624 0x0FEA1
47 0x03FDC 0x0F748 0x13724 102 0x0D2C9 0x052C0 0x12589
48 0x0F5B9 0x01601 0x10BBA 103 0x0D7BB 0x00CC1 0x0E47C
49 0x03DF8 0x03EA8 0x07CA0 104 0x00D6F 0x08F55 0x09CC4
50 0x04741 0x0CA1D 0x1115E 105 0x0F4F7 0x00D7D 0x10274
51 0x06063 0x06A60 0x0CAC3 106 0x07391 0x05937 0x0CCC8
52 0x00242 0x02884 0x02AC6 107 0x00B7B 0x059C2 0x0653D
53 0x02BD4 0x0CC85 0x0F859 108 0x032EA 0x04471 0x0775B
54 0x0A4C7 0x0EB0C 0x18FD3 109 0x02DB1 0x0A351 0x0D102
55 0x04E1B 0x0C9B8 0x117D3 110 0x0F361 0x091C1 0x18522

The first 20 vectors in this list correspond to the random tests in 5.6, and the last
90 vectors correspond to 5.5.

60 CHAPTER 5. CIRUIT DESIGN AND TEST

5.1.3 8-bit majority-5 based KSA
To further speed up the AQFP adder, a KSA with a 5-input majority logic gate is
proposed. Increasing the bit width increases latency due to the increase in the number
of CM gate layers. In other words, if the latency of the CM gate can be reduced, a
scalable adder can be created. g + g × p is an operation of the CM gate, which can
be calculated with a single 5-input majority logic gate, as shown in euqation (5.9).

Figure 5.7 shows block diagram of AQPF majortiy-5 based KSA. This structure
is very similar to designing a KSA in a CMOS circuit. And, figure 5.8 shows inside
of each block. The majority- 5 is used in CM block. table 5.4 shows specification of
8-bit majority-5 KSA.

Maj(a, b, c, c, 1) = ab+ abc+ ab1 + acc+ ac1 + ac1 + bcc+ bc1 + bc1 + cc1 (5.7)
= abc+ ab+ ac+ bc+ c (5.8)
= ab+ c (5.9)

Table 5.4: Specification of majority-5 based KSA

X mm 1.6
Y mm 1.3

Latency cycle 4.25
JJs 1212

The designed KSA was evaluated in liquid helium using an immersion probe. The
circuit was run at a low frequency of 100 kHz to verify that the operations were correct
and evaluated using 47 test vectors, including random inputs. section 5.1.3 shows the
observed waveform of the test circuit. The readout of the AQFP circuit uses a dc-
SQUID driven by the same sinusoidal wave as the one feeding the circuit. The output
is a return to zero(RTZ) waveform.

In addition, the margin of AC1 and AC2 is -23.6 % to 21.4 % and -5.6 % and 21.1
%, respectively. This margin range is relatively narrow, but it is a typical value.

5.1. ADDER(KOGGE-STONE ADDER) 61

GP

CM

CM

CM

CM

CMCM

CM

CM

CM

CM CM

CM

CM CM

CM

CM CM

GPGP GPGP GPGP GP

SUM SUMSUM SUMSUM SUMSUM SUM

8

89

7

7

6

6

5

5

4

4

3

3

2

2

1

1
Figure 5.7: Block diagram of 8-bit majority-5 KSA. Logic inside of the circuit is shown
in figure 5.8.

Gv Gv

G'v

Gh Pv

P'v

Pv Ph

M

0

(b)

GvPv

Si

(c)

ai

Pi

bi

Gi

(a)
Figure 5.8: Inside of block diagram of majority-5 KSA. (a) GP block. (b) CM block.
(c) SUM block. Compared with majority-3 based KSA,By using 5-input majority
gate, latency of CM block becomes two to one. To privent using buffer chain to
propagate Gi, Pi to SUM block, XOR gate is used GP and SUM block.

62 CHAPTER 5. CIRUIT DESIGN AND TEST

Figure 5.9: Microphoto graph of 8-bit majority-5 based KSA.

0.20 0.4 0.6

AC1
S0

S4

S2

S6

S1

S5

S3

S7
Carry

1+FF0+FF FF+FFone hot 2i+2i random
0.8 [ms]

0.5

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.1

-0.5

0

0

0

0

0

0

0

0

0

Figure 5.10: Measurement waveform of majority-5 based 8-bit KSA.Passed the critical
test and the random test test.

5.1. ADDER(KOGGE-STONE ADDER) 63

5.1.4 Discussion
Adder performance compared with another circuit techonlogy
Table 5.5 shows performance comparison of adder with several parallel adders under
various technologies including superconductor RSFQ/ERSFQ [64], RQL [65], and 90-
nm adiabatic CMOS [66]. We decided to compare RSFQ/ERSFQ as it is the most
widespread logic family in superconductor electronics. RQL is included to this table
as well even though the reported design is only 8-bit because it is an AC-biased logic
just like AQFP, and it is also considered a very energy-efficient technology. The 90-nm
adiabatic CMOS work reported in [66] is also in the table, because even though the
designs have not been experimentally demonstrated, it is one of the more recent works
using a 90 nm fabrication process to manufacture devices that operate adiabatically
like AQFP. The area, number of Josephson junctions (JJs) when applicable, bias
magnitude, target operating frequency, and energy/op are compared.

Firstly, the footprint area of the adder in this study is larger than that of the RSFQ
implementation. Compared to RQL, the area of the AQFP circuit is also larger. The
primary cause for this is the large output transformers of each AQFP. Section 5.1.4
briefly discusses how this can be improved. The adiabatic CMOS adder occupies
even less area despite using a relatively old 90 nm CMOS technology. We expect
this difference to grow when considering 7 nm FinFET technology [67]. In a strict
discussion, the AQFP circuit may be smaller in area. The AQFP circuit is designed
by the HSTP process and has four metal layers. In contrast, the RSFQ circuit used
ADP process, which has eight metal layers. Since the wiring in the AQFP circuit
occupies more than half of the area, the area can be reduced if it uses a process with
more layers. As an optimistic estimate, if we assume that the area can be reduced
by about 30%, the area of the circuit will be 7mm2, which is smaller than the RSFQ
circuit.

In terms of the number of JJs, this study is almost half the number of junctions used
in the RSFQ implementation. This may be due to the fact that RSFQ circuits are
designed for very high-speed operation, so many JJs are inserted to adjust the delay
of data propagation. Furthermore, the clock and reset paths of the wave-pipelined
RSFQ adder also require active JJs, whereas the AQFP power-clock acts as both the
synchronizing clock and reset. This power-clock is distributed through a meandering
microstripline and thus requires no active JJs. RQL, like AQFP, distributes power
through AC power-clocks along microstriplines, so it also has a low number of JJs.
In our work, 3000 JJs are used for the amplification of signal currents, so there is
potential to reduce the number of JJs to around the levels of RQL through more
intelligent cell placement and interconnect routing.

The target operating frequency of RSFQ is higher than our AQFP implementation
as we need to operate our circuit at relatively low clock rates to remain in the adiabatic
regime. Despite this, the AQFP adder is still faster than adiabatic CMOS. When the
operating frequency of the adiabatic CMOS adder is increased, the dynamic switching
energy becomes more dominant compared to the static power consumption, making it
difficult for semiconductor technology to make significant improvements in operating
frequency while still operating adiabatically.

64 CHAPTER 5. CIRUIT DESIGN AND TEST

Table 5.5: Comparison with other 16-bit parallel adders in literature.

Metric AQFP
(this work)

RSFQ [64] RQLc[65] Adiabatic
CMOS [66]

Area 10.1mm2 8.5mm2 2.8mm2 0.0048mm2

Complexity 4976 JJs 9941 JJs 815 JJs 972 Trs
Bias AC 3.0mA DC 1.61A AC 0.9mA DC 1V
Target Freq. 5GHz 30GHz 10GHz 0.5GHz
Energy/op 6.97 fJa 3.13 pJab 90.2 fJa 182 fJd

a Includes 1000W/W cooling efficiency.
b Design was originally in RSFQ but we assumed ERSFQ biasing.
c Note that this is an 8-bit RQL adder, not 16-bit.
d Extrapolated from energy per transistor of shift register in [66].

An important point to emphasize is the energy/op metric. The power consumption
in this study was estimated by the product of the power consumption per JJ [5] at
the target clock frequency of 5GHz by the number of JJs in our circuit. For all
superconductor circuits in Table 5.5, we also took into account the cooling overhead
using a 1000W/W coefficient [3]. Since the static power consumption of RSFQ is too
high, we assumed that the bias network of the design can adopt the ERSFQ approach
where bias resistors are replaced by current-feeding JJs for this metric. The power
consumption P of ERSFQ is obtained from P = I × Φ0 × F , where I, Φ0, and F
are the bias current of the circuit, the quantum flux, and the operating frequency,
respectively [68]. For adiabatic CMOS, a 16-bit KSA design was reported in [66],
but its power consumption was not mentioned. Based on the dissipated energy for
a 3-bit shift register reported in that work, we assumed a linear extrapolation of
the energy/op of the CMOS-based adiabatic KSA in Table 5.5. Our AQFP adder
requires five hundred times less power than the ERSFQ implementation, at least
fifteen times less power than the RQL implementation, and thirty times less power
than the adiabatic CMOS implementation. In the case of semiconductor technology,
even 28 nm CMOS does not show substantial improvement over 90 nm technology
for adiabatic circuits because the static leakage power becomes more prevalent in
the adiabatic operation region as reported in [66]. Considering that our design is
more energy-efficient and still operates at a practical clock rate for high-performance
computing, this makes AQFP logic a good candidate for building the next generation
of low-power supercomputers and data centers.

Performace comparison between majortiy-3 and majority-5 KSA
Table 5.6 shows comparison about specificaton of majority-3 based and majority-
5 based KSA. The circuit was redesigned from scratch for an accurate comparison.
First, as expected, the majority-5-based KSA had shorter latency. The results showed
that when the bit width increased, the reduction also increased. This trend is because
the reduction in CM gate latency reduced the latency that depends on the bit width.
Also, the number of buffer gates was lower for the majority-5-based KSA than for the
majority-3-based KSA. This reduction is because the circuit’s latency is reduced, and

5.1. ADDER(KOGGE-STONE ADDER) 65

using XOR inside the GP block reduces the amount of FIFO memory. The majority-
5-based KSA has more spl3L, i.e., branch cells with high energy consumption.

figure 5.11 shows a comparison of energy consumption. Averaged power consump-
tion is used for this figure since the energy consumption of the AQFP circuit varies
depending on the input signal.

