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Abstract 

In the family of bridge system, cable-stayed bridges are a focus of interest for bridge 
engineers worldwide owing to their ability to reach large spans. The recorded span length 
jumped remarkably from around 250 meters in 1950s to more than 1000 meters in 2010s. 
Cables are the distinctive element in cable-stayed bridges which play an undoubtedly 
central role in supporting bridge decks. Stay cables, in fact, are slender structures and 
have low inherent damping (0.01−0.2%). This characteristic of cable makes it extremely 
vulnerable to vibration sources, especially rain-wind induced excitation. Providing 
added damping (> 0.5 %) by means of mounting dampers to cables would be needed to 
suppress extreme vibrations.    

For stay cables with dampers, damping and tension are two engineering values. 
This study covers a wide range of problems related to damping and tension estimation 
of stay cables from theoretical development, practical proposal, field measurement, 
damping analysis, and applications to existing bridges. Chapter 2 analytically analyzes 
several factors which trigger low performance of dampers including rotational restraint 
between cable and damper, damper stiffness, damper support stiffness, and cable 
bending stiffness. Chapter 3 theoretically develops the universal damping curve for the 
design of cable damping and damper, which is as a tool for engineers to design dampers 
effortlessly. Chapter 4 shows the verification between the theoretical development of 
universal damping curve and measured damping from full-scale measurement of cable 
vibration; the comparison between theoretical damping and measured damping is carried 
out to check the damper effectiveness. Chapter 5 proposes a framework for tension 
estimation of cables with and without dampers, using some available parameters and 
regardless of many unknow cable-damper properties. Finally, the conclusions and 
recommendation for future study are summarized in Chapter 6.   

The main results showed that in the presence of restraints between cable and 
damper, damper stiffness, and damper support stiffness, attainable damping is lower than 
its value of non-restraint cases. The modification factors of damping due to restraints, 
which are proposed in this study, can be used to reidentify of cable damping. Also, by 
adjusting supports at cable ends with finite rotational restraint stiffness, the damper 
works more effectively. Negative stiffness damper provides superior damping to cable 
compared to conventional damper. The universal damping curve is proposed in this 
study, which is a sing curve and independent of any cable-damper parameter. The 
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universal curve of damping groups all cable-damper parameters into X and Y axis that 
facilitates the design of cable damping, especially for multi-mode vibration control. 
Damper effectiveness determined by full-scale measurement of cable vibration in this 
study was around 70% on average; amplitude dependency of measured damping was 
also observed. Finally, the framework for vibration-based cable tension estimation under 
limited information of cable parameters is proposed. Cable tension was successfully 
estimated using just three known parameters including cable length, mass per unit length 
and measured frequencies, and regardless of other unknown factors like cable bending 
stiffness, axial stiffness, cable inclination, restrained conditions at cable ends and lateral 
attachments.  
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CHAPTER 1: INTRODUCTION 

 

This chapter provides a general picture of this study including the background 
of cable vibration with dampers, problem statement, aims, objectives, methodology 
and the structure of this dissertation. The brief remarks on the main contributions as 
well as related publications of the Ph.D candidate are also summarized. 

 

1.1. Background 

In the second half of the 20st century, cable-stayed bridges were dominantly 
constructed, especially for moderate to long span bridges due to its economic 
advantages, loading capacities and aesthetic aspects1. Cables play an undoubtedly 
essential role in supporting bridge desks2,3. Tension and damping in cables must be 
properly measured or estimated during the construction, regular assessments, and 
long-term health monitoring4,5. These parameters of cables provide owners with 
useful information about bridge safety, possible damages, structural changes, and 
deterioration6-8. Figure 1.1 shows an example of cable stay bridge (Tatara Bridge) 
used in this study. 

 

 

 
 

FIGURE 1.1. Tatara Bridge (currently 8th longest cable stay bridge in the world).  
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Stay cables, however, are prone to vibration under wind or traffic loads because 
of its low intrinsic damping. Gimsing and Georgakis2 pointed out that the inherent 
damping ratio 𝜉0 of cables is in the order of 0.01% – 0.2% (log-decrement = 0.00063 
– 0.013). Also, Fujino et al.9 summarized inherent damping in term of logarithmic 
decrement 𝛿0 ≈ 2𝜋𝜉0 ) of 50 cables of cable-stayed bridges based on field 
observations as shown in Figure 1.2. Overall, the inherent damping ratio of stay 
cables 𝜉0 is significantly small, which has an equivalent logarithmic decrement 𝛿0 is 
less than 0.005 (𝜉0 ≈ 0.08%).

FIGURE 1.2. Inherent damping in logarithmic decrement versus natural frequency.

Because of low inherent damping, stay cables are vulnerable to vibration 
sources. There are several vibration incidents have been documented like galloping 
with snow, vortex excitation, rain-wind excitation, parametric excitation, etc.; among 
them, most of the known cable vibrations were triggered by the rain-wind excitation.
According to according to U.S. Department of Transportation, Federal Highway 
Administration (FHA)10, the rain-wind induced vibration of a cable are usually 
occurred with the features and conditions as listed in Table 1.1.

Meanwhile, PTI Guide Specification11 suggested that a cable damping ratio of 
ξ equal to 0.5 % to 1.0 %, which is equivalent to a Scruton number of at least 10 is 
often required to suppress rain-wind induced vibrations. To achieve this amount of 
required damping, dampers are often mounted to cables to provide additional 
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damping. Although several dampers have been introduced, viscous dampers (VD) 
and High Damping Rubber (HDR) dampers are commonly adopted in many cable-
stayed bridges, especially in Japan. For instance, in the book “Wind resistant design 
of bridges in Japan: developments and practices”, Fujino et al.9 introduced Japanese 
experiences on the countermeasures of cable vibrations (e.g., dampers, cross ties, 
spacer, and aerodynamic treatments) in 47 cable-stayed bridges, in which 20/47 and 
13/47 of bridges adopting HDR dampers and viscous dampers, respectively. Figure 
1.2 shows engineering applications of viscous damper and HDR damper to cables of 
cable-stayed bridge. Again, damping and tension are two main engineering values of 
cable with damper, hence the reference studies about damping and tension of cables 
with dampers will be reviewed in the following sub-sections. 

 

TABLE 1.1. Characteristics of rain-wind vibration 

Features Conditions 

Rain level Moderate 

Wind speeds 8–15 m/s 

Wind directions to the cable plane 20° to 60°. 

Frequency ranges 3 Hz 

Peak amplitudes 0.25 to 1.0 m. 

 

a)     b)  

 

FIGURE 1.3. Dampers of stay cables9. a) Viscous dampers in Sakitama Bridge; 
and b) High Damping Rubber (HDR) damper in Shonan Ginza Bridge. 
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1.1.1. Damping of stay cables with dampers 

 Cable model without sag effect and bending stiffness (taut-string cables) 

Vibration of cables with external dampers have been studies over the years, in 
which the sharp focus has been put on the derivation of damping formulation. Cable 
based on taut-string theory is the simplest model. The term “taut” means the cable 
sag is ignored while “string” implies that cable bending stiffness is also not 
considered. Pacheco et al.12 used numerical complex-eigenvalue analysis to establish 
damping curve of with a viscous damper, and a universal damping curve was also in 
introduced accordingly by grouping parameters into nondimensional components. 
Figure 1.4 shows a model of a taut-string cable with a viscous damper. Cable has 
length l, tension H, mass per unit length m. A viscous damper is installed at location 
x = a. The coordinate with x is along cable length. 

 

 
FIGURE 1.4. Taut-string cable with viscous damper. 

 

Equation of motion 

( )
2 2

2 2

( , ) ( , ) ( , )v x t v x t v x tH m c x a
x t t


  

= + −
  

 (1.1) 

where  is the Dirac’s delta function; and 𝑣(𝑥, 𝑡) is the transverse displacement. The 
displacement of the cable 𝑣(𝑥, 𝑡) is approximated by a finite series  

( )
1

( , ) ( )
N

n on
n

v x t b t x
=

=   (1.2) 

where 𝑏𝑛(𝑡)  is the nth generalized displacement; 𝜙𝑜𝑛(𝑥)  denotes generalized 
coordinate; and N is the number of degrees of freedom. Referencing to Pacheco et 
al.12 for the detailed solution. The result was a universal damping curve as plotted in 
Figure 1.5.  

 

 

 

H H 

c 

x 

a l - a 

l  
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FIGURE 1.5. Universal damping curve proposed by Pacheco et al.12 (Noted: 𝜔01 =

(𝜋/𝑙)√𝐻 𝑚⁄ ).

The maximum added damping max and its optimal damper coefficient cotp

max 0.52 a
l

 = at 010.1
( / )optc ml
na l


= (1.3)

The universal damping curve proposed by Pacheco et al.12 is obviously useful in 
the design of cable damping because the damping curve is independent of cable-
damper parameters. The universal damping curve, however, was presented through 
numerical result instead of an explicit form. To alleviate this difficulty, Krenk13

introduced asymptotic solution to solve Eq. (1.1). An explicit presentation of 
damping ratio as

( )
2

/
( / ) 1 /

n n ac l Hm
a l n ac l Hm

 


=

+
(1.4)

It is worth mentioning that the maximum added damping ratio of Eq. (1.4) by
Krenk13 is 𝜉max = 0.5𝑎/𝑙 while this value by Pacheco et al.12 is higher 𝜉max =

0.52𝑎/𝑙. Although taut-string cable approach yielded an explicit solution of damping
as in Eq. (1.4), it oversimplified cable vibration by ignoring cable sag and cable 
bending stiffness. This oversimplification could pose unaccepted errors in estimation 
of damping in cables with unignorable bending or sag. 
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 Cable model with sag effect but ignore cable bending stiffness 

Krenk and Nielsen14 extended the asymptotic solution by Krenk13 and applied 
to a shallow cable. Shallow simply means cable with sag effect. They pointed out that 
cable sag caused the reduction of added damping. In other words, damper works 
ineffectively under sag effect. The sag or so-called static profile of cable is expressed 
by a parabolic formula as 

( ) 4 1 x xy x d
l l

 
= − 

 
 (1.5) 

where d = sag of cable at mid length; and 𝑦(𝑥) = cable sag profile.  

Damping ratio 

( )
( )

2
0 00

2 2
2 0 2 00

1 1tan
2 2

/ 1 1tan 12 /1
2 2

n nn
n

n nn

ac l a
Hm

a l ac l l
Hm

 


  

  
−  

  =
     

++     
    

 (1.6) 

where 𝛽𝑛
0 = the wavenumber of sag cable without damper, and it is determined by 

solving the following equation given by Irvine & Caughey15 
30 0

0
2

1 4tan
2 2 2

n n
n

l ll  




  
= −   

   
 (1.7) 

here the well-known parameters 2 is Irvine parameters (Irvine & Caughey15), which 
represents for cable sag effect. Large 2 means large sag effect, and vice versa.  

2 2
2 1; 1

/ 8e
e

mgl l mglL l
H HL EA H


    

=  +    
     

 (1.8) 

in which, EA = cable axial stiffness. 

The comparison about damping of cable between considering sag effect and not 
considering sag effect can be made as followings: For cable without sag, the damping 
ratio is written in form of Eq. (1.4) and has maximum damping at 𝜉max = 0.5𝑎/𝑙. For 
cable with sag effect, damping ratio is defined by Eq. (1.6), and maximum damping 
ratio 𝜉max is lower than its damping of cable without sag. This reduction of maximum 
damping ratio 𝜉max due to sag effect is plotted in Figure 1.6. 
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FIGURE 1.6. Maximum damping ratio versus sag parameter 2.

For stay cables, Mehrabi & Tabatabai16 stated that the sag parameter with 2 <

3.1 covers 95% of cables in cable-stayed bridges around the world. Within that range 
of 2, only the damping of the first vibration mode (Mode 1) is affected by cable sag 
as displayed in Figure 1.6. In details, increase in 2 (more sag effect) leads to decrease 
in added damping in Mode 1 while damping in higher modes stay nearly unchanged.

Cable model with bending stiffness and sag effect

Hoang and Fujino17 proposed a taut cable with a viscous damper, in which cable 
bending stiffness EI is included whereas cable sag is neglected. They found that 
bending stiffness in cable caused the reduction of added damping compared to taut 
cable approach. Without bending stiffness, the maximum added damping ratio is
𝜉max = 0.5𝑎/𝑙. This value of maximum damping is reduced by a factor Rf due to 
cable bending stiffness.

max 0.5f
aR
l


 

=  
 

(1.9)

and

( )
2

2

1
1 0.5f

q
R

q rq
−

=
− −

(1.10)

where 𝜂 = 𝐸𝐼/(𝐻𝑙2); 𝑟 = 𝑎/(𝑙√𝜂); and, 𝑞 = (1 − 𝑒−𝑟)/𝑟. 

A year later, Fujino and Hoang18 expanded their previous work by incorporating 
cable bending stiffness, cable sag and damper support stiffness into a cable model, 
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providing a deeper insight into damper effectiveness. Figure 1.7 depicts their cable 
model18. The coordinates are x axis along the chord length of cable and y axis in 
perpendicular direction to x. Cable parameters consists of mass per unit length m, 
cable length l, chord tension H, cable’s inclination angle φ, bending stiffness EI, axial 
stiffness EA, cable sag at mid span d. A viscous damper with viscous coefficient c is 
mounted to cable at location x = a. It is assumed that the damper is installed after 
installing cable, so the static shape of the cable is unaffected by damper.   

 

 
 

FIGURE 1.7. Cable model accounting for cable bending stiffness EI and sag effect. 

 

Equation of motion 

( )
( )

( ) ( )
22 2 4

2 2 2 4

( , ) ( , ) ( , )
c

d y xv x t v x t v x tH m h t EI f t x a
x t dx x


  

− + − = −
  

 (1.11) 

where 𝑓𝑐(𝑡) = the concentrated damping force;  = the Dirac’s delta function; 𝑣(𝑥, 𝑡) 
= the cable transverse displacement; 𝑦(𝑥) = the cable static profile; and ℎ(𝑡) = the 
time-dependent additional chord tension due to vibration. Referencing to Fujino and 
Hoang18 for the detailed solution. The authors employed asymptotic solution to derive 
the analytical damping ratio. The damping ratio is given as below. 

( ) ( )
2    where  ( / ) /

/ 1
f sn nn

f sn n

f sn n

R R n a l c Hm
a l

  
 

  
= =

+
 (1.12) 

where 𝑅𝑓 < 1 and 𝜂𝑓 are the modification factors of damping due to cable bending 
stiffness; and 𝑅𝑠𝑛 < 1 and 𝜂𝑠𝑛  are the modification factors of damping due to sag 

 

y 

 y(x) 

d 

m, l, H, , EI, EA 

 

 𝑯 

T 

Th 

x 

a 
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effect. For taut-string cable (no bending stiffness, no sag effect), these modification 
factors are unity (𝑅𝑓= 𝜂𝑓 = 𝑅𝑠𝑛 = 𝜂𝑠𝑛= 1). 

Maximum damping ratio and its optimal coefficient 

max 0.5 f sn
aR R
l

 =  at 1opt
n

f sn


 

=  (1.13) 

Without bending stiffness and sag, the maximum added damping ratio is 𝜉max =

0.5𝑎/𝑙. This value of maximum damping is reduced by factors 𝑅𝑓 and 𝑅𝑠𝑛 due to 
cable bending stiffness and sag effect, respectively.  

By considering stiffness Kvs of damper support, Eq. (1.12) becomes 

( ) ( )
2    

/ 1
n k sn n

k f sn
k sn n

R R R
a l
   

  
=

+
 (1.14) 

and maximum damping ratio  

max 0.5 k f sn
aR R R
l

 =  at 
1opt

n
k sn


 

=  (1.15) 

where 𝑅𝑘 < 1 and 𝜂k are the modification factors of damping owing to the effect of 
damper support stiffness. Table 1.2 summarizes cable model, maximum damping 
ratio and its optimal value.  

Hoang and Fujino17 also presented the case of High Damping Rubber (HDR) 
damper. The HDR damper is characterized by the spring stiffness factor K and loss 
factor of rubber material . Damping force generated by HDR damper 𝑓(𝑡) = 𝐾(1 +

𝜙𝑖)𝑣(𝑥, 𝑡). The damping ratio is formulated in as17 

( ) ( ) ( )
2 2    

/ 1
n k

k f sn

k k

KR R R
a l K K
 

 
=

+ +
 (1.16) 

Maximum damping ratio 

( )
0.5

/
n

k f snR R R R
a l 


=  at 1

opt
k

K
 

=  (1.17) 

where 𝐾 = 𝐾𝑎/𝐻 is the dimensionless parameter of spring factor K;  𝑅𝜙 = 𝜙/(1 +

√1 + 𝜙2); and 𝜂𝜙 = √1 + 𝜙2 ; These parameters 𝑅𝜙  and 𝜂𝜙  only depend on loss 

factor of rubber material . Other parameters in Eq. (1.16) and Eq. (1.17) are defined 
the same as viscous damper case. In the design of viscous damper, viscous coefficient 
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c presented through 𝜂𝑛 is a key element; similarly, in the design of HDR damper, 
spring factor K is a key parameter. 

 

TABLE 1.2. Cable model and optimal damping ratio 

No. Cable model Maximum damping ratio 𝜉max and optimal 
coefficient 𝑐𝑜𝑝𝑡. References 

1 

Taut-string cable (no sag and no 
bending stiffness 

 

( )
max

0.10.52 ;
/opt

a Hmc
l n a l


 = = ;  

n is a targeted mode. 

Pacheco et 
al.12 

( )
max 0.5 ;

/opt
a Hmc
l n a l




= = ; Krenk13 

2 

Cable with bending stiffness EI 
 

 

( )max
10.5 ;

/f opt
f

a HmR c
l n a l


 

  
=  =        

 

Where 

( )
2

2
2

1
; 1 0.5

1 0.5f f

q
R q rq

q rq


−
= = − −

− −

 

2

1 ; ;
re a EIq r

r Hll




−−
= = =  

Hoang and 
Fujino17 

 

3 

Cable with bending stiffness EI and sag 
effect 

 

 
 

( )max
10.5 ;

/ns f opt
f ns

a HmR R c
l n a l


  

  
=  =        

 

where 

( )

2
0 0

0

2
2 0 2 0

1 1tan
2 2 ;

1 1tan 12 /
2 2

n n
n

ns ns

n n

l a
lR

n
l l

 





  

  
−  

  = =
   

+   
   

 

2
2

2

cos
/

1 cos1
8

e

e

mgl l
H HL EA

mglL l
H






 
=  

 

  
 +  

   

 

30 0
0

2

1 4tan
2 2 2

n n
n

l ll  




  
= −   

   

 

φ = inclination angle of cable. 

Fujino and 
Hoang18 

4 

Cable with bending stiffness and sag 
effect, and support stiffness Kvs 

 
 

( )
max

10.5 ;
/k ns f opt

k ns

a HmR R R c
l n a l


  

 
=  = 

 
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1
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Fujino and 
Hoang18 

 

  Negative stiffness damper 

As mentioned in the previous part that the actual effectiveness of damper is 
affected by cable sag, bending stiffness and damper support stiffness. More 
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specifically, these factors trigger the reduction of added damping in cable. It raises a 
question on how to improve performance of damper by adding enough amount of 
required damping to cables. One of the solutions is to use negative stiffness dampers. 
Recently, studies into negative stiffness damper (NSD) have been of interest as a 
means of improving the damper performance. A common type of the NSD for cable 
vibration control is the combination of a conventional damper with negative stiffness 
devices such as pre-compressed springs. In the presence of negative stiffness, the 
vibration amplitudes of cable at the damper location are amplified because negative 
stiffness produces forces in the direction of cable motion, resulting in larger attainable 
damping. Chen et al.19 was among the first to introduce a NSD applied to cable 
vibration control, in which the NSD was assembled from a pre-compress spring and 
a viscous damper; an analytical damping formulation was introduced for a taut cable. 
Zhou and Li20 introduced a NSD which was composed of two compressed springs 
and an oil damper mounted to a taut cable; the control performance of the NSD-cable 
system was investigated by numerical simulation and experiment. Both studies have 
come out that the NSD could provide a superior added damping to cable than 
conventional dampers. Other works related to the vibration control and dynamic 
behaviors of stay cables with a NSD have been implemented, such as Shi et al.21, Shi 
et al.22, Javanbakht et al.23, and Dong and Cheng24. So far, only negative stiffness 
viscous dampers were introduced.  

 

1.1.2. Vibration-based tension estimation of stay cables 

Cables play an important role in cable-stayed bridges, and cable tension must be 
measured or estimated accurately during construction and maintenance stages. 
Currently, tension in cables can be measured directly or estimated indirectly by a 
vibration method. The direct measurement such as lift-off test could result in accurate 
tension, but costly and require massive devices, skillful labor8. The indirect 
estimation of cable tension by vibration method has been widely used because of its 
simplicity, non-destructive implementations, and relatively low cost.  

For the estimation of cable tension by vibration method, the natural frequencies 
of a cable are measured first. Tension is deduced through analytical relationship 
between measured frequencies, tension, and other cable parameters.  

 Cable model without sag effect and bending stiffness (taut-string cable) 
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The simplest formulation of cable tension is derived based on taut-string theory, 
where tension in cable H is a function of cable length, mass per unit length and 
measured frequencies as 

2 2

2

4 nml fH
n

=   (1.18) 

where H = cable tension; m = mass per unit length; l = length of cable; and fn = natural 
frequencies measured at nth mode. Eq. (1.18), however, does not include the effect of 
cable bending stiffness and cable sag.  

 Cable model with sag effect but ignore cable bending stiffness 

By considering sag effect, tension can be calculated using a solution of Irvine & 
Caughey15  

3

2

1 4tan( )
2 2 2

l ll  




    
= −    

    
  (1.19) 

here 𝛽 = 2𝜋𝑓𝑘√𝑚 𝐻⁄ ; 𝜆2 = (
𝑚𝑔𝑙

𝐻
)2 𝑙

𝐻𝐿𝑒/𝐸𝐴
;   𝐿𝑒 ≈ 𝑙[1 +

1

8
(

𝑚𝑔𝑙

𝐻
)2] ; EA = axial 

stiffness of cable. Eq. (1.19), however, is transcendental and might cause difficulty. 
To alleviate that, Ren et al.25 introduced empirical expression based on range of sag 
parameter 𝜆2 

2 2 24 ( 0.17)H ml f =   (1.20) 

2 2 2 2 23 (4 7.569 (0.17 4 )H ml f H mEA  = −    (1.21) 

2 2 2 2(4 )H ml f  =   (1.22) 

 Cable model with bending stiffness and sag effect 

Zui et al.5 introduced practical formulas for estimating cable force which account 
for cable bending stiffness and cable sag. 

1) Use the measured frequency f1 of mode 1(cable with sufficiently small sag 3 
≤ Г) 

( )
2

2
1

1 1

4 1 2.20 0.55 ; (17 )C CH m f l
f f


  
 = − −  
   

 (1.23) 

( )
2

2
1

1

4 0.865 11.6 ; (6 17)CH m f l
f


  
 = −   
   

 (1.24) 
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( )
2

2
1

1

4 0.828 10.5 ; (0 6)CH m f l
f


  
 = −   
   

 (1.25) 

2) Use measured frequency of mode 2 (cable with relatively large sag Г ≤ 3) 

( )
2

2
2

2 2

1 4.40 1.10 ; (60 )C CH m f l
f f


  
 = − −  
   

 (1.26) 

( )
2

2
2

2 2

1.03 6.33 1.58 ; (17 60)C CH m f l
f f


  
 = − −   
   

 (1.27) 

( )
2

2
2

2

0.882 85.0 ; (0 17)CH m f l
f


  
 = −   
   

 (1.28) 

3) Use measured frequency of high-order modes (very long cable 2 < k) 

( )
2

2
2

4 1 2.20 ; (200 )n
m nCH f l

n f


 
= −  

 
 (1.29) 

here 𝐶 = √(𝐸𝐼)/(𝑚𝑙4); 𝛤 = √(𝑚𝑔𝑙)/(128𝐸𝐴𝛿3𝑐os5𝜑)[(0.31𝜁 + 0.5)/[(0.31𝜁 −

0.5); 𝜁 = 𝑙√𝐻/𝐸𝐼;  = sag-to-span ratio;  = inclination angle; and EI = bending 
stiffness. 

In fact, these formulations of cable tension are only valid for a cable without 
lateral attachments. As mentioned, stay cables have shown very low inherent 
damping26, thus cross ties2,27,28 or dampers18,23,29-31 are often mounted to cables to 
suppress wind-induced vibration. The presence of the lateral components has made 
the estimation of cable force even more challenging. Recently, some of emerging 
optimization algorithms have been adopted to identify not only cable tension but also 
other parameters like cable bending stiffness, restraint stiffness at cable ends as well 
as the lateral components (e.g., damper characteristics). The main purpose of the 
optimization is to minimize the errors between measured and analytical cable 
frequencies. Kim and Park32 used the frequency-based sensitivity-updating algorithm 
(FBSU) to determine tension, bending stiffness and axial stiffness. Ma33 extended the 
FBSU for a cable with rotational restraint ends. Zarbaf et al.34 used Genetic Algorithm 
(GA) and Particle Swarm Optimization (PSO). Dan et al.35 also used PSO for the 
identification of tension and lateral force components (e.g., additional mass, 
dampers); however, only tension and damping coefficient were successfully 
identified with acceptable accuracy. Apart from the above optimization solutions, 
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Zarbaf et al.36 was among the first to introduce an application of Artificial Neural 
Networks (ANNs) in estimating tension. In this work, however, cable inclination, 
restraints at cable ends and lateral components like dampers and cross ties were not 
incorporated into the cable model.  

 

1.2. Problem statement 

In this research, the target structure is stay cables with dampers. For this cable-
damper structure, damping and tension are obviously two main engineering values. 
The following points outline the problems addressed in this study. 

1) Problem 1: Actual damping contributed by dampers is usually lower than 
theoretical values. The performance of dampers could vary from 50% to 70% of 
theoretical design (Caetano1). Cable bending stiffness, cable sag and damper 
support stiffness have been pointed out by Fujino and Hoang18 as the reasons for 
the damper ineffectiveness. Practically, dampers are often installed to cables that 
also contain attachments between cable and damper like a ring-shaped rubber 
bushing. These attachments trigger vibration restraints at the damper location and 
lead to the reduction of damper performance as a result. This problem has not 
been solved in the past. 

2) Problem 2: Conventional model of cable with damper assumed the perfect 
boundary conditions at cable ends, usually fixed-fixed end. In fact, restraints at 
cable ends are complex and rely heavily, for example, on anchorage types, 
anchoring techniques, and configurations of the supports. Therefore, the 
determination of damping in cables which accounts for the uncertain boundaries 
at cable ends like hinged-hinged, fixed-fixed, and rotational restraint ends should 
be taken into account. This issue is important because dampers are installed near 
a cable end (at 1%-5% of cable length), and damper performance are greatly 
affected by shape of cable near cable ends. 

3) Problem 3: In the design of damping in a stay cable with damper, the damping 
ratio is a function of many parameters like damper location, cable properties, 
damper characteristics, damper support stiffness, damper stiffness, negative 
stiffness, etc. Therefore, damping curve varies under influencing parameters. To 
facilitate the design process, especially for multi-mode vibration control, it is 
necessary to propose a universal damping curve which is independent of any 
parameters. As a result, the design process using a single curve will be easier 
than involving multiple damping curve. 
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4) Problem 4: The above points of the problem statement deal with the theoretical 
development of damping in stay cables with dampers. The verification should be 
conducted. With that, damping analysis from full-scale measurement data of 
existing cables of a cable-stayed bridge will be presented in this study. This helps 
to compare theoretical damping and actual damping. The effectiveness and 
performance of actual damper can be evaluated. Other issues such as amplitude 
dependency of damping and amplitude dependency of measured frequencies can 
also be observed from measurement data. 

