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ABSTRACT

Ground exhibiting particle crushing can strongly affect foundation structures especially pile
foundations with large magnitude of stresses at the pile’s fip. In order to obtain a rational estimation of
deformafion and failure, numerical simulation with an appropriate constitutive model of crushable soils
15 necessary. Thus, the aims of this study are: 1) to establish a rational constitutive model of crushable
soils which incorporates the effect of packing density; 2) to conduct numerical simulations with
implementation of the proposed model for pile foundation problems.

The first section of this study is concerned with the constifutive model of crushable soils, which
15 based on a novel evolution law for grading index and incorporates the effect of packing density on
particle crushing phenomena via the coordination number as an intermediate variable. The proposed
constitutive model's validity was confirmed by comparing simulation results to a comprehensive set of
elementary tests. The proposed model's advantage is ifs ability to predict seemingly contradictory
experimental evidence for crushable soil: Under the same effective stress path, densely packed soil
crushes less than loosely packed soil; densely packed soil crushes more than loosely packed soil when
sheared under drained or undrained conditions. The non-uniqueness of the critical lines under the effect
of density are also revealed due to the variations of peak strength with confining pressure.

The second section of this research focuses on numerical simulations of single pile foundations
on crushable soils. The proposed model incorporates User-Defined-Material (USDM) simulations using
FEM (by PLAXIS). Preliminary simulation results show that the breakage zone around the pile's tip
and pile shaft is consistent with previous experimental studies. Based on the distribution of deviator
strain, the failure mode of single pile may be the punching shear mode. In the load-settlement curves,
densely packed soil exhibits more breakage and higher load than loosely packed soil. In the simulation
with different densities, similar stress paths are detected for both simulations with loose and dense soils.
However, the magnitudes of deviator stress and mean effective stress are higher for the simulation with
dense soil Therefore, more crushing is detected for the elements under pile tips of dense soil as
compared to the loose soil. Also, more crushing occurs for the element locates on the assumed shear
band than the element outside due to higher deviator stress. At the elements under pile’s type, higher
breakage is reported for loose soil at the same mean effective stress as compared to that of the dense

soil.
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Chapter 1 : Intfroduction

1.1 Research background

Soil particles can be crushed info smaller particles under high pressure, leading the large
contraction and deformation. Thus, crushable soils cause significant 1ssues to constructions or existing

{Angemeer, Carlson et al. 1975, Dutt and Cheng 1984, Poulos and Chua 1985, Ismael and Al - Sanad

1986, Murff 1987, Senders, Banimahd ef al. 2013, White, Boylan et al. 2013). Due to wide distributions
of crushable soils around the world (Carbonate sands in the coral reef regions, volcanic soils in the
volcanic activity zones, and decomposed granite in the heavily weathering zones), studies of the
behavior of these crushable soils have been extensively carmed out: Coop (1990), conducted low and
high pressure friaxial tests on a calcareous sand to examine the mechanical properties; Lee and
Farhoomand (1967), performed anisotropic triaxial compression to create a similar stress state under
the earth dam to observe behavior of particle crushing; Eandini and Coop (2011), studied the effect of
particle crushing on the location of the critical state line of sands. Especially, several studies examined
the effect of packing density on the breakage responses of crushable soils (Valdes 2003, Guimaraes,
Waldes et al. 2007, Altuhafi and Coop 2011, Shahnazan and Rezvani 2013, Hyodo, Wu etal. 2017). In
the studies, densely packed soil exhibits lesser crushing than loosely packed soil under the same
effective stress path. On the other hand, densely packed soil is more likely to crush than loosely packed
one when it is sheared under drained or undrained conditions. Thus, the state of density of the crushable

soils can control the breakage responses.

Large magnitude of stress at the tip of pile foundation can cause particle crushing and effect
pile’s behavior (Yasufulm and Hyde 1995, Euwajima, Hyodo et al. 2009) . The region adjacent to the
pile shaft also subjected fo high shear stress which leaded to particle crushing. There was also a report
of the reduction pile resistances when they rested on the calcareous soils in the western coast of
Australia (Senders, Banimahd et al. 2013). Thus, the pile’s responses are very sensitive with the ground
exhibiting particle crushing In an attempt to determine the responses of piles on crushable soils, several

numerical simulations of pile penetration on crushable soils were performed. Zhang, Nguven et al



(2013), simulated pile penetration on the crushable soil by incorporating a constitutive model based on
the framework of thermodynamic. Jin, ¥in ef al (2018) performed numerical simulation of pile
penetration with a constitutive model based on the framework of multi-surface plasticity accounting for
the effects of stress dilatancy and particle crushing. However, their constitutive models did not consider
the effect of density on the breakage responses. Thus, the simulations can only be applied for a certain

packing density.

1.1.1 Effect of density on the breakage responses

In this section, fundamental responses of the crushable soil with the effect of packing density
under different stress path are illustrated throngh experimental evidence. Confirming by many studies
(Valdes 2003, Guimaraes, Valdes et al. 2007, Altuhafi and Coop 2011, Shahnazari and Rezvam 2013,
Hyodo, Wu et al. 2017), under consolidation tests (the same tress path), the densely packed soils
exhibited less particle crushing. Altuhafi and Coop (2011), performed 11 consolidation tests with three
different initial densities ( g, =1.486, ¢, =1.672, ande, =1863 ) for Dogs Bay sand up to very high
compression pressure of 30 MPa. Figs (1-1z) and (1-10) shows the compression curves of these tests
and particle size distributions (PSD) after the tests, respectively. In these figures, the PSD of the denser
soils showed less broaden than the looser soils indicating that less breakage occurred for the denser
soils. The similar trend was also observed in isotropic consolidation tests conducted by Hyvodo, Wu et
al. (2017) for Aio sand; 1D compression tests performed by Guimaraes, Valdes et al (2007).

(Shahnazari and Fezvani 2013) for Ottawa sand and Hormuz Island (HI) sand, respectively.

A remarkable breakage variation with the compressive stresses was presented under 1D
consolidation tests of Ottawa sand by (Valdes 2003, Guimaraes, Valdes et al. 2007). Figure (1-2a)
shows the compression curves and Figs. (1-2b), (1-2c) and (1-2d) illustrated the PSD for dense
(g, =0.534)and loose (g, =0.698)so0ils at three desired compression pressures of 1.4 MPa, 50 MPa and
100 MPa. As can be observed in the Figs (1-2b), (1-2 c) and (1-2 d), PSD variations revealed that the

breakage of the loose and dense soils varied when the compression pressure was increased. Generally,
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the densely packed soil exhibited less crushing than the loosely packed soil and the vanations reduced

when the confining siress increased.
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Figure 1-2: 1D consolidation test for Ottawa sand: {a) compression curves in e—logp'; (b)-(d) P5Ds
at vertical stress af 1.4 MPa, 50MPa, 100 MPa, respectively (Taldes 2003, Guimaraes, Valdes et al.
2007).