The majority-5-based KSA consumed more energy than the majority-3-based KSA
at all bit widths and frequencies. Although there should be a strong correlation
between the number of Josephson junctions and energy consumption, the results
were inconsistent. This inconsistency suggests that the number of spl3Ls (branching
cells with high energy consumption) significantly impacts the energy consumption.
figure 5.13 shows the normalized energy consumption of the majority-5-based KSA
by the energy consumption of the majority-3-based KSA. When the ratio is greater
than 1, the energy consumed by majority-5-based-KSA is greater than that of the
majority-3-based-KSA. As the bit width increases, the curve approaches 1, suggesting
that the majority-5-based KSA consumes less energy for large adders. In addition,
it was shown that the method of estimating energy consumption by the number of
Josephson junctions, commonly used in RSFQ circuits, cannot be used in AQFP
circuits.

Table 5.6: Cell statistic of each KSA

bit bfr and/ora maj3 maj5 spl2b spl3Lc phase total JJs
majority 3 4 71 14 15 0 32 4 12 388
majority 3 8 237 46 31 0 84 8 16 1120
majority 3 16 736 134 63 0 212 16 21 3110
majority 5 4 51 30 0 5 25 8 12 398
majority 5 8 126 66 0 17 77 16 15 1004
majority 5 16 402 146 0 49 213 32 19 2660
a Energy consumption is equal to maj3
b 2-branchiing gate with buffer gate
c 3-branching gate with bufferL gate

Scaling of the AQFP KSA
We estimate how the adder scales in terms of area and latency when we increase the
data word size as shown in figure 5.14. Based on these estimates, we discuss where
AQFP can use improvement and how such improvements can be carried out. For the
estimation, we assumed a simple structure where the bit slices of KSAs are connected
directly below each other, and we also considered the insertion of buffers for long-
distance wiring. For example, in the final stage of a 128-bit KSA, the data travels a
distance of 64-bitslices. In this case, at least 13 levels buffer insertions will be required.
To estimate the area, we calculated the ratio of the area used by the gate to the area
used by the internal wiring and excitation lines for the 16-bit KSA we designed in
this work, and estimated the area based on that. The number of buffer insertions
increases in proportion to the square of the number of bits in the adder. Therefore,
the slope of the curve with respect to area becomes a little larger. Compared to the

66 CHAPTER 5. CIRUIT DESIGN AND TEST

107 108 109 1010

Frequency[Hz]

10 19

10 18

10 17

E
ne

rg
y
di
ss
ip
at
io
n
[J
]

107 108 109 1010

Frequency[Hz]

10 19

10 18

10 17

E
ne

rg
y
di
ss
ip
at
io
n
[J
]

maj-5
maj-34-bit KSA

maj-5
maj-38-bit KSA

maj-5
maj-316-bit KSA

Figure 5.11: Comparison of power consumption of AQFP majority-5 based and
majority-3 based KSA. 4, 8, and 16-bit KSAs are shown. We evaluated energy 200
times with different input combinations and averaged it.

0

5

10

15

20

25

30

35

40

0 5 10 15 20

la
te
nc
y
(p
ha
se
)

bit width

maj3

maj5

RCA

Figure 5.12: Latencty comparison of majority-5 based and majority-4 based KSA. As
expected, majority-5 KSA is faster than majority-3 based KSA. In addition, the gap
of latency larger when larger bit width.

previous study, the scalability is slightly improved because the gate area is smaller.
From these estimates, it was found that, for example, a 64-bit KSA circuit can be
implemented on a 1 cm2 chip. Compared to the CMOS circuits that are widely used
today, this area is very large, and efforts are needed to reduce the area. One approach
is using a directly coupled quantum-flux-parametron (DQFP) [69, 70] where the large
output transformer is completely removed, and logic gates connect directly to each
other. This can reduce the cell size in half but unlike conventional AQFP cells, the
DQFP buffer and inverter have different core structures, introducing complexities in

5.1. ADDER(KOGGE-STONE ADDER) 67

107 108 109 1010

Frequency[Hz]

1.0

1.1

1.2

1.3

1.4

1.5

1.6

R
at
io

Figure 5.13: Graph of energy consumption of maj5 KSA normalized by energy con-
sumption of mah-3 KSA of the same bit width. As the bit width increases, the
difference becomes smaller.

cell library development. Another approach is to use a more advanced process with
more layers [43, 71, 72]. With more layers, the transformer and the SQUID can be
stacked vertically, roughly halving the footprint of the logic cell. Interconnections of
the AQFP can also be stacked, potentially reducing the area further. The DQFP
approach can also benefit from more advanced processes since the directly coupled
inductor structures can be implemented using dedicated kinetic inductance layers
such as those in the MIT Lincoln Laboratory SFQ5ee process [73], which opens more
opportunities for further scaling.

The increase in latency for KSA should be logarithmic, but according to our esti-
mates, it is increasing a little bit faster than expected. This is due to our conservative
design approach of adding buffers after each logic stage in addition to buffer inser-
tions for long interconnects. In any case, the absolute latency is quite high. We can
improve the latency by reducing the phase difference of the excitation current or, in
other words, adding more clock phases within the same target clock period. This
can be achieved through power clock dividers or delay line clocking [56, 57, 25]. The
latency improvement between these techniques is shown in the lower sub-plot of fig-
ure 5.14. In the present 4-phase design, the phase difference is 90◦, but by using the
aforementioned methods, the phase difference can be reduced up to 1/5 of the present
design. This means more clock phases become available per cycle and thus data can
propagate through more stages of logic in a cycle. Furthermore, we still use the same
clock frequency in these methods so the switching energy is unchanged.

68 CHAPTER 5. CIRUIT DESIGN AND TEST

5 x 5 mm2
7 x 7 mm2

10 x 10 mm2

Chip size

Clock divider

Delay line

Shunted JJ
(STP)

Unshunted JJ
(HSTP)

4 phase (this work)

200 40 60 80 100 120 140
Bit width

1000

0

0

2000

3000

16 32 64 128

200

150

100

50

La
te
nc
y
[p
s]

@
5
GH

z
Ar
ea

[m
m

2]

Figure 5.14: Word size scaling of the AQFP KSA for area and latency.

5.2. BFLOAT 16 FLOATING POINT ADDER 69

5.2 bfloat 16 floating point adder
For more practical applications, a floating-point adder was designed. Floating-point
arithmetic is often used in scientific calculations and machine learning and is charac-
terized by the wider range of values it can represent than integer arithmetic. Floating-
point adders are larger in scale than integer adders, making it challenging to imple-
ment them in AQFP circuits. Recently, however, a 16-bit wide floating-point format
called bfloat-16 has come into use in the field of machine learning. Therefore, we
designed a 16-bit floating-point adder to solve the energy consumption problem in
machine learning and to be useful as a benchmark to compare the performance with
CMOS circuits. Unfortunately, the area of the designed circuit was too large to
manufacture.

First, we explain the floating-point format. Widely used is the IEEE 754 single
precision format, which consists of a sign part, an exponent part, and a mantissa
part. When each parts are denoted as i, j, and k, the value represented by a bit string
is calculated by the following equation.

(−1)i × 2(j−127) ×
(
1 +

(
k

2−23

))
(5.10)

By separating the exponent and value, floating-point arithmetic represents a wider
range of values than integers with the same number of bits. 32-bit floating-point is
overly large to implement in an AQFP circuit. Therefore, we decided to implement
a floating-point adder in bfloat-16 format, where the length of the mantissa part is 7
bits. The largest component in floating-point addition is the adder of the mantissa
part. The area of the circuit can be significantly reduced by reducing the length of
the mantissa to 7 bits.

Figure 5.15 shows block diagram of bfloat-16 adder. It consists of an adder, a
subtracter, a shift circuit, a priority encoder, and a comparator. For adder and
subtracter, KSA is used written in previous section, section 5.1.

70 CHAPTER 5. CIRUIT DESIGN AND TEST

sign

1

1

1

8

5

8

23

10

7

[bit]

[bit]

[bit]

exponent mantisa/fraction

IEEE 754 32-bit FP

IEEE 754 16-bit FP

bfloat16 16-bit FP

Figure 5.15: Floating-point arithmetic typically uses the IEEE 754 format, a 32-bit
format. bfloat-16 has the same dynamic range because its exponential part has the
same size as the IEEE 754.

5.2. BFLOAT 16 FLOATING POINT ADDER 71

A

A

B

B

A

A'[15:0]

B

B'[15:0]

A_exp＞= B_exp

Compare

Subtraction wire : shift shift right
B_fra>>i

shift left
ans_fra<<i

i

i

B_fra

ans_fra

{3'b000,frac}

2's comp

2's comp

priority encoder

2's comp

==1

==1

==1

Sum

Figure 5.16: Block diagram of bfloat-16 AQFP adder. Green block, blue block, and
orange block are denoted sign, exponent, and mantissa part, respectively.

Comparator
The n-bit binary sequence A = [an−1, an−2, · · · , a1, a0], B = [bn−1, bn−2, · · · , b1, b0]
comparisons are greedy implemented, the computational complexity is O(n), as shown
in algorithm 5.1. However, upon careful consideration, this computation can be imple-
mented with a binary tree. In other words, the computational complexity is O(logN).

72 CHAPTER 5. CIRUIT DESIGN AND TEST

algorithm 5.2 shows the implementation with binary trees. Figure 5.17 shows (a) 1-
bit and (2) 2-bit comparator. For bfloat-16, 8-bit comparator is required, and it can
be realized with 3-stage binary type comparator. The latency of this comparator is
approximate half.