5) Problem 5: The estimation of tension of cables without lateral attachment (e.g., 
dampers and crossties) was fully developed. In the presence of dampers, it 
becomes challenging. In addition, cable length, mass per unit length and the first 
few natural frequencies are most likely available to be used for estimating 
tension. But the other parameters such as bending stiffness, axial stiffness, cable 
inclination, rotational restraint stiffness at the cable ends, and lateral components 
are often unknown or uncertain. Under limited information of cable parameters, 
the formulations of cable tension developed in the past seem to fail to estimate 
tension. Hence, it raises a question of how to identify tension utilizing just some 
available parameters but still accounting for unavailable information.  
 

1.3. Aims and methodology  

This study aims at addressing the 5 problems mentioned in the problem 
statement (Section 1.2) above. These 5 problems were solved and presented through 
Chapter 2 to Chapter 5. In details, Chapter 2 solves the Problem 1; Chapter 3 deals 
with the Problems 2 and 3; Chapter 3 addresses the Problem 4; and Chapter 5 
proposes a solution for the Problem 5. The results and conclusions are made in 
Chapter 6, where all concerning points in the problem statement section are 
addressed. 

 The methodology used in this study is analytical model analysis and full-scale 
experimental validation. For the development of theoretical damping, cable mode is 
introduced followed by eigen analysis of cable vibration with damper. The 
formulation of damping is derived based on an asymptotic solution. About field 
measurement of cable damping, data processing is conducted to extract measured 
damping and measured frequency. Regarding the estimation of cable tension, the 
Finite Difference Method is employed in conjunction with the application of 
Artificial Neural Networks (ANNs).   
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1.4. Structure of the dissertation  

This dissertation includes 6 chapters: 

Chapter 1: Introduction. 

Chapter 2: Reduction of damping in stay cable with damper under rotational restraint 
between damper and cable. 

Chapter 3. Development of universal damping curve for design of cable damping 
with damper. 

Chapter 4: Damping analysis of full-scale cables from field measurement data. 

Chapter 5: Framework for estimation of cable tension under limited information of 
cable properties by application of artificial neural networks (ANNs) 

Chapter 6: Conclusions and future study. 
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CHAPTER 2. REDUCTION OF DAMPING IN STAY CABLE WITH 
DAMPER UNDER ROTATIONAL RESTRAINT BETWEEN DAMPER AND 

CABLE 

 

The actual damping in cable with damper is often lower than designed value. 
Some factors like cable bending stiffness or cable sag have pointed out as the reasons 
for this reduction of added damping. This chapter presents another cause of damping 
reduction which is due to rotational restraint between damper and cable. Additionally, 
the effects of damper support stiffness and damper stiffness on damper effectiveness 
are also investigated. The results indicated that by taking the rotational restraint 
between the damper and cable into account, the achievable damping in the cable is 
always lower than its value in a non-rotationally restraint case. Cable with viscous 
damper is studied first, then extending results to cable with High Damping Rubber 
damper (HDR damper). 

 

2.1. Introduction 

In cable-stayed bridges, the cable is an undoubtedly important component, due 
to its loading capacity, economic advantages, and aesthetics. Stay cables, however, 
are prone to vibration under wind or traffic loads because they have very low intrinsic 
damping. Gimsing and Georgakis2 pointed out that the inherent damping ratio of 
cables is in the order of 0.01% – 0.2%, whereas PTI Guide Specification11 suggests 
that a cable damping ratio of ξ equal to 0.5 % to 1.0 % would be needed to suppress 
rain-wind induced vibrations. For that reason, dampers are often externally mounted 
to a cable to satisfy the required damping. In fact, the measured damping in installed 
cables is lower than the expected value. For instance, an efficiency ratio of 0.6 for 
viscous dampers has been reported in an experimental study by Zhou et al.37 For many 
years, the problem of damping reduction in a stay cable with an external damper has 
received the attention of researchers. For instance, a study of Tabatabai and 
Mehrabi38, by numerical method, showed that the cable bending stiffness and sag 
effect, caused by cable self-weight, result in a lower added damping than the 
corresponding value of a taut string counterpart. In another study on damping 
reduction due to the sag extensibility and flexural stiffness of cables, Fujino and 
Hoang18 derived reduction factors due to bending and sag by applying an asymptotic 
solution.  
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Dampers, practically, are often installed to a cable with attached devices on 
mechanical and aesthetic grounds, such as cable protective tubes, rubbers at damper 
location, damper supports, and damper protective tubes. As a matter of fact, these 
attachments, so-called restraints, have finite stiffness, and as a result, will pose 
adverse impacts on the damper efficiency. To deal with this issue, some studies30,39-

43 on the effect of these restraints on the attainable damping of a cable have been 
implemented. These works addressed the problem regarding damper restraints by 
setting two typical models of the damper system: a damper connected to an elastic 
spring in series or in parallel. However, rotational restraint at the damper location 
might also exist because of the presence of cable protective tubes or damper supports. 
Such influences of the rotational restraint should be considered for calculating 
achievable cable damping. 

For that reason, this chapter aims at investigating the effect of the rotational 
restraint at the damper location on added damping of a cable with an externally 
installed damper, in which cable bending stiffness and vertical restraints (damper 
stiffness and support stiffness) are also included. It is noted that although a traditional 
single damper does not include the rotational restraints, the cable-damper system 
might include rotational and vertical restraints when it is installed with attached 
devices depending on kinds of attached devices.  

The remaining of this chapter are as follows: Firstly, a cable model with a 
viscous damper is introduced accounting for rotational restraint between cable and 
damper at damper location. Next, the formulation of added damping is accordingly 
proposed using asymptotic solution which is based on the proposed cable-damper 
model; the reduction factor of added damping due to the rotational stiffness at damper 
location is also proposed. Afterwards, the effect of damper stiffness and damper 
support stiffness on the damper effectiveness are investigated. Finally, the results are 
extended to cable with High Damping Rubber damper (HDR damper).   

 

2.2. Schematic diagram, equation of motion and eigenvalue analysis 

Transverse vibration scheme of a cable with an external viscous damper is 
shown in Figure 2.1, in which the coordinate x starts from the left end of the given 
cable. The cable has length l, mass per unit length m, bending stiffness EI, and tension 
of cable H. A viscous damper with damping coefficient c is attached to the cable at 
the location a from the cable’s left end. Rotational restraint stiffness at the damper 
location is denoted as Kr. 
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FIGURE 2. 1. Cable with a viscous damper. 

 

Equation of motion of each segment, 0 ≤ x ≤ a− and a+ ≤ x ≤ l is derived as 
2 4 2

2 4 2

( , ) ( , ) ( , ) 0v x t v x t v x tH EI m
x x t

  
− − =

  
 (2.1) 

Displacement of the cable v(x,t) can be described in terms of the harmonic form 
as 

( , ) ( ) itv x t v x e=  (2.2) 

where i2 = −1; ω = complex natural frequency of the cable; 𝑣̃(𝑥) = cable mode shape. 
Substitution of 𝑣(𝑥, 𝑡) from Eq. (2.2) into Eq. (2.1) yields 

4 2
2 2

4 2

( ) ( ) ( ) 0d v x d v xl v x
dx dx

 − − =  (2.3) 

where η = EI/Hl2 is a nondimensional parameter of cable bending stiffness, while β 

= ω√m/H is the wave number. 

Solving the characteristic equation of the fourth-order ordinary differential 
equation, Eq. (2.3) yields two real roots and another two complex roots. Hence, the 
homogeneous solutions of Eq. (2.3) which represents the complex mode shape of the 
cable in the left segment and the right segment of the damper are determined 
correspondingly as 

1 1 1 2 1 3 2 4 2( ) sinh( ) cosh( ) sin( ) cos( )v x C x C x C x C x   = + + +  (2.4) 

and 

2 5 1 6 1 7 2 8 2( ) sinh ( ) cosh ( ) sin ( ) cos ( )v x C x a C x a C x a C x a   = − + − + − + −  (2.5) 

where 

2 2

1,2 2

1 4 1
2

l
l

 




+ 
=  (2.6) 

 

x 

H H EI, l Kr
 

 

c 

a l - a 
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The constants from C1 to C8 are ascertained by satisfying boundary conditions 
at cable ends and continuity conditions at the damper location. For these conditions, 
the slope and displacement at both ends of the cable are set to be zero, and the slope 
and transverse displacements of the cross section in the left span are equal to those in 
the right span at the damper location. Difference of bending moments on a cross 
section between two segments as well as its shear forces at the damper are equal to 
the external moment Mr contributed from the rotational restraint and the damper force 
Fa, correspondingly.  

          1(0) 0;v =                 1

0

0;
x

dv
dx =

=              2( ) 0;v l =           2 0;
x l

dv
dx =

=  (2.7a-d) 

          1( ) ;av a v=                2 ( ) ;av a v=              1 2( ) ( ) ;
x a x a

dv x dv x
dx dx− += =

=  (2.8a-d) 

2 2
2 1

2 2

( ) ( ) ;r
x a x a

d v x d v xEI EI M
dx dx+ −= =

− =  (2.9) 

3 3
1 2

3 3

( ) ( ) ;a
x a x a

d v x d v xEI EI F
dx dx−

+= =

− =  (2.10) 

By solving and simplifying Eqs. from (2.7a) to (2.9) with respect to ṽa, constants 
in Eq. (2.4) and Eq. (2.5) are obtained as follows: 
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 (2.12a-d) 

where f1 to f12 are expressed in terms of sine, cosine, hyperbolic sine, and hyperbolic 
cosine as shown in the Appendix from Eq. (2.48) to Eq. (2.59). Substituting the 
determined complex mode shape of each segment into Eq. (2.10), and simplifying 
them, the equation for complex eigenfrequencies of the cable ω is derived in the 
subsequent form 

2 2 2 2 2
13 1 2 1 2 2 1 1 2 2 1

3 4 1 2

( ) {2 [cos( )cosh( ) 1] ( )sin( )sinh( )}r a

r a

K f EI l l l l F
K f f v EI

         

 

+ + − − −
=

+
 (2.13

) 

The formula f13 is shown in Eq. (2.60) in the Appendix. Obviously, Eq. (2.13) is 
transcendental and quite mathematical cumbersome, in which the first term of the 
numerator and denominator of the left-hand-side part reflects the influence of the 
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rotational restraint on the dynamic characteristics of the cable. The numerator of the 
right-hand-side part is the damper force Fa applying to the cable at the damper 
location. To verify the reliability of the proposed solution herein, if the effect of the 
rotational restraint is neglected, Kr = 0, Eq. (2.13) results naturally in the same 
expression derived by Hoang and Fujino17. In addition, without having a damper (c = 
0) and rotational restraint (Kr = 0), the numerator of the left-hand-side part is equal to 
zero, and as a result, Eq. (2.13) leads fairly to the exact form of the characteristic 
equation of a vibrating cable introduced by Zui et al.5 This transcendental equation, 
Eq. (2.13), contains imaginary number i in the term of Fa in the right-hand side while 
the opposite side consists of sine, cosine and hyperbolic functions. So that, it is not 
easy to achieve explicit solution of the Eq. (2.13). To alleviate that, the next section 
will present an asymptotic solution applied to obtain an explicit formulation of 
damping ratio.  

 

2.3. Attainable cable damping 

The asymptotic solution is employed in this section to derive damping 
formulation from Eq. (2.13). The asymptotic solution is under the assumption that the 
perturbation in terms of a wave number between the cable with a damper and a taut 
string without a damper (βtn=nπ/l)  is small (Hoang and Fujino17). Based on that, the 

following approximation is made using the Taylor expansion 

tan( )n nl l n   −  (2.14) 

Practically, the damper is often installed close to one end of the cable, a/l ≪ 1. 
Therefore, 

cos( ) 1; sin( )n n tna a a     (2.15) 

In addition, the non-dimensional parameter of the cable bending stiffness η, which 
was introduced in the preceding section, is also small for cables of cable-stayed 
bridges, η ≪ 1. The practical range is around 2.8 × 10-6 −  1 × 10-2 (Hoang and 
Fujino17). By referencing the work of (Hoang and Fujino17), the subsequent 
approximations are rationally introduced. 

1
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l
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1 1 1sinh ( ) cosh ( ) sinh ;ra l a l e l  −− = − −  −  (2.17) 
2

1 1 1sinh (2 ) cosh (2 ) sinh .ra l a l e l  −− = − −  −  (2.18) 
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Substitution of these approximations from Eqs. (2.15) to (2.18) into Eq. (2.13) 
leads to the asymptotic form of eigenfrequencies. Hence, 
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and ar
l 

= , a nondimensional parameter of the damper location. 

Components A and B which contain the rotational stiffness Kr represent the effect 
of the rotational restraint on the eigenfrequencies. It is straightforward to verify that 
if the rotational restraint is not considered in the cable model (A = B = 0), then Eq. 
(2.19) shifts to the same form as proposed by Hoang and Fujino17. 

Since the natural frequencies of the cable are complex, its form can be illustrated 
through cable damping ratio n and its frequency magnitude |ωn| (Krenk13). 

2( 1 )n n n ni   = − +  (2.22) 

From which, the damping ratio can be deduced as the imaginary part of Eq. (2.22) 

Im[ ]n
n

n





=  (2.23) 

Rewriting Eq. (2.23) in the form of the wave number βn, then combining it with 
Eqs. (2.14) and (2.19) yields the explicit form of the damping ratio as  
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 (2.24) 

It can confirm that when the rotational restraint is not included (A = B = 0), then 
Eq. (2.24) becomes the same expression proposed by Hoang and Fujino17 for a 
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flexural cable with a conventional viscous damper. Substitution of the damper force 
Fa = ciṽa (Hoang and Fujino17) into Eq. (2.24) yields 

( )
2 2 2

1 2
( / ) 1

r f nn
r f

r r f r r n

R R
a l k k

  

   
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 + + + 

 (2.25) 

where k̅r  = Kr/(Ha) is the nondimensional rotational restraint stiffness at damper 
location; q = (1 − e-r)/r is the intermediate parameter of cable bending stiffness; 
Rf = (1 − q)2/f  characterizes a reduction factor of the maximum cable damping 

caused by the cable bending stiffness; f = (1 − q − 0.5rq2) denotes a modification 

factor of the damper characteristic due to the cable bending stiffness; n =

 nπca/(l√Hm)  is the dimensionless damper coefficient corresponding to the nth 
vibration mode; Rr is the damping reduction factor due to rotational restraint between 
damper and cable; r , r1  and r2  are the modification factors of the damping 

characteristic. 
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The maximum added damping and its optimal damper coefficient are 

max 0.5
( / ) r fR R
a l


=  when   (2.30a,b) 

here,  is a modification factor of the optimal damper coefficient due to the rotational 
restraint at the damper location. 
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Figure 2.2 shows the damping curve of stay cable with viscous damper. For a taut-
string cable (without cable sag and bending stiffness), Krenk (2000)13 proposed the 
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damping curve and pointed out that the maximum damping ratio is 𝜉max = 0.5(𝑎/𝑙). 
In a study of Hoang and Fujino17, they indicated that the maximum damping ratio is 
reduced by the factor Rf due to cable bending stiffness, making 𝜉max = 0.5𝑅𝑓(𝑎/𝑙). 
In this study, we propose a damping curve which accounts for the impact of rotational 
restraint at damper location; damping ratio is further reduced by a reduction factor Rr

in comparison with damping value from study of Hoang and Fujino17. Also, the 
optimal coefficient of a viscous damper is modified by the factor . Physically, the 
factors Rr and  mean that the peak of the cable damping curve proposed by Hoang 
and Fujino17, will be vertically and horizontally shifted from an original value to a 
new location. Figure 2.3 shows the reduction factor Rr and modification factor  due 
to the rotational restraint between a damper and cable.

FIGURE 2. 2. Damping curve of cable with viscous damper under rotational 
restraint.

a) b)

FIGURE 2. 3. a) Reduction factor Rr of the maximum modal damping; and b)
modification factor  of the optimal damper coefficient with different cable bending 
stiffness (a/l = 0.02).
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a) b)

FIGURE 2. 4. Modal damping in a cable with a viscous damper accounting for the 
rotational restraint between the damper and cable: a) small bending stiffness; and b) 

large bending stiffness.

As can be seen from Figure 2.3a, the increase in rotational restraint between 
damper and cable results in a decrease in attainable damping, which is much larger 
for cables with small bending stiffness. For the installation of stay cables to a bridge, 
ring-shaped rubber bushings are sometimes attached to cables inside the steel guide 
tubes to reduce the bending stress, especially at anchorages. In a scenario where the 
rubber bushing is mounted at the damper location, the installation might trigger 
rotational restraint between damper and cable leading to the ineffectiveness of an 
installed damper. Another point, based on the view of the beam-cable theory, is that 
the rotational angle of a cable cross section is inversely proportional to the cable 
bending stiffness EI. Therefore, an increase in EI (increase ) causes a decrease in 
rotational angle at the damper location, which reduces the impact of the rotational 
restraint on the damper performance. Figure 2.3b indicates that the rotational restraint 
at the damper location does not significantly modify much the optimal damper 
coefficient. This modification factor  of the optimal damper coefficient is nearly 
unity. It means that the peak of the damping curve is not horizontally shifted. It almost 
vertically drops as clearly shown in Figure 2.4. This interesting observation hints at 
the design of the cable damping with a viscous damper under the rotational restraint 
consideration that the achievable cable damping ratio can be re-identified by 
multiplying the designed damping of a conventional case by the reduction factor Rr. 
The numerical investigations on the influence of the rotational restraint at the damper 
location on the added damping is shown in Figure 2.4 while Figure 2.5 displays
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damping of different modes. Figure 2.5 indicates that damping drops remarkably 
from Mode 1 to Mode 3, and the reduction percentage from the Mode 1 to Mode 3 
between two schemes (with and without having restraints) is nearly the equal, around 
40%. Cable with l = 100 m, m = 78.3 kg/m, H = 3  106 N, and a/l =0.02 was used.

a)    b)

FIGURE 2. 5. Modal damping Mode 1 and Mode 3: a) without rotational restraint 
(𝑘̅𝑟 = 0); and, b) with rotational restraint (𝑘̅𝑟 = 0.01).

2.4. Effect of damper support stiffness and damper stiffness on damping

Translational restraint stiffness connected to the viscous damper in series or in 
parallel is modelled with linear elastic springs Kvs and Kvp, representing the damper 
support stiffness and damper stiffness, respectively. The schematic diagrams are 
shown in Figure 2.6.

       a)      b)

FIGURE 2. 6. Cable with a viscous damper accounting for: a) Damper support 
stiffness; and b) damper stiffness.

In the presence of damper support stiffness or damper stiffness, the damper force 
expression is calculated using Eq. (2.32a) or Eq. (2.32b), respectively (Le et al.29).
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1
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v iF
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K c




=

 
+ 

 

; 
(2.32a) 

( )a a vpF v K ci= +  (2.32b) 

 

 Effect of Damper Support Stiffness: By substituting damper force Fa from Eq. 
(2.32a) into Eq. (2.24), the modal damping ratio of a cable is obtained as 

( ) ( ) ( )
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(2.33) 

where 𝑘̅𝑣𝑠 = 𝐾𝑣𝑠𝑎/𝐻 characterizes the nondimensional damper support stiffness; Rvs 
and vs are the reduction factors for cable damping and its modification factor for the 
damper characteristic due to damper support stiffness, respectively. 
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The maximum modal damping ratio and its optimal damper coefficient are  
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        (2.35a,b) 

where  is defined as Eq. (2.31) related to rotational restraint at damper location; and 
𝛽 = 𝑘̅𝑣𝑠𝜂𝑓. When the effect of damper support stiffness is neglected (k̅vs = ), the 

factors vs = 1 and Rvs = 1, making Eq. (2.33) to become Eq. (2.25) and Eq. (2.35a,b) 
to become Eq. (2.30a,b). 

 

 Effect of Damper Stiffness: By substitution of damper force Fa from Eq. (2.32b) 
into Eq. (2.24), the modal damping ratio of a cable is obtained as 

( ) ( ) ( )
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(2.36) 

where 𝑘̅𝑣𝑝 = 𝐾𝑣𝑝𝑎/𝐻 characterizes the nondimensional damper stiffness; Rvp and vp 

are the reduction factor for cable damping and its modification factor for the damper 
characteristic due to damper stiffness, respectively. 
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The maximum modal damping ratio and its optimal damper coefficient are  

    0.5
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n
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  


 
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 
 (2.38a,b) 

in which 𝜅  = k̅vp f  represents the modification factor for the optimal damper 

coefficient due to damper stiffness. It can be confirmed that by neglecting damper 
stiffness (k̅vp = 0), the factors vp  and Rvs are unity, thus Eq. (2.36) results in Eq. (2.25) 

and Eq. (2.38a,b) become Eq. (2.30a,b).  

The graphic of damping in cable which considers the effect of damper support 
stiffness or damper stiffness is shown in Figure 2.7a and Figure 2.7b, respectively. In 
the presence of these constraints, attainable damping is always lower than cases 
without constraints. The reductions of added damping due to the constraints are 
presented through the proposed reduction factor Rvs due to damper support stiffness 
and Rvp due to damper stiffness. Figures 2.8 plots the reduction factors Rvs and Rvp. 
Figure 2.9 illustrates the damping curve with different values of damper support 
stiffness Kvs and damper stiffness Kvp. Cable with l = 100 m, m = 78.3 kg/m, H = 3  
106 N, and a/l =0.02 was used. 

 

 
 

FIGURE 2. 7. Demonstration of damping curve of cable with viscous damper 
considering for: a) damper support stiffness; and b) damper stiffness. 

a) b) 
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a)   b)

FIGURE 2. 8. Reduction factors of damping: a) Rvs; and b) Rvp.

a) b)

FIGURE 2. 9. Damping curve: a) different values of damper support stiffness Kvs;
and b) different values of damper stiffness Kvp.

Overall, a damper with flexible support stiffness Kvs produces less added damping 
(Rvs < 1) compared to rigid damper support. A damper with damper stiffness Kvp also 
triggers less added damping than damper without having damper stiffness. Since the 
damper support stiffness and damper stiffness are the culprits of the damping 
reduction in a cable, the design of a cable-damper system should consider these 
factors to avoid overestimation of the achievable damping. 

2.5. Extend results to cable with High Damping Rubber Damper (HDR damper)

Expanding the results of damping in cable with viscous damper in the preceding 
sections, the reduction of damping in the HDR damper-cable system due to the 
rotational restraint between at damper location is proposed in this section. For a ring-
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shaped HDR damper with a finite length of rubber along the cable, the interval 
displacement () between both ends of rubber would trigger the rotational restraint. 
Figure 2.10 shows a model of cable with an HDR damper.  

 

 
 

FIGURE 2. 10. Model of cable with HDR damper. 

 

The characteristics of the HDR damper are illustrated as complex-valued 
impedance with the damper force is given as the independent form of frequency 
(Fujino and Hoang18). 

    (1 )a aF K i v= +  (2.39) 

where i2 = -1; K = spring factor of the HDR damper;  = loss factor of rubber material; 
and ṽa = amplitudes of the cable mode shape at x = a. 

By inserting the HDR damper force from Eq. (2.39) into Eq. (2.24), the damping 
ratio can be found as 
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The maximum added damping ratio and the optimal damper spring factor are 
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in which the definitions of 𝜂𝑓 and Rf are the same as in the section of viscous damper; 

𝐾 = 𝐾𝑎/𝐻; 𝑅𝜙 = 𝜙/(1 + √1 + 𝜙2); and Rrd is the reduction factor of the maximum 
cable damping due to the rotational restraint at the damper location 
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2
6 1 0.5f q rq= − −  (2.47) 

It is noted that without the rotational restraint (k̅r = 0), such components Rrd = 1, 
rd = rd1= rd2= 1), Eq. (2.40) is the same as damping proposed by Fujino and 

Hoang18. 

Figure 2.11 displays the damping curve of HDR damper under the consideration 
of rotational restraint in comparison with previous works. It can be explained as the 
following: Taut-string cable with HDR damper can have maximum added damping 
is max = 0.5𝑅𝜙 (a/l). Fujino and Hoang18 pointed out that this value of optimal 

damping max is reduced by factor Rf due to the effect of cable bending stiffness. If 
rotational restraint between cable and damper is considered, the optimal damping max 
is further reduced by factor Rrd proposed in this study. 

 

 
 

FIGURE 2. 11. Damping curve of cable with HDR damper under rotational 
restraint. 
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Figure 2.12a depicts the reduction factor Rrd of the modal damping ratio against 
the rotational restraint stiffness. Its corresponding modification factor of the optimal 
damper coefficient 1/(rd2

2 /rd) is presented in Figure 2.12b. In fact, the added 

damping decreases (Rrd < 1) in the presence of the rotational restraint between the 
cable and damper. This reduction, also shown in Figure 2.13, depends on the smooth 
transition between the damper and cable at the attached point. The higher rotational 
stiffness is, the lower additional cable damping gains. Another point is that the 
increase in the bending stiffness  leads to less effect of restraint on the added 
damping as represented in Figure 2.12a. For example, with  k̅r = 0.01, Rrd = 0.88 for 
 = 1  10-6 and Rrd = 0.95 for  = 1  10-4. It is understandable from the view of the 
beam-cable theory that the rotational angle of a cable cross section is inversely 
proportional to the cable bending stiffness EI. Therefore, the increase in EI (increase 
) causes the decrease in the rotational angle at the damper location, which leads to 
the small impact of the rotational restraint on the damper performance. About optimal 
damper coefficient, Figure 2.12b indicates that the rotational restraint at the damper 
location does not modify the optimal damper coefficient much; this modification 
factor of the optimal damper coefficient is nearly 1. It means that the peak of the 
damping curve is not horizontally shifted. It almost vertically drops as clearly shown 
in Figure 2.13. This interesting observation releases a hint in the design of the cable 
damping with a HDR damper under the rotational restraint consideration such that 
the achievable cable damping ratio can be re-identified by multiplying the designed 
damping of a conventional case by the reduction factor Rrd.  

a)    b) 

FIGURE 2. 12. (a) Reduction factor Rrd of damping ratio; and b) Modification 
factor damper coefficient.
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a)   b) 

FIGURE 2. 13. Damping ratio in a cable with an HDR damper accounting for the 
rotational restraint between the damper and cable: a) small bending stiffness; and b) 

large bending stiffness.

For a HDR damper without the rotational restraint at the attached location, the 
modal damping ratio is independent of the vibration modes (Fujino and Hoang18). In 
the existence of the rotational restraint, the achievable damping, on the other hand, is 
dependent on the vibration modes, but Figure 2.14 shows that this dependency can 
be neglected. This characteristic is unique for the HDR damper because the cable 
with a viscous damper has reduction in the damping by around 40 % from the peak 
of Mode 1 to the corresponding point of Mode 3. 

a)   b)

FIGURE 2. 14. Damping ratio with different vibration modes: a) small bending 
stiffness; and b) large bending stiffness.
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2.6. Full-scale experimental validation  

Several reduction factors of damping have been proposed in this chapter. The 
improvement of damping estimation will be examined using full-scale experimental 
data in the literature. An experiment conducted by Yoneda et al.44 in the literature 
will be used for the validation. Table 2.1 shows the cable properties used in the 
experiments. A viscous-shear damper was installed to the cable at a damper location 
a = 0.72 m. Table 2.2 summarizes measured damping, damper characteristics, 
estimated damping, and estimation accuracy. The damping ratio is estimated using 
formulations by Krenk13, Hoang and Fujino17, and the proposed damping formular in 
this study. It is worth mentioning again that Krenk13 did not consider the effect of 
cable bending stiffness; Hoang and Fujino17 considered the reduction of damping due 
to cable bending stiffness; the proposed solution in this study simultaneously 
considers the reduction of damping due to cable bending stiffness and damper 
stiffness. The results illustrated in the Table 2.2 clearly indicate that by taking 
reduction of damping owing to cable bending stiffness and damper stiffness, the 
estimation accuracy is significantly improved. The estimated damping ratio by our 
proposed formulation is closer to measured damping in comparison to others. 