On the other hand, a seemingly contradictory experimental evidence was observed in
consolidated drained (CD) triaxial tests with constant radial stress and undrained triaxial tests (CU) by
(Shahnazari and Fezvani 2013, Hyodo, Wu et al. 2017). This experimental evidence demonsirated that
the densely packed soil exhibited more crushing than the loosely packed soils after the shearing state.
Figs (1-3a)and (1-3b) represent the shear deformation and variation of grading index, I . (an indicator
of breakage. derived from the variations of relative breakage, B,. (Hyodo, Wu et al. 2017) of the CU
test cammied out by Hvodo, Wu et al. (2017). After the shearing state (Fiz. 1-3b), the higher value of
grading index was detected for the denser soil (e, =0.657)as compared to the looser soil (g, =0.760)
indicating that more breakage occurred in the denser soil as compared to the looser soil. Also, at the
failure state (Fig. 1-3a), the stress of the denser soil was higher than that of the looser soil. These trends
{higher stress and breakage for denser soil after the shearing state) were also confirmed in CD tests

conducted for Hormmz Island (HT) sand by Shahnazari and Rezvani (2013) (Fig. 1-4) .
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Figure 1-3: CU fest for Aio sand: (a) deviafor siresses versus axial strain; (b) variations of grading
index (derived from relative breakage , B,, Hyodo, Wu et al_ {2017) ) (after Hyode, Wu et al. (2017)).
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index with mean effective stress (derived from relative breakage, B,,Shahnazari and Rezvani (2013)) .

1.1.2 Mean coordination number and density

In microscopic view, the difference between each packing density is the different contact points
or coordination numbers. In the context, the densely packed soils have higher coordination number as
compared to the loosely packed soil It is essential to examine the relationship between coordination
number and density in order to correctly describe the crushing phenomena in section 1.1.1. The studied
of Graton and Fraser (1935) for six typical systematic packings shown that the denser packing will lead
to higher coordination number (Fig_ 1-5). The similar trend also found in the studied of Aim and le Goff
(1968) (table 1-1). Subsequently, this was also confirmed experimental results of glass beads by Oda

(1977); X-ray CT of Toyoura sand and glass beads by Matsushima Uesugi ef al. (2008); rounded stones

16



by Field (1963). Although there are extensive researchers and vanous of functions describing the
relationship between the coordination number and density (German 2014). The relationship functions
based on their own testing results therefore could not apply for a general case. Thus, it is needed to

establish a general relationship function between mean coordination mumber and density.

Cy =6¢, =091 Cy =8¢, =047 Cy =12;¢, =0.35

Orthorhombic

Cy =80, =0.47 Cy =10;¢, =0.432 Cy =12;¢, =0.35

Cy - the coordination number
€, . the voud ratio

Figure 1-5: Systemetic packing of six-typical packings (after Grafon and Fraser (1935))

Table 1-1. Systematic packing ( after Aim and le Goff (1968))

Packing type ‘im‘}:“: Void ratio, e
Hexagonal compact 12 035
Face-centered cubic 12 035
Rhombohedral 10 0432
Centered cubic 8 047
Hexagonal 8 0.654
Simple cubic 1] 091

17



1.1.3 Grading index and former evolution rules

The grading index is a fundamental factor for simply describing the crushing state of crushable
soil. As particle crushing occurs, PSD evolves from a uniform grain size to the current grain size. The
grading index. I, proposed by Muir Wood (2007) and Eikumoto, Wood et al. (2010 is used to describe
the vanation of PSD is illustrated in Fig. (1-6). As observed in Fig. (1-6), when crushing happens,
grading index, I. vanes from uniform grading with I =0 to the limit grading with I; =1. Similarly,
other researchers also considered a crushing index as potential breakage (Hardin 1985) or relative
breakage (Einav 2007) to quantify the evolution of PSD. However, the advantage of the grading index |
Iz, proposed by Muir Wood (2007) is that the evolution of grading is porirayed as a whole process
(started from uniform grading to the limit grading) regardless of imifial grading state. While, the
breakage index proposed by Einav (2007) or Hardin (1985) considered initial grading as a starting point

of breakage responses.

I = area ABC/ area ABD A

.
r|.=|' Current grading (0 =7z = 1)

o A Unit

g .

E" bk : grading
g Limit grading ({; = 1) (I, 0)
=

a

!

v

.\

Logarithm of particle size I3

Figure 1-6: Definition of grading index (Muir Wood 2007)

The breakage responses can be depicted by the variations of these grading (Hardin 1985 Einav
2007, Muir Wood 2007, Eikumoto, Wood et al. 2010) through relationship with stress state or energy
dissipation. The potential breakage_ B, , proposed by (Hardin 1985) could be expressed in the term of
breakage effective stress through a hyperpolic equation The relative breakage proposed by (Einav

2007) was considered as an interal variable in thermomechanical analysis. Grading index can be
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expressed with the crushing stress crushing stress, p, . (a composition of mean effective stress, P', and

deviator stress_g) (Kikumoto, Wood et al. 2010):

I =1_m[_[%] } (1-1)

Where p,is the initial crushing stress, a stress point when particles start to crush. p, is the crushing
stress resistance which depends on the strength of parficle. The higher value of p, is. the more

resistance of soils is against crushing. » 15 a parameter controlling the crushing stress ratio. None of
these above evolution mile of crushing index considered the effect of packing density. Thus, the crushing
responses under different densities might not capture properly by the constitutive model based on these

evolution mles.

1.1.4 Pile foundation on crushable soils

The pile foundation is the most sensifive structure for crushable soils due to large stresses
concentrated at the pile’s tip and high shear stress along the pile’s shaft. The particle crushing many
caused reductions in pile’s resistance. An in-situ pile foundation rested on the calcareous soils was
reported with reduction of pile resistances (Senders. Banimahd et al. 2013) Experimental results by
Euwajima, Hyodo et al. (2009) and Yasufukuo and Hyde (1995) also confirmed that the crushable soils
showed less resistance as compared to the strong grain soil (Fig. 1-7). The compressed zone at pile’s
tip and shear zone adjacent pile’s shaft illustrated in Fig 1-8 showed that these regions were sensitive
to particle crushing. Fig 1-0 confirmed the parficle crushing around pile’s shaft through a study of cone
penetration in sand by Arshad, Tehrani et al (2014) Thus, pile resistance is reduced when pile rested
on the crushable soils due to large among of crushed particles at the pile’s fip and pile shaft.

Regarding the effect of densities on the responses of pile, experimental studies of pile
penetration on Dogs Bay sand with different densities were performed by Yasufulm and Hyde (1995)
(Fig. 1-10). As can be observed in Fig 1-10, The ultimate bearing capacity could not be detected
because the applied stress was still increased even a large the settlement ratioc S/D=1.0. The figure
also shows that the higher relative density was, the higher applied stress was required for the same

settlement.
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Figure 1-7: End bearing capaciiy for pile penetration tests (Kiwajima, Hvodo et al. 2009)
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Figure 1-8: Compressed zone around pile’s fipe and shear zone at pile’s shaft (Zaowajima, Hyodo ef

al. 2009)
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Figure 1-9- particle crushing around the pile’s shaft (Arshad, Tehrani ef al. 2014)
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Figure 1-10: Pile load-seitlement curves on Bogs Bay sand {after Yasufiku and Hyde (1995))

In order to capture the response of piles on the crushable soils, numerical simulations
incorporating particle crushing were performed such as: Zhang Nguven ef al. (2013) simulated pile
penetration by incorporating a constitufive model based on the framework of thermodynamic; Jin. ¥in
et al. (2018) performed numerical simulation of pile penetration with a constitutive model based on the
framework of mulfi-surface plasticity accounting for the effects of stress dilatancy and particle crushing.
The simulafions omitted the effect of density on pile responses. Furthermore, their constitutive model
did not take account for the effect of density. Thus, it is necessary to establish a rational constitutive
model for crushable soil and incorporate the proposed model to numerical simulations to examine the
effect of packing density on the response on pile.