Algorithm 5.1 Calculate A > B

Ensure: A > B
1: for i: n-1 to 0 do
2: if ai = bi then
3: Calculate [ai−1 : a0] > [bi−1 : b0]
4: else if ai > bi then
5: return A is larger than B
6: else if ai < bi then
7: return B is larger than A
8: end if
9: end for

Algorithm 5.2 Calculate A > B improved version
Ensure: A > B

1: n ←bit length of A
2: if n = 1 then
3: return (eq, large) = (a0b0, a0¬b0)
4: else
5: left ←Calculate ([an−1 : an/2] > [bn−1 : bn/2])
6: right ←Calculate ([an/2−1 : a0] > [bn/2−1 : b0])
7: end if
8: return (eq, large) = (left.eq · right.eq, left.eq · right.large)

5.2. BFLOAT 16 FLOATING POINT ADDER 73

ai

ai = bi ai > bi

bi

a1 a0

a1:0 = b1:0 a1:0 > b1:0

b1 b0

1-bit
comparator

1-bit
comparator

a1 = b1 a0 = b0a1 > b1 a0 > b0

(a) (b)
Figure 5.17: Block diagram of bfloat-16 AQFP adder. Green block, blue block, and
orange block are denoted sign, exponent, and mantissa part, respectively.

74 CHAPTER 5. CIRUIT DESIGN AND TEST

Prioriry encoder
Priority encoder[74] is used to find hidden bits in the result of the addition of mantissa
parts. It can look for a “1” at the highest end of a bit sequence table 5.7 shows the
truth table of 4-bit priority encoder and figure 5.18 shows schematic of 4-bit priority
encoder.

Table 5.7: Truth table of 4-bit priority encoder. V output distinguishes the digit of
the priority bit as 0 and no input.

a3 a2 a1 a0 i1 i0 V
0 0 0 0 x x 0
0 0 0 1 0 0 1
0 0 1 x 0 1 1
0 1 x x 1 0 1
1 x x x 1 1 1

a3

v

a1

i0

a2

i1

a0

a3

v3

a1

i0

a2

i1

a0

(a) (b)
Figure 5.18: Schematic of 4 to 2 priority encoder. (a) Gate minimized version. (b)
latency minimized version. If majority-5 gate is available, the latency of I can be
reduced two from three.

5.2. BFLOAT 16 FLOATING POINT ADDER 75

a3

v

a1

i0

a2

i1

a0
4 to 2

priority encoder

a3

v

a1

i0

a2

i1

a0
4 to 2

priority encoder

a3

v

a1

i0

a2

i1

a0
4 to 2

priority encoder

a3

v

a1

i0

a2

i1

a0
4 to 2

priority encoder

3 to 1 mux

v i3:0
Figure 5.19: Scehmatic of 12 to 4 priority encoder. By combinations of 3 to 1 multi-
plexer and four priority encoders, the latency and area of this circuit can be reduced.

Shifter
The shifter is used to align the digits in the mantissa. Before addition, it is used to
align the digits of operands A and B. After addition, it is used to put the result of the
calculation into hidden bit format. For the shifter architecture, a barrel shifter was
used. A barrel shifter consists of an array of 2-to-1 MUXes. Table 5.8 and figure 5.20
show the truth table of 2-to-1 multiplexer and the schematic of the 2-to-1 MUX.
Figure 2 shows the schematic of the 4-bit shifter.

Table 5.8: The truth table of 2-to-1 multiplexer (MUX)

S O
0 b
1 a

76 CHAPTER 5. CIRUIT DESIGN AND TEST

ai

Oi

si bi

Figure 5.20: Scehmatic of 2-to-1 multiplexer(MUX). When si = 1, the circuit gener-
ates a signal.

a3s2 s1 s0 a1a2 a0

MUX

MUX

MUX

MUX

MUX

MUX

MUX

MUX

MUX

MUX

MUX

MUX

0

0 0 00

0

Figure 5.21: Scehmatic of4-bit shifter circuits. It consists of an array of 2-to-1 MUX.
The structure of the circuit is simple, but it is required a large foot print.

5.3. CONCLUSION 77

5.2.1 Discussion
Table 5.9 shows the dimensions of each component of the AQFP floating point adder.
Total JJs of the circuit including buffer to consider data timing is 17336. This circuit
has 2 shifters, and the shifter has largest footprint.

Table 5.9: AQFP floating point adder Component Dimensions

Name Area mm2 JJs Phase
1 Exponent comparator 0.93 450 12
2 Operand swap 1.77 1050 6
3 Expoent subtractor 1.06 540 13
4 Mantissa right shifter 4.14 1724 26
5 Mantissa adder 3.99 2228 20
6 Mantissa 2’s compliment 2.48 1142 17
7 Mantissa priority encoder 0.44 420 15
8 Exponent adder 2.56 1556 19
9 Mantissa left shifter 2.91 1372 21

Table 5.10: Comparison with another digital circuit technologies

AQFP-FP RSFQ(serial)[75] CMOS-FP (22nm)[76]
Area 50 – 0.049
JJs 17336 8830 –
Power dissipation 24 fJ/op 16fJ/op 2.18 pJ/op
Operating frequency 5 6 1.85

5.3 Conclusion
In this chapter, integer and floating point adder are designed. Tables 5.5 and 5.10
show standing point of AQFP compared with RSFQ and CMOS circuit.

When compared with RSFQ circits, AQFP has large advantage in energy dissipation
but calculation performance is inferior. An application which require time creatical
operation, AQFP is not stutable.

When compared with CMOS circuits, AQFP has advantage calculation perfor-
mance and power dissipation. But, there is extreamly large gap between two circuit
technology in footprint area. To compare AQFP to CMOS, efforts to design circuit
smaller is required.

79

Chapter 6

Conclusion

For the design of large AQFP circuits, we constructed an RTL to GDS flow, a tech-
nique to generate the physical structure of a circuit from a hardware description
language such as Verilog. This development was done through collaborative research,
and I was mainly responsible for designing the logic cell library. Using this flow, we
have successfully automated the design of circuits with over 1 million Josephson junc-
tions. Since the largest circuits designed to date for AQFP circuits have been around
10,000 junctions, this represents a dramatic improvement in the design capability of
AQFP circuits. In both automated and manual design of AQFP circuits, the short
wiring length limit is a problem due to the parasitic inductance of the wiring. There-
fore, we investigated a method to reduce the inductance per length by making the
wiring width variable and assigning wide wiring for long-distance signal propagation.
While the conventional wiring length limit was 700um when the wiring width was
fixed, the wiring width variable can relax the wiring length limit to 2000um, thereby
improving the degree of freedom in circuit design.

The circuit was designed and demonstrated. A 16-bit Kogge-Stone integer adder
with 3-input majority logic gates and an 8-bit Kogge-Stone integer adder with 5-
input majority logic gates were designed and successfully demonstrated to operate
at 100 kHz. These two architectures were compared in terms of latency and energy
consumption. It was shown that the maj-5 type adder has better scalability in terms
of both energy consumption and latency. The performance of the integer adder in the
AQFP circuit was compared to that of RSFQ and CMOS circuits. The RSFQ circuit
is superior in terms of operating frequency, and the CMOS circuit is superior in terms
of area, but the AQFP circuit is superior in other aspects. A 16-bit floating-point(FP)
adder, such as that used in machine learning, was designed. Comparisons were made
for the 16-bit FP adder with the CMOS circuit and the RSFQ circuit, and the same
trends as for the integer adder were observed.

We have studied the construction of a design method for AQFP circuits. The
results of this work have allowed us to design a circuit larger than the chips that can
be fabricated with the current fabrication process. The next step will be to improve
the circuit design process. Alternate advances in design methods and fabrication
methods will be necessary for the future development of AQFP and superconductor
circuits.

81

Acknowledgements

What to write in the chapter called “Acknowledgements” is an open question. Al-
though my doctoral dissertation is to be presented as my sole work, there is no doubt
that I could not have submitted this dissertation without the important advisors and
colleagues who will be writing it. I would like to write about their contributions and
my appreciation for them.

First, I would like to express the utmost gratitude that I can express to my advisor,
professor Nobuyuki Yoshikawa. The many research funds you have collected for us
have provided me with excellent facilities in our laboratory, and I have been able
to conduct the research I wanted to do without any inconvenience. I am also very
grateful to you for employing me as a research assistant, which enabled me to spend
three years of my doctoral program without any financial worries. In addition, you
are a person of great character, very generous, and very poised. There were many
challenges that I was able to overcome because you told me it would be okay.

Secondly, I would like to extend the same amount of gratitude to my substantive
research advisor, associate professor Christopher Lawrence Ayala, who has been a
great help to me in my research. I was not a very good English speaker, but you
never gave up and communicated with me. You were extremely good as an advisor
and there were many technical issues that I could not have solved without you.

Without professor Nobuyuki Yoshikawa and associate professor Christopher
Lawrence Ayala, I would not have enrolled in the Ph.D. course. Meeting both of you
is one of the greatest blessings in my life. I am grateful for the opportunity to do
research for three years and for the fact that they inspired me to pursue a Ph.D.

I would also like to thank associate professor Yuki Yamanashi, associate professor
Naoki Takeuchi, visiting professor Hideo Suzuki, assistant professor Lieze Schindler,
Michael Johnston, and associate professor Olivia Chen, department of information
science, Tokyo City University. Especially with visiting professor Hideo Suzuki, we
worked together to improve the experimental environment in the laboratory, and
although nothing remains as a result of our research, we spent a lot of meaningful
time together.

I also express my gratitude to the members of Synopsys, who were my partners in
the research. It was an exciting experience to learn a lot about the way American
companies work and to collaborate with a leading EDA tool company.

As a senior member of the AQFP Microarchitecture group, I would like to express
my deepest gratitude to Dr. Ro Saito for his advice on the content of our research. I
am also grateful to Takehisa Yamada, Risako Saito, Shohei Takagi, Yu Hoshika, and
Yuto Omori, with whom I had a good time as a member of the group.

I am also very grateful to Yuki Hironaka and Taiki Yamae, with whom I have spent

82 CHAPTER 6. ACKNOWLEDGEMENTS

6 very long years. D. program is a lonely existence by nature, but thanks to you guys,
I was able to spend my days without loneliness. I am equally grateful to Hongxiang
Shen.

It is not possible to write all the names, but I would like to give equal thanks to
all the members of Yoshikawa Lab, which has more than 30 members. I know I was
a depressing senior, but I am delighted to have spent time with you guys.

In addition, I was hired as a Japan Society for the promotion of science (JSPS)
research fellow (DC2) in the third year of my doctoral program. It pains me to
have to decline during the period of employment, but I am grateful for the financial
support.