 

TABLE 2. 1. Cable properties in the experimental validation 

Cable length 
l (m) 

Mass per unit 
length 

m (kg/m) 

Bending 
stiffness  

EI (N.m2) 

Cable tension  
H (N) 

Cable diameter  
D (m) 

Damper 
location 

a (m) 
100.23 100.7 5.52E+06 4.20E+06 0.155 4.72 

 

TABLE 2. 2. Improvement of damping estimation 

Mode 

Measured 
damping 
ratio  

(%) 

Viscous 
coefficient 

c (N.s/m) 

Damper 
stiffness 

Kvp 
(N/m) 

Estimated damping ratio (%) Estimation accuracy 

By 
Krenk13 

by Hoang 
and 

Fujino17 

This 
study 

By 
Krenk13 

by Hoang 
and 

Fujino17 

This 
study 

1 1.27 1.56E+05 8.09E+05 2.34 2.01 1.01 0.54 0.63 1.26 

2 0.97 1.10E+05 1.11E+06 2.13 2.12 1.01 0.46 0.46 0.96 

 

2.7. Summary 

In this chapter, the reduction of damping ratio due to rotational restraint at 
damper location, damper support stiffness and damper stiffness was studied. The 
formulation of damping ratio was proposed accordingly using asymptotic solution, 
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and the reduction of the added damping were presented through reduction factors. 
Viscous damper and High Damping Rubber damper (HDR damper) were used as 
targeted dampers in this study. The conclusions are as follows: 

 Effect of rotational restraint at damper location on cable damping 
1) In the presence of rotational restraint, the added damping is always lower than 

its value in a non-rotational restraint. This reduction of damping is presented 
through the proposed reduction factor.  

2) When rotational restraint stiffness between cable and damper is large, the 
damper works ineffectively. 

3) Although the value of damping ratio decreases due to the restraint, this 
restraint does not modify much the optimal damper coefficient compared to a 
conventional case (without the rotational restraint).  

4) In the design cable-damper structure which accounts for the rotational 
restraint, damping is re-identified by multiplying the designed damping of a 
conventional case by the reduction factor proposed in this study. 

5) For viscous damper, the damping ratio decreases remarkably from the first 
mode to the higher modes, but the difference in terms of the reduction 
percentage between with and without rotational restraints is not significant. 

6) For HDR damper, the damping is almost equal for all vibration modes 
regardless of rotational restraint effect. 
 

 Effect of damper stiffness and damper support stiffness on cable damping 
1) Damper stiffness and damper support stiffness caused low damper 

performance. The reduction of damping is presented though the proposed 
reduction factor. 

2) Dampers with small support stiffness generate small amount of damping and 
vice versa. Similarly, dampers with large damper stiffness result in small 
amount of damping and vice versa. 

 

 

 

 

 

 



 

37 
 

Appendix: Formulas in from Eq. (2.11) to (2.13) 

The following formulas partly appear in Eq. (2.11) to Eq. (2.13)   
𝑓1 = − 𝛿2(𝛿1sinh𝛿1𝑎 + 𝛿2sin𝛿2𝑎){(𝛿1

2 − 𝛿2
2)sinh𝛿1(𝑎 − 𝑙)sin𝛿2(𝑎 − 𝑙)  − 2𝛿1𝛿2[cosh𝛿1(𝑎 − 𝑙)cos𝛿2(𝑎 − 𝑙) − 1]} (2.48) 

𝑓2 = 𝐸𝐼𝛿2(𝛿1
2 + 𝛿2

2){𝛿1𝛿2(cos𝛿2𝑎 + cosh𝛿1𝑎)[(cosh𝛿1(𝑎 − 𝑙)cos𝛿2(𝑎 − 𝑙) − 1] + sinh𝛿1(𝑎 − 𝑙)sin𝛿2(𝑎 − 𝑙)

        × (𝛿2
2cos𝛿2𝑎 − 𝛿1

2cosh𝛿1𝑎) + (𝛿1sinh𝛿1𝑎 + 𝛿2sin𝛿2𝑎) [𝛿1sin𝛿2(𝑎 − 𝑙)cosh𝛿1(𝑎   − 𝑙) − 𝛿2sinh𝛿1(𝑎 − 𝑙)
        × cos𝛿2(𝑎 − 𝑙)]}

 (2.49) 

𝑓3 =
1

2
𝛿1

2𝛿2
2{cos𝛿2𝑙[cosh𝛿1(2𝑎 − 𝑙) + 3cosh𝛿1𝑙] + cos𝛿2(2𝑎 − 𝑙)[3cosh𝛿1(2𝑎 − 𝑙) +   cosh𝛿1𝑙]   −   8[cosh𝛿1(𝑎 − 𝑙)

        × cos𝛿2(𝑎 − 𝑙) + cosh(𝛿1𝑎)cos(𝛿2𝑎) − 1]} − 𝛿1𝛿2(𝛿1
2 − 𝛿2

2)[sinh𝛿1(2𝑎 − 𝑙) × sin𝛿2(2𝑎 − 𝑙) +   sin(𝛿2𝑙 )sinh(𝛿1𝑙) 

        − 2sinh(𝛿1𝑎)sin(𝛿2𝑎) − 2sinh𝛿1(𝑎 − 𝑙)sin𝛿2(𝑎 − 𝑙)]  −  
1

4
(𝛿1

4 + 𝛿2
4)[cos𝛿2(2𝑎 − 𝑙) − cos𝛿2𝑙 ] × [cosh𝛿1(2𝑎 − 𝑙)

        − cosh𝛿1𝑙]

 (2.50) 

𝑓4 = −
1

2
𝐸𝐼(𝛿1

2 + 𝛿2
2){𝛿1

3sinh𝛿1𝑙[cos𝛿2𝑙 − cos𝛿2(2𝑎 − 𝑙)]   +   𝛿1
2𝛿2sin𝛿2𝑙[3cosh𝛿1𝑙 + cosh𝛿1(2𝑎 − 𝑙)] −   4𝛿1

2𝛿2

           × [sin(𝛿2𝑎)cosh(𝛿1𝑎) −  sin𝛿2(𝑎 − 𝑙)cosh𝛿1(𝑎 − 𝑙)]   −   𝛿1𝛿2
2sinh𝛿1𝑙 [3cos𝛿2𝑙  + cos𝛿2(2𝑎 − 𝑙)] +   [cos(𝛿2𝑎)

           × sinh(𝛿1𝑎) − sinh𝛿1(𝑎 − 𝑙) cos𝛿2(𝑎 − 𝑙)]4𝛿1𝛿2
2  −   𝛿2

3sin𝛿2𝑙 [cosh𝛿1𝑙 − cosh𝛿1(2𝑎 − 𝑙)]}

 (2.51) 

𝑓5 = −  𝛿1𝛿2(cosh𝛿1𝑎  − cos𝛿2𝑎){2𝛿1𝛿2[cosh𝛿1(𝑎 − 𝑙)cos𝛿2(𝑎 − 𝑙) − 1] − (𝛿1
2 +   𝛿2

2)sinh𝛿1(𝑎 − 𝑙)sin𝛿2(𝑎 − 𝑙)} (2.52) 

𝑓6 = − 𝐸𝐼𝛿1𝛿2(𝛿1
2 + 𝛿2

2)[cosh𝛿1(𝑎 − 𝑙)cos𝛿2(𝑎 − 𝑙)(𝛿2sinh𝛿1𝑎 +  𝛿1sin𝛿2𝑎) +   𝛿1cosh𝛿1(𝑎 − 𝑙)(cosh𝛿1𝑎 −  cos𝛿2𝑎)
          × sin𝛿2(𝑎 − 𝑙) − 𝛿2sinh𝛿1𝑎 − 𝛿1sin𝛿2𝑎  −   𝛿2cos𝛿2(𝑎  −   𝑙)sinh𝛿1(𝑎   −   𝑙)(cosh𝛿1𝑎 − 𝛿2 cos𝛿2𝑎) − sinh𝛿1(𝑎 − 𝑙)

          × sin𝛿2(𝑎 − 𝑙)( 𝛿1sinh𝛿1𝑎 − 𝛿2sin𝛿2𝑎) ]

 (2.53) 

𝑓7 = − 𝛿2{2𝛿1𝛿2[cosh(𝛿1𝑎)cos(𝛿2𝑎) − 1] − (𝛿1
2 − 𝛿2

2)sinh(𝛿1𝑎)sin(𝛿2𝑎)} ×  [𝛿2cosh𝛿1(𝑎 − 𝑙) sin𝛿2(𝑎 − 𝑙) + 𝛿1

           × cos𝛿2(𝑎 − 𝑙)sinh𝛿1(𝑎 − 𝑙)]  (2.54) 

𝑓8 = − 𝛿2𝐸𝐼(𝛿1
2 + 𝛿2

2) {𝛿1𝛿2 cosh𝛿1(𝑎   − 𝑙)cosh𝛿1𝑎 [cos𝛿2(𝑎   −   𝑙) cos𝛿2𝑎 +   sin𝛿2(𝑎  −  𝑙)sin𝛿2𝑎] +   𝛿2
2cosh𝛿1(𝑎   − 𝑙)

         × sinh𝛿1𝑎[cos𝛿2(𝑎 − 𝑙)sin𝛿2𝑎 − sin𝛿2(𝑎 − 𝑙)cos𝛿2𝑎] +  𝛿1
2sinh𝛿1(𝑎 − 𝑙)cosh𝛿1𝑎[cos𝛿2(𝑎 − 𝑙)sin𝛿2𝑎 −  cos𝛿2𝑎

         × sin𝛿2(𝑎 − 𝑙)] +  𝛿1
2[sinh𝛿1(𝑎   −   𝑙)sin𝛿2(𝑎   −   𝑙) − sinh𝛿1𝑎sin𝛿2𝑎] −   𝛿1𝛿2sinh𝛿1(𝑎   −   𝑙)sinh𝛿1𝑎 [cos𝛿2(𝑎   −   𝑙)

         × cos𝛿2𝑎  + sin𝛿2(𝑎 − 𝑙)sin𝛿2𝑎] −  𝛿1𝛿2[cosh𝛿1(𝑎 − 𝑙)cos𝛿2(𝑎 − 𝑙) − cosh𝛿1𝑎cos𝛿2𝑎 + 1] } 

 (2.55) 

𝑓9 =    𝛿2{(𝛿1
2 − 𝛿2

2)sinh(𝛿1𝑎)sin(𝛿2𝑎) − 2𝛿1𝛿2 [cosh(𝛿1𝑎)cos(𝛿2𝑎) − 1]} ×   [ 𝛿1cosh𝛿1(𝑎   −   𝑙) cos𝛿2(𝑎   −   𝑙) −  𝛿1

            + 𝛿2sin𝛿2(𝑎 − 𝑙)sinh𝛿1(𝑎 − 𝑙)]  (2.56) 

𝑓10 =   − (𝛿1
2 + 𝛿2

2){𝛿1𝛿2cosh𝛿1(𝑎 − 𝑙)sinh(𝛿1𝑎)[cos𝛿2(𝑎 − 𝑙) cos(𝛿2𝑎) + sin𝛿2𝑎sin𝛿2(𝑎 − 𝑙)] −   𝛿1
2cosh𝛿1(𝑎 − 𝑙)

             × cosh𝛿1𝑎[cos𝛿2(𝑎 − 𝑙)sin𝛿2𝑎 − sin𝛿2(𝑎 − 𝑙)cos𝛿2𝑎] −   𝛿1
2[cosh𝛿1(𝑎 − 𝑙)sin𝛿2(𝑎 − 𝑙) + sin𝛿2𝑎cosh𝛿1𝑎]

            −   𝛿2
2sinh𝛿1(𝑎 − 𝑙)sinh𝛿1𝑎[cos𝛿2(𝑎 − 𝑙)sin𝛿2𝑎 −  sin𝛿2(𝑎 − 𝑙)cos𝛿2𝑎] −   𝛿1𝛿2sinh𝛿1(𝑎 − 𝑙)cosh𝛿1𝑎

             × [cos𝛿2(𝑎 − 𝑙)cos𝛿2𝑎 − sin𝛿2𝑎sin𝛿2(𝑎 − 𝑙)] +   𝛿1𝛿2 [cos𝛿2(𝑎 − 𝑙)sinh𝛿1(𝑎 − 𝑙)  − sinh𝛿1𝑎cos𝛿2𝑎] }𝐸𝐼𝛿2

 (2.57) 

𝑓11 =   − 𝛿1{2𝛿1𝛿2[cosh(𝛿1𝑎)cos(𝛿2𝑎)  − 1] − (𝛿1
2 − 𝛿2

2)sinh(𝛿1𝑎)sin(𝛿2𝑎)} [𝛿2cosh𝛿1(𝑎 − 𝑙)sin𝛿2(𝑎 − 𝑙)
           +  𝛿1cos𝛿2(𝑎 − 𝑙)sinh𝛿1(𝑎 − 𝑙) ] 

 (2.58) 

𝑓12 = 𝐸𝐼 𝛿1(𝛿1
2   +   𝛿2

2){𝛿1𝛿2cosh𝛿1(𝑎 − 𝑙)cosh𝛿1𝑎 [cos𝛿2(𝑎   −   𝑙) + sin𝛿2(𝑎   −   𝑙)sin𝛿2𝑎] − 𝛿1
2cos𝛿2(𝑎   −   𝑙)sin𝛿2𝑎

            × [cosh𝛿1(𝑎 − 𝑙)sinh𝛿1𝑎 − cosh𝛿1𝑎sinh𝛿1(𝑎 − 𝑙)]  − 𝛿2
2sin𝛿2(𝑎 − 𝑙)cos𝛿2𝑎[cosh𝛿1(𝑎 − 𝑙)sinh𝛿1𝑎 + cosh𝛿1𝑎

            × sinh𝛿1(𝑎 − 𝑙) ]  −  𝛿1𝛿2sinh𝛿1(𝑎 − 𝑙)sinh𝛿1𝑎[cos𝛿2(𝑎 − 𝑙)cos𝛿2𝑎 + sin𝛿2(𝑎 − 𝑙)sin𝛿2𝑎]  −  𝛿1𝛿2[ − 𝛿1𝛿2

            × cosh𝛿1𝑎cos𝛿2𝑎 + cosh𝛿1(𝑎 − 𝑙)cos𝛿2(𝑎 − 𝑙) + 1] −  𝛿2
2[sinh𝛿1(𝑎 − 𝑙)sin𝛿2(𝑎 − 𝑙) − sinh𝛿1𝑎sin𝛿2𝑎]}

 (2.59) 

𝑓13 =
1

2
(𝛿1

2 +  𝛿2
2){𝛿1

2𝛿2[4sinh𝛿1(𝑎 − 𝑙)cos𝛿2(𝑎 − 𝑙) − 4cos(𝛿2𝑎)sinh(𝛿1𝑎) + 3cos(𝛿2𝑙)sinh(𝛿1𝑙) + cos𝛿2(2𝑎 − 𝑙)

            × sinh𝛿1𝑙] −  𝛿1𝛿2
2[4sin(𝛿2𝑎)cosh(𝛿1𝑎) − 3sin(𝛿2𝑙)cosh(𝛿1𝑙 ) − 4cosh𝛿1(𝑎 − 𝑙)sin𝛿2(𝑎 − 𝑙) − cosh𝛿1(2𝑎 − 𝑙)

           × sin𝛿2𝑙] + 𝛿1
3sin𝛿2𝑙 [cosh𝛿1(2𝑎 − 𝑙) − cosh𝛿1𝑙 ]  − 𝛿2

3sinh𝛿1𝑙[cos𝛿2𝑙 −  cos𝛿2(2𝑎 − 𝑙)]}

 (2.60) 
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CHAPTER 3. DEVELOPMENT OF UNIVERSAL DAMPING CURVE FOR 
DESIGN OF CABLE DAMPING WITH DAMPER 

 

This chapter proposes a universal damping curve for the design of cable 
damping with dampers. A cable model is proposed which accounts for uncertain 
boundary conditions at cable ends. The formulation of damping is then derived using 
asymptotic solution. By grouping cable-damper parameters, the universal damping 
curve is rationally established in which the cable-damper parameters like cable 
bending stiffness, boundary conditions at cable ends (hinged, fixed or restraint ends), 
damper stiffness, damper support stiffness and added negative stiffness are 
incorporated into a single curve. The unique proposed curve is independent of any 
influencing parameter. Additionally, the design examples are illustrated, and the 
results indicated that the proposed universal damping curve is useful in the design of 
a cable damping, especially targeting multi-mode vibration. 

 

3.1. Introduction 

Cables in cable-stayed bridges have very low intrinsic damping.9,12,26 The 
amount of this inherent damping ratio1,2,9,45 is typically in the order of 0.01% − 0.20% 
that triggers the susceptibility of cables to unwanted vibrations, such as rain-wind 
induced vibration, vortex excitation and dry inclined cable galloping. Among the 
above vibration types, rain-wind induced vibration, which is caused by the 
simultaneous combination between wind and rain, is the most documented in field 
observations (95% of the reported cases)9,45. 

In the design of a stay cable under wind excitation, a modal damping ratio of 
around 0.5 % to 1.0 %, which is equivalent to a Scruton number of at least 10, is often 
required to suppress or mitigate extreme vibrations.11,46 Since the intrinsic damping 
of cables is far lower than the required damping, dampers are often mounted to cables 
to generate the added damping. Although several dampers have been introduced, 
viscous damper (VD) and High Damping Rubber (HDR) damper types are commonly 
adopted in many cable-stayed bridges, especially in Japan. For instance, when Fujino 
et al.9 summarized Japanese experiences on the countermeasures of cable vibrations 
(e.g., dampers, cross ties, spacer, and aerodynamic treatments) in 47 cable-stayed 
bridges, there were around 20/47 and 13/47 of bridges adopting HDR dampers and 
viscous dampers, respectively. 
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For cables with viscous damper, the universal damping curve was introduced by 
Pacheco et al.12 for the first time by the numerical complex eigenvalue analysis. This 
universal curve of damping has been proving the effectiveness and capability in: (1) 
the design of a damper (damping coefficient, damper location) under a required 
amount of added damping ratio; (2) the estimation of the added damping in an actual 
cable with an existing damper. In addition to the numerical analysis, Krenk13 
proposed a universal damping curve by an asymptotic solution, which was similar in 
the shape and mathematical format to the curve presented by Pacheco et al.12 These 
curves of damping, however, were originally developed for an ideal nonflexural cable 
(taut-string cable) with a traditional viscous damper and ignored several influencing 
factors such as cable bending stiffness, restraints at cable ends, damper stiffness, 
damper support stiffness and added negative stiffness. Some researchers have turned 
their attention to more realistic cable-damper models that took some of these factors 
into account. Fujino and Hoang18 proposed a formulation of the modal damping ratio 
for a fixed-fixed end cable, in which cable sag, cable bending stiffness and damper 
support stiffness were considered. Le et al.29 investigated the impact of rotational 
restraint at a damper location on the reduction of the added damping. Also, the 
adverse effects of damper support stiffness and/or damper stiffness on damper 
performance have been pointed out in several published works.39,41-43 To sum up, 
although some damping formulations have been proposed to improve one derived 
from taut-string cable, the universal damping curve which accounts for these 
influencing factors has not been previously discussed, to the best of our knowledge. 

For cables with HDR dampers, several advantages over viscous dampers have 
been mentioned in the past,47,48 e.g., it raises nearly equal damping in all directions, 
reducing additional stress sparked by live load, the independence of vibration modes, 
temperature stability, aesthetics, and easy maintenance. Cu and Han49 derived an 
asymptotic form of the attainable damping contributed by an HDR damper to a taut-
string cable while Fujino and Hoang18 accounted for the effects of cable bending 
stiffness, cable sag and support stiffness on the added damping. The combined 
benefits of a viscous damper and an HDR damper was also investigated.47,50 recently. 
In the design of a cable with an HDR damper, a universal damping curve is still a 
question mark.  

In this chapter, the universal damping curve for a stay cable with an HDR damper 
or a viscous damper is proposed. The proposed damping curve is unique and 
independent of any influencing factors such as cable properties, damper 
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characteristics, restraints at cable ends, damper stiffness, damper support stiffness 
and added negative stiffness.  

 

3.2. Cable model 

A schematic diagram of a cable with damper is depicted in Figure 3.1, which 
considers rotational restraint at cable ends. Assuming that the cable tension is much 
larger than its self-weight, cable sag is neglected in this analysis. The cable has a 
length l, tension H, mass per unit length m, and bending stiffness EI. The coordinate 
with x starts from the left end of the cable. Restraints at cable ends were assumed to 
be treated as the linear rotational springs with stiffness Kr. 

In this present study, several types of HDR dampers and viscous dampers are 
considered as depicted in Figures 3.2 and 3.3, respectively. For a conventional HDR 
damper (Figure 3.2a), two intrinsic damper characteristics are the damper spring 
factor K and material loss factor . When damper supports are not perfectly rigid, its 
support stiffness Kvs is added to the damper (Figures 3.2b and 3.2d). The negative 
stiffness HDR dampers (Figures 3.2c and 3.2d) are the equivalent models of the 
combination between a conventional HDR damper and negative stiffness devices 
such as pre-compressed springs; the equivalent negative stiffness is KNS.  

Figure 3.3 shows four viscous damper types which are a conventional viscous 
damper with damping coefficient c, viscous damper with damper support stiffness 
Kvs, viscous damper with damper stiffness Kvp, and viscous damper with both damper 
stiffness Kvs and damper support stiffness Kvp. Mathematically, a negative stiffness 
viscous damper is the case when Kvp takes negative values.19,23,43 

 

 
 

FIGURE 3. 1. Schematic diagram of a stay cable with a damper. 

 

 

EI, l 
x 

a l − a 

H H 
Kr

 Kr
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FIGURE 3. 2. HDR damper types: a) conventional HDR damper; b) HDR damper 
with damper support stiffness; c) negative stiffness HDR damper; and d) negative 

stiffness HDR damper with damper support stiffness. 

 

a)      b)      c)       d)  

 

FIGURE 3. 3. Viscous damper types: a) conventional viscous damper; b) 
viscous damper with damper support stiffness; c) viscous damper with damper 

stiffness; and d) viscous damper with both damper stiffness and damper support 
stiffness. 

 

3.3. Governing equation and eigenfrequency analysis 

The governing equation of the in-plane motion in each cable segment, 0 ≤ x ≤ a- 
and a+ ≤ x ≤ l, can be presented as 

    
2 4 2

2 4 2

( , ) ( , ) ( , ) 0v x t v x t v x tH EI m
x x t

  
− − =

  
 (3.1) 

Since Eq. (3.1) describes the undamped free vibration of the cable, transverse 
displacement of the cable can be taken as a harmonic form with 

    ( , ) ( ) itv x t v x e=  (3.2) 

where i2 = −1; ω = complex natural frequency of the cable; and ṽ(x) = cable mode 
shape. 
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( )f t
 

c 

Kvs
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c Kvp
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Kvs
 

 

c Kvp
 

( )f t
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The mode shape of each cable segment ṽ1(x) and ṽ2(x) can be obtained by solving 
the characteristic formulation of Eq. (3.1) which should be addressed after the 
substitution of the cable displacement from Eq. (3.2) into Eq. (3.1). 

The first segment, 0 ≤ x ≤ a-: 

    1 1 1 2 1 3 2 4 2( ) sinh( ) cosh( ) sin( ) os( )v x C x C x C x C c x   = + + +  (3.3) 

The second segment, a+ ≤ x ≤ l: 

    2 5 1 6 1 7 2 8 2( ) sinh ( ) cosh ( ) sin ( ) os ( )v x C x a C x a C x a C c x a   = − + − + − + −  (3.4) 

where 

2 2

1,2 2

1 4 1
2

l
l

 




+ 
=      (3.5) 

where η = EI/Hl2 characterizes the nondimensional parameter of cable bending 

stiffness; and β = ω√m/H is the wave number. 

The constants from C1 to C8 are obtained by inserting the cable mode shapes from 
Eq. (3.3) and Eq. (3.4) into the boundary conditions at cable ends (x = 0 and x = l), 
and into the continuity conditions at the damper location x = a as the following 
expressions: 

At x = 0: 

1(0) 0;v =  (3.6) 
' ''
1 1(0) (0)rK v EIv=  (3.7) 

At x = a: 

1 2( ) ( ) av a v a v− += = ; ' '
1 2( ) ( )v a v a− += ;  '' ''

1 2( ) ( )EIv a EIv a− += ;  ''' '''
1 2( ) ( ) aEIv a EIv a F− +− =  (3.8a-d) 

At x = l: 

2 ( ) 0;v l =     ' ''
2 2( ) ( )rK v l EIv l= −  (3.9a,b) 

Solving Eqs. From (3.6) to (3.9) except for Eq. (3.8d), yields the constants (from 
C1 to C8) of the cable mode shapes with respect to ṽa (value of cable mode shape at 
damper location y = a) as 

        2
1 2 3

1 2
4 5 6

a r r

r r

v ( K K )C
K K

 +  + 
=

 +  + 
;                2

7 8
2 2

4 5 6

( )a r r

r r

v K KC
K K
 + 

=
 +  + 

 (3.10a,b) 

       2
9 10 11

3 2
4 5 6

( )a r r

r r

v K KC
K K

 +  + 
=

 +  + 
;               2

7 8
4 2

4 5 6

( )a r r

r r

v K KC
K K
 + 

= −
 +  + 

 (3.10c,d) 
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      2
12 13 14

5 2
4 5 6

( )a r r

r r

v K KC
K K

 +  + 
=

 +  + 
;               2

15 16 17
6 2

4 5 6

( )a r r

r r

v K KC
K K

 +  + 
=

 +  + 
 (3.10e,f) 

        2
18 19 20

7 2
4 5 6

( )a r r

r r

v K KC
K K

 +  + 
=

 +  + 
;             2

15 16 17
8 2

4 5 6

( )a r r
a

r r

v K KC v
K K

 +  + 
= −

 +  + 
 (3.10g,h) 

Details of the functions from 1 to20 are referred to the Appendix; and 𝐹𝑎 = 
damper force. After having the above constants, the substitution of the determined 
mode shapes ṽ1(x)  and ṽ2(x)  into Eq. (3.8d) results in the eigenfrequency 
formulation as 

( )

2
21 22 23

2
4 5 62

r r a

ar r

K K F
v EIK K

 +  + 
=

 +  + 
     (3.11) 

where 

( ) ( )2 2 2 2
21 1 2 1 2 1 2 2 1 1 2 2 12 {2 [1 cos( )cosh( )] sin( )sinh( )}l l l l            = + − + −  (3.12) 

( )
22 2

22 1 2 1 2 1 2 1 2 2 14 [ sin( )cosh( ) cos( )sinh( )]EI l l l l          = + −  (3.13) 

( )
32 2 2

23 1 2 1 2 2 12 sin( )sinh( )EI l l      = +  (3.14) 

For a cable with a fixed boundaries at cable ends, Kr →  the left-hand side of 
Eq. (3.11) becomes 21/(24), and this fraction is exactly the same as the formula of 
the eigenfrequency proposed by Hoang and Fujino17. This form of the 
eigenfrequencies is implicit, transcendental and quite cumbersome. This study, on the 
other hand, focuses on an explicit form of the cable damping, hence an asymptotic 
solution will be applied to approximate such transcendental terms of Eq. (3.11), and 
to derive the formulation of the attainable damping ratio. 