1.1.5 FEM outline

As mentioned earlier, the numerical simulafion is necessary for pile foundation on crushable
soils. In other to simplify modelling process, a FEM software namely Plaxis was used. Plaxis can model
many geotechnical problems such as bearing capacity, seepath, slope stability, and seismic problems.
The outline of FEM framework of Plaxis is given in the Appendix-A with several fundamental sections:
1) Strong form of mechanical problems; 2) Denive weak form from strong form; 3) Shape function
matrix elements; 4) Denivation of system equations.

One of the essential elements provided by Plaxis is the Interface/joint elements. This interface
element can be used to simulate the region when exists large variation of material stiffness such as



between pile and soil. This element is essential because in some cases the large relative displacement
at these regions may affect on the results of simulation Interface element in Plaxis was based on the
concept of zero thickness element proposed by Goodman. Taylor ef al. (1968) and Van Langen and
Vermeer (1991) with assuming the along and normal stiffness with the interface ( k, and k, |

respectively). The strength along surface also control by Morh Coloumb model with internal friction
and cohesion at the interface element ( ¢ and ¢, respectively).

Several algorithms to enhance convergence rate of elasto-plasfic simulations were incorporated
in Plaxis such as: arch-length control by Fiks (1979); over-relaxation and extrapolation by Vermeer and
Langen (1989); and the automatic step size procedure by Van Langen and Vermeer (1990}
Furthermore, Plaxis allows user to implement their constitufive model named USDM. USDM can be
programed in Foriran language and compiled as a Dynamic Link Library. USDM is called for each
gauss points at each increment At the start of each increment, previous stresses, previous solufion-
dependent state parameters, strain and time increments are provided by Plaxis. The USDM with a
constitutive model will determine the update stresses and state variables.

1.2 Research objectives

The main targets of this study are: 1) to establish a rational constitutive model of crushable soils
which incorporates the effect of packing density; 2) to conduct numerical simulations with
implementation of the proposed model to examine the effect of packing density on the response of pile.
Thus, there are several breakdown tasks to achieve the above targets:

1. To establish relationship between mean coordination number and density. (Chapifer 2)

2. To establish an evolution law of grading index considering the effect of density through the
mean coordination number. (Chapier 2)
To develop a constifutive model incorporating the proposed evolution law. (Chapter 1)

4. To validate the proposed model with an extensive series of elementary tests. (Chapter 3)
To discuss the breakage responses of the proposed model under different stress paths. (Chapter
9

6. To perform numerical simulation incorporating the proposed model to examine the responses
of pile on crushable soils with the effect of density. (Chapier 3)

1.3 Outline of dissertation

Chapter 1 Introduction

Research background and research objectives of this study are descmbed in this chapter
inchuding the outline of this dissertation



Chapter 2: A constitutive model for crushable soils considering packing density

In this chapter, the effect of packing density on the crushing behavior of the crushable soils is
examined through the relationship with mean coordination number. Based on the studies of the
systematic packings and expernimental results of random paclking, a general function described
relationship between the mean coordination mumber and density is proposed. Next, the evolution law
of grading index reasonably combines the increase in the coordination number due to an increase
packing density, and the increase in the crushing resistance due to the increase in the coordination
number. The effect of particle crushing on the stress-strain response is incorporated in the proposed
model by lowing the critical state specific volume with the changing grading due to crushing.

Chapter 3: Validations and discussion of soil constitutive model for crushable soils considering

packing density

In this chapter, the validity of the proposed constitufive model was verified by comparing the
simulation results with an extensive series of elementary tests such as: 1D consolidation tests; isotropic
consolidation test (IC); consolidated undrained triaxial test (CD)); consolidated drained triaxial test (CU).
Subsequently, paramefric studies are performed to examine the effect of packing density on the
breakage responses of the proposed model under different stress paths.

Chapter 4: Numerical simulation of pile’s responses on crushable soil

In this chapter, the implementation of the proposed model into FEM software of Plaxis is
verified with elementary model. Then, the simulation incorporated the proposed model is performed fo
study the response of pile on crushable soils. The simulation results are compared with previous
experimental results.

Chapter 5: Concluding and future research

Chapter 5 concludes the substantive findings and novelty of this research and provides the
prospects for future research.

1.4 Notations and symbols

As for the notations and symbols, bold letters denote vectors and matrices; “-” denotes an inner
product of two vectors (e.g., a - b = a;b;) or a single contraction of adjacent indices of two tensors (e.g.,
(c-d);; = grdy;); - denotes an inner product of two second-order tensors (e.g., c:d = ¢;;dy;) or a
double contraction of adjacent indices of tensors of rank two and higher (e.g.. (e: c);; = gjpac): @
denotes a tensor product of two vectors (e.g.. (a @ b);; = a;b;) or a tensor product of two second-order

tensors (e.g., (€ & d)jjm = a;byg): “|| || denotes the nomm of a first-order tensor (e.g. ||a|| =



va:a = /o;a;) or a second-order tensor (e.g., ||c|| = e:c = [e6;); 1 1s the second-order identity
tensor; [ is the fourth-order identity tensor (31311 = é{ﬁmt’iﬂ + Eﬂﬂjk}); “ "~ denotes the time derivative;

and the subscript zero denotes the initial state (e g, e, = initial void ratio).



Chapter 2 : A constitutive model for crushable soil

considering packing density

2.1 Relationship between packing density and coordination number

2.1.1 Packing density effect on particle crushing through coordination number

The densely packed soils have more coordination numbers (the number of contact points) in
each particle as compared fo the loosely packed soils. Thus, the stress distribution on each particle
{average contact stress) is lesser for denser soils. Hence, these denser soils are more resistant to
crushing. Due to less coordination number, the crushing mode of a loosely packed soils is more likely
splitting mode while it is chipping mode for densely packed soils (Fig. 2-1) (Valdes 2003 Guimaraes,
Waldes et al. 2007). Supported by SEM-images of particle crushing after 1D consolidation fests,
Guimaraes, Valdes ef al (2007), showed that the particles of the denser soils tended to exhibit several
chips on their surface, meanwhile, the particles of the looser soils seemed to have more likely to have

splitting mode (Fig. 2-1). Thus, coordination mumber of different packing densities is a key factor effect

O Xt

Figure 2-1- Failure modes with different coordination number (Guimaraes, Valdes et al. 2007)

the breakage response.

Figure 2-2: SEM image of densely packed soil (Guimaraes, Valdes et al. 2007)



2.1.2 Systematic packing and experimental results

Conventionally, the denser soils have higher coordination number as compared to the looser
soil. As the densify of soils increases, their coordination numbers also increase correspondingly. Thus,
a relationship between the density and the coordination number is feasible. Also, a simple relationship
between the density and coordination number can help to evaluate the vanations of the coordination
number easily. For that purpose, systematic packings of uniform spheres and experimental results of
random packing (Oda 1977, Matsushima, Uesugi et al. 2008) are examined in this study to identify this
relationship. The systematic packing or the order packing of uniform spheres have been studied
extensively by many researchers (Graton and Fraser 1935, Aim and le Goff 1968, Haughey and
Beveridge 1969, German and Munir 1975, German 1989, German 2014, Patankar and Mandal 2014).
In order to simplify and classify each packing type for the systematic packing, eight typical patterns
have been identified in table 2-1. For example, a simple cubic packing (shown in Fig (2-3)) can be
decomposed into two contact patterns of 51 and 54. Therefore, the simple cubic packing type is denoted
as a combination of “51+54+517 and the coordination number of the combination is 6. Similarly, the
packing types, combination, coordination number and corresponding void ratio are finally enlisted in

the table 2-1. As coordination number increases, the void rafio reduces correspondingly.