For the advancement of science, also I need to say thank you. I needed an excellent
translator, spell checker and grammar checker, especially since my English is not
good, thanks to DeepL and Grammarly.

And finally, although not a contribution related to science, I would like to thank
my father, Katsuyoshi Tanaka, and my mother, Sayuri Tanaka. They were the ones
who pushed me to enter the doctoral program, and I am greatly indebted to them
for listening to me when I was mentally hard, and for their warm welcome whenever
I returned home.

March 2023
Graduate School of Engineering, Yokohama National University

Yoshikawa laboratory
Tomoyuki Tanaka

83

Appendix A

Synthesis results

List of raw data to create the table, cell-by-cell breakdonw of circuits generated from
RTL by Synopsys logic synthesis tools. In this cell library, we are using buffer, inverter,
3-input majority gate, 2-input and gate, 2-input or gate, 2-output splitter gate, 3-
output splitter gate, and filler cell are used.

Table A.1: Cell-by-cell breakdown for the C17 benchmark[46]

Cell name Cell Count JJs/cell total JJs
filler 109 0 0
and2_pp_even 3 2 6
bfr_100 13 2 26
bfr_100_even 8 2 16
or2_nn_even 1 6 6
or2_pp 1 6 6
or2_pp_even 1 6 6
spl2_100 3 2 6
Total 72

84 APPENDIX A. SYNTHESIS RESULTS

Table A.2: Cell-by-cell breakdown for the C432 benchmark[46]

Cell name Cell Count JJs/cell total JJs
filler 4953 0 0
and2_nn 1 6 6
and2_nn_even 7 6 42
and2_pn 17 6 102
and2_pn_even 32 6 192
and2_pp 10 6 60
and2_pp_even 8 2 16
bfr_100 674 2 1348
bfr_100_even 704 2 1408
maj3_npp 52 6 312
maj3_ppp_even 3 6 18
or2_pn_even 1 6 6
or2_pp 20 6 120
or2_pp_even 13 6 78
spl2_100 15 2 30
spl2_100_even 45 2 90
spl3_100 37 2 74
spl3_100_even 28 2 56
Total 3952

Table A.3: Cell-by-cell breakdown for the C499 benchmark[46]

Cell name Cell Count JJs/cell total JJs
filler 9136 0 0
and2_nn_even 8 6 48
and2_pn 128 6 768
and2_pn_even 62 6 372
and2_pp 48 6 288
and2_pp_even 25 2 50
bfr_100 992 2 1984
bfr_100_even 936 2 1872
or2_nn 8 6 48
or2_nn_even 8 6 48
or2_pp 32 6 192
or2_pp_even 72 6 432
spl2_100 101 2 202
spl2_100_even 71 2 142
spl3_100 21 2 42
spl3_100_even 84 2 168
Total 6656

85

Table A.4: Cell-by-cell breakdown for the C880 benchmark[46]

Cell name Cell Count JJs/cell total JJs
filler 11375 0 0
and2_pn 37 6 222
and2_pn_even 30 6 180
and2_pp 77 6 462
and2_pp_even 38 2 76
bfr_100 1254 2 2508
bfr_100_even 1255 2 2510
maj3_npp 6 6 36
maj3_npp_even 5 6 30
maj3_ppp 23 6 138
maj3_ppp_even 24 6 144
or2_nn 9 6 54
or2_nn_even 3 6 18
or2_pn_even 1 6 6
or2_pp 50 6 300
or2_pp_even 59 6 354
spl2_100 72 2 144
spl2_100_even 50 2 100
spl3_100 53 2 106
spl3_100_even 79 2 158
Total 7546

Table A.5: Cell-by-cell breakdown for the C1355 benchmark[46]

Cell name Cell Count JJs/cell total JJs
filler 9173 0 0
and2_nn_even 36 6 216
and2_pn 128 6 768
and2_pn_even 56 6 336
and2_pp 48 6 288
and2_pp_even 28 2 56
bfr_100 988 2 1976
bfr_100_even 936 2 1872
or2_nn 8 6 48
or2_nn_even 8 6 48
or2_pp 32 6 192
or2_pp_even 40 6 240
spl2_100 96 2 192
spl2_100_even 73 2 146
spl3_100 21 2 42
spl3_100_even 82 2 164
Total 6584

86 APPENDIX A. SYNTHESIS RESULTS

Table A.6: Cell-by-cell breakdown for the C1908 benchmark[46]

Cell name Cell Count JJs/cell total JJs
filler 11290 0 0
and2_nn 5 6 30
and2_nn_even 6 6 36
and2_pn 81 6 486
and2_pn_even 53 6 318
and2_pp 37 6 222
and2_pp_even 64 2 128
bfr_100 1903 2 3806
bfr_100_even 1836 2 3672
maj3_nnn_even 1 6 6
maj3_npp 3 6 18
maj3_npp_even 9 6 54
maj3_ppp 5 6 30
maj3_ppp_even 4 6 24
or2_nn 10 6 60
or2_nn_even 10 6 60
or2_pn 1 6 6
or2_pn_even 3 6 18
or2_pp 37 6 222
or2_pp_even 64 6 384
spl2_100 89 2 178
spl2_100_even 36 2 72
spl3_100 55 2 110
spl3_100_even 86 2 172
Total 10112

87

Table A.7: Cell-by-cell breakdown for the C2670 benchmark[46]

Cell name Cell Count JJs/cell total JJs
filler 16841 0 0
and2_nn 6 6 36
and2_nn_even 4 6 24
and2_pn 79 6 474
and2_pn_even 92 6 552
and2_pp 70 6 420
and2_pp_even 74 2 148
bfr_100 3207 2 6414
bfr_100_even 3029 2 6058
inv 5 2 10
inv_even 13 2 26
maj3_nnn 1 6 6
maj3_nnn_even 2 6 12
maj3_npn 2 6 12
maj3_npp 1 6 6
maj3_npp_even 2 6 12
maj3_ppp 14 6 84
maj3_ppp_even 18 6 108
or2_nn 8 6 48
or2_nn_even 9 6 54
or2_pn 1 6 6
or2_pn_even 3 6 18
or2_pp 83 6 498
or2_pp_even 87 6 522
spl2_100 125 2 250
spl2_100_even 83 2 166
spl3_100 72 2 144
spl3_100_even 75 2 150
Total 16258

88 APPENDIX A. SYNTHESIS RESULTS

Table A.8: Cell-by-cell breakdown for the C3540 benchmark[46]

Cell name Cell Count JJs/cell total JJs
filler 47187 0 0
and2_nn 20 6 120
and2_nn_even 17 6 102
and2_pn 102 6 612
and2_pn_even 81 6 486
and2_pp 178 6 1068
and2_pp_even 183 2 366
bfr_100 3209 2 6418
bfr_100_even 3232 2 6464
maj3_nnn 5 6 30
maj3_nnn_even 14 6 84
maj3_npn 7 6 42
maj3_npn_even 9 6 54
maj3_npp 19 6 114
maj3_npp_even 21 6 126
maj3_ppp 56 6 336
maj3_ppp_even 79 6 474
or2_nn 19 6 114
or2_nn_even 21 6 126
or2_pn 13 6 78
or2_pn_even 9 6 54
or2_pp 129 6 774
or2_pp_even 141 6 846
spl2_100 182 2 364
spl2_100_even 145 2 290
spl3_100 260 2 520
spl3_100_even 229 2 458
Total 20520

89

Table A.9: Cell-by-cell breakdown for the C6288 benchmark[46]

Cell name Cell Count JJs/cell total JJs
filler 271901 0 0
and2_nn 2 6 12
and2_nn_even 1 6 6
and2_pn 300 6 1800
and2_pn_even 341 6 2046
and2_pp 340 6 2040
and2_pp_even 674 2 1348
bfr_100 48855 2 97710
bfr_100_even 49048 2 98096
inv 10 2 20
inv_even 18 2 36
maj3_nnn 2 6 12
maj3_npn 1 6 6
maj3_npn_even 1 6 6
maj3_npp 315 6 1890
maj3_npp_even 293 6 1758
maj3_ppp 250 6 1500
maj3_ppp_even 343 6 2058
or2_nn 96 6 576
or2_nn_even 125 6 750
or2_pn 22 6 132
or2_pn_even 8 6 48
or2_pp 224 6 1344
or2_pp_even 215 6 1290
spl2_100 708 2 1416
spl2_100_even 478 2 956
spl3_100 1042 2 2084
spl3_100_even 744 2 1488
Total 220428

90 APPENDIX A. SYNTHESIS RESULTS

Table A.10: Cell-by-cell breakdown for the C7552 benchmark[46]

Cell name Cell Count JJs/cell total JJs
filler 55834 0 0
and2_nn 13 6 78
and2_nn_even 16 6 96
and2_pn 181 6 1086
and2_pn_even 292 6 1752
and2_pp 107 6 642
and2_pp_even 134 2 268
bfr_100 6504 2 13008
bfr_100_even 6292 2 12584
inv 1 2 2
inv_even 5 2 10
maj3_nnn 1 6 6
maj3_nnn_even 3 6 18
maj3_npp 23 6 138
maj3_npp_even 12 6 72
maj3_ppp 24 6 144
maj3_ppp_even 19 6 114
or2_nn 46 6 276
or2_nn_even 51 6 306
or2_pn 8 6 48
or2_pn_even 15 6 90
or2_pp 230 6 1380
or2_pp_even 183 6 1098
spl2_100 252 2 504
spl2_100_even 257 2 514
spl3_100 230 2 460
spl3_100_even 186 2 372
Total 35066

91

Table A.11: Cell-by-cell breakdown for the C5315 benchmark[46]

Cell name Cell Count JJs/cell total JJs
filler 46568 0 0
and2_nn 10 6 60
and2_nn_even 12 6 72
and2_pn 105 6 630
and2_pn_even 215 6 1290
and2_pp 173 6 1038
and2_pp_even 191 2 382
bfr_100 5660 2 11320
bfr_100_even 5514 2 11028
inv 21 2 42
inv_even 25 2 50
maj3_nnn 2 6 12
maj3_nnn_even 3 6 18
maj3_npn 1 6 6
maj3_npp 8 6 48
maj3_npp_even 5 6 30
maj3_ppp 28 6 168
maj3_ppp_even 16 6 96
or2_nn 35 6 210
or2_nn_even 82 6 492
or2_pn 14 6 84
or2_pn_even 17 6 102
or2_pp 198 6 1188
or2_pp_even 205 6 1230
spl2_100 259 2 518
spl2_100_even 169 2 338
spl3_100 256 2 512
spl3_100_even 194 2 388
Total 31352