 

3.4. Attainable cable damping 

In the presence of the damper, the natural frequencies of the cable become 
complex numbers. The complex natural frequencies n can be presented through the 
cable damping ratio n and its frequency magnitude |n| (Krenk13). The damping ratio, 
then, can be deduced from the imaginary part of the complex frequencies as 

    Im[ ]n
n

n





=  (3.15) 

In principle, n is directly derived from Eq. (3.11). However, Eq. (3.11) is 
transcendental as mentioned, the direct establishment of the attainable cable damping 
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from Eq. (3.11) is challenging. To alleviate this, an asymptotic solution is properly 
applied to simplify Eq. (3.11) and derive the complex circular frequencies n. The 
asymptotic solution employed herein assumes that the perturbation of the wave 

number n between a bending-stiff cable with a damper (n = ωn√m/H) and a taut 
string without a damper (βtn= nπ/l) is small (Hoang and Fujino17). Practically, a 

damper is commonly installed near the cable end; therefore, a/l ≪ 1. Regarding cable 

bending stiffness, 95 % of stay cables have  < 1  10-4  as reported by Mehrabi and 
Tabatabai16. Based on the previous features, the following approximations have been 
made (Hoang and Fujino17). 

  tan( ) ;n nl l n   −    (3.16) 

cos( ) 1;na   (3.17) 

sin( )n tna a   (3.18) 

1
1 ;

l



  (3.19) 

2 ;n   (3.20) 

1sinh 1l  (3.21) 

2 2 2 2
1 2 1 2 2

1
l

   


+  − =  (3.22) 

1 1 1sinh ( ) cosh ( ) sinhra l a l e l  −− = − −  −  (3.23) 

2
1 1 1sinh (2 ) cosh (2 ) sinhra l a l e l  −− = − −  −  (3.24) 

Substitution of the above approximations into Eq. (3.11), then combining this with 
Eq. (3.15) results in the formulation of the modal damping ratio as 

    
( )

2
24 252 2

2
26 272

2 2 2 21
Im

/ 3 1 41 1
2 2

a
r rr

an
r

a
r rr

a

F a r K K
r Hv r r e

a l F a e K K
Hv r re



  + 
+ − + +  +    

   =  
  − + − − +  +       

 (3.25) 

where 

    
2

2
24 2 3 2

2 1 2 2 1 ;
r

a
r

a

F aHa re r
r v r e

   +
 = + + −   

   
 (3.26) 
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3

25 3

2
2

a

a

H
r

rF a
v

  
 =   

  
 (3.27) 

2

26 2

22 11 ;
r

a
r

a

a FaH re
r v r e

  +
 = − −  

  

 (3.28) 

3 2

27 23

2 1 2
2

r
a

r
a

FHa rH e r
a v er

    −
 = + +    

    

 (3.29) 

and ( )/r a l = , a nondimensional parameter of the damper location. 

 

TABLE 3. 1. Damper force component Fa of the dampers  

No. Damper types Damper force component Fa References 

1 Conventional HDR damper (1 )a aF K i v= +  Figure 3.2a 

2 
HDR damper with damper 

support stiffness 

(1 )
(1 )

vs
a a

vs

K K i
F v

K K i




+
=

+ +
 Figure 3.2b 

3 
Negative stiffness HDR 

damper 
( )1 / (1 )

1 /a NS a
NS

F K K K i v
K K


= + +

+
 Figure 3.2c 

4 
Negative stiffness HDR 

damper with damper 
support stiffness 

( )

( )

1 / (1 )
1 /

1 / (1 )
1 /

vs NS
NS

a a

vs NS
NS

K K K K i
K K

F v
K K K K i

K K





+ +
+

=

+ + +
+

 Figure 3.2d 

5 
Conventional viscous 

damper a aF ci v=  Figure 3.3a 

6 
Viscous damper with 

damper support stiffness ( )/ 1/a a
vs

iF v
i K c




=

+
 Figure 3.3b 

7 
Viscous damper with 

damper stiffness 
( )a vp aF K ci v= +  Figure 3.3c 

8 
Viscous damper with both 

damper stiffness and 
damper support stiffness 

( )
( )

vp vs
a a

vp vs

K ci K
F v

K ci K




+
=

+ +
 Figure 3.3d 

Note: i2 = −1; and  is the natural circular frequency. 

 

Since Eq. (3.25) presents the added damping of a cable model with the rotational 
restraint ends, it covers the cases of hinged-hinged or fixed-fixed ends by approaching 
Kr to 0 or  respectively. Therefore, it is easy to verify that when Kr →  (fixed 
ends), taking the limitation of the right-hand side section of Eq. (3.25) results in the 
eliminations of the last two terms in both the numerator and denominator. Therefore, 
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the remaining parts inside the square brackets are the same as the formulation of the 
modal damping ratio derived by Hoang and Fujino17 for a fixed-fixed cable. 

Based on Eq. (3.25), the universal damping curve will be developed. It is noted 
that different types of dampers in Figures 3.2 and 3.3 leads to different damper force 
Fa. The force component Fa of the dampers is derived through the force equilibrium 
equations, displacement compatibility, and force-displacement relationships between 
cable and damper. Table 3.1 summarizes the damper force component Fa with respect 
to each given damper.  

 

3.5. Propose universal damping curve for design of cable damping 

3.5.1. Universal damping curve for cable with HDR damper 

The case of the negative stiffness HDR damper with damper support stiffness as 
in Figure 3.2d mathematically covers the three remaining cases. Hence, the universal 
damping curve for this damper will be proposed, so the remaining ones (Figures 3.2a-
3.2c) can be easily deduced. The force component Fa of this damper is taken from 
Table 3.1 as 

( )

( )

1 / (1 )
1 /

1 / (1 )
1 /

vs NS
NS

a a

vs NS
NS

K K K K i
K KF v

K K K K i
K K





+ +
+

=

+ + +
+

 (3.30) 

Inserting damper force Fa from Eq. (3.30) into Eq. (3.25), the modal damping 
ratio can be obtained as 

( ) ( )
1 2 3

1 2 3 2 2
1 2 3 1 2 3

( / ) 1
n KR R R

a l K K
   

    
=

+ +

 (3.31) 

Maximum modal damping ratio and its optimal damper coefficient  

1 2 30.5
( / )

n R R R R
a l 


=  at 

1 2 3

1
optK

  
=  (3.32) 

where R = /(1+√1+2); 

 = √1+2; K̅ = Ka/H is the dimensionless parameter of 

K; and (R1, 1), (R2, 2) and (R3, 3) are modification factors of the damping ratio 

due to rotational restraints at cable ends, damper support stiffness and negative 
stiffness, respectively.  

Modification factors (R1, 1) due to rotational restraints Kr at the cable ends  



 

47 
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and  
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1 1 11 1
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  (3.34) 

where q = (1 − e-r)/r  is intermediate parameter of ; and K̅r  = Kr/(Ha) is the 
dimensionless stiffness of Kr.  

Modification factors (R2, 2) due to damper support stiffness Kvs  

1
2

11
vs

vs

KR
K




=

+
 and 

2
1

11
vsK




= +  (3.35a,b) 

where K̅vs = (Kvs×a)/H is the dimensionless stiffness of Kvs. 

Modification factors (R3, 3) due to negative stiffness KNS  

3
1 2

1
1 NS

R
K 

=
+

 and 
3

1 2

1
1 NSK


 

=
+

 (3.36a,b) 

where K̅NS = (KNS×a)/H is the dimensionless stiffness of KNS. Although R3 and 3 
mathematically takes the same form, we set two different symbols because R3 is the 
modification factor of optimal damping whereas 3 is the modification factor of 
damper coefficient. 

The modification factors (R1 , 1), (R2 , 2) and (R3 , 3) in Eq. (3.32) can be 

explained as: the damping ratio  and the optimal damper coefficient K̅opt will be 

modified in comparison with a conventional case. The conventional case is the case 
of a nonflexural cable ( = 0 and Kr = 0) with a conventional HDR damper (KNS = 0) 
and rigid damper support (Kvs →  ∞); it makes R1  = 1  = R2  = 2  = R3  = 3  = 1 

according to Eq. (3.33), Eq. (3.34), Eq. (3.35) and Eq. (3.36). In the conventional 
case, Eq. (3.31) is the same the damping ratio formulation introduced by Cu and 
Han49. When cable includes bending stiffness ( ≠  0) together with rotational 
restraints at cable ends (Kr ≠  0), the damping ratio  and the optimal damper 
coefficient K̅opt  are modified by the factors R1  and 1 , respectively. Similarly, if 

damper consists of damper support stiffness (Kvs > 0),  and K̅opt are then modified 

by the factors R2 and2, correspondingly. Also, if damper includes negative stiffness 
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(KNS < 0),  and K̅opt are further modified by the factors R3 and 3, respectively. Table 

3.2 summarizes factors of Eq. (3.32) 

 

TABLE 3. 2. Factors of the modal damping ratio and optimal damper coefficient for 
HDR damper 

No. HDR damper types Factors in Eq. (3.32) References 

1 
Conventional HDR damper 

(Kvs → ∞, KNS = 0) 

R1 (Eq. 3.33); 1 (Eq. 3.34);  

R2 = 2 = 1; 

R3 = 3 = 1.  

Figure 3.2a 

2 
HDR damper with damper 

support stiffness 
(Kvs > 0, KNS = 0) 

R1 (Eq. 3.33); 1 (Eq. 3.34);  

R2 and 2 (Eq. 3.35a,b); 

R3 = 3 = 1.  

Figure 3.2b 

3 
Negative stiffness HDR damper 

(KNS < 0, Kvs → ∞) 

R1 (Eq. 3.33); 1 (Eq. 3.34);  

R2= 2 = 1; 

R3 and 3 (Eq. 3.36a,b). 

Figure 3.2c 

4 
Negative stiffness HDR damper 
with damper support stiffness 

(KNS < 0, Kvs > 0) 

R1 (Eq. 3.33); 1 (Eq. 3.34);  

R2 and 2 (Eq. 3.35a,b); 

R3 and 3 (Eq. 3.36a,b). 

Figure 3.2d 

 

Figure 3.4a shows the modification factor of damping R1 due to rotational restraint 
at cable ends. For the fixed-fixed end, R1 is always < 1 regardless of small or large 
cable bending stiffness, hence bending stiffness triggers reduction of damping which 
was noted by Fujino and Hoang18. In contrast, for the hinged-hinged cable, R1 is 
always > 1 such that cable gains more added damping from a damper. For a cable 
with the rotational restraint ends, R1 varies between fixed-fixed end cable and hinged-
hinged end cable. Consequently, a damper will work more effectively or less 
effectively relying on the fixity degree of the supports and cable bending stiffness 
values. More importantly, the difference in term of the maximum modal damping 
between hinged end and fixed end is also significant, especially cable with large 

bending stiffness. For instance, 𝑅1(ℎ𝑖𝑛𝑔𝑒𝑑)−𝑅1(𝑓𝑖𝑥𝑒𝑑)

𝑅1(ℎ𝑖𝑛𝑔𝑒𝑑)
× 100 ≈ 37% when  = 1  10-

4. It is noted that the cable bending stiffness  < 1  10-4 covers 95 % of stay cables 
(Mehrabi and Tabatabai16). In addition, short cables often have large bending stiffness 
parameter; therefore, design of the damper system for short cables, if required, should 
seriously consider the boundary conditions at cable ends.  
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Figure 3.4b demonstrates the modification factors of the optimal damper 
coefficient 1/1. The modification here means that adjustment of the optimal damping 
coefficient was made against that value of the taut-string cable. Since these factors 
are always greater than 1, the peak of the modal damping curve will always be shifted 
to the right-hand side of the corresponding peak of a taut string. It is pointed out that 
the increase in cable bending stiffness (increase ) leads to an increase of the optimal 
damper coefficient, and this increase is much larger for the fixed ends case.

a) b)

FIGURE 3. 4. Modification factor of damping due to restraint at cable ends (a/l = 
0.02).

a) b)

FIGURE 3. 5. Modification factor of damping due to damper support stiffness R2, 
and due to negative stiffness damper R3.

Figure 3.5 illustrates the modification of damping due to damper support stiffness as 
well as negative stiffness. Overall, damper support stiffness poses the reduction of 
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damping since the factor R2 is always < 1 (in Figure 3.5 a); this remark was already 
mentioned in Chapter 2. In contrast, Figure 3.5b indicates that R3 is always > 1, and 
it means that negative stiffness could provide higher damping to cable compared to 
conventional damper (without negative stiffness KNS = 0).

Eq. (3.31) shows that the damping ratio depends heavily on several influencing 
factors such as cable properties, damper location a, boundary conditions at cable ends 
(fixed, hinged, or restraint ends), damper support stiffness Kvs, negative stiffness KNS

(if included) and loss factor of rubber material . Figure 3.6 investigates the variations 
in the modal damping ratio versus influencing factors. As it appeared, higher material 
loss factor  results in higher added damping (Figure 3.6a); bending stiffness and 
damper support stiffness causes the reduction of added damping (Figures 3.6b and 
3.6e, respectively); the damper location installed far from a cable end leads to higher 
optimal provided damping (Figures 3.6c); a cable with hinged ends gained more 
damping than fixed end counterparts (Figure 3.6d); and a negative stiffness damper 
(KNS < 0) generated superior damping to a cable than the conventional damper 
without negative stiffness (Figure 3.6f). 

FIGURE 3. 6. Variations in modal damping ratio of HDR damper versus different 
factors: a) material loss factor  (𝐾𝑟 = ∞; 𝐾𝑣𝑠 = ∞; 𝐾𝑁𝑆 = 0; 𝜂 = 1 × 10−6; 𝑎/𝑙 =

0.02) ; b) cable bending stiffness parameter  (𝐾𝑟 = ∞; 𝐾𝑣𝑠 = ∞; 𝐾𝑁𝑆 = 0; 𝜙 =

0.25; 𝑎/𝑙 = 0.02 ); c) damper location a/l ( 𝐾𝑟 = ∞; 𝐾𝑣𝑠 = ∞; 𝐾𝑁𝑆 = 0; 𝜙 =

0.25; 𝜂 = 1 × 10−6 ); d) restraints at cable ends K̅r ( 𝐾𝑣𝑠 = ∞; 𝐾𝑁𝑆 = 0; 𝜂 = 1 ×

a) b) c)

d) e) f)
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10−4; 𝜙 = 0.25; 𝑎/𝑙 = 0.02 ); e) damper support stiffness K̅vs  ( 𝐾𝑟 = ∞; 𝐾𝑁𝑆 =

0; 𝜂 = 1 × 10−6; 𝜙 = 0.25; 𝑎/𝑙 = 0.02 ); and, f) negative stiffness K̅NS  ( 𝐾𝑟 =

∞; 𝐾𝑣𝑠 = ∞; 𝜂 = 1 × 10−6; 𝜙 = 0.25; 𝑎/𝑙 = 0.02). 

 

Since the damping curve involves in various factors as illustrated in Figure 3.6, it 
might spark some difficulties in the design of cable-damper system. Therefore, it is 
useful to propose a single damping curve that is independent of those influencing 
factors. In this regard, Eq. (3.31) is reformed as 

( )
( ) ( )

2 2

2 22

1 1 1

1

X
Y

X X

 

 

+ + +
=

+ + +

 (3.37) 

in which X = K(
a
H

) √1+𝜙2 (123 ) and Y = n
(a/l)R1R2R3R𝜙

 are the horizontal and 

vertical axes of the damping curve, respectively. 

 Eq. (3.37) is derived by observing that the modal damping ratio in Eq. (3.31) and 
its optimal value in Eq. (3.32), then grouping Eq. (3.31) into a new version as Eq. 
(3.37). An interesting feature of Eq. (3.37) is that it always yields the maximum Y = 
0.5 at X = 1 regardless of ; therefore, Eq. (3.37) is simpler. However, it still includes 
the loss factor . In fact, the High Damping Rubber (HDR) damper is commonly 
considered as an equivalent complex-stiffness model18,49, in which the complex 
modulus E is featured by the real component ER (storage modulus) and the imaginary 
modulus EI (loss modulus).49,51 The loss factor  = EI/ ER. According to some test 
results,  ranged from 0.12 to 0.18 for the natural rubber (NR60)52, from 0.30 to 0.41 
for the butyl rubber (BR60)52, and around 0.67 for the neoprene rubber53. The loss 
factor  of HDR dampers used for the vibration control of cables of Shinminato 
Bridge in Japan was 0.62. To the best of our knowledge, commercial rubbers with the 
loss factor   1 are widely manufactured and used.  

Figure 3.7a plots damping curves by Eq. (3.37) with  varying from 0.1 to 0.9. 
These curves are then normalized into one practical universal damping curve in 
Figure 3.7b with a correlation of 99.99% on average.  

The practical universal damping curve which is normalized from Eq. (3.37) with 
an average correlation of 99.99% is proposed as below 

( )
2 2

2.299
1.097 0.203

XY
X X

=
+ +

 (3.38) 
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FIGURE 3. 7. Damping curve: a) by Eq. (3.37); and b) by the proposed universal 
curve.

This proposed universal damping curve for an HDR damper is unique and 
independent of any factors. The factors like cable properties, damper characteristics, 
damper location, restraints at cable ends, damper support stiffness and negative 
stiffness are incorporated into X and Y axes. 

3.5.2. Universal damping curve for cable with viscous damper

There are four types of viscous dampers are considered as shown in Figure 3.3. 
The damper forces are given in Table 3.1. Since the case of a viscous damper with 
damper stiffness and damper support stiffness (Figure 3.3d) also covers the remaining 
cases, this type of damper will be used to derive the universal damping curve. The 
damper force is taken from Table 3.1 as 

   ( )
( )

vp vs
a a

vp vs

K ci K
F v

K ci K




+
=

+ +
a aF va aF va a (3.39)

On making use of Eq. (3.39), the modal damping ratio n from Eq. (3.25) becomes

   
( )

1 2 3'
1 2 3' 2

1 2 3'
( / ) 1

n n

n

cR R R
a l c
   

  
=

+ (3.40)

where c̅n=( a
l
) nπc

√Hm
; and n is the nth vibration mode.

Maximum modal damping ratio and optimal damper coefficient  

a) b)
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1 2 3'0.5
( / )

n R R R
a l


=  at 
1 2 3'

1opt
nc

  
=  (3.41) 

in which (R1 , 1 ) and (R2 , 2 ) are the modification factors of damping due to 

restraints at cable ends and damper support stiffness, respectively. These factors are 
defined in a previous section; and (R3' , 3'

 ) are the modification factors due to 

damper stiffness Kvp. 

3'
1 2

1
1 vp

R
K 

=
+

 and 
3'

1 2

1
1 vpK


 

=
+

 (3.42a,b) 

in which K̅vp = (Kvp×a)/H is the dimensionless stiffness of Kvp. It is noted that R3' and 

3'
 take the same formula, we use two different symbols because R3'  reflects the 

modification of the optimal damping ratio while 3'
 presents the modification of the 

optimal damping coefficient.  

Eq. (3.40) can be verified with previous publications. Case 1 is a nonflexural cable 
(taut-string cable) with a conventional viscous damper ( = 0, Kvs → ∞, Kvp = 0). 
They lead to R1 = 1 = 1, R2 = 2 = 1, and R3' = 3'

 = 1, respectively. In this case, 

Eq. (3.40) is the same as one proposed by Krenk13. Case 2 is a flexural cable with 
fixed ends and a viscous damper without damper stiffness ( ≠ 0, Kr → ∞, Kvp = 0). 

These conditions result in the factors R1 = (1 − q)2/(1 −  q − 0.5rq2), 1 = (1 −  q −

0.5rq2), and R3' = 3' = 1. In this case, Eq. (3.40) becomes one introduced by Fujino 

and Hoang18. The factors (R1; 1; R2; 2; R3'; 3'
) in Eq. (3.40) and Eq. (3.41) mean 

the modification of the damping compared to the case 1. Table 3.4 summarizes the 
factors in Eq. (3.40). 

By grouping components in Eq. (3.40), the universal damping curve for the 
viscous damper types is proposed in a simplest form as 

    
21

XY
X

=
+

 (3.43) 

where X = (123') (
a
l
)

nπc
√Hm

 and Y = n
(a/l)R1R2R3'

 are the horizontal and vertical axes of 

the proposed universal damping curve, respectively. 

Figure 3.8 shows the proposed universal curve. This universal damping curve is 
unique and independent of any influencing factors. The factors of damping such as 
damper location, cable properties, damping coefficient c, effects of damper support 
stiffness, damper support stiffness as well as boundary conditions at cable ends 
(hinged, fixed or restraint ends) only appear in X and Y axes.  
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TABLE 3. 3. Factors of the modal damping ratio and optimal damper coefficient for 
viscous damper types

No. HDR damper types Factors in Eq. (3.40) References

1
Conventional viscous damper

(Kvs → ∞, Kvp = 0)

R1 (Eq. 3.33); 1 (Eq. 3.34);

R2 = 2 = 1;

R3' = 3'
= 1.

Figure 3.3a

2
Viscous damper with damper 

support stiffness
(Kvs > 0, Kvp = 0)

R1 (Eq. 3.33); 1 (Eq. 3.34);

R2 and 2 (Eq. 3.35a,b);

R3' = 3'
= 1.

Figure 3.3b

3
Viscous damper with damper 

stiffness
(Kvs → ∞, Kvp > 0)

R1 (Eq. 3.33); 1 (Eq. 3.34);

R2 = 2 = 1;

R3'  and 3'
(Eq. 3.42a,b).

Figure 3.3c

4

Viscous damper with both 
damper support stiffness and 

damper stiffness
(Kvs > 0, Kvp > 0)

R1 (Eq. 3.33); 1 (Eq. 3.34);

R2 and 2 (Eq. 3.35a,b);

R3'  and 3'
(Eq. 3.42a,b).

Figure 3.3d

FIGURE 3. 8. Universal damping curve for viscous damper types.

3.6. Design example

3.6.1. Single-mode vibration control 

Example 1: This example illustrates the design of a HDR damper (K and ) to 
suppress rain-wind induced vibration of a stay cable. The cable with l = 184.72 m, H
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= 3.55 × 106 N, m = 60.2 kg/m, D = 0.12 m (cable diameter), EI = 1.98 × 106 N.m2 is 
used. The air density ρ is set to be 1.23 kg/m3.

According to the Post-Tensioning Institute Cable-Stayed Bridge Committee 
(PTI)11, the amount of an added damping ratio required to avoid rain-wind induced 
vibration is as

2 10m
D



 (3.44)

Inserting the cable properties into Eq. (3.44) results in  ≥ 0.295 %.

An HDR damper is supposed to attach to the cable at the location a = 5.85 m from 
the cable end due to installation conditions. A couple of design conditions are as 
follows: the loss factor of rubbers  = 0.62; the damper support is rigid (Kvs → ∞); 
negative stiffness is not added to the damper (KNS = 0); and cable ends are fixed (Kr 

→ ∞). Based on these conditions, R1 = 0.941 from Eq. (3.33), 1 = 0.809 from Eq. 

(3.34), R2 = 2 = 1 from Eq. (3.35), and R3 = 3 = 1 from Eq. (3.36). 

The ordinate on the Y axis of the universal damping curve as

   
1 2 3( / ) ( /

0.00295 0.347
5.85 184.72 0.941 1 1 0.285)a l R R R

Y
R


= = =

    (3.45)

where R = /(1 + √1 + 2) = 0.285.

The line Y = 0.347 crosses the universal curve of damping at two points A and B
as can be seen in Figure 3.9. As a result, any point lying along the curve from A to B
will yields damping higher than the required value. 

FIGURE 3. 9. Design HDR damper using the proposed universal damping 
curve.
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In this scenario, the peak at point C(1.00; 0.50) is chosen for the design in this 
example because it poses the highest added damping ratio. From that, the spring 
factor K of the HDR damper is calculated as 

   
( ) ( )

3

2 6 2
1 2 3

1  = 637.52 10  N/m 
( / ) 1 (5.85 / 3.55 10 ) 1 0.62 0.809 1 1

CXK
a H   

= = 
+  +  

 (3.46) 

In conclusions, an HDR damper is designed with  = 0.62 and K = 637.52×103 
N/m, and it can produce an added damping ratio  = YC×(a/l)× R1R2R3R×100 = 

0.5×(5.85/184.72)×0.941×1×1×0.285×100 = 0.425 %.  

 

Example 2: This example presents the design of a viscous damper for a single-mode 
vibration control. Cable properties and the required added damping ratio ( > 0.295 
%) presented in the Example 1 are used in this example. This example aims at 
designing a viscous damper (damping coefficient c), which can generate the added 
damping to a cable larger than the required damping, and targeting a single vibration 
mode (e.g., mode 1). 

 The set of design conditions are as follows: cable ends are fixed (Kr →  ∞); 
damper support is rigid (Kvs → ∞); damper stiffness Kvp = 202.34×103 N/m; and the 
damper is installed to the cable at damper location a = 5.85 m due to installation 
restrictions.  

In this example, the targeted vibration mode is the mode 1, and a viscous damper 
is designed to generate the optimal added damping ratio at the mode 1. The optimal 
point on the universal damping curve (Figure 3.8) is always at the peak, where (Xopt; 
Yopt) = (1.0; 0.5). The optimal damping coefficient cotp as  

  
6

5 -1

1 2 3'

1 3.55 10 60.2 184.72 11.0 2.306 10 N.s.m
1 5.85 0.809 1 0.788otp opt

Hm lc X
n a   

       
= =  =      

       

 (3.47) 

where n = 1 because the mode 1 is assigned, 1 = 0.809 from Eq. (3.34), 2 = from 

Eq. (3.35b), and 3'
 = 0.788 from Eq. (3.42b).  

The optimal added damping ratio as 

    
1 2 3'

5.85100 0.5 0.941 1 0.788 100 1.17 %
184.72otp opt

aY R R R
l


   

=  =      =   
   

 (3.48) 

where R1 = 0.941 from Eq. (3.33), R2 = 1 from Eq. (3.35a), and R3' = 0.788 from Eq. 
(3.42a).  
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This amount of added damping is greatly larger than the required damping ratio.  

 

3.6.2. Multi-Mode Vibration Control  

Multi-mode vibration control for the cable with a viscous damper will be 
discussed in this example. The set of design conditions are as the same as in Example 
2 of Section 3.6.1: damper location a = 5.85 m, cable ends is fixed, damper support 
is rigid, and damper stiffness Kvp = 202.34 × 103 N/m.  

The required added damping for suppressing rain-wind induced vibration is  ≥ 
0.295%, according to Eq. (3.44). 

Based on these conditions, the ordinate on the Y axis of the universal damping 
curve as 

   
1 2 3'

0.00295  = 0.126
( / ) (5.85 /184.72) 0.941 1 0.788

Y
a l R R R


= =

  
 (3.49) 

The line Y = 0.126 crosses the universal curve at points A(0.128; 0.126) and 
B(7.830; 0.126) as shown in Figure 3.10a. Any point resting on the curve from A to 
B will have the added damping higher than the required damping . If we start to 
control mode 1 at point A (nA = 1), the designed damping coefficient c is calculated 
as 

6
3 -1

1 2 3'

(3.55 10 ) 60.21 184.72 10.128 = 29.52 10 N.s.m
1 5.85 0.809 1 0.788A

A

Hm lc X
n a   

       
= =       

       

 (3.50) 

The number of controlled modes which have damping ratio higher than required 
value  ≥ 0.295 % will increase from 1 (at point A) to k (at point B). The vibration 
mode at point B as 

        7.830 1 = 61
0.128

B
A

A

Xk n
X

= =   (3.51) 

It means that a designed viscous damper with c = 29.52 × 103 N.s.m-1 can control 
61 consecutive vibration modes started from the mode 1 to mode 61. Eq. (3.51) also 
points out that if a starting mode at the point A is not the mode 1 (nA > 1), the number 
of controlled modes will be more than 61 modes.  