A wide range of data from systematic packings of uniform spheres (table. 2-2) to random
packings of glass beads (Oda 1977), Toyoura sand and glass beads (by X-ray CT test of Matsushima,
Uesugi et al. (2008)) have been portrayed in Fig (2-4) to demonstrate the similarty trend between
coordination mmmber and void rafio. Due to the vanations in distribufion of the coordination number in
each particle for a random packing, the coordination number is presented as the mean coordination

number, C,,. Based on the common trend between the mean coordination number, €. and void ratio,

« . a simple relationship is proposed as follow:

[
Cy = "'“’:‘_ (2-1)
1+be

where Cyp,. 15 the maximum coordination number in the case of the full density (the void is fully

occupied by the solid’s particles). Identified by other researchers (Beresford 1969, Bouvard and Lange



1991}, the maximum coordination number, Cyp,. ., can reach to the maximum value of 15. band k are
material constants which can be determined by curve fitting method. For example, a set of parameters

of Cypy, =14.6=123and k' =14is the best fit for the data of systematic packings, whereas, a set of

parameters of Cy,. =14.5=2.00 and k' =1.4is the best fit for the experimental data by Oda (1977).

Table 2-1. Two-dimensional basic contact patterns of the systematic packing

Contact pattern Description ~ Number of contact ID

m Single contact 1 81

@ Double contacts 52
CED Double contact 5 N2
(separated contact)

(]

Tripl fact
@) riple contacts 3 s3
Triple contacts 3 —

(separated contact)

( XE ix ) Four contacts
4 54
% Six contacts (3 S6
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Packing type Identify contact patterns Combination Coordination number

51 +54+51 6

Figure 2-3: Decomposition of a cubic packing

Table 2-2. Contact patterns of the systematic packing

Coordination
Packing type Combination mmber Void ratio
Rhombohedral 53+56+53 12 0.350
53+56+52 11 0.404
Tetragonal-
sphenoidal 52+56+52 10 0.432
52+56+51 9 0.630
Orthorhombic 524544852 8 0.470
Hexagonal 51+56+51 8 0.654
52454451 7 0.782
Cubic 51+54+51 6 0.910
SN3+SN2 5 1.481
Diamond SN3+51 4 1.940
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Figure 2-4: Functional relations befween mean coordination number and void ratio. {01) and {2) X-

ray CT for Toyoura sand and glass beads, respectively (Matsushima, Ussugi et al. 2008); (03) and

{04) are fitting functions for experimetal data of Oda (1977) and systematic packing data, respectively.

2.1.2 Evolution law of grading index /s

From identification the relationship between the mean coordination number. ), . and void ratio.

« . any variation of the mean coordination number can be easily obtained through the relationship with
void ratio. The relationship is crucial because the breakage response of the crushable soils can be
evaluated by the variations of the coordination number. In order to bring these fundamental factors into
a consfitutive model, a new evolution rule is proposed by incorporating stress state and the mean

coordination number.

As described in Eq. (1-1), the grading index, I, . depends only on the crushing stress, p, . which
is composed by stresses (p' g) only. Thus, the former function described the evolution of grading index
through the variation of stresses only. Without considering coordination number, the effect of density
was omifted in the former function (Kikumoto, Wood ef al. 2010). A similar form of Eq (1-1) 15 a

function of fracture probability. p i denived by McDowell, Bolton et al. (1996) based on the Weibull

statistics as follows:



) =1_exp{_[.i]3 [.E.:,. [LE} o)

where 4 and d, are the curmrent particle size and the imitial parficle size, respectively. & is the
macroscopic stress, o, 1s the tensile stress such that 37% of total number of test block survive, C is the

coordination mumber, m and g are matenal constants. Both Eqs. (1-1) and (2-2) have similar form of
exponential function and both grading index and facture probability are the indicators of particle
crushing_ It is noted that the difference in Eqs. (1-1) and (2-2) is the fracture probability function, Eq.
(2-2), incorporating the coordination number, C , as a factor controlling particle breakage Therefore, as
showing FEq_ (2-2), the higher coordination number each particle has, the more resistance for grain is

against crushing.

During volumetric compression, soil state tends to be denser inducing higher mean coordination
number. Therefore, the higher resistance is obtained against crushing. The limitation of Eq. (1-1) is that
the resistance stress, p, . is a constant value, whereas, it should be a vanable dependent upon the mean

coordination number, C,; . Recognizing such limitation, the new crushing resistance is revised as:

Pr =P, 3 (Cy-2) @3)

where Prc,-3 is the crushing resistance stress, p, . when the mean coordination mumber, Cy 15 3. @

is material constant to control the rate of crushing resistance. Hereafter, whenever the mean
coordination number, C,;, increases, the crushing resistance stress, p, . also increases correspondingly.
Substifuting Eq (2-3) into Eq. (1-1). the function of grading index, I; . incorporating the mean

1
&

coordination number, Cy;, can be derived as:

(2-4)

As parficle crushing is an irreversible process, the function of grading index Eq. (2-4) is also

required to capture the phenomenon. For that purpose, a maximum crushing stress, p,. . which records
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the maximum value of crushing stress with respect to the mean coordination mumber, G, from the

beginning iteration to the current state, is defined as:

P, = mjﬂ (2-5)

=i

Substifuting Eq. (2-5) into Eq. (2-4), a function of grading index can be finally derived as:
| (e Y
Ig=1- Exp*l_[f’_m] (2-6)

Function of grading index (Eq. (2-6)) plays an importance role in describing the irreversible
relationship between grading index, stresses and coordination number. Based on this function, the

evolution rule of grading index can be obtained by taking time denvative:

Ig==C%p, eX)

Based on definition of the maximmm crushing stress, p,. . the vanation of maximum crushing
stress. p,, . also a non-negative value. Thus, this satisfies the requirement of variation of grading index,
I..(Eq. (2-7)) being also a non-negative value. Therefore, simple proposing of the maximum crushing
stress function (Eq. (2-5)), the function and evolution of grading index (Eqs. (2-6) and (2-7)) can capture

the irreversible responses of the crushable soil.

From Eq (2-5), the variation of the maximum stress, p.. . can be determined:

c"}‘-'xc - c"}‘-'x.c - -
+ Cy when p, = P >0
;.}m — @x Px E‘CN N P = Prccurrent - P {2_3}
0 when Py {pmhpxc =0

where p.. e = Px"Po_ s the current crushing stress at corresponding mean coordination

(Cy-2)a
number.

It can be interpreted from Eqs. (2-7) and (2-2) for the crushing conditions as:

]|



1) The particle crushing occurs (I, > 0 ) when the maximum crushing stress, p, . is equal to
the current crushing stress at the corresponding mean coordination number, p,...... and
the vanation of maximum crushing stress, p,, 15 positive ( Py, = Prcogrens @04 Py > 0).