92 APPENDIX A. SYNTHESIS RESULTS

Table A.12: Cell-by-cell breakdown for the Divisor benchmark

Cell name Cell Count JJs/cell total JJs
bfr_100 76031230 2 152062460
spl3_100 22096 2 44192
spl2_100 17970 2 35940
or2_pp 12585 6 75510
and2_pp 11877 6 71262
and2_pn 10154 6 60924
maj3_ppp 7413 6 44478
maj3_npp 2987 6 17922
or2_nn 2405 6 14430
and2_nn 1277 6 7662
or2_pn 1274 6 7644
maj3_nnn 676 6 4056
inv 316 2 632
maj3_npn 219 6 1314
Total 152448426

Table A.13: Cell-by-cell breakdown for the 8-bit adder

Cell name Cell Count JJs/cell total JJs
filler 1099 0 0
bfr_100 160 2 320
bfr_100_even 143 2 286
spl2_100 25 2 50
or2_pp_even 15 6 90
spl3_100 10 2 20
maj3_ppp_even 10 6 60
spl2_100_even 9 2 18
and2_pp_even 9 2 18
spl3_100_even 9 2 18
or2_pp 8 6 48
or2_nn_even 6 6 36
and2_pp 6 6 36
and2_pn 5 6 30
maj3_ppp 3 6 18
or2_nn 2 6 12
and2_pn_even 2 6 12
Total 1072

93

Table A.14: Cell-by-cell breakdown for the 16-bit adder

Cell name Cell Count JJs/cell total JJs
filler 3319 0 0
bfr_100 492 2 984
bfr_100_even 461 2 922
spl2_100 47 2 94
or2_pp_even 31 6 186
spl3_100 26 2 52
spl2_100_even 25 2 50
spl3_100_even 25 2 50
and2_pp_even 23 2 46
maj3_ppp_even 23 6 138
or2_pp 20 6 120
maj3_ppp 15 6 90
and2_pn 12 6 72
or2_nn 8 6 48
or2_nn_even 8 6 48
and2_pp 8 6 48
and2_pn_even 3 6 18
Total 2966

Table A.15: Cell-by-cell breakdown for the 32-bit adder

Cell name Cell Count JJs/cell total JJs
filler 9750 0 0
bfr_100 1457 2 2914
bfr_100_even 1360 2 2720
spl2_100 104 2 208
spl3_100_even 68 2 136
or2_pp_even 64 6 384
maj3_ppp_even 63 6 378
spl2_100_even 58 2 116
spl3_100 55 2 110
and2_pp_even 51 2 102
or2_pp 46 6 276
maj3_ppp 37 6 222
and2_pn 28 6 168
or2_nn 18 6 108
and2_pp 14 6 84
or2_nn_even 13 6 78
and2_pn_even 3 6 18
maj3_nnn_even 1 6 6
Total 8028

94 APPENDIX A. SYNTHESIS RESULTS

Table A.16: Cell-by-cell breakdown for the 64-bit adder

Cell name Cell Count JJs/cell total JJs
filler 25092 0 0
bfr_100 3936 2 7872
bfr_100_even 3784 2 7568
spl2_100 212 2 424
spl3_100_even 165 2 330
maj3_ppp_even 140 6 840
spl2_100_even 138 2 276
spl3_100 120 2 240
and2_pp_even 118 2 236
or2_pp_even 115 6 690
or2_pp 113 6 678
maj3_ppp 109 6 654
and2_pn 60 6 360
or2_nn 52 6 312
or2_nn_even 11 6 66
and2_pp 11 6 66
and2_pn_even 3 6 18
maj3_nnn 1 6 6
Total 20636

Table A.17: Cell-by-cell breakdown for the 128-bit adder

Cell name Cell Count JJs/cell total JJs
filler 63315 0 0
bfr_100 10504 2 21008
bfr_100_even 10194 2 20388
spl2_100 508 2 1016
spl3_100_even 379 2 758
maj3_ppp_even 347 6 2082
spl3_100 290 2 580
or2_pp_even 288 6 1728
maj3_ppp 285 6 1710
spl2_100_even 281 2 562
and2_pp_even 184 2 368
or2_pp 183 6 1098
and2_pn 124 6 744
and2_pp 77 6 462
or2_nn_even 71 6 426
or2_nn 54 6 324
maj3_nnn 3 6 18
and2_pn_even 3 6 18
Total 53290

95

Table A.18: Cell-by-cell breakdown for the 512-bit adder

Cell name Cell Count JJs/cell total JJs
filler 1011857 0 0
bfr_100 130607 2 261214
bfr_100_even 129291 2 258582
spl2_100 2011 2 4022
spl3_100_even 1512 2 3024
maj3_ppp_even 1416 6 8496
spl3_100 1200 2 2400
spl2_100_even 1155 2 2310
or2_pp_even 1147 6 6882
maj3_ppp 1112 6 6672
and2_pp_even 806 2 1612
or2_pp 770 6 4620
and2_pn 496 6 2976
and2_pp 274 6 1644
or2_nn 245 6 1470
or2_nn_even 240 6 1440
maj3_nnn 22 6 132
and2_pn_even 17 6 102
maj3_nnn_even 3 6 18
Total 567616

96 APPENDIX A. SYNTHESIS RESULTS

Table A.19: Cell-by-cell breakdown for the 1024-bit adder

Cell name Cell Count JJs/cell total JJs
filler 4218351 0 0
bfr_100 546227 2 1092454
bfr_100_even 543303 2 1086606
spl2_100 4041 2 8082
spl3_100_even 3019 2 6038
maj3_ppp_even 2921 6 17526
spl2_100_even 2421 2 4842
spl3_100 2412 2 4824
or2_pp_even 2267 6 13602
maj3_ppp 2195 6 13170
and2_pp_even 1615 2 3230
or2_pp 1569 6 9414
and2_pn 999 6 5994
and2_pp 543 6 3258
or2_nn 516 6 3096
or2_nn_even 451 6 2706
and2_pn_even 43 6 258
maj3_nnn_even 32 6 192
maj3_nnn 18 6 108
and2_nn 3 6 18
or2_pn 3 6 18
or2_pn_even 3 6 18
and2_nn_even 3 6 18
Total 2275472

97

Table A.20: Cell-by-cell breakdown for the 8-bit multiplier

Cell name Cell Count JJs/cell total JJs
filler 9569 0 0
bfr_100 718 2 1436
bfr_100_even 691 2 1382
spl2_100_even 119 2 238
and2_pp 117 6 702
spl3_100_even 112 2 224
or2_pp 87 6 522
spl3_100 82 2 164
or2_pp_even 61 6 366
spl2_100 56 2 112
and2_pp_even 53 2 106
and2_pn_even 39 6 234
maj3_ppp 35 6 210
and2_pn 31 6 186
maj3_ppp_even 31 6 186
or2_nn 22 6 132
or2_nn_even 12 6 72
or2_pn 3 6 18
or2_pn_even 2 6 12
maj3_nnn_even 2 6 12
Total 6314

98 APPENDIX A. SYNTHESIS RESULTS

Table A.21: Cell-by-cell breakdown for the 16-bit multiplier

Cell name Cell Count JJs/cell total JJs
filler 80352 0 0
bfr_100 4028 2 8056
bfr_100_even 3940 2 7880
spl3_100 584 2 1168
and2_pp_even 497 2 994
spl2_100 488 2 976
or2_pp_even 418 6 2508
spl3_100_even 356 2 712
or2_pp 247 6 1482
spl2_100_even 230 2 460
and2_pp 210 6 1260
and2_pn_even 196 6 1176
maj3_ppp_even 165 6 990
and2_pn 153 6 918
maj3_ppp 141 6 846
or2_nn_even 108 6 648
or2_nn 59 6 354
maj3_npp 15 6 90
or2_pn_even 11 6 66
maj3_npp_even 10 6 60
or2_pn 8 6 48
inv_even 7 2 14
maj3_nnn_even 7 6 42
and2_nn_even 6 6 36
and2_nn 3 6 18
maj3_npn_even 3 6 18
Total 30820

99

Table A.22: Cell-by-cell breakdown for the 32-bit multiplier

Cell name Cell Count JJs/cell total JJs
filler 701827 0 0
bfr_100_even 18575 2 37150
bfr_100 17789 2 35578
spl3_100_even 2327 2 4654
spl2_100_even 2213 2 4426
and2_pp 1949 6 11694
or2_pp 1801 6 10806
and2_pn 1189 6 7134
spl3_100 1088 2 2176
spl2_100 939 2 1878
or2_pp_even 763 6 4578
and2_pn_even 714 6 4284
and2_pp_even 668 2 1336
or2_nn 477 6 2862
maj3_ppp 467 6 2802
maj3_ppp_even 247 6 1482
or2_nn_even 177 6 1062
maj3_npp 150 6 900
maj3_npp_even 135 6 810
and2_nn 60 6 360
or2_pn 59 6 354
or2_pn_even 45 6 270
inv 32 2 64
and2_nn_even 22 6 132
maj3_npn 17 6 102
inv_even 10 2 20
maj3_nnn 5 6 30
maj3_nnn_even 5 6 30
maj3_npn_even 3 6 18
Total 136992

101

本研究に関する発表

発表論文
採択済み

1. T. Tanaka, C. L. Ayala, and N. Yoshikawa, “A 16-Bit Parallel Prefix Carry
Look-Ahead Kogge-Stone Adder Implemented in Adiabatic Quantum-Flux-
Parametron Logic,” IEICE Transactions on Electronics, vol. E105.C, no. 6,
pp. 270 – 276, Jun. 2022.

2. C. L. Ayala, T. Tanaka, R. Saito, M. Nozoe, N. Takeuchi, and N. Yoshikawa,
“MANA: A Monolithic Adiabatic iNtegration Architecture Microprocessor Us-
ing 1.4-zJ/op Unshunted Superconductor Josephson Junction Devices,” IEEE
J. Solid-State Circuits, vol. 56, no. 4, pp. 1152 – 1165, Apr. 2021.