Figure 3.10b shows the added damping ratio of 61 controlled modes. In this 
scenario, mode 8 gained the maximum added damping ratio ( = 1.17 %) while the 
mode 1 and mode 61 possessed the lowest value ( = 0.295 %). 

 



58

a)   b) 

FIGURE 3. 10. Damping of multi-mode control: a) locations of modes on the 
universal damping curve; and b) added damping ratio for each mode.

In practice, the rain-wind induced vibration of a cable often observed at a 
frequency range from 0 to 3.0 Hz and predominantly at the mode 2, according to U.S. 
Department of Transportation, Federal Highway Administration10. With that concern, 
the damping coefficient c, in this example, will be obtained to achieve the maximum 
damping ratio at the mode 2 (n = 2). 

6
3 -1

1 2 3'

(3.55 10 ) 60.21 184.72 11  = 115.30 10 N.s.m
2 5.85 0.809 1 0.788

Hm lc X
n a    

       
= =       

       

(3.52
)

Additionally, for the cable in this example, frequencies of the first five modes 
(mode 1 to mode 5) will likely fall within 0 to 3.0 Hz. The added damping ratios of 
the first five modes is plotted in Figure 3.11a, in which the attainable damping ratio 
of the mode 2 was the highest value with  = 1.17 %.

Some other useful applications of the proposed universal damping curve could be 
listed as: the identification of the added damping of existing cable-damper system; 
the design of damper support stiffness or damper stiffness in which the reductions of 
damping due to these stiffnesses are within an allowable range; the optimization of 
the multi-mode vibration control of a cable, etc.    
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a)   b) 

FIGURE 3. 11. Damping of the five controlled modes: a) locations of modes on the 
universal damping curve; and b) added damping ratio for each mode.

It is fair through this section to say that the proposed universal damping curve for 
an HDR damper and a viscous damper are profoundly convenient in the design of a 
cable with an attached damper for multi-mode vibration control. The simplicity and 
practicality can be understood because the proposed curve is a single curve and 
independent of any factors.

3.7. Summary

A model of cable-damper is proposed in this chapter, which accounts for several 
factors such as cable bending stiffness, restraint at cable ends, damper stiffness, 
damper support stiffness and negative stiffness damper. The formulation of damping 
ration is derived, and its universal damping curve is accordingly proposed. The 
conclusions are as follows

1) Cable bending stiffness triggered a reduction of the damping ratio for a fixed-
fixed end cable whereas an inverse observation was found for a hinged-hinged 
end counterpart. By adjusting supports at cable ends with finite rotational 
restraint stiffness, the damper works more effectively.

2) The discrepancy in term of the added damping between a hinged-hinged and 
fixed-fixed end cable was remarkable when the cable bending stiffness was 
large. 

3) In the presence of negative stiffness, the negative stiffness damper generates 
superior added damping to the cable in comparison to conventional damper.

4) The universal damping curve was proposed for a stay cable with an HDR 
damper or a viscous damper, which has only a single curve. This universal 
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damping curve is independent of any influencing factors like cable properties, 
damper characteristics, damper support stiffness, damper stiffness, added 
negative stiffness and boundary condition at cable ends (hinged, fixed and 
restraint ends). 

5) The simplicity and practicality of the proposed universal damping curve in the 
design of a damper for cable vibration controls were shown through design 
examples; the design of a damper targeted multiple vibration modes can be 
easily performed using the proposed universal damping curve.  
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Appendix: Formulas in Eqs. (3.10a-h) 
The formulas that appear in Eqs. (3.10a-h). 

𝛹1 = 𝛿1𝛿2
2[cos(𝛿2𝑎) + cosh(𝛿1𝑎) − cosh𝛿1(𝑎 − 𝑙)cos(𝛿2𝑙) − cos𝛿2(𝑎 − 𝑙) cosh(𝛿1𝑙)] − 𝛿2𝛿1

2sin𝛿2(𝑎 − 𝑙)sinh(𝛿1𝑙)

+𝛿2
3sinh𝛿1(𝑎 − 𝑙)sin(𝛿2𝑙)

 (3.53) 

𝛹2 = 2𝐸𝐼𝛿2
2(𝛿1

2 + 𝛿2
2)sinh𝛿1(𝑎 − 𝑙)cos(𝛿2𝑙)  + 𝐸𝐼𝛿2𝛿1

3[cosh𝛿1(𝑎 − 𝑙)sin(𝛿2𝑙) − sin𝛿2(𝑎 − 𝑙)cosh(𝛿1𝑙) − sin(𝛿2𝑎)]

+ 𝐸𝐼𝛿1𝛿2
3[cosh𝛿1(𝑎 − 𝑙) sin(𝛿2𝑙) − sin𝛿2(𝑎 − 𝑙)cosh(𝛿1𝑙) −  sin(𝛿2𝑎)]

 (3.54) 

𝛹3 = −𝐸𝐼2𝛿2(𝛿1
4 + 𝛿2

4)sinh𝛿1(𝑎 − 𝑙)sin(𝛿2𝑙) − 2𝐸𝐼2𝛿1
2𝛿2

3sinh𝛿1(𝑎 − 𝑙)sin(𝛿2𝑙) (3.55) 

𝛹4 =
1

2
𝛿1

3sinh𝛿1𝑙[ cos𝛿2𝑙  − cos𝛿2(2𝑎 − 𝑙)] +
1

2
𝛿1

2𝛿2sin𝛿2𝑙[3cosh𝛿1𝑙 + cosh𝛿1(2𝑎 − 𝑙)]

+
1

2
𝛿1

3sin𝛿2𝑙[cosh𝛿1(2𝑎 − 𝑙) − cosh𝛿1𝑙] + 2𝛿1
2𝛿2[sin𝛿2(𝑎 − 𝑙)cosh𝛿1(𝑎 − 𝑙) − sin(𝛿2𝑎)cosh(𝛿1𝑎) ]

−2𝛿1𝛿2
2[cos𝛿2(𝑎 − 𝑙) sinh𝛿1(𝑎 − 𝑙) − cos𝛿2𝑎sinh𝛿1𝑎 ] −

1

2
𝛿1𝛿2

2sinh𝛿1𝑙[3cos𝛿2𝑙 + cos𝛿2(2𝑎 − 𝑙)]

 (3.56) 

𝛹5 = 2𝐸𝐼𝛿1𝛿2(𝛿1
2 + 𝛿2

2)[sinh(𝛿1𝑙) sin(𝛿2𝑙) − sinh(𝛿1𝑎)sin(𝛿2𝑎) − sinh𝛿1(𝑎 − 𝑙)sin𝛿2(𝑎 − 𝑙)]

+𝐸𝐼(𝛿1
4 − 𝛿2

4)cosh(𝛿1𝑙cos(𝛿2𝑙) + 𝐸𝐼 (𝛿1
2 + 𝛿2

2)[𝛿2
2cosh𝛿1(2𝑎 − 𝑙)cos(𝛿2𝑙)  − 𝛿1

2cos𝛿2(2𝑎 − 𝑙)cosh(𝛿1𝑙)]
 (3.57) 

𝛹6 =
1

2
𝐸𝐼2 (𝛿1

4 + 𝛿2
4)[𝛿2cosh(𝛿1𝑙)sin(𝛿2𝑙) + 𝛿1cos(𝛿2𝑙)sinh(𝛿1𝑙)

−𝛿2sin(𝛿2𝑙)cosh𝛿1(2𝑎 − 𝑙) −  𝛿1sinh(𝛿1𝑙)cos𝛿2(2𝑎 − 𝑙)]

  − 𝐸𝐼2𝛿1
2𝛿2

3sin𝛿2𝑙[cosh𝛿1(2𝑎 − 𝑙) − cosh(𝛿1𝑙)]  

+𝐸𝐼2𝛿1
3𝛿2

2sinh(𝛿1𝑙)[cos(𝛿2𝑙) − cos𝛿2(2𝑎 − 𝑙) ]

 (3.58) 

𝛹7 =  𝛿1𝛿2
2[cos(𝛿2𝑙) sinh𝛿1(𝑎 − 𝑙) + sinh(𝛿1𝑙)cos𝛿2(𝑎 − 𝑙)  − sinh(𝛿1𝑎) ]

         + 𝛿2𝛿1
2[cosh(𝛿1𝑙)sin𝛿2(𝑎 − 𝑙) − sin(𝛿2𝑎)  + sin(𝛿2𝑙) cosh𝛿1(𝑎 − 𝑙)]

 (3.59) 

𝛹8 =  𝐸𝐼𝛿1𝛿2(𝛿1
2 + 𝛿2

2)[sinh(𝛿1𝑙)sin𝛿2(𝑎 − 𝑙) − sin(𝛿2𝑙) sinh𝛿1(𝑎 − 𝑙)] (3.60) 

𝛹9 = 𝛿1
2𝛿2[cos(𝛿2𝑎) + cosh(𝛿1𝑎) − cos𝛿2(𝑎 − 𝑙)cosh(𝛿1𝑙) −  cos(𝛿2𝑙)cosh𝛿1(𝑎 − 𝑙)] + 𝛿1𝛿2

2sinh𝛿1(𝑎 − 𝑙)sin(𝛿2𝑙)

−𝛿1
3sinh(𝛿1𝑙)sin𝛿2(𝑎 − 𝑙)

 (3.61) 

𝛹10 =  𝐸𝐼𝛿1(𝛿1
2 + 𝛿2

2)[𝛿2sinh(𝛿1𝑎) − 2𝛿1sin𝛿2(𝑎 − 𝑙)cosh(𝛿1𝑙) − 𝛿2cos𝛿2(𝑎 − 𝑙)sinh(𝛿1𝑙) + 𝛿2cos(𝛿2𝑙)sinh𝛿1(𝑎 − 𝑙)] (3.62) 

𝛹11 = −𝛿1𝐸𝐼2[ (𝛿1
4 + 𝛿2

4)sin𝛿2(𝑎 − 𝑙)sinh(𝛿1𝑙) + 2𝛿1
2𝛿2

2sin𝛿2(𝑎 − 𝑙)sinh(𝛿1𝑙)] (3.63) 

𝛹12 = −
1

2
𝛿2𝛿1

2sin(𝛿2𝑙)[sinh(𝛿1𝑙)  − sinh𝛿1(2𝑎 − 𝑙) ] +
1

2
𝛿2

3sin(𝛿2𝑙)[sinh(𝛿1𝑙) + sinh𝛿1(2𝑎 − 𝑙)]

+𝛿1𝛿2
2[cosh(𝛿1𝑎)cos(𝛿2𝑎) + cos(𝛿2𝑙)cosh(𝛿1𝑙)] +   𝛿2𝛿1

2[sin𝛿2(𝑎 − 𝑙)sinh𝛿1(𝑎 − 𝑙) − sinh(𝛿1𝑎)sin(𝛿2𝑎)]

−𝛿1𝛿2
2[cosh𝛿1(𝑎 − 𝑙)cos𝛿2(𝑎 − 𝑙) + 1]

             

 (3.64) 

𝛹13 =  𝐸𝐼𝛿2(𝛿1
2 + 𝛿2

2)[𝛿2cos(𝛿2𝑙) sinh𝛿1(2𝑎 − 𝑙) − 𝛿1cosh(𝛿1𝑙)sin(𝛿2𝑙) + 𝛿2cos(𝛿2𝑙)sinh(𝛿1𝑙)
               − 𝛿1 cosh(𝛿1𝑎)sin(𝛿2𝑎) − 𝛿1sin𝛿2(𝑎 − 𝑙)cosh𝛿1(𝑎 − 𝑙)

 (3.65) 

𝛹14 = −
1

2
𝐸𝐼2𝛿2(𝛿1

4 + 𝛿2
4)[sin(𝛿2𝑙)sinh𝛿1(2𝑎 − 𝑙) + sin(𝛿2𝑙)sinh(𝛿1𝑙) ] − 𝐸𝐼2𝛿1

2𝛿2
3sin(𝛿2𝑙)[sinh(𝛿1𝑙) + sinh𝛿1(2𝑎 − 𝑙)] (3.66) 

𝛹15 = −
1

2
𝛿2(𝛿1

2 + 𝛿2
2)sin(𝛿2𝑙)cosh𝛿1(2𝑎 − 𝑙) −

1

2
𝛿2(𝛿1

2 − 𝛿2
2)cosh(𝛿1𝑙)sin(𝛿2𝑙)

−𝛿1𝛿2
2[sinh(𝛿1𝑎)cos(𝛿2𝑎) − sinh(𝛿1𝑙)cos(𝛿2𝑙)] − 𝛿2𝛿1

2[sin𝛿2(𝑎 − 𝑙)cosh𝛿1(𝑎 − 𝑙) − cosh(𝛿1𝑎)sin(𝛿2𝑎)]

+𝛿1𝛿2
2sinh𝛿1(𝑎 − 𝑙)cos𝛿2(𝑎 − 𝑙)

 (3.67) 

𝛹16 = 𝐸𝐼𝛿2(𝛿1
2 + 𝛿2

2)[𝛿1 sinh(𝛿1𝑎)sin(𝛿2𝑎) + 𝛿2cos(𝛿2𝑙)cosh(𝛿1𝑙) − 𝛿1sinh(𝛿1𝑙)sin(𝛿2𝑙)
−𝛿2cos(𝛿2𝑙)cosh𝛿1(2𝑎 − 𝑙) + 𝛿1sin𝛿2(𝑎 − 𝑙)sinh𝛿1(𝑎 − 𝑙)]

 (3.68) 

𝛹17 =
1

2
𝐸𝐼2𝛿2(𝛿1

4 + 𝛿2
4)[sin(𝛿2𝑙)cosh𝛿1(2𝑎 − 𝑙) − cosh(𝛿1𝑙)sin(𝛿2𝑙)] − 𝐸𝐼2𝛿1

2𝛿2
3 sin(𝛿2𝑙)[cosh(𝛿1𝑙) − cosh𝛿1(2𝑎 − 𝑙)] (3.69) 

𝛹18 =
1

2
𝛿1(𝛿1

2 + 𝛿2
2)sinh(𝛿1𝑙) sin𝛿2(2𝑎 − 𝑙) +

1

2
𝛿1(𝛿1

2 − 𝛿2
2)sinh(𝛿1𝑙)sin(𝛿2𝑙)

+𝛿1𝛿2
2sinh𝛿1(𝑎 − 𝑙)sin𝛿2(𝑎 − 𝑙) − 𝛿1𝛿2[𝛿2sin(𝛿2𝑎)sinh(𝛿1𝑎) + 𝛿1cos(𝛿2𝑎)cosh(𝛿1𝑎)

+𝛿1cos(𝛿2𝑙)cosh(𝛿1𝑙)] + 𝛿1
2𝛿2[cos𝛿2(𝑎 − 𝑙)cosh𝛿1(𝑎 − 𝑙) + 1]

 (3.70) 

𝛹19 = 𝐸𝐼𝛿1(𝛿1
2 + 𝛿2

2)[𝛿1cosh(𝛿1𝑙)sin𝛿2(2𝑎 − 𝑙) − 𝛿2cos𝛿2(𝑎 − 𝑙)sinh𝛿1(𝑎 − 𝑙) − 𝛿2cos(𝛿2𝑎)sinh(𝛿1𝑎) 
              − 𝛿2cos(𝛿2𝑙)sinh(𝛿1𝑙) + 𝛿1sin(𝛿2𝑙)cosh(𝛿1𝑙)]

 (3.71) 

𝛹20 =
1

2
𝐸𝐼2 𝛿1(𝛿1

4 + 𝛿2
4)sinh(𝛿1𝑙)[sin𝛿2(2𝑎 − 𝑙) + sin(𝛿2𝑙)] + 𝐸𝐼2sinh(𝛿1𝑙)𝛿1

3𝛿2
2 [sin(𝛿2𝑙) + sin𝛿2(2𝑎 − 𝑙)] (3.72) 
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CHAPTER 4. DAMPING ANALYSIS OF FULL-SCALE CABLES FROM 
FIELD MEASUREMENT DATA 

 

Damping in stay cable contributed by damper was theoretically studied in 
Chapters 2 and 3. While the previous chapters mainly emphasized on theoretical 
aspect, this chapter compares measured damping of full-scale cables to theoretical 
damping for the evaluation of damper performance. The measurement was conducted 
on stay cables of a cable-stayed bridge in Japan, in which HDR dampers were 
installed to the cables. Overall, the effectiveness of damper was greater than 0.7 for 
most of selected cables. Moreover, the analysis on the amplitude dependency of 
damping ratios and frequencies was presented and the result showed that frequencies 
were almost stable over amplitudes whereas the variation of damping over amplitudes 
was significant. 

 

Keywords: Full-scale cables; Field measurement; High Damping Rubber (HDR) 
damper; Damping analysis; Measured damping; Theoretical damping; Amplitude 
dependency. 

 

4.1. Target bridge and measurement 

4.1.1. Bridge information 

The field measurement of damping in stay cables of Shinminato Bridge in Japan 
was conducted. The Bridge is in Imizu, Toyama Prefecture, was recently opened in 
September 2012. It is the largest cable-stayed bridge on the Sea of Japan coast and 
links the east and west districts around the Toyama Shinminato Harbor entrance. The 
bridge has a total length of 600 m, in which the main span length is 360 m as shown 
in Figure 4.1. 

 

 
 

 FIGURE 4. 1. Layout of the bridge. 

 

C01W 
C02W C18W C18E 

C17E C17W 

C01E 
C02E 

60 m 60 m 360 m 60 m 60 m 
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The measurement of the cable vibration in six selected cables with HDR dampers 
(C01E, C02E, C17E, C18E, C17W and C18W) was implemented to evaluate the 
cable damping. For each cable, the vibration of the mode 1, mode 2 and mode 3 was 
individually excited, and the measurement was conducted for each vibration mode. 
During the measurement, average temperature was recorded at 18.6oC and wind 
speed averaged 5.3 m/s. Sampling frequency of the accelerometer was 1000 Hz. The 
measurement setup and excitation are depicted in Figure 4.2.

FIGURE 4. 2. The measurement setup and data acquisition.

4.1.2. Measurement data

Figure 4.3 displays the raw acceleration data of the vibrations of some cables as 
examples (C17E, C17W and C18W). The vibration data in Figure 4.3 shows two 
vibration phases, which are a forced vibration throughout the excitation period and a 
free-decay vibration phase after releasing the excitation. The identification of the 
measured natural frequencies and damping ratios will be implemented during the 
free-decay vibration phase.
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FIGURE 4. 3. Raw acceleration data of cables C17E, C17W, 18W.

4.2. Damping analysis of full-scale stay cables from field measurement

4.3.1. Damping analysis procedure

Figure 4.4 shows the 4-step procedures for identifying cable frequencies and 
damping ratios from the raw acceleration; the measurement data of cable 17W is used 
to demonstrate the step-by-step implementation. Step 1 is to select a window of free-
decay response from the raw signal. Step 2 is to transform the free-decay response 
from time domain into frequency domain by using Fourier spectrum analysis, in 
which the frequencies of vibration modes are extracted at the prominent peaks in the 
spectrum. Step 3 is to pass the free-decay vibration through a Butterworth filter to 
eliminate ripples and unassigned vibration modes. After being filtered, the filtered 
accelerations with clear peaks/valleys are displayed. Step 4 is to plot the natural 
logarithm graph of both peaks’ amplitudes and valleys’ amplitudes, and the damping 
ratio  can be deduced from the natural logarithm graph.54
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   1  ln
2 2

m

m n

A
n A




  +

 = (4.1)

where Am and Am+n are the amplitudes of the filtered free-decay responses at the
m and m+n peaks (or valleys), respectively; and  is the logarithmic decrement (slope 
of the natural logarithm line).

FIGURE 4. 4. Four-step procedures for identifying cable damping ratio .

4.3.2. Results of measured damping and measured frequencies

The procedure shown in Figure 4.4 was applied to all selected cables. The 
frequency spectrum analysis and the filtered free response of raw data (C17E, C17W, 
18W in Figure 4.3) are plotted in Figure 4.5 and Figure 4.6 as example, respectively.
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FIGURE 4. 5. Fourier spectrum analysis.
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FIGURE 4. 6. Filtered acceleration of free-decay responses.
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The measured frequencies are extracted frow frequency spectrum and damping 
ratio is computed from Eq. (4.1). The results are listed in Table 4.1. As can be seen 
in Table 4.1, the measured damping ratios vary around 0.32% - 0.70 % for mode 1, 
0.40% - 0.60% for mode 2, and 0.35% - 0.55% for mode 3, respectively. Also, the 
measured frequencies are less than 1 Hz, 2 Hz, 3Hz for mode 1, mode 2 and mode 3, 
correspondingly.   

 

TABLE 4. 1. Measured frequencies and damping ratios  

Cable 

Mode 1 Mode 2 Mode 3 

Frequency 
 f (Hz) 

Damping 
ratio  (%) 

Frequency 
f (Hz) 

Damping 
ratio  (%) 

Frequency 
f (Hz) 

Damping 
ratio  (%) 

C01E 0.827 0.477 1.640 0.390 2.465 0.352 

C02E 0.992 0.578 1.973 0.523 2.960 0.420 

C17E 0.674 0.321 1.328 0.394 1.999 0.403 

C18E 0.641 0.692 1.259 0.594 1.897 0.524 

C17W 0.682 0.428 1.345 0.562 2.022 0.491 

C18W 0.674 0.548 1.333 0.616 2.004 0.541 

 

4.3. Theoretical damping and damper effectiveness 

Cable properties and the characteristics of HDR dampers are shown in Table 4.2, 
in which cable tensions H are estimated based on measured frequencies.5  

 

 TABLE 4. 2. Cable properties and damper parameters  

Cable 
No. 

Cable properties HDR Damper  

l 
 (m) 

m 
(kg/m) 

EI  
(N.m2) 

H (N) 
EA 
(N) 

 
(0) 

Damper 
location 

a (m) 

Spring 
factor  

K (N/m) 

Loss 
factor 

 

C01E 137.82 68.4 2.73×106 3.45×106 2.59×109 34.42 4.54 6.44 × 105 0.62 

C02E 127.47 68.4 2.73×106 4.26×106 2.59×109 36.02 4.37 6.44 × 105 0.62 

C17E 167.18 64.3 2.34×106 3.10×106 2.39×109 23.35 5.54 5.63 × 105 0.62 

C18E 184.72 60.2 1.98×106 3.20×106 2.20×109 21.83 5.85 4.83 × 105 0.62 

C17W 167.18 64.3 2.34×106 3.18×106 2.39×109 23.35 5.54 5.63 × 105 0.62 

C18W 184.72 60.2 1.98×106 3.67×106 2.20×109 21.83 5.85 4.83 × 105 0.62 

Note: EA = cable axial stiffness; and  = cable inclination angle. 
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In addition to Table 4.2, damper support stiffness Kvs was included for a cable 
C17E since the cross-sectional deformation of a steel tube which supported to the 
damper was observed during the measurement. The support part of the damper has 
the length of 110 mm, diameter of 355.6 mm and thickness of 7.9 mm. The value of 
support stiffness was Kvs = 1143×103 N/m in cable C17E which was determined based 
on the ratio of a unit force along the diameter to tube’s deformation. Negative 
stiffness was not included to all cables KNS = 0. Rotational restraint stiffness at cable 
ends was also unknown, therefore both hinged-hinged end (Kr = 0) and fixed-fixed 
end (Kr → ∞) were evaluated.  

The theoretical damping ratios  in the cables are computed with two different 
solutions: the proposed universal damping curve which is presented in Chapter 3 and 
the Finite Different Method (FDM). The FDM was originally developed by Tabatabai 
and Mehrabi38 for the vibration of a cable with a viscous damper. The FDM method 
is modified in this present study for the cables with HDR damper types, referring to 
the Appendix. The results are summarized in Table 4.3.  

The results show that damping ratios obtained by the proposed universal damping 
curve coincide with the FDM, an error of 2.0 % on average. The theoretical damping 
ratios are around 0.4 % - 0.5 %, except for the cable C17E (less than 3.3%). The 
discrepancy of damping ratios between hinged-hinged end cables and fixed-fixed end 
cables is relatively remarkable (15% - 26%), especially in shorter cables (C01E and 
C02E). It is understandable because short cables trigger a significant difference about 
cable configurations near cable ends than that of long cables while dampers are often 
installed near cable ends; therefore, damping of short cables depends heavily on 
boundary conditions at cable ends than that of long cables. Note that, all cables in this 
analysis were discretized into n = 800 nodes when using the FDM. 

 

TABLE 4. 3. Theoretical damping ratios 

Cable 
No. 

by proposed universal damping curve  by Finite Difference Method 

Fixed ends 

f (%) 

Hinged ends 

h (%) 

(𝒉 − 𝒇)

𝒇

×100 
Fixed ends 

f (%) 

Hinged ends 

h (%) 

(𝒉 − 𝒇)

𝒇

×100 

C01E 0.416 0.519 24.76 0.419 0.521 24.34 

C02E 0.413 0.521 26.15 0.412 0.519 25.97 

C17E 0.257 0.312 21.40 0.269 0.323 20.07 

C18E 0.419 0.484 15.51 0.422 0.485 14.93 

C17W 0.437 0.511 16.93 0.458 0.529 15.50 

C18W 0.415 0.478 15.18 0.416 0.478 14.90 
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The impact of cable sag on the attainable damping is neglected when developing 
the universal damping curve. In order to take sag effect into account, a reduction 
factor Rsag of added damping due to cable sag was calculated. The FDM is used in 
this calculation. 

   s
sag

ws

R 


=  (4.2) 

where s and ws are the damping ratio of a cable with and without cable sag, 
respectively. 

Tables 4.4, 4.5 and 4.6 show the reduction factors Rsag of damping ratios for the 
mode 1, mode 2 and mode 3, correspondingly. The results show that cable sag causes 
a notable reduction of the damping ratio for the mode 1 whereas having almost no 
effect on the mode 2 and a relatively small reduction for the mode 3. In the previous 
studies14,18, the reductions of the added damping due to cable sag were analytically 
investigated by an asymptotic solution; these two papers have come out the same 
result that cable sag only significantly reduces attainable damping for mode 1; 
however, in their works, cable sag was approximated by a parabolic formulation 
without considering bending stiffness of cable in the sag profile. Hence, the reduction 
of damping14,18 is independent of boundary condition types at cable ends (hinged, 
fixed or restraint ends). The results in Tables 4.4, 4.5 and 4.6, on the other hand, 
illustrate that the reduction of damping Rsag of the fixed-fixed end cables is more 
significant than hinged-hinged end cables, especially for long cables (C17 and C18).  

 

TABLE 4. 4. Reduction factors of damping due to cable sag for Mode 1 
Mode 1 

Cable 
No. 

Fixed-Fixed end cable Hinged-Hinged end cable 

Without sag 

ws (%) 

With sag 

s (%) 
Reduction 
factor Rsag 

Without sag 

ws (%) 

With sag 

s (%) 
Reduction 
factor Rsag 

C01E 0.419 0.382 0.91 0.520 0.499 0.96 

C02E 0.412 0.396 0.96 0.519 0.509 0.98 

C17E 0.269 0.223 0.83 0.323 0.296 0.92 

C18E 0.422 0.352 0.83 0.485 0.448 0.92 

C17W 0.458 0.386 0.84 0.529 0.488 0.92 

C18W 0.416 0.369 0.89 0.478 0.453 0.95 

 

 



72

TABLE 4. 5. Reduction factors of damping due to cable sag for Mode 2
Mode 2

Cable
No.