2) No particle crushing occurs (I, = 0) when the maximum crushing stress, p,. . is higher
than the current crushing stress at the corresponding mean coordination number, p,,,....

and the variation of maximum crushing stress, p.. . 15 2610 ( Py < Precyrrane @0d P =0

2.1.2 Formulation of the crushing stress, px

As reported by many researchers (Lee and Farthoomand 1967, Hardin 1985, Lade, Yamamuro
et al 19946, Makata, Hvodo et al. 2001), the stress state (stress level, stress magnitude, and the stress
path) were a key factor controlling the breakage responses of the crushable soils. In this study, the stress
effect 15 described by the crushing stress, p, . (3 combination of the mean effective stress, p', and

deviator stress, g) which controls the breakage responses through Egs. (2-5) and (2-2). Based on

experimental evidences (Hardin 1985), the crushing stress function as a composition of effective
octahedral normal and shear stress was derived. Then, it was further derived into a combination of mean
effective stress, p'. and deviator stress, g by Eilkumoto, Wood et al. (2010). Based on these studies, a

similar simple form of crushing stress, p, . is proposed:

. ‘.3
p,=pjl+ 4 ] (2-9)

where M, is the constant parameter which controls the effect of deviator stress and mean effective

stress. A crushing stress surface, f | is obtained by arranging Fq (2-9) as:

M.p

. __3
_i';=_px—P«{l+ 9 % (2-10)



As illustrated 1in Fig (2-5), the shape of the crushing surface is more broaden when Af,
increases. Thus, the parameter M, is also used to control the shape of the crushing surface. From Eq.

(2-10)), the vanation of the crushing stress can be derived as:

G g ©-11)

Pe=—%0

Overcoming former limitations in the evolution rule of grading index, the proposed evolution
mule (Eqs. (2-7) and (2-8)) take account of the stress change and the vanation in the mean coordination
number. Furthermore, any varation in density, correspondently, lead to the change in the mean
coordination number (Eq. (1-1)). Then, the change in the mean coordination number can affect the
crushing responses (Eqs. (2-7) and (2-8)). Therefore, the effect of density on breakage behavior can be

examined by the proposed evolution mles.

A Larger M,
> /
) Crushing fimetion, f I;'
#
g
=
&

Y

Mean effective stress, p’ Dy
Figure 2-5: Variations of crushing surface with the change of M,

2.1.3 Formulation of the crushing stress, p.

Based on the simple relationship between density, ¢. and the mean coordination number, C,,.
in Fq(l-1), any variation in the mean coordination number leads to the change in density,
correspondently. Also, variation in density, ¢ ,can make the strain change, & Therefore, the vanation

of the mean coordination, Cj;. can be derived as:
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where é=v,é,and &, =1:2
when crushing occurs (Ig >0}, the evolution of the maximum crushing siress can be derived
by substituting Eqs. (2-11) and (2-12) info Eq. (2-8) as:

1 & .. apPs Cy bk e (v,1: 8) 2-13)

[CN _2]% ol g H[CH —2} C_]'Tm

Py =

Substituting Eqs. (2-6) and (2-12) into Eq.(2-7) to obtain the variation of grading index. I;. when

crushing occurs
Iz=4 2’2 &'+ 4l (2-14)
Where
4= {I_IG}L L[p_,xi (2-15)
(Cy —2)u Frc '\ Fr ]

_(1-T5) cy'bk’ed Ny,
(C¥-2) Cymx

(2-16)

2

2.2 A constitutive soil model considering particle crushing

The core idea of the proposed model is established on a state boundary surface (SBS) originated

from definition of an available strength , #, . in Servent-trend sand model (Gajo and Muoir Wood 1990

Gajo and Muir Wood 1999 Meanwhile, the fundamental framework of the proposed model is based

on continuum mechanics incorporating the effect of particle crushing.
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2.2.1 State boundary surface (SBS)

As reported by many researchers (Daouadji, Hicher et al. 2001, Muir Wood and Maeda 2007,
Bandini and Coop 2011, Ghafghazi, Shuttle ef al. 2014, particle crushing leads to a denser state of soil

and cause a downward parallel shift in the CSL in e—logp space. Thus a new state parameter, v, .

representing the downward shift of SCL is introduced into a conventional form of SCL for sand (Gajo

and Muir Wood 1999) as:

v =T— a2y, (2-17)

a

where v, is the specific volume at the critical state, p, is the atmosphernic pressure, w, (0w, =5)1s
a non-negative variable defined as the volumetric distance between the CSL at the current grading and
the limit grading (I; =1). £is the volumetric distance between the C5L at the unit grading ( I, =0) and
the limit grading ( I; =1) (indicated in Fig (2-6)). Tdefines as the specific volume at the critical state

when p'=p,and v, =0.

Recognizing that the current state of soil (dense or loose) governing stress-strain behavior, a

state parameter for sand (Been and Jefferies 1985), v, , defined as the volumetric distance of the current

specific volume, v , from the current SCL at the cumrent mean effective stress, p'was presented as:
W, = V=Yg (2-18)

Having identified the state parameter for sand. v, . the Severnt-Trent sand model (Gajo and
Muir Wood 1999} further introduced the available strength s, . in order to control the evolution of
strength. The variable strength. #, . is proposed to be upper limit of the current strength. 5. Also, it is

assumed fo be a variable dependent upon the state parameter, v, .

nin, (v, (2-19)

as
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eun. CBL for uait grading (o= 0)
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"o o CSL for limit grading (Jg=1)
Mean effective stress, p'

Figure 2-6: Critical state line in p'—v plane for the crushable soils
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Figure 2-7- The Proposed non-linear available sirength function of state parameter
In this study, a similar non-linear relationship shown in Fig (2-7) between the available

strength and the state parameter. - . is proposed as:

() = M2 1 (2-20)

where k is a posifive constitutive parameter.

From definition of the available strength, 7, . the possible and impossible regions are identified
{Fiz. (2-7)). The available strength, #, . plays a role as a threshold of these regions. Substituting Eqs.
{2-17),(2-18), and (2-20) info Eq. (2-19), an alternative expression for Eq (2-19) is derived as the upper

threshold of specific volume, v . for sand.

2 Fy=
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1nl+fi]
1 p' 1 WM
vey =tar—amE L L ) (2-21)
k pa k2

here, the upper specific volume, v, , is defined as the loosest state of soil at the current stress ( p',r7) and
the current state parameter, v, . It is noted that Eq.(2-21) also separates the possible and impossible
states in space of the effective stress, p', stress ratio , 5, and specific volume, v . Thus, a unique state

boundary surface (SBS) is also found for sand. The SBS plays a central role in describing soil behavior
in the proposed model.
2.2.2 Elasto-plastic model for sand

For the stress-strain relationship, an additive decomposing of the total strain rate tensor, £, is

assumed as follows:
£=g' 1 &P (2-22)
where £°and £F are elastic and plastic strain rate tensors, respectively.