3. C. L. Ayala, R. Saito, T. Tanaka, C. Olivia, Y. He., N. Takeuchi, and N.
Yoshikawa“A semi-custom design methodology and environment for imple-
menting superconductor adiabatic quantum-flux-parametron microprocessors,”
Supercond. Sci. Technol., vol. 33, no. 5, p. 054006, Mar. 2020.

4. C. J. Fourie, C. L. Ayala, L. Schindler, T. Tanaka, and N. Yoshikawa, “Design
and Characterization of Track Routing Architecture for RSFQ and AQFP Cir-
cuits in a Multilayer Process,” IEEE Trans. Appl. Supercond., vol. 30, no. 6,
pp. 1 – 9, Sep. 2020.

5. R. Saito, C. L. Ayala, O. Chen, T. Tanaka, T. Tamura, and N. Yoshikawa,
“Logic Synthesis of Sequential Logic Circuits for Adiabatic Quantum-Flux-
Parametron Logic,” IEEE Trans. Appl. Supercond., vol. 31, no. 5, pp. 1 – 5,
Aug. 2021.

6. T. Tanaka, C. L. Ayala, S. Whiteley, E. Milnar, A. Barker, S. Chen, A. Beleov,
T. Barbee III, J. Kawa, N. Yoshikawa, “A full-custom design flow and a top-
down RTL-to-GDS flow for adiabatic quantum-flux-parametron logic using a
commercial EDA design suite,” IEEE Trans. Appl. Supercond.

7. Y. Hironaka, S. Meher, C. L. Ayala, Y. He, T. Tanaka, M. Habib, A. Sahu,
A. Inamdar, D. Gupta, and N. Yoshikawa, “Demonstration of interface circuits
for adiabatic quantum-flux-parametron cell library using an eight-metal layer
superconductor process,” IEEE Trans. Appl. Supercond.

8. M. Johnston, C. L. Ayala, T. Tanaka, N. Yoshikawa, “Analysis and Stabiliza-
tion of Signal Reflections in Gate-to-Gate Connections for AQFP Circuits,”
IEEE Trans. Appl. Supercond.

102 APPENDIX A. 本研究に関する発表

口頭・ポスター発表
1. 田中 智之, Christopher L. Ayala, 田村 智大 ，齋藤 蕗生 ，伊東 大樹 ，浅井 和人
，竹内 尚輝 ，吉川 信行「超伝導断熱量子磁束パラメトロン回路によるコンピュー
タの実現とその現状」、ナノ学会　横浜 2020, ナノ学会 2020年 5月

2. 田中 智之, AYALA Christopher, 吉川 信行「断熱量子磁束パラメトロン回路のグ
リッドレスチャネル配線による長距離配線」、99回低温工学会, 低温工学・超電導
学会　横浜 2020 7月

3. 山田 剛久, C. L. Ayala, 齋藤 蕗生, 田中 智之, 吉川 信行,「機械学習による断熱量
子磁束パラメトロン集積回路の配置順序最適化の改良検討」, 低温工学・超電導学
会研究発表会, 低温工学・超電導学会, 2020 年 7 月

4. 齋藤 蕗生, AYALA Christopher L, CHEN Olivia, 田中 智之, 田村 智大, 吉川 信
行,「Adiabatic Quantum-Flux-Parametron Logic のためのフィードバック回路
の自動合成」, 低温工学・超電導学会研究発表会会, 低温工学・超電導学会 2020年
7月

5. 田中 智之, Christopher L. Ayala, 吉川信行,「チャネル配線の寄生インダクタンス
最適化による断熱量子磁束パラメトロン回路の小型化」　通信学会ソサイエティ大
会　通信学会　 2020 9月

6. 山田 剛久, C. L. Ayala, 齋藤 蕗生, 田中 智之, 吉川信行,「特殊ケースにおける２
層チャネル配線アルゴリズムの開発」, 電子情報通信学会ソサイエティ大会 通信学
会 2020 年 9 月.

7. 齋藤 蕗生, Christopher L. Ayala, Olivia Chen, 田中 智之, 吉川 信行,「AQFP回
路のための N-Phase Clockingに関する研究」,通信学会ソサイエティ大会, 通信学
会, 2020年 9月.

8. Tomoyuki Tanaka, Christopher L. Ayala, Ro Saito , Daiki Ito, Kazuhito Asai,
Naoki Takeuchi, Nobuyuki Yoshikawa, “Development of an ultra-low power
microprocessor using adiabatic quantum-flux-parametron circuits,” 電気学会、
新潟 2020年 9月

9. Ro Saito, Christopher L. Ayala, Olivia Chen, Tomoyuki Tanaka, Tomohiro
Tamura, Nobuyuki Yoshikawa, “Study of clock synchronization for high-level
synthesis of adiabatic quantum-flux-parametron sequential logic circuits,” ASC
2020, online, Oct. 2020.

10. T. Tanaka, C. L. Ayala, and N. Yoshikawa, “A 16-bit parallel prefix carry look-
ahead Kogge-Stone adder implemented in adiabatic quantum-flux-parametron
logic,” ASC 2020, online Oct. 2020

11. Christopher L. Ayala, Ro Saito, Tomoyuki Tanaka, Tomohiro Tamura, Naoki
Takeuchi, and Nobuyuki Yoshikawa, “A 4-bit RISC-Dataflow AQFP MANA
Microprocessor: Architecture, Design Challenges, and Demonstration,”
ASC2020, Online Oct. 2020

12. T. Yamada, C. L. Ayala, R. Saito, T. Tanaka, N. Yoshikawa, “Development
of a Generic Two-Layer Channel Routing Algorithm for Adiabatic Quantum-
Flux-Parametron Logic Using Advanced Fabrication Process,” The 33rd Inter-
national Symposium on Superconductivity (ISS), Tsukuba, Japan, Dec. 2020.

13. 田中 智之, AYALA Christopher, 吉川 信行「断熱量子磁束パラメトロン回路の配

103

置最適化と配線インダクタンス最適化による集積性の改善」、100回低温工学会 京
都 2020年 12月

14. 田中 智之, AYALA Christopher, 齋藤 蕗生, 吉川 信行「断熱量子磁束パラメトロ
ン回路用自動設計ツールにおける配線幅・配置最適化」、通信学会総合大会　オン
ライン 2021年 3月

15. 田中 智之, Christopher Ayala, 吉川信行,「断熱量子磁束パラメトロン回路を用い
た浮動小数点加算器の設計」, 通信学会ソサイエティ大会 2021年 9月

16. Tomoyuki Tanaka, Christopher L. Ayala and Nobuyuki Yoshikawa, “Demon-
stration of 8-bit Kogge-Stone adder using adiabatic quantum-flux-parametron
logic with 5-input majority gate,” SSV2021, SSV committee, Nagoya Dec. 2021

17. Tomoyuki Tanaka, Christopher L. Ayala and Nobuyuki Yoshikawa, “Design
of adiabatic quantum-flux-parametron bfloat16 floating point arithmetic unit,”
ISS2021, AIST, Dec. 2021

18. 齋藤 理彩子, 田中 智之, Christopher Ayala, 吉川 信行「断熱量子磁束パラメトロ
ン回路における 5 入力多数決論理ゲートを用いた 8-bit Kogge-Stone 加算器の設
計と評価」, 通信学会ソサイエティ大会 2022年 3月

19. Tomoyuki Tanaka, Christopher Ayala, and Nobuyuki Yoshikawa, “Investiga-
tion of power consumption of adiabatic quantum-flux-parametron Kogge-Stone
adder circuits by using 5-input majority gate,” 電気学会　種子島 2022年 9月

20. Shohei Takagi, Tomoyuki Tanaka, Christopher L. Ayala, and Nobuyuki
Yoshikawa, “Design and Analysis of Energy-Efficient Adiabatic Quantum-
Flux-Parametron Multiplier Families,” SSV2022, Kyoto, Sep. 2022

21. Tomoyuki Tanaka, Sukanya S. Meher, Christopher L. Ayala, Yuki Hironaka,
AnubhavSahu, Amol Inamdar, Deepnarayan Gupta, and Nobuyuki Yoshikawa,
“Design of a hybrid superconductor logic computation system using single flux
quantum and adiabatic quantum-flux-parametron logic families,” SSV2022, Ky-
oto, Sep. 2022

22. Tomoyuki Tanaka, Christopher Ayala, Stephen Whiteley, Eric Mlinar, Aaron
Barker, Sam Lo, Jamil Kawa, and Nobuyuki Yoshikawa, “A full-custom design
flow and a top-down RTL-to-GDS flow for adiabatic quantum-flux-parametron
logic using a commercial EDA design suite,” ASC2022, Hawaii, Oct. 2022.

23. Tomoyuki Tanaka, Sukanya Sagarika Meher, Christopher Ayala, Yuki Hi-
ronaka, Anubhav Sahu, Amol Inamdar, Deepnarayan Gupta, and Nobuyuki
Yoshikawa, “Demonstration of a hybrid superconductor logic computation
system using single flux quantum and adiabatic quantum-flux-parametron
logic families,” ASC2022, Hawaii, Oct. 2022.

24. Christopher Ayala, Tomoyuki Tanaka, Ro Saito, and Nobuyuki Yoshikawa, “An
adiabatic quantum-flux-parametron block permutation unit for a superconduc-
tor SHA-3 cryptoprocessor,” ASC2022, Hawaii, Oct. 2022.

25. Yuki Hironaka, Sukanya Sagarika Meher, Christopher Ayala, Yuxing He,
Tomoyuki Tanaka, Mustapha Habib, Anubhav Sahu, Amol Inamdar, Deep-
narayan Gupta, and Nobuyuki Yoshikawa, “Demonstration of interface circuits
for adiabatic quantum-flux-parametron cell library using an eight-metal layer
superconductor process,” ASC2022, Hawaii, Oct. 2022.

26. Shohei Takagi, Tomoyuki Tanaka, Christopher Ayala, Nobuyuki Yoshikawa,

104 APPENDIX A. 本研究に関する発表

“Design of Energy-Efficient Adiabatic Quantum-Flux-Parametron Multiplier
Familie,” ASC2022, Hawaii, Oct. 2022.