Fixed-Fixed end cable Hinged-Hinged end cable

Without sag

ws (%)

With sag

s (%)
Reduction 
factor Rsag

Without sag

ws (%)

With sag

s (%)
Reduction 
factor Rsag

C01E 0.420 0.420 1.00 0.522 0.522 1.00

C02E 0.412 0.412 1.00 0.520 0.520 1.00

C17E 0.270 0.270 1.00 0.324 0.324 1.00

C18E 0.423 0.423 1.00 0.487 0.487 1.00

C17W 0.460 0.460 1.00 0.532 0.532 1.00

C18W 0.417 0.417 1.00 0.479 0.479 1.00

TABLE 4. 6. Reduction factors of damping due to cable sag for Mode 3
Mode 3

Cable
No.

Fixed-Fixed end cable Hinged-Hinged end cable

Without sag

ws (%)

With sag

s (%)
Reduction 
factor Rsag

Without sag

ws (%)

With sag

s (%)
Reduction 
factor Rsag

C01E 0.421 0.419 1.00 0.526 0.526 1.00

C02E 0.413 0.412 1.00 0.523 0.523 1.00

C17E 0.270 0.267 0.99 0.325 0.325 1.00

C18E 0.425 0.419 0.99 0.489 0.489 1.00

C17W 0.462 0.457 0.99 0.535 0.535 1.00

C18W 0.418 0.415 0.99 0.481 0.481 1.00

Theoretical damping ratios by the universal damping curve in Table 4.3 are 
multiplied by the reduction factor Rsag and compared with the measured damping in 
Table 4.1. The comparison is presented in Figure 4.7. It is noted that the measured 
damping ratios appeared in Table 4.1 also consisted of cable inherent damping 0. 
This inherent damping is around 0 ≈ 0.08%.

FIGURE 4. 7. Comparison between theoretical damping ratios and measured values.
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The lower bound of the theoretical damping values means the damping of fixed-
fixed end cables while upper bound corresponds to hinged-hinged end cables. 
Overall, the measured damping values are within or close to the range of theoretical 
calculations, except for cable C18E mode 1, C01E mode 2 and mode 3. The 
effectiveness of HDR dampers is evaluated by the ratio between measured damping 
and the average value of theoretical damping in Figure 4.7; and it shows that the 
effectiveness is larger than 0.70 for all three modes, except for mode 2 (0.66) and 
mode 3 (0.58) of cable C01E. It is the fact that the theoretical damping is analytically 
calculated based on pure conditions whereas measured damping would be under 
several operational and environmental variations like wind speeds, temperatures, 
measurement noise. These factors may cause the discrepancy between measured and 
theoretical damping ratios.

4.4. Discussion on the amplitude dependency of measured damping

The measured damping ratio is computed from two consecutive peaks of the 
filtered acceleration data of free-decay response, then plotting it over the respective 
peaks of the accelerations. Acceleration measurement data of cables C17E, C17W, 
18W are used in this investigation.

FIGURE 4. 8. Amplitude dependency of damping ratios and frequencies of cable 
C17E.
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FIGURE 4. 9. Amplitude dependency of damping ratios and frequencies of cable 
C17W.

FIGURE 4. 10. Amplitude dependency of damping ratios and frequencies of cable 
C18W.

Figures 4.8, 4.9 and 4.10 illustrate the variation in damping ratios and frequencies 
versus amplitudes of the free-decay acceleration. Overall, the frequencies are almost 
unchanged over amplitudes while the amplitude dependency of damping is 
remarkable. Although the variation in damping is not perfectly consistent, it seems 
that damping ratios increase first as amplitudes decrease (decay), then damping ratios 
decrease as amplitudes continuously decrease. To the best knowledge of the authors, 
this variation in damping can be explained as: the damping generated by High 
Damping Rubber (HDR) dampers is proportional to dissipated energy and inversely 
proportional to shear displacement of the rubber in damper55; Therefore, when the 
amplitude is large, the energy is not dissipated anymore (constant), and damping 
tends to increase as amplitude decreases; on the other hand, when the amplitude is 
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not large, the dissipation of energy decreases as the amplitude decreases leading to 
decrease in attainable damping. 

 

4.5. Summary 

In this chapter, the procedure and implementation of damping analysis is performed 
on full-scale cables of Shinminato Bridge. The cables were installed with HDR 
damper. Measured damping and measured frequencies were determined based on 
field measurement data. Theoretical damping is calculated according to the theory 
presented in Chapter 4. Effect of cable sag was evaluated using Finite Difference 
Method. The damper effectiveness was computed as a ratio between measured 
damping and theoretical damping. The conclusions are as follows: 

1) The reduction of damping ratios due to cable sag was investigated employing the 
Finite Difference Method (FDM). It showed that cable sag causes a notable 
reduction of the damping ratio for the mode 1 whereas having almost no effect on 
the mode 2 and a relatively small reduction for the mode 3. Additionally, cable 
sag triggered larger reduction of damping in fixed-fixed end cables than that of 
hinged-hinged end cables. 

2) The damping analysis of full-scale cables with HDR damper from vibration 
measurement data was presented. Measured damping ratios were compared to 
theoretical values, and the results showed that the HDR damper effectiveness was 
greater than 0.7 for all cables, except for mode 2 (0.66) and mode 3 (0.58) of cable 
C01E. Moreover, the variation of damping ratios and frequencies versus 
amplitudes was also investigated. While frequencies were almost unchanged over 
amplitudes, the damping ratios tended to increase first as amplitudes decreased, 
then damping ratios decreased as amplitudes continuously decreased. 
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Appendix: Finite Difference Method 

The Finite Difference Method is modified in this study based on the previous 
works16,38. The original paper38 presented the vibration of a cable with a viscous 
damper through FDM. This Appendix shows the FDM modified for a cable with an 
HDR damper. The schematic diagram is shown in Figure 4.11. 

 

 

 

FIGURE 4. 11. Discretized cable with an HDR damper. 

 

A cable is discretized in N elements with an equal length of a1 and consists of n 
internal nodes (n = N − 1). Cable damping ratios and its natural frequencies are 
determined from the matrix equation16 of the discretized cable. 

           2 0K v p C v p M v+ + =  (4.3) 

in which [K], [C] and [M] are the stiffness, damping and mass matrices, respectively; 
{ṽ}  is the mode shape vector of the nodal displacements; and   p   =  −0  ±

 𝑖0√1 − 2 is the complex number related to damping ratio   and undamped natural 

circular frequency 0. These matrices have size n × n. 

The determination of added damping ratios in a cable with an HDR damper is our 
target and the inherent damping in the cable is neglected. As a result, [C] is a zero 
matrix, [M] is defined as16 

    

1

2

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

[ ]
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

j

n

m
m

M
m

m

 
 
 
 

=  
 
 
 
  

 
(4.4) 

where mj is the mass per unit length at node j. 
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Stiffness matrix [K] as 

          1 2 3K K K K= + +  (4.5) 

in which [K1] is due to cable bending stiffness EI and static cable tension H; [K2] is 
contributed by a negative stiffness HDR damper; and [K3] is due to the additional 
cable tension which involves with cable sag. 

Stiffness matrix  [K1] as 

   
2 2 2 2 2

2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2
1 2 2
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

 
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 
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− −− − + 
 +− − 

 (4.6) 

where  = 𝑙√𝐻/𝐸𝐼; and  is the boundary condition index which relies on restraint 
stiffness at cable ends as 
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
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
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+

 (4.7) 

For a cable with fixed-fixed ends (Kr → ∞) or hinged-hinged ends (Kr = 0), α = 7 
or α = 5, respectively. Stiffness matrix [K1] of these two conventional cases (α = 7 or 
5) was previously introduced by Mehrabi and Tabatabai16. 

Stiffness matrix [K2] as 
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(4.8) 

The matrix [K2] contains only one non-zero element with respect to a node where 
the HDR damper is attached to the cable. 

The stiffness matrix [K3] is defined as16 
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    3
TK = rs  (4.9) 

where the vector r and s are obtained as 
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(4.11) 

where y is the transverse displacement of the cable due to its self-weight; and EA is 
the cable axial rigidity.  

After solving Eq. (4.3), the complex eigenvalues p can be found and the damping 
ratios ξ can be deduced as 
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CHAPTER 5. FRAMEWORK FOR ESTIMATION OF CABLE TENSION 
UNDER LIMITED INFORMATION OF CABLE PROPERTIES BY 
APPLICATION OF ARTIFICIAL NEURAL NETWORKS (ANNS) 

 

Damping and tension are two important engineering values of stay cables. 
Studies on damping was illustrated in Chapters 2, 3 and 4. This chapter proposes a 
framework for estimating tension of stay cables with and without lateral attachments 
(dampers, crossties) under limited information of cable properties. For a vibration-
based cable tension estimation method, cable length, mass per unit length and the first 
few natural frequencies are most likely available. But the other parameters such as 
bending stiffness, axial stiffness, cable inclination, rotational restraint stiffness at the 
cable ends, and lateral components (if any) are often unknown or uncertain. Under 
limited information of cable parameters, the formulations of cable tension developed 
in the past seem to fail to estimate tension. Hence, it raises the question of how to 
identify tension utilizing some available parameters but still accounting for 
unavailable information. With that concern, this chapter proposes a framework for 
cable tension estimation via an application of artificial neural networks (ANNs), in 
which tension is determined using just three parameters (cable length, mass per unit 
length and measured natural frequencies) in conjunction with unknown parameters 
mentioned above. The feasibility and robustness of the proposed framework were 
confirmed through numerical verifications. The proposed framework was applied to 
estimate tensions in stay cables of Tatara Bridge as a case study of full-scale 
engineering application. The content written in this chapter has been published by the 
authors as56 “Le LX, Siringoringo DM, Katsuchi H, Fujino Y. Stay cable tension 

estimation of cable‐stayed bridge under limited information on cable properties 

using artificial neural networks. Structural Control and Health Monitoring.e3015.” 

 

Keywords: Vibration-based cable tension estimation, cable-stayed bridge, artificial 
neural networks, stay cable lateral attachment, dampers, crossties, finite difference 
method. 

 

5.1. Introduction 

Tension and damping of stay cables are usually measured during the 
construction, regular assessments, and long-term health monitoring5. These indicators 
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would provide owner with useful information about bridge safety, possible damages, 
structural changes, and deterioration3,57. Several methods have been adopted to 
determine cable tension which can be broadly categorized into the directly and 
indirectly method. The direct measurement like lift-off test would yield consistent 
tension values and obtain high accuracy but require massive devices, skillful labor as 
well as high cost8. The indirect measurement by a vibration method5,8,58,59, on the 
other hand, has been widely used to estimate cable force owing to various merits such 
as simplicity, non-destructive implementations, and relatively inexpensive cost. This 
makes the indirect measurement by vibration testing favorable for frequent 
application of stay cable tension estimation. 

The reliability of the vibration-based tension estimation method depends highly 
not only on measured frequencies but also on the analytical relationship between 
tension and measured frequencies. Numerous studies have been conducted to propose 
the formulation of cable tension. Tension estimated based on taut string theory60 is 
the simplest one where cable tension is estimated using a relationship that includes 
parameters of cable length, mass per unit length, and the measured natural frequency. 
Taut-string theory, however, neglects the effect of cable bending stiffness and cable 
sag. To alleviate that, Irvine & Caughey15 developed a cable model with sag 
extensibility but still overlooking cable bending stiffness. In addition, some 
researchers5,16,61 have emphasized on the combined effects of the sag and bending 
stiffness on cable tension. Others have considered restrained boundary conditions at 
cable ends rather than purely fixed or hinged ends62,63. Another point to consider is 
the lateral attachments like dampers or cross ties attached to cables; stay cables have 
shown very low inherent damping26, thus cross ties2,27,28 or dampers18,23,29-31 are often 
mounted to cables to suppress wind-induced vibration. The presence of the lateral 
components has made estimation of cable force even more challenging.  

Recently, some of emerging optimization algorithms have been adopted to 
identify not only cable tension but also other parameters like cable bending stiffness, 
restraint stiffness at cable ends as well as the lateral components (e.g., damper 
characteristics). The main purpose of the optimization is to minimize the errors 
between measured and analytical cable frequencies. Kim and Park32 used the 
frequency-based sensitivity-updating algorithm (FBSU) to determine tension, 
bending stiffness and axial stiffness. Ma33 extended the FBSU for a cable with 
rotational restraint ends. Zarbaf et al.34 used Genetic Algorithm (GA) and Particle 
Swarm Optimization (PSO). Dan et al.35 also used PSO for the identification of 
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tension and lateral force components (e.g., additional mass, dampers); however, only 
tension and damping coefficient were successfully identified with acceptable 
accuracy. Apart from the above optimization solutions, Zarbaf et al.36 was among the 
first to introduce an application of Artificial Neural Networks (ANNs) in estimating 
tension. In this work, however, cable inclination, restraints at cable ends and lateral 
components like dampers and cross ties were not incorporated into the cable model.  

For a vibration-based cable tension estimation method, cable length, mass per unit 
length and the first few natural frequencies are most likely available. But the other 
parameters such as bending stiffness, axial stiffness, cable inclination, rotational 
restraint stiffness at the cable ends, and lateral components (if any) are often unknown 
or uncertain. Under limited information of cable parameters, the formulations of cable 
tension developed in the past seem to fail to estimate tension except for taut-string-
theory-based tension formula; the use of this formula, however, oversimplifies cable 
analysis, triggering the overestimation of tension. It raises the question of how to 
identify tension utilizing some available parameters but still accounting for 
unavailable information.  

This chapter proposes a framework for estimating tension of stay cables 
with/without lateral attachments under limited information of cable properties. For 
stay cables without lateral attachments, tension is estimated using three known 
parameters, namely cable length, mass per unit length, and measured frequency while 
still accounting for unknown features like cable bending stiffness, axial stiffness, 
cable inclination and restraint boundary conditions at the cable ends. The 
methodology is then extended to stay cables with lateral attachments (dampers, cross 
ties), whose properties are also considered as unknown parameters. The framework 
is proposed via the application of back-propagation artificial neural networks 
(ANNs). The finite difference formulation of the cable model is derived to create 
datasets for training, validation, and testing in the ANNs scheme. The feasibility and 
robustness of the proposed framework were confirmed through numerical 
verifications. Overall, the results indicated that tension in cables without lateral 
attachments was successfully evaluated using at least two measured frequencies 
whereas cables with lateral attachments needed at least three measured frequencies 
to achieve high accuracy. The proposed framework was applied to estimate tensions 
in stay cables of Tatara Bridge; the results demonstrated that the proposed method 
could estimate the cable tension with acceptable accuracy. 
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5.2. Methodology and modeling of the stay cable 

5.2.1. Cable model 

Schematic diagram of an inclined cable used in this study is shown in Figure 5.1 
with some modifications from the original figure introduced by Fujino and Hoang 
(2008)18. The original one presents an inclined cable with fixed-fixed end, and a 
single damper is attached to the cable. However, the fixed-fixed or hinged-hinged end 
conditions are rarely achieved in practice due to finite stiffness of attached 
components at the cable anchorages (e.g., bearing plates, ring nuts, neoprene rubber 
bushings). Also, the cable is sometimes installed with more than one damper like stay 
cables of Tsurumi Tsubasa Bridge in Japan47. Therefore, in this study, the 
modification of the cable mode is made by considering rotational restraints at cable 
ends as well as several lateral forces. Figure 5.1a shows a cable without lateral 
supports and Figure 5.1b depicts a complex cable with the existence of lateral forces. 
The coordinate system is established with x along the cable chord and y in the 
transverse direction. 

Cable properties consist of mass per unit length m, chord length l, chord tension 
H, inclination , bending stiffness EI, axial stiffness EA, rotational restraint stiffness 
at cable ends Kr, and transverse sag at midspan d. The lateral supports are mounted 
to the cable at location 𝑥𝑑 = (𝑥1,  𝑥2, . . . , 𝑥𝑖) and their respective lateral forces are 
denoted by 𝑓(𝑡) = (𝑓1(𝑡), 𝑓2(𝑡), . . , 𝑓𝑖(𝑡)). 

 

a)     b)  
 
 

FIGURE 5. 1. Schematic diagram: a) cable without lateral components; and b) 
cable with lateral components (Note: lateral components are dampers and/or cross 

ties). 
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5.2.2. Case 1: Equation of motion and eigenvalue analysis of cable without lateral 
attachments 

The general form of equation for cable in-plane motion is expressed as5,18 

2 2 2 4

2 2 2 4

( , ) ( , ) ( ) ( , )( ) 0v x t v x t d y x v x tH m h t EI
x t dx x

  
− + − =

  
 (5.1) 

where  𝑣(𝑥, 𝑡)  denotes the cable transverse displacement; 𝑦(𝑥)  is the cable static 
profile; and ℎ(𝑡)  denotes the time-dependent additional chord tension due to 
vibration. For free vibration of cable, the transverse displacement 𝑣(𝑥, 𝑡) and the 
additional tension ℎ(𝑡) can be described in terms of time-independent and time-
dependent parts as 

( ), ( ) ptv x t v x e=  (5.2) 

and 

( ) pth t he=  (5.3) 

in which 𝑣̃(𝑥) is the cable mode shape and ℎ̃ is the time-independent additional chord 
tension. Note that p in Eq. (5.2) and Eq. (5.3) is defined as 

p i=  (5.4) 

where  characterizes undamped natural circular frequency; and i2 = −1.  

The component ℎ(𝑡)in Eq. (5.1) can be derived from the elastic and geometric 
compatibility of a cable element64. 

0 0
3

0

( , ) ( ) ( , )

( )
( / )

l l

l

u x t dy x v x tdx dx
x dx x

h t
ds dx dx

EA

 
+

 
=

 


 

(5.5) 

where 𝑢(𝑥, 𝑡)is the longitudinal displacement of cable due to vibration; and 𝑑𝑠 =

√𝑑𝑥2 + 𝑑𝑦2 is the tangential length of a cable element.  

Since cable ends are immovable, the first component in the numerator of Eq. (5.5) 
is vanished. By inserting 𝑣(𝑥, 𝑡)  from Eq. (5.2) into Eq. (5.5) and taking the 
integration by parts of its numerator, Eq. (5.5) becomes  
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(5.6) 

Substitution of Eq. (5.2) and Eq. (5.6) into Eq. (5.1) yields the mode shape equation 
as 

 

2

24 2 2
20

3/24 2 22

0

( ) ( )
( ) ( ) ( ) ( ) 0
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  

+  
   




 

(5.7) 

To solve Eq. (5.7), the modification of the Finite Difference Method (FDM) 
originally proposed by Mehrabi & Tabatabai16 is employed. While the original work 
put forward the vibration of a cable with fixed or hinged end boundary conditions, in 
this study, we made the modification by adding rotational restraint at cable ends in 
accordance with the cable model in Figure 5.1. A cable is discretized into n interior 
nodes along the chord length with grid size a1. The derivatives in the differential 
equation Eq. (5.7) are replaced by the difference quotients as shown in Figure 5.2. 

 

 
 

FIGURE 5. 2. Finite difference scheme for discretized cable. 

 

The difference quotients are accordingly substituted into Eq. (5.7) to approximate 
the derivatives, then applying the finite difference approximation with respect to each 
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n = the number of interior nodes. 
i = ith node. 
a1 = nodal grid size. 
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BC-R = node at the right end. 
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interior node (from node 1 to node n). As a result, the discretized version of Eq. (5.7) 
is obtained in the matrix form as 

       2
1 1

0
n nn n n n

K v p M v
  

+ =  (5.8) 

where [𝐾]𝑛×𝑛 is the stiffness matrix; [𝑀]𝑛×𝑛 is the mass matrix; and {𝑣̃}𝑛×1 is the 
vector of nodal displacements.  Inserting p from Eq. (5.4) into Eq. (5.8) leads to 

       2
1 1

0
n nn n n n

K v M v
  

− =  (5.9) 

Mass matrix [𝑀]𝑛×𝑛 is derived from the last part of Eq. (5.7) 

 1 2[ ] diag , ,...,n n nM m m m =  (5.10) 

where mi (i from 1 to n) denotes mass per unit length at node i. Stiffness matrix 
[𝐾]𝑛×𝑛 is defined as 

     1 2n n n n n n
K K K

  
= +  (5.11) 

where [𝐾1]𝑛×𝑛  is obtained from the first two parts of Eq. (5.7), and  [𝐾2]𝑛×𝑛  is 
determined from the third part of Eq. (5.7). The stiffness matrix [𝐾1]𝑛×𝑛 is defined as  

 
2 2 2 2 2

2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2
1 2 2

1

2 22 2 2 2 2

2 22 2 2

02 4 0 0 0 0
04 6 2 4 0 0 0
04 6 2 4 0 0

1[ ] ( ) 00 4 6 2 4 0
00

40 0 0 0 4 6 2
20 0 0 0 0 4

n n

n

n n n
n n n n
n n n n n

HK n n n n n
a

nn n n
nn n

  

  

  

  


 

 



 + − −
 
− − + − − 

 − − + − −
 

= − − + − − 
 
 

− −− − + 
 +− −  n

 (5.12) 

where  = 𝑙√𝐻/𝐸𝐼 is the nondimensional parameter of cable bending stiffness; and 

 is the index of boundary conditions. Note that each row of the matrix corresponds 
to each node, such that row one is written for node 1. 

( )( )

( )( )

22
1 1

22
1 1

/ / 2
6

/ / 2
r

r

K Ta a l
K Ta a l






−
= +

+  (5.13) 

The derivation of the stiffness matrix [𝐾1]𝑛×𝑛  and the index of boundary 
conditions  is detailed in the Appendix. It can be easily verified that the index of 
boundary condition α = 5 or 7 when Kr = 0 (hinged ends) or Kr → ∞ (fixed ends), 
respectively. For these conventional cases (α = 5 or 7), matrix [𝐾1]𝑛×𝑛 is the same as 
the stiffness matrix derived in the original paper by Mehrabi & Tabatabai16.  

Stiffness matrix [𝐾2]𝑛×𝑛 due to cable sag is obtained as16 
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 2
T

n n
K


= rs  (5.14) 

where 

     1 1
1 2 2

1

2... ... ;s T i i i
i n i

y y ys s s s s
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+ −
 − +

= =  
 
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r T i
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i i
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y y
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EA

+ −

=

= =
  −

+  
   

 

(5.16) 

in which yi represents the static profile of cable at node i; static profile of cable y is 
obtained from the differential equation of cable under its self-weight. 

          1 1s s sn nn n
K y M

 
=  (5.17) 

In Eq. (5.17), {𝑀𝑠}𝑛×1 = {𝑚1𝑔𝑐os𝜑    𝑚2𝑔𝑐os𝜑  . . .   𝑚𝑛𝑔𝑐os𝜑}𝑇  is the vector of 
cable self-weight in the in-plane transverse direction. After completing the matrices 
([𝐾]𝑛×𝑛 and [𝑀]𝑛×𝑛), Eq. (5.9) can be solved to determine the kth circular natural 
frequency 𝜔𝑘 ; the natural frequency 𝑓𝑘  of the cable then can be deduced as 𝑓𝑘 =

𝜔𝑘/(2π).  

 

5.2.3. Case 2: Equation of motion and eigenvalue analysis of cable with lateral 
attachments 

Dampers and cross ties are considered as the lateral attachments of the cable, 
installed at locations 𝑥𝑑 = {𝑥1,  𝑥2, . . . , 𝑥𝑖  } as shown in Figure 5.1b. In this study, two 
types of dampers, namely viscous damper and High Damping Rubber (HDR) damper 
are selected because they are widely used for the vibration control of cables, 
especially in Japan9. The performance characteristic of a viscous damper is defined 
by damper coefficient c while an HDR damper is characterized by the spring stiffness 
factor K and loss factor of rubber material . Figure 5.3 displays the schematic 
diagram of viscous and HDR dampers; 𝑣(𝑥𝑑 , 𝑡) is the displacement of the cable at 
the damper location xd. The cable-crosstie system is more complicated than the cable-
damper system, and they are often modelled as rigid links65,66 or non-rigid 
connections66,67 like elastic springs. Because the latter is more realistic, the cross tie 
in this study is also simplified as a non-rigid lateral support with elastic stiffness Kcr. 
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FIGURE 5. 3. Viscous damper and HDR damper. 

 

In the presence of the damper forces 𝑓𝑖(𝑡), the cable’s equation of motion Eq. 
(5.1) is re-written in accordance with the cable model in Figure 5.1b.  

( )
2 2 2 4

2 2 2 4

( , ) ( , ) ( ) ( , )( ) ( )i d
v x t v x t d y x v x tH m h t EI f t x x

x t dx x


  
− + − = −

    
(5.18) 

where 𝛿(𝑥 − 𝑥𝑑) denotes the Dirac delta function; and 𝑓𝑖(𝑡) denotes concentrated 
damper forces. Note that the concentrated loads at damper locations create 
discontinuity in Eq. (5.1) at the damper locations. By using Dirac delta function to 
represent the concentrated load, Eq. (5.18) is valid throughout the entire length of the 
cable and its solution still has the same form as the Eq. (5.2), such that 𝑣(𝑥, 𝑡) =

𝑣̃(𝑥)𝑒𝑝𝑡  and ℎ(𝑡) = ℎ̃𝑒𝑝𝑡 . However, the complex number p is now re-written for 
damped system instead of undamped cable:  

21p i  = −  −
 

(5.19) 

where  characterizes the damping ratio; and 𝜔√1 − 2is the damped natural angular 

frequency. 

Substitution of damper forces into Eq. (5.18) gives 

( ) ( ) ( )
2 2 2 4

2 2 2 4

( , )( , ) ( , ) ( ) ( , )( ) 1 ( , )d
d d d

v x tv x t v x t d y x v x tH m h t EI c x x K i v x t x x
x t dx x t

  
    

− + − = − + + −     
 (5.20) 

Making use of  𝑣(𝑥, 𝑡) = 𝑣̃(𝑥)𝑒𝑝𝑡 and ℎ(𝑡) from Eq. (5.6), Eq. (5.20) becomes 

 

𝑓𝑖(𝑡) = 𝑐
𝜕𝑣(𝑥𝑑 , 𝑡)

𝜕𝑡
 

𝑣(𝑥𝑑 , 𝑡) 𝑐 

Viscous damper 

𝑓𝑖(𝑡) = 𝐾(1 + 𝑖)𝑣(𝑥𝑑 , 𝑡) 

𝑣(𝑥𝑑 , 𝑡) 𝐾(1 + 𝑖) 

HDR damper 
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  

+  
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(5.21) 

The concentrated elements 𝑐𝛿(𝑥 − 𝑥𝑑) and 𝐾(1 + 𝜙𝑖)𝛿(𝑥 − 𝑥𝑑)are transformed 
into distributed parts before writing the finite difference approximations for Eq. 
(5.21). Dirac delta function can be presented by a cosine approximation, a piecewise 
cubic function, a linear hat function hat68, etc. For the simplicity, the piecewise linear 
hat function is adopted in this study to distribute the concentrated 𝑐 and 𝐾(1 + 𝜙𝑖) 
over the cable length. Figure 5.4 shows the distributed damper coefficients. 

 
 

FIGURE 5. 4. Distributed damper coefficient over cable length. 