Flastic volumetric behavior is assumed to follow a convenfional linear relationship in the semi-
logarithmic plane of Inp'and v . Thus an elastic part of the variation in the specific volume, &°, is

given as:

A = s ﬂ: (2-23)
P

where xis the swelling index that represents the slope of the isotropic unloading (swelling) line in the

In p—v plane. From Eq. (2-23). the nonlinear elastic bulk modulus can be defined as:
¥,
E=—Lp (2-24)

Assuming that Poisson’s ratio , v, , is constant, the shear modulus, G | is:

_3K(@-2v,)

o) (2-25)
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Thus, the incremental isotropic elastic relationship is:
g'=D" 2" (2-26)

Where &'is the rate of effective stress tensor and DF is the elastic stiffness tensor derived as:
D‘={KIIEI1+ZG[I—%1®1 l} (227

The change in specific volume never exceeds beyond the SBS during plastic volumetric

deformation. Thus, a bounding surface , f . can be established as:
f=v-% =0 (2-28)

Similar to yielding surface in classical critical state model, the non-positive bounding surface,

f . increases to zero value when the state of soil approaches the SBS. Within the yielding surface. the

classical model predicts purely elastic behavior whereas actual sand exhibits elastoplastic irreversible
deformafion. Therefore, in order to describe a smooth transition from elastic to elastoplastic states, a
yield surface within the bounding surface is assumed in the proposed model Accordingly, a state
parameter of volumetric difference, (2 | from the current specific volume to the specific volume on the

SBS is presented fo scale the current state to the normal yielding (bounding) surface.
Q=v,-v (2-29)
Based on Eqgs. (2-28) and (2-29), the yield surface can be derived as:
f=v—y,+02=0 (2-30)
Here, the yield function is identically equal to zero.
The variables (v, p'.n.sf. 2y, |are hereafter denoted as (v,.p',.7,.25(= 0).3.v,, | at initial

state and I:.v, pLm.el . Ay, }I at the current state. The vaniation in specific volume from the initial state to

the current state, Av . can be decomposed into elastic and plastic vaniations in the specific volume, &

and AvF
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Av=v—v, (2-31)

A= AP =l E 2 (2-32)

where £F (= trs7) denotes the plastic volumetric strain. Substituting Eqs. (2-21), (2-31) and (2-32) info
Eq. (2-30), the yielding surface can be revised as:

1:1<[1+{M
f["=P'=??,E£’=f1!sfr}=‘*a—f1ﬂPL.— S P A L

2
/i }
—_—  —w |+2=0 -33
B k p. k In2 Ve @33

At initial state _f‘[vﬁ=p',,=rgﬁ,z{3[=m,q,wm}ED, the specific volume at the critical state, T can be

derived from Fq (2-33) as:

xz]
h{nf =1
1 \ ]

rove|beoswZe L Loy g a0 @-34)

Substifuting Fq. (2-34) info Eq. (2-33). a simple form of the yielding surface function is obtained as:

a
\ [1+ ]
_f‘[v=_p',rjr,z.f,!.1wr:|= (rl—t’]]ﬂ'p—1+%|ﬂ< [:—1 +H{2-)+Hw, v, )-v,el =0 (2-35)
Py
1+

ESED

As the soil does not exhibit any dilation in the critical state (7 = A ) and further assumption of associated

flow, the following condifion is obtained:

g o
ap'|

Substifuting Fq. (2-36) in Eq_ (2-35), Eq. (

(2-36)

1315

2-35) can be reduced to:

(2-37)
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Finally, the yield surface function can be obtained by substituting Fq_ (2-37) back into Eq._ (2-35).

P‘{l+[ﬁ.\|z}

f[v,P‘=??,¥=wa;}={fl—f]h ( }‘F{Q—QH{%—PW]—%E{?E“ (2-38)
L)

Ele?-

In any loading path, the Kuhn-Tucker conditions (Euhn and Tucker 1951) must be satisfied.
f=0; Az0; fA=0 (2-39)
where Ais plastic multiplier

As the yield function in the proposed model Eq. (2-38) 1s identically equal to zero, the loading condition

reduces to:
Azo (2-40)

where A =0 indicates elastic behavior (neutral or unloading) and A >0 indicates plastic deformation

(loading).

When soil state at the yield surface, the consistency condition, that is the time derivative of the

yield function f{v,p‘,r;r,z.f,!:!,wc } equal zero nust be satisfied.

S . CEF' il
f_aa‘wraef :‘J+Mr =0 (241)

As assumption of associated flow, the hardening mle for the plastic volumetric strain, =f | is:

L Jy P (2-42)
agf fals

From definition of the state parameter of volumetric distance, (2, as a margin from the current
state to the normal yield (bounding) surface, it must decrease with the development in plastic
deformafion and converge to zero. Consequently, when soil exhibits plastic deformation, a simple decay

function is proposed for the evolution of (2 :
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%ﬂ - —mﬂ|ﬂ|"é*"" (A > 0) (2-43)

Where . 15 a parameter that controls the rate of evolution of (2.

If the so0il exhibits purely elastic deformation (unloading or neutral), the consistency condition
{Eq.(2-41)) still needs to be satisfied as the yield function, f, is identically equal to zero. Also, no
plastic deformation, ¢F =0, and no particle crushing occurrence, v, =0, in the unloading or neutral

conditions, the evolution law of (2 can be derived from Fq (2-41) as:

o= 4 (A =0) (2-44)
ca'

Evidently, particle crushing leads to a denser state of soil (Fiz. (2-0)). The occurrence of particle
crushing can increase the grading index, I; (from 0 to 1), and decrease the current specific volume
through the state parameter of crushing, y, (from 0 to £), respectively. Therefore, a simple linear

relationship for the state parameter of crushing, y-, ., is defined as:
ve =g (@-45)

Identifying the relationship between the state parameter of crushing, v, . and grading index, I, the

evolution rule for v, can easily be obtained as:

S e =cig (2-46)

Sur

When no crushing occurs (I =0, the current crushing stress at the current density is smaller

than the maximum crushing stress. Also, there is no stress change in the maximum crushing stress

( Prr < Prourame @04 P, =0). From the Eqs. (2-41), (2-42), (2-43), and (2-46) , the magnitude of plastic

strain rate, A, is derived as:

%:D‘:é
A o ©47)
af &, &Ff e, &
el | o s
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When the rate of the plastic multiplier is positive ( A > 0), the rate form of the elastoplastic

stress-strain relationship is converted to:

D‘:iﬁi:
6'=D¥ = D°— foco’ -2 (2-48)
vﬂ#i+mﬂ|ﬂ| 2 +i:ﬂIII :i
\ oo’ da'| oo’ da' )

Where D? is the elasto-plastic stiffness tensor.

When particle crushing occurs (I > 0], the cument crushing stress at the current density is

equal to the maximum crushing stress. Also, there is stress change in the maximum crushing stress

(Pye = Prccurrone 30 P = 0) . As described in appendix and from Eq.(2-46), the evolution rule for v,

can be presented as:
%% =§[4%:a"+&21:é (2-49)
v g

From Eqs. (2-41), (2-42), (2-43), and (2-47) | the magnitude of plastic sirain rate, A, is derived as:

(& &) pe_» }
o =— 454 =2 D" 54
i [[60" *Alea-_J i 250
a (& -yl pe. &
Vi ——+ mﬂ|!?|“ﬁ‘+[aal +E4 E’a']'D‘ 5

When the rate of the plastic multiplier is positive (A > 0), the rate form of the elastoplastic

stress-strain relationship is converted to:

0 Lo Lrea)or-p-Lors

6'=D®-s-|pto— % 160 ‘ & (2-51)
v,,:‘ri+wﬂ|ﬂ| 2 +( S o4 de|p L
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Chapter 3 : Validation and Discussion of Constitutive