表彰
1. 低温工学・超電導学会 令和三年度 優秀発表賞
2. 電気学会 Young Researcher English Oral Presentation Award

105

Bibliography

[1] Technavio, “Data center market by component and geography - forecast and
analysis 2022-2026.”

[2] “How to stop data centres from gobbling up the world’ s electricity.” https:
//www.nature.com/articles/d41586-018-06610-y.

[3] D. S. Holmes, A. L. Ripple, and M. A. Manheimer, “Energy-Efficient super-
conducting Computing—Power budgets and requirements,” IEEE Trans. Appl.
Supercond., vol. 23, pp. 1701610–1701610, June 2013.

[4] N. Takeuchi, D. Ozawa, Y. Yamanashi, and N. Yoshikawa, “An adiabatic quan-
tum flux parametron as an ultra-low-power logic device,” Superconductor Science
and Technology, vol. 26, p. 035010, jan 2013.

[5] N. Takeuchi, T. Yamae, C. L. Ayala, H. Suzuki, and N. Yoshikawa, “An adiabatic
superconductor 8-bit adder with 24kBT energy dissipation per junction,” Appl.
Phys. Lett., vol. 114, p. 042602, Jan. 2019.

[6] A. Patterson, “Moore’s law could ride euv for 10 more years,” Sep 2021.
[7] J. Sevilla, L. Heim, A. Ho, T. Besiroglu, M. Hobbhahn, and P. Villalobos, “Com-

pute trends across three eras of machine learning,” 2022.
[8] OpenAI, “Chatgpt: Optimizing language models for dialogue,” 2023. https:

//openai.com/blog/chatgpt/.
[9] I. Nagaoka, K. Ishida, M. Tanaka, K. Sano, T. Yamashita, T. Ono, K. In-

oue, and A. Fujimaki, “Demonstration of a 52-GHz Bit-Parallel multiplier using
Low-Voltage rapid Single-Flux-Quantum logic,” IEEE Trans. Appl. Supercond.,
vol. 31, pp. 1–5, Aug. 2021.

[10] R. Kashima, I. Nagaoka, M. Tanaka, T. Yamashita, and A. Fujimaki, “64-GHz
datapath demonstration for Bit-Parallel SFQ microprocessors based on a Gate-
Level-Pipeline structure,” IEEE Trans. Appl. Supercond., vol. 31, pp. 1–6, Aug.
2021.

[11] T. Kawaguchi and N. Takagi, “32-bit ALU with clockless gates for RSFQ Bit-
Parallel processor,” IEICE Transactions on Electronics, vol. E105.C, pp. 245–250,
June 2022.

[12] TOP500, “Green 500, november 2022,” 2022. https://www.top500.org/lists/
green500/2022/11/.

[13] A. F. Kirichenko, I. V. Vernik, M. Y. Kamkar, J. Walter, M. Miller, L. R.
Albu, and O. A. Mukhanov, “Ersfq 8-bit parallel arithmetic logic unit,” IEEE
Transactions on Applied Superconductivity, vol. 29, no. 5, pp. 1–7, 2019.

[14] M. Dorojevets, Z. Chen, C. L. Ayala, and A. K. Kasperek, “Towards 32-bit
energy-efficient superconductor rql processors: The cell-level design and analysis
of key processing and on-chip storage units,” IEEE Transactions on Applied

106 Bibliography

Superconductivity, vol. 25, no. 3, pp. 1–8, 2015.
[15] C. L. Ayala, T. Tanaka, R. Saito, M. Nozoe, N. Takeuchi, and N. Yoshikawa,

“MANA: A monolithic adiabatic integration architecture microprocessor using
1.4-zj/op unshunted superconductor josephson junction devices,” IEEE J. Solid-
State Circuits, vol. 56, pp. 1152–1165, Apr. 2021.

[16] Y. Harada and J. B. Green, “High-speed experiments on a qfp-based comparator
for adcs with 18-ghz sample rate and 5-ghz input frequency,” IEEE Transactions
on Applied Superconductivity, vol. 2, pp. 21–25, March 1992.

[17] M. Hosoya, W. Hioe, K. Takagi, and E. Goto, “Operation of a 1-bit quantum flux
parametron shift register (latch) by 4-phase 36-ghz clock,” IEEE Transactions
on Applied Superconductivity, vol. 5, pp. 2831–2834, June 1995.

[18] W. Hioe, M. Hosoya, S. Kominami, H. Yamada, R. Mita, and K. Takagi, “Design
and operation of a quantum flux parametron bit-slice alu,” Applied Superconduc-
tivity, IEEE Transactions on, vol. 5, pp. 2992 – 2995, 07 1995.

[19] H. L. Ko and G. S. Lee, “Noise analysis of the quantum flux parametron,” IEEE
Transactions on Applied Superconductivity, vol. 2, pp. 156–164, Sep. 1992.

[20] N. Takeuchi, T. Yamae, C. L. Ayala, H. Suzuki, and N. Yoshikawa, “Adia-
batic Quantum-Flux-Parametron: A tutorial review,” IEICE Trans. Electron.,
vol. E105.C, pp. 251–263, June 2022.

[21] D. E. McCumber, “Effect of ac impedance on dc voltage‐ current characteristics
of superconductor weak ‐ link junctions,” Journal of Applied Physics, vol. 39,
no. 7, pp. 3113–3118, 1968.

[22] N. Takeuchi, T. Yamae, S. Hideo, and Y. Nobuyuki, “超低電力コンピューティ
ングのための断熱磁束量子パラメトロンのパラメータ設計法,” 電子情報通信学会論
文誌 C, vol. 11, pp. 329–338, nov 2022.

[23] K. Fang, N. Takeuchi, T. Ando, Y. Yamanashi, and N. Yoshikawa, “Multi-
excitation adiabatic quantum-flux-parametron,” Journal of Applied Physics,
vol. 121, no. 14, p. 143901, 2017.

[24] N. Takeuchi, M. Nozoe, Y. He, and N. Yoshikawa, “Low-latency adiabatic su-
perconductor logic using delay-line clocking,” Applied Physics Letters, vol. 115,
no. 7, p. 072601, 2019.

[25] R. Saito, C. L. Ayala, and N. Yoshikawa, “Buffer reduction via n-phase clocking
in adiabatic quantum-flux-parametron benchmark circuits,” IEEE Trans. Appl.
Supercond., pp. 1–1, 2021.

[26] N. Takeuchi, Y. Yamanashi, and N. Yoshikawa, “Adiabatic quantum-flux-
parametron cell library adopting minimalist design,” Journal of Applied Physics,
vol. 117, no. 17, p. 173912, 2015.

[27] 山﨑祐一, 山栄大樹, 竹内尚輝, and 吉川信行, “断熱量子磁束パラメトロン回路を用
いた 5入力 majorityゲートの研究,” in 信学技報, vol. 119 of SCE2019-20, (茨城),
pp. 67–70, 8月 2019. 2019年 8月 9日 (金) 産業技術総合研究所 (SCE).

[28] T. Yamae, N. Takeuchi, and N. Yoshikawa, “Systematic method to evaluate
energy dissipation in adiabatic quantum-flux-parametron logic,” J. Appl. Phys.,
vol. 126, p. 173903, Nov. 2019.

[29] L. Amarú, P. Gaillardon, A. Chattopadhyay, and G. De Micheli, “A sound and
complete axiomatization of majority-n logic,” IEEE Transactions on Computers,
vol. 65, pp. 2889–2895, Sep. 2016.

107

[30] L. Amarù, E. Testa, M. Couceiro, O. Zografos, G. De Micheli, and M. Soeken,
“Majority logic synthesis,” in Proceedings of the International Conference on
Computer-Aided Design, ICCAD ’ 18, (New York, NY, USA), Association for
Computing Machinery, 2018.

[31] T. Tanaka, C. L. Ayala, and N. Yoshikawa, “A 16-bit parallel prefix carry Look-
Ahead Kogge-Stone adder implemented in adiabatic Quantum-Flux-Parametron
logic,” IEICE Transactions on Electronics, vol. E105.C, pp. 270–276, June 2022.

[32] C. L. Ayala, R. Saito, T. Tanaka, O. Chen, N. Takeuchi, Y. He, and N. Yoshikawa,
“A semi-custom design methodology and environment for implementing super-
conductor adiabatic quantum-flux-parametron microprocessors,” Supercond. Sci.
Technol., vol. 33, p. 054006, Mar. 2020.

[33] Y.-C. Chang, H. Li, O. Chenht, Y. Wang, N. Yoshikawa, and T.-Y. Ho, “ASAP:
an analytical strategy for AQFP placement,” in Proceedings of the 39th Inter-
national Conference on Computer-Aided Design, no. Article 134 in ICCAD ’20,
(New York, NY, USA), pp. 1–7, Association for Computing Machinery, Nov.
2020.

[34] T. Tanaka, C. L. Ayala, Q. Xu, R. Saito, and N. Yoshikawa, “Fabrication of adia-
batic quantum-flux-parametron integrated circuits using an automatic placement
tool based on genetic algorithms,” IEEE Transactions on Applied Superconduc-
tivity, vol. 29, pp. 1–6, Aug 2019.

[35] Y. Murai, C. L. Ayala, N. Takeuchi, Y. Yamanashi, and N. Yoshikawa, “Devel-
opment and demonstration of routing and placement eda tools for large-scale
adiabatic quantum-flux-parametron circuits,” IEEE Transactions on Applied Su-
perconductivity, vol. 27, pp. 1–9, Sep. 2017.

[36] S. C. Lo, A. J. Barker, S. R. Whiteley, E. Mlinar, J. Chen, D. Wu, and K. Singhal,
“Simulation methodology for timing analysis and design optimization in digital
superconducting electronics,” in 2022 23rd International Symposium on Quality
Electronic Design (ISQED), pp. 33–38, Apr. 2022.

[37] E. S. Fang and T. Van Duzer, “A josephson integrated circuit simulator (JSIM)
for superconductive electronics application,” in Extended Abstracts of Int. Super-
conductivity Electronics Conf., pp. 407–410, June 1989.

[38] J. A. Delport, K. Jackman, P. l. Roux, and C. J. Fourie, “JoSIM—
Superconductor SPICE simulator,” IEEE Trans. Appl. Supercond., vol. 29,
pp. 1–5, Aug. 2019.

[39] R. Freeman, J. Kawa, and K. Singhal, “Synopsys’ journey to enable TCAD and
EDA tools for superconducting electronics,” 2020.