 

After distributing damper coefficients over the cable’s length, Eq. (5.21) can be 
discretized using the finite difference method as in the case 1. The matrix form of Eq. 
(5.21) is 

           2
1 1 1

0
n n nn n n n n n

K v p C v p M v
    

+ + =  (5.22) 

where 

       1 2 3n n n n n n n n
K K K K

   
= + +  (5.23) 

It is noted that [𝑀]𝑛×𝑛 , [𝐾1]𝑛×𝑛 , and [𝐾2]𝑛×𝑛  are the same as in Eq. (5.10), Eq. 
(5.12), and Eq. (5.14), respectively. Stiffness matrix [𝐾3]𝑛×𝑛  is the additional 
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stiffness due to the presence of HDR damper, which is derived from the second part 
inside the square brackets in Eq. (5.21). Based on the equivalent scheme of the 
distributed HDR damper coefficient in Figure 5.4, the diagonal stiffness matrix 
[𝐾3]𝑛×𝑛 contains only one non-zero element at the node where the HDR damper is 
attached to, and the matrix [𝐾3]𝑛×𝑛 can be defined as: 

 3 1[ ] diag 0, 0,..., (1 ) / ,..., 0n nK K i a = +  (5.24) 

The damping matrix [𝐶]𝑛×𝑛 is derived from the first component inside the square 
brackets of Eq. (5.21), which is related to viscous damper. Similarly, matrix [𝐶]𝑛×𝑛 
will have only one non-zero component at the node of the viscous damper location 
and zeros elsewhere, so that: 

 1[ ] diag 0, 0,..., / ,..., 0n nC c a =  (5.25) 

Noting that if several viscous dampers or HDR dampers are installed, Eq. (5.24) and 
Eq. (5.25) can be further modified by adding distributed damper coefficients 𝑐/𝑎1 or 
𝐾(1 + 𝜙𝑖)/𝑎1 to the nodes where dampers are attached to.  

If the cable is equipped with the cross ties (stiffness Kcr), an additional stiffness 
matrix [𝐾4]𝑛×𝑛  due to cross ties will be added to Eq. (5.23). Stiffness matrix [𝐾4]𝑛×𝑛 
takes the same form as [𝐾3]𝑛×𝑛  in Eq. (5.24), just replacing 𝐾(1 + 𝜙𝑖) by 𝐾𝑐𝑟 .To 
solve the eigenfrequencies, Eq. (5.22) is re-formed as 
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         
+ =      

−           
(5.26) 

in which [𝐼]𝑛×𝑛  is the identity matrix. By solving Eq. (5.26) the complex 
eigenfrequencies pk at mode k can be found. The cable natural circular frequencies 
then can be accordingly deduced using Eq. (5.19) 

 ( )  ( )
2 2

Re Imk k kp p = +
 

(5.27) 

Natural frequency 𝑓𝑘 at mode k is 𝑓𝑘 = 𝜔𝑘/(2π). 

 

5.3. Application of ANNs for cable tension estimation with unknown cable 
parameters 

A framework for the vibration-based cable tension estimation, which accounts 
for cable unknown parameters, is proposed in this section using an application of 
Artificial Neural Networks (ANNs). ANNs are a computational modelling tools with 
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the utilization in solving many real-world problems, of which the models are complex 
and difficult to be traditionally addressed 69. There have been many applications of 
the neural networks in civil engineering, e.g., optimization70, structural system 
identification71, etc. In fact, the ANNs are the architecture of fully connected neural 
networks which are composed of an input layer, an output layer, and hidden layers. 
Information from the input layer will pass through neurons in hidden layers to the 
output layer via an activation function and weights. In this study, the user interface 
of MATLAB’s Neural Network Toolbox (R2019a), namely neural net fitting is used 
for implementing ANNs; the Levenberg-Marquardt backpropagation training 
algorithm is used; the Levenberg-Marquardt algorithm is known as a solver to tackle 
the least squares problems by minimizing the square of errors of data points72, and it 
results in faster and better performance in training than others73. Figure 5.5 describes 
three steps of the proposed framework.  

Step 1. Generate datasets: Cable length l and mass per unit length m are set to 
be known parameters. Other parameters including cable tension H, bending stiffness 
EI, axial stiffness EA, cable inclination , rotational restraints at cable ends Kr, and 
information of lateral components (𝑥𝑑 , 𝑐, 𝐾, 𝜙, 𝐾𝑐𝑟) are considered as the unknowns. 
Each of these unknown elements will be randomly generated into  datapoints from 
lower bound (LB) to upper bound (UB). Afterwards, the known and unknown 
parameters are combined to create   sets of data, where each set of data will contain 
a full description of the cable parameters (𝑙, 𝑚, 𝐻, 𝐸𝐼, 𝐸𝐴, 𝜑, 𝐾𝑟 , 𝑥𝑑 , 𝑐, 𝐾, 𝜙, 𝐾𝑐𝑟). The 
natural frequencies fk of the cable with respect to each dataset are computed using Eq. 
(5.9) or Eq. (5.22) depending on whether the cable has lateral attachments or not.  

Step 2. Training, validation and testing of datasets with ANNs: Cable length 
l, mass per unit length m, generated tension H and computed natural frequencies fk 
from step 1 are grouped into matrices of numeric input and numeric output as Eq. 
(5.28a) and Eq. (5.28b), respectively. The input matrix has l, m, and fk, while the 
output contains H.  

It is noted that other parameters of cable and lateral attachments do not appear in 
the input layer because these components are considered as the unknowns. It is worth 
mentioning again that natural frequencies embedded in the input matrix are computed 
from a full description of cable parameters. 



 

91 
 

( )

( )1 1 1 1
1 2 1 1

2 2 2 2

2

; , , , ,

k k k k k

l l l l
m m m m
f f f f

Input Output H H H H
f f f f

f f f f

  



− 

+ 

 
 
 
 

= = 
 
 
  
 

 (5.28a,b) 

ANNs are utilized to map datasets from input to output. What lies at the root of 
this mapping is to pinpoint the relationship between input and output. In other words, 
to find a roadmap between input and output. After successfully mapped, the trained 
mode is ready to use to estimate cable tension (output). The datasets are divided into 
N1% for training, N2% for validation, and N3% for testing. Again, the procedures of 
training, validation and testing in this study are implemented in the MATLAB’s 
Neural Network Toolbox (R2019a).  
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FIGURE 5. 5. Framework of vibration-based cable tension estimation with 
ANNs.

To evaluate the performance of training a network, three assessment indicators 
are used, namely correlation coefficient (R < 1), Mean Absolute Percentage Error 
(MAPE), and Root Mean Square Error (RMSE) and they are defined respectively as:
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In the above equations, N is the number of data points; 𝐻𝑝𝑟𝑒𝑑,𝑖  and 𝐻𝑡𝑎𝑟𝑔,𝑖 are the 

predicted and targeted tensions of the ith data point, respectively; and 𝐻𝑝𝑟𝑒𝑑, 𝐻𝑡𝑎𝑟𝑔 

are their respective averages. It is noted that the targeted tensions 𝐻𝑡𝑎𝑟𝑔,𝑖  are the 
values in Eq. (5.28b) while the predicted tensions 𝐻𝑝𝑟𝑒𝑑,𝑖  are obtained by training 
networks with datasets in the input. 

Step 3. Use trained ANNs model to estimate cable tension: After completing 
step 2, a well-trained model is created. In other words, a relationship between the 
input and output is created. Therefore, one can obtain the cable tension H by 
importing three available features (length, mass per unit length and measured 
frequencies) into the trained model. 

 

5.4. Numerical verifications 

Four cables are selected in the verifications. The selection of the cables was 
based on the sag-extensibility 2 parameter (Irvine & Caughey15) and the bending 

stiffness parameter 𝜁 = 𝑙√𝐻/𝐸𝐼 (Zui et al.5). 

2 2
2 cos 1 cos; 1

/ 8e
e

mgl l mglL l
H HL EA H

 


    
=  +    

     
 (5.32) 

Large 2 means large sag effect, and vice versa; large   means small effect of 
bending stiffness, and vice versa. Mehrabi & Tabatabai16 stated that stay cables with 
2 < 3.1 and  > 50 cover 95% of cables in the cable-stayed bridges around the 
world. With that, four typical cables were selected as: cable C01 (small sag 2 = 0.1, 
and small bending stiffness  =  605); cable C02 (small sag 2  =  0.1 and large 
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bending stiffness  = 50); cable C03 (moderate sag 2= 1.41 and moderate bending 
stiffness  = 100); and cable C04 (large sag 2 = 3.1 and large bending stiffness 
 = 50). Table 5.1 summarizes properties of the four selected cables in the 
verifications.

TABLE 5. 1. Cable properties

No.
l

(m)

H

(kN)
m

(kg/m)


(o)

EA

(N)
EI

(N.m2)
Kr

(N.m/rad)
2 

C01 100 1069.76 78.30 30 2.77E+07 2.92E+04 1.00E+04 0.10 605

C02 100 12947.14 78.30 30 4.90E+10 5.18E+07 1.00E+05 0.10 50

C03 100 1723.83 78.30 30 1.63E+09 1.72E+06 1.00E+06 1.41 100

C04 100 2325.26 78.30 30 8.81E+09 9.30E+06 1.00E+07 3.10 50

5.4.1. Verification 1: Cable without lateral attachments

The natural frequencies of the cables in Table 5.1 are calculated using Eq. (5.9) and 
shown in Table 5.2. Each cable is discretized into 200 interior nodes. This number of 
nodes is chosen based on the frequency convergence against number of nodes as can 
be seen in Figure 5.6.

FIGURE 5. 6. Convergence of cable fundamental frequency versus the number of 
interior nodes.
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TABLE 5. 2. Natural frequencies of the cables without lateral supports 

No. 
Natural frequencies of cables from Mode 1 to Mode 8 

f1  (Hz) f2  (Hz) f3  (Hz) f4  (Hz) f5 (Hz) f6 (Hz) f7 (Hz) f8 (Hz) 

C01 0.587 1.169 1.754 2.338 2.923 3.508 4.092 4.677 

C02 2.046 4.099 6.207 8.383 10.65 13.026 15.529 18.174 

C03 0.790 1.497 2.253 3.012 3.781 4.559 5.351 6.156 

C04 0.992 1.785 2.709 3.649 4.637 5.667 6.755 7.900 

 

In the verification, we assumed that the four cables in Table 5.1 were existing 
cables, and we only know cable length l, mass per unit length m with values shown 
in Table 5.1. In addition, we assumed that the frequencies of the cables fk were 
available from measurement as listed in Table 5.2. Other parameters (EI, EA, , Kr) 
were unknown. Cable tensions H were estimated using the three known parameters 
and regardless of the other unknown components. The estimated tensions by ANNs 
then compared with exact tensions H in Table 5.1 for the verification. 

As mentioned in Section 5.3, the first step was to generate datasets. EI, EA,  Kr 
and H were generated from lower bound to upper bound [LB: UB] and then combined 
with the known features (l, m). In this verification, LB and UB were set to be 50% 
lower and 50% higher than their exact values, respectively. The ranges of datasets are 
presented in Table 5.3. 

 

TABLE 5. 3. Ranges of cable parameters used in generating datasets 

No. 

Unknown parameters 
Known 

parameters 

EI (N.m2) EA (N) Kr (N.m/rad) H (kN)  (o) l 
(m) 

m 
(kg/m) LB UB LB UB LB UB LB UB LB UB 

C01 1.46E+4 4.38E+4 1.38E+7 4.15E+7 5.00E+3 1.50E+4 5.35E+2 1.60E+3 15.0 45.0 100.0 78.30 

C02 2.59E+7 7.77E+7 2.5E+10 7.4E+10 5.00E+4 1.50E+5 6.47E+3 1.94E+4 15.0 45.0 100.0 78.30 

C03 8.62E+5 2.59E+6 8.16E+8 2.45E+9 5.00E+5 1.50E+6 8.62E+2 2.59E+3 15.0 45.0 100.0 78.30 

C04 4.65E+6 1.40E+7 4.40E+9 1.32E+10 5.00E+06 1.50E+7 1.16E+3 3.49E+3 15.0 45.0 100.0 78.30 

Note: LB = lower bound; UB = upper bound. 
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Range of each unknown parameter in Table 5.3 was generated into 1000 data 
points (interval of 0.1% of exact value), randomly shuffled, then combined with l and 
m to establish 1000 complete sets of data. Each set had a full description of cable 
parameters (EI, EA, Kr   l, m). Natural frequencies of cable in each set were then 
determined using Eq. (5.9).

Figure 5.7, as an example, plots the scatters of the fundamental frequency of 1000 
data points against the cable properties for cable C04. It is noted that although some 
data points are unrealistic owing to the random combinations of the cable parameters, 
they are not faulty.   

FIGURE 5. 7. Fundamental frequencies of cable C04 against cable properties.

The second step is training, validating, and testing in ANNs. Input and output 
were prepared before training, validation, and testing. Input composed of known 
parameters (l, m, f1, f2,…, fk). Output presented targeted tensions H. The input was 
then mapped to the output using the ANNs. Noting that, the input and output were 
prepared in the form of numeric matrices as Eq. (5.28a) and (5.28b), respectively. 
Datasets were then separated into three packages: for training (70% datasets), 
validation (15% datasets) and testing (15% datasets). In this study, the number of 
neurons in the hidden layer was set to be 15; using more than 15 neurons did not 
noticeably increase the training performance (R, MAPE, RMSE) as can be seen in 
Figure 5.8 which is plotted for the cable C04 as an example. 
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FIGURE 5. 8. Performance of training in ANNs versus number of neurons.

Because the training in ANNs was a random process, they were conducted 30 
times independently, and the results were the average of 30 times. Figure 5.9 displays 
the mapping performance (R, MAPE, RMSE) between the input and the output. 
Overall, the increase in the number of used frequencies (more features in input) 
results in higher performance of training a network. Interestingly, the mapping 
became consistently good when at least two natural frequencies were simultaneously 
used for training. For instance, R > 0.999 and MAPE < 1.5% for all cables when two 
frequencies were used. In addition, using more than two frequencies did not 
significantly raise the training performance.

FIGURE 5. 9. R, MAPE and RMSE of training, validation and testing in ANNs for 
cables without lateral attachments.
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When only the fundamental frequency f1 was utilized, cables C01 and C02 still 
achieved relatively good performance (R > 0.99 and MAPE < 0.5%) whereas cable 
C03 (R ≈ 0.94 and MAPE ≈ 9%) resulted in lower training quality and even worse 
for cable C04 (R ≈ 0.65 and MAPE ≈ 20%). This happened because cables C01 and 
C02 have small sag parameter while cables C03 and C04 have moderate and large 
sag parameters, respectively; cable sag has been proved to have significant influence 
on the first cable vibration mode1. 

Figure 5.10 illustrates the scatters between estimated tensions and the targeted 
tensions for cable C04 as an example with respect to three scenarios of the input: 
scenario 1 (l, m, f1), scenario 2 (l, m, f1, f2), and scenario 3 (l, m, f1, f2, f3). It is evident 
that cable C04 had poor training quality when input contained only 3 features like in 
the scenario 1, this performance was greatly improved with the increase in the number 
of used frequencies. Recall that the estimated tensions in Figure 5.10 were the values 
determined from training in ANNs with the given input whereas targeted tensions 
were the values that the input headed to. After successfully trained, the trained ANN 
model is used for estimating tension with the measured frequencies.

a) b) c)

FIGURE 5. 10. Scatters between estimated and targeted tensions with different 
input scenarios: a) scenario 1 (l, m, f1); b) scenario 2 (l, m, f1, f2); and, c) scenario 3 

(l, m, f1, f2, f3).

In step 3, the trained model was employed to estimate cable tension. Importing 
two cable properties (l, m) in Table 6.1 and frequencies fk in Table 5.2 into the trained 
ANN model, tension in each cable is estimated and compared with exact tension H. 
The results are shown in Table 5.4. When only natural frequency f1 was available, the 
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absolute errors of tension were large, namely 5.17% and 10.8% for cables C03 and 
C04, respectively. In contrast, cable C01 and C02 still obtained a high accuracy. On 
condition that natural frequencies of the higher modes are available, the errors 
between the exact and estimated tensions were relatively small, less than 0.2% for all 
cables. 

 

TABLE 5. 4. Estimated tension by ANNs for cables without lateral attachments 

No. 
Exact 

H (kN) 

Tension H based on trained ANN model (kN) 

Increasing number of used frequencies 

1 2 3 4 5 6 7 8 

C01 1069.75 
1069.94 

(0.02%) 

1069.84 

(0.01%) 

1069.91 

(0.01%) 

1070.14 

(0.04%) 

1069.93 

(0.02%) 

1070.12 

(0.03%) 

1070.11 

(0.03%) 

1069.94 

(0.02%) 

C02 12947.14 
12952.11 

(0.04%) 

12950.80 

(0.03%) 

12947.50 

(0.00%) 

12947.03 

(0.00%) 

12946.50 

(0.00%) 

12944.88 

(-0.02%) 

12945.90 

(-0.01%) 

12945.71 

(-0.01%) 

C03 1723.83 
1634.67 

(-5.17%) 

1725.43 

(0.09%) 

1725.63 

(0.10%) 

1724.99 

(0.07%) 

1724.96 

(0.07%) 

1725.13 

(0.08%) 

1725.05 

(0.07%) 

1725.18 

(0.08%) 

C04 2325.26 
2074.68 

(-10.8%) 

2328.35 

(0.13%) 

2327.42 

(0.09%) 

2323.10 

(-0.09%) 

2323.15 

(-0.09%) 

2323.36 

(-0.08%) 

2323.45 

(-0.08%) 

2323.59 

(-0.07%) 

Note: (∙) denotes the error between estimated and exact tensions. 

 

Usually, when only information on the length, mass per unit length and measured 
frequencies available, tension identified by taut-string theory60.  

2
2

1

1 4
N

k

k

fH ml
N k=

 
=  

 
  (5.33) 

where fk is the natural frequency of cable at mode k; and N is the number of 
consecutive vibration modes. The results are shown in Table 5.5.  

The results in Table 5.5 demonstrate that for a cable with small bending stiffness 
and small sag parameters like cable C01, tension was successfully calculated with 
relatively small errors, less than 1.0%. This is understandable because sag and 
bending stiffness are neglected in string theory. However, taut-string theory failed to 
accurately estimate tension of cables with either moderate or significant influences 
of sag/bending stiffness such as cable C02, C03, and C04, that resulted in unaccepted 
errors. Furthermore, bending stiffness caused larger errors in higher modes (e.g., 
C02) whereas significant sag extensibility triggered large errors in the lower modes 
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(e.g., C03 and C04). By comparing the results in Tables 5.4 and 5.5, it is fair to say 
that with the same amount of information about cable (l, m, fk), tension estimated by 
the proposed approach is far better than that of the simple taut-string formula.  

 

TABLE 5. 5. Estimated cable tension based on taut-string theory Eq. (5.33) 

No. 
Exact H 

(kN) 

Tension H based on taut-string formulation (kN) Eq. (5.33) 

Increasing number of used frequencies  

1 2 3 4 5 6 7 8 

C01 1069.75 
1078.90 

(0.85%) 

1074.52 

(0.45%) 

1073.11 

(0.31%) 

1072.39 

(0.25%) 

1071.97 

(0.21%) 

1071.70 

(0.18%) 

1071.52 

(0.17%) 

1071.40 

(0.15%) 

C02 12947.14 
13106.98 

(1.23%) 

13129.70 

(1.41%) 

13221.54 

(2.12%) 

13355.17 

(3.15%) 

13525.83 

(4.47%) 

13731.65 

(6.06%) 

13971.83 

(7.91%) 

14245.92 

(10.03%) 

C03 1723.83 
1954.84 

(13.40%) 

1855.20 

(7.62%) 

1825.83 

(5.92%) 

1813.24 

(5.19%) 

1808.78 

(4.93%) 

1808.74 

(4.93%) 

1811.81 

(5.10%) 

1817.18 

(5.24%) 

C04 2325.26 
3081.80 

(32.54%) 

2787.77 

(19.89%) 

2709.72 

(16.53%) 

2683.95 

(15.43%) 

2685.98 

(15.51%) 

2703.96 

(16.29%) 

2734.31 

(17.59%) 

2774.30 

(19.30%) 

Note: (∙) is the error of tension by string theory compared to exact value. 

 

5.4.2. Verification 2: Cable with lateral attachments 

Four cables with the properties shown in Table 5.1 are re-used in this section. 
Additionally, a High Damping Rubber (HDR) damper, a viscous damper, and a cross 
tie are assumed to be mounted to each cable at locations 2%, 5% and 50% of the cable 
length, respectively. In practice, the damper locations are often restricted due to 
aesthetic and technical issues; de Sá Caetano1 reported that the damper location is 
around 1% to 6% of cable length. Also, the cross tie is considered as a lateral elastic 
spring. The information of these lateral attachments is given in Table 5.6. Based on 
the cable properties and parameters of attachments, the analytically natural 
frequencies and cable mode shapes are solved using Eq. (5.22).  

Table 5.7 shows the calculated natural frequencies of the cables with the lateral 
attachments, and Figure 5.11 accordingly displays their normalized mode shapes over 
the cable length from mode 1 to mode 4. In fact, the natural frequencies of the cables 
with these lateral attachments were higher than that of the cables without any lateral 
attachment. This is attributed to the additional stiffness provided from the lateral 
supports, mainly by the cross tie. The increase ratios of frequencies due to the added 
attachments are put in the round brackets in Table 5.7. Overall, the affected modes 
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are heavily dependent on the locations and stiffnesses of the lateral attachments. In 
this verification example, because the cross tie was transversely attached to the cables 
at mid length, the natural frequencies and mode shapes of the odd modes were 
noticeably affected, especially the fundamental mode.  

 

TABLE 5. 6. Information of lateral attachments 

No. 

HDR damper Viscous damper Cross tie 

Location 

x1 (m) 

Loss 
factor 

 

Spring 
stiffness factor 

K (N/m) 

Location 

x2 (m) 

Viscous 
coefficient 

c (N.s.m-1) 

Location 

x3 (m) 

Stiffness 

Kcr (N/m) 

C01 2.0 0.6 4.59E+05 5.0 5.83E+04 50.0 5.00E+05 

C02 2.0 0.6 5.55E+06 5.0 2.03E+05 50.0 5.00E+05 

C03 2.0 0.6 7.39E+05 5.0 7.40E+04 50.0 5.00E+05 

C04 2.0 0.6 9.97E+05 5.0 8.59E+04 50.0 5.00E+05 

 

TABLE 5. 7. Analytically derived natural frequencies of cables with lateral supports 

No. 
Natural frequencies of cables from Mode 1 to mode 8 

f1  (Hz) f2  (Hz) f3  (Hz) f4  (Hz) f5 (Hz) f6 (Hz) f7 (Hz) f8 (Hz) 

C01 
1.1105 

(1.89) 

1.2288 

(1.05) 

2.2322 

(1.27) 

2.4976 

(1.07) 

3.3698 

(1.15) 

3.7592 

(1.07) 

4.5234 

(1.11) 

5.0163 

(1.07) 

C02 
2.7128 

(1.33) 

4.2924 

(1.05) 

6.7992 

(1.10) 

8.9223 

(1.06) 

11.4817 

(1.08) 

13.9619 

(1.07) 

16.7220 

(1.08) 

19.5756 

(1.08) 

C03 
1.4028 

(1.78) 

1.5627 

(1.04) 

2.8070 

(1.25) 

3.2064 

(1.06) 

4.2976 

(1.14) 

4.8783 

(1.07) 

5.8652 

(1.10) 

6.5997 

(1.07) 

C04 
1.6549 

(1.67) 

1.8410 

(1.03) 

3.2985 

(1.22) 

3.8472 

(1.05) 

5.1952 

(1.12) 

6.0331 

(1.06) 

7.3503 

(1.09) 

8.4567 

(1.07) 

Note: (∙) denotes the frequency ratio between cable with and cable without lateral 
attachments. 

 

The same verification process is repeated for the cable with attachments. The 
verification was conducted with a scenario that locations and characteristics of 
dampers and cross tie were treated as unknown parameters. Tensions were 
determined with three parameters (l, m, fk), in which l and m are shown in Table 5.1 
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and frequencies fk are listed in Table 5.7. Estimated tensions were then confirmed 
with the exact tensions in Table 5.1. 

In this verification, we consider all information of lateral supports as unknowns. 
These unknowns were generated into 1000 data points from 0.5 to 1.5 times their 
exact values, shuffled, and combined with other cable parameters in Table 5.3 to 
create 1000 complete sets of data. The natural frequencies correspond to each set 
were computed using Eq. (5.22). The procedures for training, validation and testing 
in ANNs in this verification were the same as in the first case of the verification. The 
performance (R, MAPE, and RMSE) of training, validation, and testing was 
evaluated with respect to the increasing number of used frequencies. After 
successfully trained, the model was employed to estimate the tensions. Figure 5.12 
plots R, MAPE, and RMSE of training, validation, and testing. Table 5.8 illustrates 
the estimated tensions; the errors of tensions compared with exact values are denoted 
by the round brackets. 

It can be seen from Figure 5.12 and Table 5.8 that when only the first natural 
frequency f1 was used, the method failed to accurately estimate cable tension; 
correlation factor R < 0.89 and error of tension > 17 % compared to exact tensions; 
these errors were significantly higher than those of the cables without lateral 
attachments (verification 1). A better accuracy was achieved if more than two 
frequency was used. 

  

TABLE 5. 8. Estimated tensions by ANNs with unknown information of lateral 
attachments 

No. 
Exact H 

(kN) 

Tension H based on trained ANN model (kN) 

Increasing number of used frequencies 

1 2 3 4 5 6 7 8 

C01 1069.75 
1298.50 

(21.38) 

1076.39 

(0.62) 

1063.78 

(-0.56) 

1066.03 

(-0.35) 

1061.39 

(-0.78) 

1060.85 

(-0.83) 

1056.56 

(-1.23) 

1054.90 

(-1.39) 

C02 12947.14 
15185.13 

(17.29) 

12499.02 

(-3.46) 

12852.01 

(-0.73) 

12832.37 

(-0.89) 

12842.13 

(-0.81) 

12843.40 

(-0.80) 

12899.71 

(-0.37) 

12945.93 

(-0.01) 

C03 1723.83 
2098.94 

(21.76) 

1717.96 

(-0.34) 

1692.75 

(-1.80) 

1714.18 

(-0.56) 

1709.83 

(-0.81) 

1718.59 

(-0.30) 

1714.06 

(-0.57) 

1719.79 

(-0.23) 

C04 2325.26 
2754.28 

(18.45) 

2252.50 

(-3.13) 

2270.12 

(-2.37) 

2264.69 

(-2.60) 

2273.30 

(-2.23) 

2294.54 

(-1.32) 

2301.19 

(-1.04) 

2285.64 

(-1.70) 

Note: (∙) denotes the error between estimated and exact tensions. 
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FIGURE 5. 11. Normalized mode shapes of cables with lateral attachments.

FIGURE 5. 12. R, MAPE and RMSE of training, validation and testing in ANNs 
for cables with lateral attachments.



 

104 
 

5.5. Discussion on the ranges of unknown parameters for training, validation 
and testing in ANNs 

This section shall describe how the ranges of unknown parameters are selected 
when generating datasets. The unknown components are EI, EA, H, cable inclination 
, restraint at cable ends Kr, and parameters of lateral attachments (xd, c, K, , Kcr) if 
any. The selection of the ranges for these components should be based on an actual 
situation. For example, the technical reports/drawings of cables in the design or 
construction stages would provide undoubtedly useful information of these 
unknowns. Based on that, the lower bound and upper bound of unknown parameters 
can be set. It is worth noting that narrowing ranges will result in a smaller number of 
generated data points and vice versa. The following discussions are made to some 
parameters which are almost undocumented. 