Model for Crushable Soils Considering Packing Density

3.1 Purpose

Table 3-1- Material parameters for the simulations by the proposed model

Parameters Description Value
m @ & @& &)
A compression index 0.195 0150 0.150 0330 0.145
K swelling index 0.005 0010 0015 0015 0001
r specific volume on CSL at p*'=98 kPa 277 220 301 477 2.00
M critical state stress ratio 113 165 165 163 1.50
Ve Poisson’s ratio 02 02 02 02 02
) parameter for the rate of 00 1000 200 50 50 200
Prew crushing resistance stress (kPa) when Cy =3 1000 1200 2650 5380 2200
M; parameter controlling the shape of crushing surface 095 095 095 095 105
< volumetric distance between SBSs of Is=0and I; =1 035 055 125 125 0.55
P initial crushing stress (kPa) 1000 100 50 50 50
n parameter for the ratio of crushing stress 400 110 155 185 1.00
a parameter for the rate of crushing resistance 220 300 115 213 3.00
C¥max maxinmm coordination number 14 14 14 15 14
b parameter for the e-Cy relationship 200 200 200 00035 200
k* parameter for the e-Cy relationship 14 14 14 90 14
Note:

(1) Ottawa sand (Valdes 2003, Guimaraes, Valdes et al. 2007)

(2) Aio sand (Hyodo, Wu et al. 2017)

(3) Dogs Bay sand (Altuhafi and Coop 2011)

(4) Verified with DEM results (Bolton, Nakata et al. 2008)

(3) HI sand (Shalnazari and Rezvani 2013)

The performance of the proposed model is verified with a wide range of tests, such as, 1D

consolidation (Valdes 2003, Guimaraes, Valdes et al 2007, Altuhafi and Coop 2011), isotropic
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consolidation (Hyodo, Wu et al. 2017), consolidated undrained triaxial test (CU) (Hyodo, Whu et al.
2017), and consolidated drained triaxial test (CD) with constant radial stress (Shahnazan and Rezvani
2013). Furthermore, the model responses of the breakable and unbreakable states are compared with
the results of Discrete Element Methods (DEM) by Bolton, Nakata et al. (2008). Next, the effects of
density on breakage behavior are also examined through the evolutions of the grading index, the mean
coordination number and confining stresses. Finally, the non-uniqueness of the critical line is explored
by a series of numerical simulations by the proposed model. The material parameters for the validations

and discussions are enlisted in the Table 3-1.

3.2 Validations

3.2.1 Isotropic consolidation triaxial test

Hyodo, Wu et al. (2017) carnied out isotropic consolidation tests with two initial densities of
dense (g, =0.657) and medium dense (g, = 0.76) for Aio sand. As observed i Fig (3-1b). the grading
indices, I . derived from the relative breakage, B, (Hyodo. Wu et al. 2017), showed small variations
indicating the occurrence of slight breakage. However, the trend of denser soil exhibiting less breakage
could be also observed in these tests (Fig. (3-1b)). Figs. (3-1a) and (3-1b) show that the proposed model
can not only capture the stress-strain responses but also vanations of grading index with different
densities. In this experiment, the confiming pressure was only 10 MPa which induced a slight breakage
for Aio sand. However, in the following validations, confining pressures were performed to higher

values to assure the occurrence of crushing.
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Figure 3-1: Comparison the simulation resulis of isofropic consolidation test and experimental results
Jfor dio sand by Hyvodo, Wu et al. {2017): {a) compression curves; (b) variations of grading index

{derived from relative breakage , B, ) with mean effective siress.

3.2.2 1D consolidation tests

Guimaraes, Valdes et al. (2007) and Valdes (2003) presented 1D consolidation test for Ottawa
sand and compressed upto a very high pressure of 100 MPa_ In this test, the compression curves of
dense (g, =0.534) and loose (e, = 0.698) soils were showed in Fig. (3-2a) while. the grading indices
obtained from PSD (Figs. (1-2b), (1-2c), and (1-2d)) were presented in Fig. (3-2b) for three desired
pressures of 1 4MPa, 50MPa, and 100MPa. It is noted that the limit grading for Ottawa sand was
obtained from the results of ning shear tests by Sadrekarimi and Olson (2010). As it was noted in the
earlier section, the wvariations of the grading indices revealed three remarkable trends: 1) low
compression pressure inducing negligible breakage; 2) Dense soils experience less breakage than the
loose soil; 3) the gaps of breakage for dense soils and loose soils reduce when the compression stress
increase. As observed in Figs (3-2a) and (3-2b), the proposed model shows good performance in

predicting the compression curves and capturing the overall trend of the variations of the grading indices.

Figure 3-2 show 1D compression test for Dog Bay sand (Altuhafi and Coop 2011) with three
different initial densities ( g, =1.486. e, =1.672. and g, =1.863 ) and compressed up to 30MPa.
Remarkable responses of this test were the unloading and reloading states (Fig. (3-3a)). As established
from Eqs. (2-3) and (2-6)), the proposed model is capable of depicting these unloading and reloading
process. Thus, the simulafion results by the proposed model can capture the responses of experimental
results very well (Fig. (3-3a)). Furthermore, the simulation results also confirm that the denser soils
exhibited less breakage as compared to the looser soils. However, when the compressed pressure

increases, the breakage of different densities approach to a asymptotical unity (Fig.(3-3a)).
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Figure 3-2: Comparison the simulation resulis of 1D consolidation test and the experimental results of
Ottawa sand by Valdes (2003), (Guimaraes, Valdes et al. 2007):(a) compression curves, (b) variations

of grading index with vertical sfress.
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Figure 3-3: Comparisons the simulation results of 1D consolidation test for Dogs bay sand with the
experimental results by Altuhafi and Coop (2011):(a) compression curves, (b) variations of grading

index with vertical stress.
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3.2.3 DEM simulations

22 16
20 r &14 ;
18 | 8o
I 2ng
wlé - E E C
g =2 I
214 + Ei s 10 |
g i .= C
= C
12 | -y
gy gé :
- 6 ;
08 - Symbols - DEM
[ Lines: sinmlation (b)
06 4 L L
10 100 1 10 100
Mean effective stress, p’ : MPa Mean effective stress, p’: MPa
16

[ Appromimate curve for DEM results |
R*=0.987

=

—
b

[ Sinmlation,
[ Oy = Coimn!/ (1+D€*7)
[ Cnee = 13, b = 0.0033,

Mechanical or mean
coordination number, Cy
=

k* =9

g
L Symbols : DEM
6 I A Unbreakable

© Breakable (©)
4'...........
08 13 18

Void ratio, e

Figure 3-4: Comparisons of the resulfs of isotrapic consolidation by elementary simulation and DEM
results from Bolion, Nakata et al. (2008): (a) Compression curves; (b) Variations of coordination

numbers with mean effective siress; (c) Relation of coordination number and void ratio.