[40] C. J. Fourie, “Full-gate verification of superconducting integrated circuit layouts
with inductex,” IEEE Transactions on Applied Superconductivity, vol. 25, no. 1,
pp. 1–9, 2015.

[41] S. K. Tolpygo, V. Bolkhovsky, T. J. Weir, A. Wynn, D. E. Oates, L. M. Johnson,
and M. A. Gouker, “Advanced fabrication processes for superconducting very
large-scale integrated circuits,” IEEE Transactions on Applied Superconductivity,
vol. 26, no. 3, pp. 1–10, 2016.

[42] MIT Lincoln Laboratory, MIT LL 100 µA/µm2 Superconductor Electronics Fab-
rication Process SFQ5ee Design Guide, Dec. 2021.

[43] Y. He, C. L. Ayala, N. Takeuchi, T. Yamae, Y. Hironaka, A. Sahu, V. Gupta,

108 Bibliography

A. Talalaevskii, D. Gupta, and N. Yoshikawa, “A compact AQFP logic cell design
using an 8-metal layer superconductor process,” Supercond. Sci. Technol., vol. 33,
p. 035010, Feb. 2020.

[44] N. Takeuchi, S. Nagasawa, F. China, T. Ando, M. Hidaka, Y. Yamanashi, and
N. Yoshikawa, “Adiabatic quantum-flux-parametron cell library designed using a
10 kA cm-2niobium fabrication process,” Superconductor Science and Technology,
vol. 30, p. 035002, jan 2017.

[45] N. Takeuchi, H. Suzuki, C. J. Fourie, and N. Yoshikawa, “Impedance design of
excitation lines in adiabatic Quantum-Flux-Parametron logic using InductEx,”
IEEE Trans. Appl. Supercond., vol. 31, pp. 1–5, Aug. 2021.

[46] M. C. Hansen, H. Yalcin, and J. P. Hayes, “Unveiling the ISCAS-85 benchmarks:
a case study in reverse engineering,” IEEE Des. Test Comput., vol. 16, pp. 72–80,
July 1999.

[47] N. Tsuji, N. Takeuchi, Y. Yamanashi, T. Ortlepp, and N. Yoshikawa, “Major-
ity Gate-Based feedback latches for adiabatic quantum flux parametron logic,”
IEICE Transactions on Electronics, vol. E99.C, no. 6, pp. 710–716, 2016.

[48] N. Tsuji, N. Takeuchi, T. Narama, T. Ortlepp, Y. Yamanashi, and N. Yoshikawa,
“Magnetically coupled quantum-flux-latch with wide operation margins,” Super-
cond. Sci. Technol., vol. 28, p. 115013, Sept. 2015.

[49] T. Yamae, N. Takeuchi, and N. Yoshikawa, “Binary counters using adia-
batic Quantum-Flux-Parametron logic,” IEEE Trans. Appl. Supercond., vol. 31,
pp. 1–5, Mar. 2021.

[50] R. Saito, C. L. Ayala, O. Chen, T. Tanaka, T. Tamura, and N. Yoshikawa, “Logic
synthesis of sequential logic circuits for adiabatic Quantum-Flux-Parametron
logic,” IEEE Trans. Appl. Supercond., vol. 31, pp. 1–5, Aug. 2021.

[51] S. S. Meher, J. Ravi, M. E. Çelik, S. Miller, A. Sahu, A. Talalaevskii, and A. In-
amdar, “Superconductor standard cell library for advanced EDA design,” IEEE
Trans. Appl. Supercond., vol. 31, pp. 1–7, Aug. 2021.

[52] Y. Hashimoto, S. Yorozu, Y. Kameda, and V. K. Semenov, “A design approach to
passive interconnects for single flux quantum logic circuits,” IEEE Trans. Appl.
Supercond., vol. 13, pp. 535–538, June 2003.

[53] Y. Yamazaki, N. Takeuchi, and N. Yoshikawa, “A compact interface between
adiabatic Quantum-Flux-Parametron and rapid Single-Flux-Quantum circuits,”
IEEE Trans. Appl. Supercond., vol. 31, pp. 1–5, Aug. 2021.

[54] C. L. Ayala, N. Takeuchi, Y. Yamanashi, T. Ortlepp, and N. Yoshikawa,
“Majority-logic-optimized parallel prefix carry look-ahead adder families using
adiabatic quantum-flux-parametron logic,” IEEE Transactions on Applied Su-
perconductivity, vol. 27, pp. 1–7, June 2017.

[55] H. Cong, M. Li, and M. Pedram, “An 8-b multiplier using single-stage full adder
cell in single-flux-quantum circuit technology,” IEEE Transactions on Applied
Superconductivity, vol. 31, no. 6, pp. 1–10, 2021.

[56] Y. He, N. Takeuchi, and N. Yoshikawa, “Low-latency power-dividing clocking
scheme for adiabatic quantum-flux-parametron logic,” Appl. Phys. Lett., vol. 116,
p. 182602, May 2020.

[57] N. Takeuchi, M. Nozoe, Y. He, and N. Yoshikawa, “Low-latency adiabatic super-
conductor logic using delay-line clocking,” Appl. Phys. Lett., vol. 115, p. 072601,

109

Aug. 2019.
[58] T. Yamae, N. Takeuchi, and N. Yoshikawa, “Adiabatic quantum-flux-parametron

with delay-line clocking: logic gate demonstration and phase skipping operation,”
Supercond. Sci. Technol., vol. 34, p. 125002, Oct. 2021.

[59] N. A. Sherwani, Algorithms for VLSI Physical Design Automation. USA: Kluwer
Academic Publishers, 1993.

[60] A. Hashimoto and J. Stevens, “Wire routing by optimizing channel assignment
within large apertures,” in Proceedings of the 8th Design Automation Workshop,
DAC ’ 71, (New York, NY, USA), p. 155 – 169, Association for Computing
Machinery, 1971.

[61] S. M. S. . H. Youssef, “Channel routing,” 1995.
[62] H. H. Chen and E. S. Kuh, “Glitter: A gridless Variable-Width channel router,”

IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., vol. 5, pp. 459–465, Oct.
1986.

[63] K. Asai, N. Takeuchi, H. Suzuki, Y. Yamanashi, and N. Yoshikawa, “Transmis-
sion line effects of long Gate-to-Gate interconnections in adiabatic Quantum-
Flux-Parametron logic circuits,” IEEE Trans. Appl. Supercond., vol. 32, pp. 1–7,
Oct. 2022.

[64] M. Dorojevets, C. L. Ayala, N. Yoshikawa, and A. Fujimaki, “16-bit Wave-
Pipelined Sparse-Tree RSFQ adder,” IEEE Trans. Appl. Supercond., vol. 23,
pp. 1700605–1700605, June 2013.

[65] A. Y. Herr, Q. P. Herr, O. T. Oberg, O. Naaman, J. X. Przybysz, P. Borodulin,
and S. B. Shauck, “An 8-bit carry look-ahead adder with 150 ps latency and
sub-microwatt power dissipation at 10 GHz,” J. Appl. Phys., vol. 113, p. 033911,
Jan. 2013.

[66] R. Celis-Cordova, A. O. Orlov, T. Lu, J. M. Kulick, and G. L. Snider, “Design
of a 16-bit adiabatic microprocessor,” in 2019 IEEE International Conference on
Rebooting Computing (ICRC), pp. 1–4, Nov. 2019.

[67] A. Stillmaker and B. Baas, “Scaling equations for the accurate prediction of cmos
device performance from 180nm to 7nm,” Integration, vol. 58, pp. 74–81, 2017.

[68] D. E. Kirichenko, S. Sarwana, and A. F. Kirichenko, “Zero static power dis-
sipation biasing of RSFQ circuits,” IEEE Trans. Appl. Supercond., vol. 21,
pp. 776–779, June 2011.

[69] N. Takeuchi, K. Arai, and N. Yoshikawa, “Directly coupled adiabatic supercon-
ductor logic,” Supercond. Sci. Technol., vol. 33, p. 065002, May 2020.

[70] R. Ishida, N. Takeuchi, T. Yamae, and N. Yoshikawa, “Design and demonstration
of directly coupled Quantum-Flux-Parametron circuits with optimized parame-
ters,” IEEE Trans. Appl. Supercond., vol. 31, pp. 1–5, Aug. 2021.

[71] L. Schindler, R. van Staden, C. J. Fourie, C. L. Ayala, J. A. Coetzee, T. Tanaka,
R. Saito, and N. Yoshikawa, “Standard cell layout synthesis for row-based place-
ment and routing of rsfq and aqfp logic families,” in 2019 IEEE International
Superconductive Electronics Conference (ISEC), pp. 1–5, 2019.

[72] C. J. Fourie, C. L. Ayala, L. Schindler, T. Tanaka, and N. Yoshikawa, “Design
and characterization of track routing architecture for rsfq and aqfp circuits in
a multilayer process,” IEEE Transactions on Applied Superconductivity, vol. 30,
no. 6, pp. 1–9, 2020.

110 Bibliography

[73] S. K. Tolpygo, V. Bolkhovsky, T. J. Weir, A. Wynn, D. E. Oates, L. M. Johnson,
and M. A. Gouker, “Advanced fabrication processes for superconducting very
Large-Scale integrated circuits,” IEEE Trans. Appl. Supercond., vol. 26, pp. 1–10,
Apr. 2016.

[74] A. M. S. Abdelhadi, Architecture of block-RAM-based massively parallel mem-
ory structures : multi-ported memories and content-addressable memories. PhD
thesis, University of British Columbia, 2016.

[75] X. Peng, Y. Yamanashi, N. Yoshikawa, A. Fujimaki, N. Takagi, K. Takagi,
and M. Hidaka, “Design and high-speed demonstration of single-flux-quantum
bit-serial floating-point multipliers using a 10ka/cm2 nb process,” IEICE trans.
electron., vol. E97.C, no. 3, pp. 188–193, 2014.

[76] S. Mach, F. Schuiki, F. Zaruba, and L. Benini, “FPnew: An Open-Source
multiformat Floating-Point unit architecture for Energy-Proportional transpre-
cision computing,” IEEE Trans. Very Large Scale Integr. VLSI Syst., vol. 29,
pp. 774–787, Apr. 2021.