 

5.5.1. Range of cable tension 

Since cable length l, mass per unit length m and measured frequencies fk are 
known, the tension H would be pre-estimated using the formulation of taut-string 
theory Eq. (5.33). The error between taut-string tension and the exact one would be 
less than 20% for most of stay cables. However, this error is, in some cases, higher 
than 30% for some cables with extremely large sag and bending stiffness parameters, 
like cable C04 in Table 5.1. For generating datasets, tension H can be generated based 
on taut-string tension. 

It is worth noting that tension by Eq. (5.33) is derived for taut string without 
lateral attachments. For cables with dampers, dampers are often mounted near cable 
ends leading to small perturbation of frequencies between cables with and without 
dampers13. As a result, Eq. (5.33) can be still acceptable for cable with dampers. For 
cables with cross ties, Eq. (5.33) can lead to unaccepted errors in estimation of cable 
tension. However, this difficult issue can be tackled by identifying the unaffected 
vibration modes. For example, Eq. (5.33) can be used for mode 2 of cables which 
have a cross tie located at mid length.      

 

5.5.2. Range of cable bending stiffness, axial stiffness and cable inclination angle 

If multiple measured frequencies fk of cables are available, the linear regression 
of (𝑓𝑘 𝑘⁄ )2 versus square of mode k2 can be established8 as 
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2
2kf Ak B

k
 

= + 
 

 (5.34) 

where A and B denote the slope and a constant of the regression graph, respectively. 
By modelling a cable as an axially loaded beam with hinged end boundary 
conditions, the frequency formulation is8 

2 2
2

4 24 4
kf EI Hk

k ml ml
 

= + 
 

 (5.35) 

Introducing Eq. (5.34) into Eq. (5.35) yields 𝐸𝐼 = 4𝑚𝑙4𝐴/𝜋2.  Based on this 
value, a range of EI can be approximately selected. However, Cho et al.8 reported 
from their measurement of cable vibrations that a negative slope in the relationship 
between (𝑓𝑘 𝑘⁄ )2 and k2 could  occur leading to negative bending stiffness; they 
pointed some possible sources of this negative linearity such as measurement noise. 
On condition that Eq. (5.34) fails to give information of bending stiffness due to a 
small number of recorded modes or some source of measurement errors, EI can be 
generated based on the common range of bending stiffness parameter  (50 <   <

 605) as suggested by Mehrabi & Tabatabai16.The determination of axial stiffness 
EA would refer to the common range of sag-extensibility parameter 2 (0 < 2< 
3.1)16. Using Eq. (5.32), a range of EA would be obtained. Also, the inclination angle 
 of the cables would be selected based on the observation at field. 

 

 5.5.3. Range of rotational restraint stiffness at cable ends 

In this study, the parametric analysis was conducted to observe the influence of 
restraint stiffness on natural frequencies. For that purpose, 19 cables were used 
including 4 cables in Table 5.1 except for parameter Kr and 15 cables in Table 5.9. 
Table 5.9 shows the properties of 15 cables which were introduced in the paper of 
Javanbakht et al.74 The authors cited from a report of Tabatabai et al.75, and mentioned 
that these 15 typical cables represented the engineering specifications of 1406 stay 
cables of 16 cable-stayed bridges. Briefly, the cables in Table 5.9 have length l (43.7 
m – 460.1 m), inclination angle  (22.60 − 58.90), mass per unit length m (52.8 kg/m 
– 214 kg/m), tension H (2.24×103 kN – 9.49×103 kN), bending stiffness parameter  
(57.4 – 595.2), and sag-extensibility parameter 2 (0.01 – 2.70). 
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TABLE 5. 9. Cable properties used in parametric analysis

No. l (m) H (kN) m (kg/m)  (o) EA (N) EI (N.m2) 2 

C05 43.7 2240.20 72.3 49.4 1.23E+09 1.23E+06 0.04 59.0

C06 61.7 5738.00 103.0 58.9 1.97E+09 2.78E+06 0.01 88.7

C07 83.0 8554.90 214.7 27.0 4.73E+09 1.79E+07 0.18 57.4

C08 101.8 2813.00 52.8 27.8 1.06E+09 5.55E+05 0.10 229.2

C09 135.9 5081.30 89.2 24.4 1.94E+09 1.70E+06 0.17 234.8

C10 168.7 8346.20 167.1 25.5 3.51E+09 9.50E+06 0.38 158.1

C11 200.5 7772.00 136.3 25.3 2.69E+09 4.01E+06 0.34 279.0

C12 245.0 9493.80 188.3 23.6 3.47E+09 9.01E+06 0.70 251.5

C13 276.6 5062.90 94.8 35.2 2.23E+09 2.41E+06 0.76 400.8

C14 293.0 5335.70 100.7 33.7 2.36E+09 2.71E+06 0.90 410.9

C15 327.1 4916.80 94.8 34.4 2.23E+09 2.41E+06 1.18 467.1

C16 363.0 4537.10 89.3 26.9 2.14E+09 2.23E+06 1.84 517.7

C17 401.6 4774.50 93.0 25.0 2.23E+09 2.41E+06 2.25 565.1

C18 421.1 4947.20 98.6 24.1 2.36E+09 2.71E+06 2.70 568.7

C19 460.1 6665.90 118.9 22.6 2.86E+09 3.98E+06 2.37 595.2

FIGURE 5. 13. Normalized fundamental frequency of 19 cables over a wide range 
of Kr.
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Figure 5.13 presents the normalized fundamental frequency over a wide range of 
rotational stiffness value Kr. Normalization 𝑓1(𝐾𝑟)/𝑓1(𝐾𝑟 → ∞) means normalizing 
to the frequency of corresponding fixed-fixed end cable (𝐾𝑟 → ∞). Based on the 
parametric results of 19 cables which cover a relatively broad range of cable 
properties, it is recommended that rotational stiffness with a range from 1 ×105 
N.m/rad to 1×109 N.m/rad would be used for generating datasets because Kr within 
this range poses the pivotal changes in the cable frequencies, as can be seen in the 
shadow area in Figure 5.13. In other words, cables with Kr < 1×105 can be considered 
as hinged-hinged end whereas Kr > 1×109 N.m/rad can be treated as fixed-fixed end. 

 

5.5.4. Range of the parameters of lateral attachments 

Location of damper or cross tie xd is measured from a cable end. The range of 
this location can be approximately made by the observation at field. For cable with 
viscous dampers, damper coefficient c is usually designed to maximize added 
damping. This value of c is so-called optimal damper coefficient copt as13. The range 
of c then can be set based on copt.  

( )/ /opt dc Hm kx l=  (5.36) 

where k is the assigned mode; and xd is the location of damper.  

For cable with HDR dampers, there are two damper characteristics: loss factor of 
rubber material  and spring stiffness factor K. According to some test results,  
ranges from 0.12 to 0.18 for natural rubber (NR60)52, from 0.30 to 0.41 for butyl 
rubber (BR60)52, and around 0.67 for neoprene rubber53. The loss factor  of HDR 
dampers for the vibration control of the stay cables in Shinminato Bridge in Japan 
was 0.62. To the best of our knowledge, commercial rubbers with the range 0 <   
1 are widely manufactured and used. The range of spring stiffness factor K can be 
selected by referring to the its optimal value30. 

( )2/ 1opt dK H x = +  (5.37) 

For cable with cross ties, the equivalent stiffness of each cross tie can be expressed 
as (𝐾𝑐𝑟)

𝑖
= (𝐸𝐴𝑐𝑟)

𝑖
/(𝑙𝑐𝑟)

𝑖
, in which (𝐸𝐴𝑐𝑟)

𝑖
 is the axial stiffness of ith cross tie, and 

(𝑙𝑐𝑟)
𝑖
 is its respective length. This could be useful to set the range of the crosstie 

stiffness Kcr. 
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5.6. Application of the proposed framework for the estimation of tensions in stay 
cables of Tatara Bridge 

In this section, a full-scale application of the proposed method to a long-span 
cable-stayed bridge is presented. The object bridge is Tatara Bridge connecting the 
Ikuchi Island of Hiroshima prefecture and Omishima Island of Ehime prefecture, in 
Japan. When completed in 1999, it was the longest cable-stay bridge in the world. 
The bridge has three spans with a total length of 1480 m, in which the main span is 
890 m; the bridge is supported by 168 stay cables. Cable length l of Tatara Bridge 
varies from 107 m to 470 m; cable diameter varies from 110 mm to 170 mm; and 
mass per unit length m stays between 94.8 kg/m and 121.8 kg/m. High Damping 
Rubber (HDR) dampers were installed to some cables to provide additional damping. 
Figure 5.14 shows the profile of Tatara Bridge.  

 

 
 

FIGURE 5. 14. Tatara Bridge: a) general view; b) selected cables for the 
identification of tensions; c) span arrangement, and d) stay cables vibration 

measurement by LDV. 

 

In this study, the vibrations of four typical cables from C1 to C4 on the side span 
of Ikuchijima island were measured and used for tension identification. Laser 
Doppler Vibrometer (Polytec’s RSV-150) was used to capture the in-plane cable 
ambient vibrations of the stay cables. Figure 5.15 shows the displacement ambient 
responses measured by LDV. These time history responses were converted into 
frequency domain and the displacement spectra are shown in Figure 5.15. From the 
spectra peaks, natural frequencies of the cables are extracted.  
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FIGURE 5. 15. Ambient vibration of Tatara Bridge stay cables and their frequency 
spectra measured by LDV: a) cable C1; b) cable C2; c) cable C3; and d) cable C4. 

 

For the identification of cable tensions, cable length l, mass per unit length m, and 
three measured natural frequencies are available as shown in Table 5.10. Others 
unknown information of cables are cable bending stiffness EI, axial stiffness EA, 
rotational restraint stiffness at cable ends Kr, cable tension H, cable inclination . 
Also, the HDR dampers were mounted to cables at location xd from one cable end. 
Because the dampers were sealed into the cable protective tube, this location xd was 
not exactly measured and became an unknown parameter. Characteristics of HDR 
damper with spring stiffness factor K and loss factor  of rubber material were also 
treated as unknown parameters. 

 

TABLE 5. 10. Known parameters of cable properties and measured frequencies 

No. l (m) m (kg/m) 
Measured natural frequencies f (Hz) 

f1 (Hz) f2 (Hz) f3 (Hz) 

C1 317.72 121.80 0.362 0.716 1.070 

C2 309.94 112.60 0.376 0.736 1.096 

C3 301.20 108.20 0.381 0.759 1.137 

C4 292.93 100.70 0.391 0.767 1.143 

 

To generate datasets, unknown properties of cable and damper were set within 
appropriate ranges. Referring to the previous discussion, EI and EA were chosen 
based on the common ranges of bending stiffness parameter  (50 <   < 605) and 
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sag-extensibility parameter 2 (0 < 2< 3.1), respectively; rotational stiffness 1×105 
< Kr < 1×109 (N.m/rad); tension H was from 0.5 to 1.2 times the value of string 
theory Eq. (5.33); inclination of cable varied from 20 to 80 degrees based on our 
observation at field; damper location xd was from 1% to 5% of cable length; loss 
factor of damper material 0.1 <  < 0.99; and spring stiffness factor K was set based 
on optimal value (Eq. 5.37). Tables 5.11 and 5.12 summarize the ranges of unknown 
cable parameters and the unknown damper information, respectively. 

Each parameter in Tables 5.11 and 5.12 were randomly generated into 1000 data 
points started from lower bound (LB) value to upper bound (UB) value. They were 
then combined with cable length l and mass per unit length m in Table 5.10 to create 
1000 datasets of cable-damper properties. Cable natural frequencies fk of each set 
were determined by the Finite Difference Method (200 interior nodes) using Eq. 
(5.22).  

 

TABLE 5. 11. Unknown cable properties 

No. 
EI (N.m2) EA (N) Kr (N.m/rad) H (kN)  (o) 

LB UB LB UB LB UB LB UB LB UB 

C1 1.75E+06 2.56E+08 4.27E+08 1.32E+10 1.00E+05 1.00E+09 3.17E+03 7.60E+03 20.00 80.00 

C2 1.55E+06 2.27E+08 4.27E+08 1.32E+10 1.00E+05 1.00E+09 2.96E+03 7.10E+03 20.00 80.00 

C3 1.40E+06 2.06E+08 4.30E+08 1.33E+10 1.00E+05 1.00E+09 2.83E+03 6.80E+03 20.00 80.00 

C4 1.20E+06 1.76E+08 3.89E+08 1.21E+10 1.00E+05 1.00E+09 2.56E+03 6.15E+03 20.00 80.00 

Note: LB = lower bound; UB = upper bound. 

 

TABLE 5. 12. Unknown damper parameters 

No. 

Damper location 

xd (m) 

Loss factor 

 

Spring stiffness factor 

K (N.m/rad) 

LB UB LB UB LB UB 

C1 3.18 15.89 0.10 0.99 2.83E+05 1.98E+06 

C2 3.10 15.50 0.10 0.99 2.71E+05 1.90E+06 

C3 3.01 15.06 0.10 0.99 2.67E+05 1.87E+06 

C4 2.93 14.65 0.10 0.99 2.49E+05 1.74E+06 

Note: LB = lower bound; UB = upper bound. 
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In the training, validation, and testing using ANNs, the input and output of each 
cable were prepared in the matrix form as formed in Eq. (5.28a) and Eq. (5.28b), 
respectively. In details, Input composed of the parameters (l, m, f1, f2,…, fk); note that 
frequencies fk are the calculated frequencies, not measured ones. Output presented 
targeted tensions H (values in Table 5.11). Datasets were separated into 70% for 
training, 15% for testing and 15 % for validation; the number of neurons in the hidden 
layer was 15; ran 30 times independently and averaged the results. Figure 5.16 shows 
the performance (R, MAPE, and RMSE) of training in ANNs versus the number of 
used frequencies; the maximum number of used frequencies was three because the 
available measured frequencies was also three. Obviously, the more frequencies are 
used for training, the higher quality of training process is achieved; For all selected 
cables, R > 0.995 and MAPE < 2% when all three frequencies are combined in the 
input matrix. In addition to Figure 5.16, the scatters between estimated and targeted 
tensions with five known features (m, l, f1, f2, f3) are depicted in Figure 5.17, showing 
a good performance of training the datasets.

The successfully trained model was employed to estimate tensions in the cables. 
Features imported into the well-trained model were cable length l, mass per unit 
length m, and three measured frequencies (in Table 5.10). The output of the trained 
model was estimated tension. Table 5.13 shows estimated tensions by ANNs, by 
string theory as well as the comparison with designed tension. Overall, tensions of 
four selected cables were successfully identified using cable length, mass per unit 
length and measured frequencies but still taking unknown cable properties and HDR 
damper parameters into consideration. The discrepancy between estimated tensions 
and its designed values was relatively small, around 1.5 % on average.

FIGURE 5. 16. R, MAPE and RMSE of training in ANNs of Tatara Bridge cables 
(cable C1, cable C2, cable C3, cable C4).
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FIGURE 5. 17. Scatters between estimated and targeted tensions with five known 
features (l, m, f1, f2, f3).

TABLE 5. 13. Estimated tension and the comparison with designed value.

No.

Tension by ANNs
Tension by 

string theory 
Eq. (5.33)

(kN)

Designed 
tension
H0 (kN)

Difference (%)
(𝐻 − 𝐻0)

𝐻0
× 100

Features imported into trained 
model

(l; m; f1; f2; f3)

Output of 
trained 
model
H (kN)

C1
(317.72; 121.80; 0.362; 0.716;

1.070)
6152.22 6334.89 6210.20 -0.93

C2
(309.94; 112.60; 0.376; 0.736;

1.096)
5811.79 5917.10 5712.10 1.75

C3
(301.20; 108.20; 0.381; 0.759;

1.137) 5446.60 5664.89 5380.40 1.23

C4
(292.93; 100.70; 0.391; 0.767;

1.143) 5050.88 5128.12 5008.40 0.85

5.7. Summary

In this chapter, a straightforward framework for the vibration-based cable 
tension estimation method is proposed through the application of Artificial Neural 
Networks (ANNs). Two cable models, namely cable with and without lateral 
attachments were introduced, in which rotational restraint stiffness at cable ends was 
also considered; the finite difference formulation for the eigen analysis of cable 
vibration was derived to create datasets for training, validation and testing in ANNs. 
The verifications were implemented for cables with wide ranges of cable bending 
stiffness and sag effect. The discussions were made on how to select the ranges of 
values of unknown parameters; the proposed framework was also applied to evaluate 
tensions in some cables of Tatara Bridge as an engineering application.

The main conclusions of the study are as follows:
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1) Cable tension was successfully estimated using only three known parameters 
including cable length, mass per unit length and measured frequencies, and 
regardless of other unknown factors like cable bending stiffness, axial 
stiffness, cable inclination, restrained conditions at cable ends and lateral 
attachments.   

2) For cable without lateral supports, using at least two measured frequencies 
could result in high accuracy of estimated tension, including cables with large 
sag and bending stiffness parameters. Also, while the proposed method 
successfully estimated tension, the taut-string theory, with the same amount of 
available information, resulted in unaccepted errors, especially for cables with 
moderate or large sag/bending stiffness properties. 

3) For cable with lateral supports, the number of known measured frequencies 
was at least three to reach acceptable accuracy of estimated tension, including 
cables with large sag and bending stiffness characteristics.   

4) Although increasing the number of frequencies in the input matrix caused 
higher performance of ANNs model, this performance did not significantly 
increase when the number of used frequencies was more than the minimum 
number mentioned above. 

5) The proposed method succeeded in estimating full-scale tensions in the cables 
of Tatara Bridge by utilizing cable length, mass per unit length and three 
measured frequencies; The discrepancy between the estimated tensions and 
the designed values was around 1.5 % on average. 
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Appendix: Derivation of stiffness matrix  

Stiffness matrix [𝐾1]𝑛×𝑛 is obtained from the first two part of Eq. (5.7). Substitution 
of the finite difference quotations shown in Figure 5.2 into Eq. (5.7) yields 

𝐸𝐼
(𝑣̃𝑖+2 − 4𝑣̃𝑖+1 + 6𝑣̃𝑖 − 4𝑣̃𝑖−1 + 𝑣̃𝑖−2)

𝑎1
4

− 𝐻
(𝑣̃𝑖+1 − 2𝑣̃𝑖 + 𝑣̃𝑖−1)

𝑎1
2

+ ⋯

= 0 
(5.38) 

It is noted that only the parts before the three-dot sign of Eq. (5.38) are used to 
establish [𝐾1]𝑛×𝑛. Applying Eq. (5.38) to Note 1 (i = 1) 

𝐸𝐼
(𝑣̃3 − 4𝑣̃2 + 6𝑣̃1 − 4𝑣̃0 + 𝑣̃−1)

𝑎1
4

− 𝐻
(𝑣̃2 − 2𝑣̃1 + 𝑣̃0)

𝑎1
2

+ ⋯ = 0 (5.39) 

Boundary condition at the cable end (y = 0) 

𝑣̃(𝑥)|0 = 0; and 𝐾𝑟

𝑑𝑣̃(𝑥)

𝑑𝑥
|0 = 𝐸𝐼

𝑑2𝑣̃(𝑥)

𝑑𝑥2
|0 (5.40a, b) 

Finite difference version of Eq. (5.40) 

𝑣̃0 = 0; and 𝐾𝑟

(𝑣̃1 − 𝑣̃−1)

2𝑎1

− 𝐸𝐼
(𝑣̃1 − 2𝑣̃0 + 𝑣̃−1)

𝑎1
2

= 0 (5.41a, b) 

Using 𝑣̃0 = 0, Eq. (5.41b) results in 

𝑣̃−1 =
(𝐾𝑟/2𝑎1 − 𝐸𝐼/𝑎1

2)

(𝐾𝑟/2𝑎1 + 𝐸𝐼/𝑎1
2)

𝑣̃1 (5.42) 

Making use of Eq. (5.41a), Eq. (5.42) and 𝜁 = 𝑙√𝐻/𝐸𝐼, Eq. (5.39) becomes 

𝐻𝑙2

𝑎1
4𝜁2

{𝑣̃3 − 4𝑣̃2 + 6𝑣̃1 +
[𝐾𝑟/2𝑎1 − 𝐻𝑙2/(𝑎1

2𝜁2)]

[𝐾𝑟/2𝑎1 + 𝐻𝑙2/(𝑎1
2𝜁2)]

𝑣̃1} −
𝐻

𝑎1
2

(𝑣̃2

− 2𝑣̃1) +. . . = 0 
(5.43) 

Rearrangement of Eq. (5.43) into matrix form gives 

𝐻

𝑎1
2

(
1

𝜁2
) [𝐴1,1  𝐴1,2 . . .  𝐴1,𝑛−1  𝐴1,𝑛]{𝑣̃1  𝑣̃2  . . .  𝑣̃𝑛−1  𝑣̃𝑛}𝑇+. . . = 0 (5.44) 

where 𝐴1,1  = 𝑛2𝛼 + 2𝜁2, 𝐴1,2 = −4𝑛2 − 𝜁2 , 𝐴1,3 = 𝑛2 , and 𝐴1,4 = 𝐴1,5 =. . . =

𝐴1,𝑛 = 0. They are the elements in the first row of the matrix [𝐾1]𝑛×𝑛. Note that 𝛼 in 
𝐴1,1 is defined as  

𝛼 =
𝜁2[𝐾𝑟 (𝑎1𝐻)⁄ ](𝑎1 𝑙⁄ )2 − 2

𝜁2[𝐾𝑟 (𝑎1𝐻)⁄ ](𝑎1 𝑙⁄ )2 + 2
+ 6 

 
(5.45) 
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Applying Eq. (5.38) to Note 2 (i = 1) 

𝐸𝐼
(𝑣̃4 − 4𝑣̃3 + 6𝑣̃2 − 4𝑣̃1 + 𝑣̃0)

𝑎1
4

− 𝐻
(𝑣̃3 − 2𝑣̃2 + 𝑣̃1)

𝑎1
2

+. . . = 0 
 

(5.46) 

Replacing 𝑣̃0 = 0, Eq. (5.46) becomes 

𝐸𝐼
(𝑣̃4 − 4𝑣̃3 + 6𝑣̃2 − 4𝑣̃1)

𝑎1
4

− 𝐻
(𝑣̃3 − 2𝑣̃2 + 𝑣̃1)

𝑎1
2

+. . . = 0 
 

(6.47) 

Also, rearranging Eq. (5.47) into matrix form as  

𝐻

𝑎1
2

(
1

𝜁2
) [𝐴2,1  𝐴2,2 . . .  𝐴2,𝑛−1  𝐴2,𝑛]{𝑣̃1  𝑣̃2  . . .  𝑣̃𝑛−1  𝑣̃𝑛}𝑇+. . . = 0 (5.48) 

where 𝐴2,1  = −4𝑛2 − 𝜁2, 𝐴2,2 = 6𝑛2 + 2𝜁2,  𝐴2,3 = −4𝑛2 − 𝜁2 , 𝐴2,4 = 𝑛2 , and 
𝐴2,5 = 𝐴2,6 =. . . = 𝐴2,𝑛 = 0. They are put into the second row of the matrix [𝐾1]𝑛×𝑛. 

By applying Eq. (5.38) to the remaining nodes, the stiffness matrix [𝐾1]𝑛×𝑛 are 
derived as Eq. (5.12) in the main text. It is worth noting that the boundary conditions 
at the cable end (y = l) are as below, which are used when writing Eq. (5.38) at node 
n. 

𝑣̃(𝑥)|𝑙 = 0;   𝐾𝑟

𝑑𝑣̃(𝑥)

𝑑𝑥
|𝑙 = −𝐸𝐼

𝑑2𝑣̃(𝑥)

𝑑𝑥2
|𝑙 (5.49) 
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CHAPTER 6. CONCLUSIONS AND FUTURE STUDY 

 

This research focuses on damping and tension of stay cables with dampers. The 
present study covers various aspects including theoretical development, practical 
approach, field measurement verification as well as application to full-scale cables of 
cable stayed bridges. This chapter summarizes main contributions, conclusions and 
future works.  

 

6.1. Conclusions 

Five points in the problem statement section (Section 1.2) were addressed through 
four main chapters in this dissertation (Chapter 2 to Chapter 5). The main conclusions 
are as follows: 

▪ Chapter 2:  The Problem 1 in the problem statement section was solved in this 
chapter. The damping formulation of cables with dampers was proposed which 
accounts for rotational restraint between cable and damper, damper support 
stiffness and damper stiffness. Under these factors, the added damping was 
always lower than its value in non-restraint cases. The reduction of damping is 
defined by reduction factors. In the design a stay cable with damper, damping 
can be re-identified by multiplying the designed damping of a conventional case 
by the reduction factors proposed in this chapter. 

▪ Chapter 3: The Problems 2 and 3 in the problem statement section are solved 
in this chapter. Regarding the Problem 2, the effect of boundary conditions 
(hinged-hinged, fixed-fixed and rational restraint ends) on cable damping was 
studied. It showed that cable bending stiffness triggered a reduction of the 
damping of cables with fixed-fixed end whereas an inverse observation was 
found for hinged-hinged end cables. By adjusting supports at cable ends with 
finite rotational restraint stiffness, the damper works more effectively. About 
the Problem 3, the universal curve of damping was proposed, which 
incorporated several parameters like cable bending stiffness, boundary 
conditions at cable ends (hinged, fixed or restraint ends), damper stiffness, 
damper support stiffness and negative stiffness into a single damping curve. The 
universal curve is independent of any influencing parameter. Universal damping 
curve is a useful tool for the design of cable vibration control with damper 
effortlessly, especially multi-mode controls.  
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▪ Chapter 4: The Problem 4 in the problem statement section was solved in this 
chapter. The procedure and implementation of damping analysis is performed 
on full-scale cables of Shinminato Bridge. It showed that cable sag caused a 
notable reduction of the damping ratio for the mode 1 whereas having almost no 
effect on the mode 2 and a relatively small reduction for the mode 3. 
Additionally, cable sag triggered larger reduction of damping in fixed-fixed end 
cables than that of hinged-hinged end cables. Measured damping ratios were 
compared to theoretical values, and the results showed that the damper 
effectiveness was greater than 0.7 for all cables, except for mode 2 (0.66) and 
mode 3 (0.58) of cable C01E. Moreover, the variation of damping ratios and 
frequencies versus amplitudes was also investigated. While frequencies were 
almost unchanged over amplitudes, the damping ratios tended to increase first 
as amplitudes decreased, then damping ratios decreased as amplitudes 
continuously decreased. 

▪ Chapter 5: The last point in the problem statement section was solved in this 
chapter. The framework for the identification of tension under limited 
information of cable properties was proposed for the first time. Cable tension 
was successfully estimated using just three known parameters including cable 
length, mass per unit length and measured frequencies, and regardless of other 
unknown factors like cable bending stiffness, axial stiffness, cable inclination, 
restrained conditions at cable ends and lateral attachments.  For cable without 
lateral supports, using at least two measured frequencies could result in high 
accuracy of estimated tension, including cables with large sag and bending 
stiffness parameters. For cable with lateral supports like dampers or cross ties, 
the number of known measured frequencies was at least three to reach 
acceptable accuracy of estimated tension. 

 

6.2. Future study 

The followings highlight some of the issues that can be extended: 

1) The parameters related to restraints such as rotational restraint stiffness, 
damper support stiffness, damper stiffness, and negative stiffness are assumed 
as a spring. Obviously, these restraints depend heavily on actual conditions of 
cable-damper. For instance, rotational restraint stiffness at damper location 
depends on shapes, material of bushings and anchoring techniques; damper 
support stiffness relies on stiffness of support, length of supports, 
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configuration of support etc. Therefore, future work would emphasize on a 
parametric study of these restraints to provide a reasonable stiffness range of 
these restraints. 

2) Next, the amplitude dependency of measured damping has been observed 
during full-scale measurement. The theoretical development on this problem 
is also a future work. 
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