Bolton, MNakata et al. (2008), performed DEM simmlation of isotropic consolidation for
breakable and unbreakable cases. Figs (3-4a) and (3-4b) showed the results of these simulation, where
the coordination number was the mechanical mean coordination number (Thornton 2000). Deniving
from these DEM results, Fig (3-4c) revealed a unique relationship between the coordination number
and void ratio regardless of breakable or unbreakable simulations. Based on comparison between the
simulations by the proposed model and the results of DEM (Figs. (3-4a), (3-4b), and (3-4c)), these
results show very good agreement. Especially, this validation confirms the assumption of a simple

relationship between the mean coordination number and density in this study.
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3.2.4 Consolidated undrained triaxial tests

Next, the performances of the proposed model are verified with the consolidated undramed
triaxial tests (CU) by Hyodo, Wu et al. (2017). In these tests, dense (s, =0.657) and medium-dense
(s, = 0.76) soils of Ao sand was used. These samples were initially isotropically consolidated to the
desired pressure of 3000 kPa and subsequently undrained shearing was carried out. Figs (3-5a) and (3-
5b) illustrate the stress-strain relationship during the shearing state and the variations of Ij; (derived
from the relative breakage, B, . in the research of Hyodo. Wu et al. (2017)) during consolidation and
shearing states. As observed in Fig (3-5b), after consolidation state, the breakage of the dense soil was
less than that of the medium-dense soil However, after shearing state, the breakage of the dense soil

was higher than that of the medinm-dense soil. These stress-strain and breakage responses are very well

depicted by the proposed model (Figs. (3-5a) and (3-5b)).
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Figure 3-5: Comparisons between the results of CU fest on dio sand by Hyodo, Wu et al_ (2017) and
elementary simulation results using the proposed method: {a) siress-sitrain responses, (b) variations of

grading index with mean effective siress
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3.2.5 The non-uniqueness of critical state line for crushable soil under loading
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Figure 3-6: Comparisons between the results of CD test with constant radial stress for HI sand by
Shahnazari and Rezvani (2013) and elementary simulation results using the proposed method: (a)
siress-strain responses; (b) volumetric responses; (b) variation of grading index with mean effective

sIrass.

Similarly, the variations of strength, volumetric contraction or dilation and grading indices in
consolidated drained triaxial test (CD) with constant radial stress for HI sand performed by Shahnazan
and Rezvani (2013) are verified with the simulation results by the proposed model (Figs (3-6a), (3-6b)
and (3-6c)). Samples with dense (s, =0.696) and loose (e, =0.908) Were inifially consolidated
isotropically up to 400 kPa and then drained shearing state was induced. Figs. (3-6a) and (3-6b)
demonstrated that the proposed model can capture the trends of strength and dilatancy variations with

different densities. Furthermore, it also shows that the simulation results predict the trends of variations
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of prading indices very well (Fig. (3-6c)) (the denser soil exhibited more breakage than the loose soil

after the shearing state).

3.3 Parametric studies

3.3.1 Breakage responses under consolidation tests

In order to investigate the response of the crushable soils under consolidation tests, a series of
simulations by the proposed model with different densities for Dog Bay sand are performed. In these
simulations, variations of void rafio, ¢ . mean coordination number, C,, and grading index. I . versus
the mean effective stress | p', are presented in the Figs (3-7a). (3-7b) and (3-7c), respectively. These
variations are also uniquely portrayed in 3D graph (Fig (3-7d)). In which, the grading indices depends
not only on the crushing stress. p, . but also on the variation of mean coordination number. The

proposed model appropriately describes the crushing responses of crushable soil, whereas the previous
model described the relationship of grading index depend only on the crushing stress.

Figs. (3-Ta), (3-7b) and (3-7c) demonstrate a consistent relationship among these state
parameters (void rafio, mean coordination number, and grading index) when the mean effective stress,
p', increases: 1) When the mean effective stress, p', is smaller or equal fo the initial crushing siress,
Pu. D0 breakage occurs. The compression curves are almost linear lines; 2) when the mean effective
stress. p', higher than the initial crushing stress. p,, ( p'> p,, ). considerable breakage occurs. In which,
the denser soils with higher coordination mumber, Cy, show less breakage than the looser soils. A rapid
change of slopes is defected in the compression curves (Fiz. (3-7a)) indicafing most of plastic
deformafion due to particle breakage takes place; 3) when the mean effective stress, p', increases fo
higher confining stress, the breakage responses of the different densities show less differences,
subsequently, they are unique. Correspondently, the void ratio, ., and the mean coordination number |
Cy - also approach asymptotical unity. As observed in Figs (3-7a) and (3-7c), when higher confining
pressure is reached, the reductions of the slopes of the compression curves are also consistent with the

slowdown of the breakage rate.
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Figure 3-7: Effect of different densities under isotropic consolidation for Dogs Bay sand on the model
responses. (a) compression curves, (b) variations of the mean coordination number with mean effective
stress; (c) variations of the grading indices with mean effecive siress; (d) uniquely presentated the

relationships of mean coordination number, crushing stress and grading index on 3D graph.

3.3.2 Contour maps presenting characteristics of the crushable soils

The 3D graph in Fig (3-8d) is simply represented on the contour maps (Figs. (3-8a) and (3-
8b) for Ottawa sand and Dogs Bay sand) of three fundamental state parameters of mean coordination
number, Cy . crushing stress, p,. . and grading index, I; . The purpose of these contour maps is fo
illustrate how breakage response with the effect of crushing stress. p, . and mean coordination number,
Cy - In the other words. the graphs can reveal how breakage potential of each soil and the current model

can capture the characteristics. In these figures, series of simulafions of isotropic consolidation with



different densities are also presented. It is noted that the denser soils have higher mean coordination
number in comparison to the looser soils. Also, the isotropic consolidation lines of the denser soils reach
the contour lines slower when the crushing stress, p, . increases. The higher mean coordination number
and slower reaching to the contour lines of the denser soils indicate that the denser soils can exhibit less
breakage than the looser soils during isotropic compression. Figs (3-8a) and (3-8b) also present the
variations of the mean coordination number approaching to asymptotical unity when the crushing stress,
p, - increases. A remarkable characteristic of these contour maps is its reflection of deformation
properties. For example, the steep slopes in the contour lines of Ottawa sand (Fig 3-8a) indicate the
brittle behavior, whereas the gentle slopes in the contour lines of Dogs Bay sand (Fig. 3-8b) indicate

the ductile behavior.

Through calibration with the material parameters, the crushing potential with the effect of
coordination number and crushing stress can be captures for each crushable soil by the proposed model

Therefore, the proposed model is robust and versatile for widely applications with different crushable

soils.
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Figure 3-8 Contour maps for the relationships of mean coordination number, crushing stress and

grading index: (a) Oftawa sand; (b) Dogs Bay sand.
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3.2.4 Breakage responses under CU tests
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A sernies of simulations with different densities are conducted in CU tests for Dogs Bay sand
shown in Figs (3-9a), (3-9b), (3-9¢), and (3-9d). The purpose of the simmlations is to examine which
factor that control the breakage response under CU tests. Inmitially, isotropic consolidations are
performed to a desired confining pressure of 500 kPa followed by undrained shearing to failure. The
variations of stresses, void ratio, mean coordination number, and grading index are presented in Figs
(3-9a), (3-9b), (3-9¢) and (3-9d). As observed in Fig (3-Da), during consolidation state, the simulation
results of the denser soils show less breakage occurrence as compared fo the looser soil. However,
during undrained shearing state, more breakage is presented for the denser soils. The simulation results
are also consistent with experimental results by Hvodo, Wu et al. (2017). At the failure state, the
simulations (Figs. (3-%a) and (3-9c)) reveal that the denser soils have higher both stresses (p'.q) ., and
the mean coordination number, €. as compared to the looser soils. Even though. the higher mean
coordination number, Cy, may cause more resistant against breakage, but, the higher stresses(p'.q)
demonstrates more dominant effect of the breakage behavior at the crifical state. The current model
based on the interactive effect of the stresses and the mean coordination number (Eqs. (2-5), (2-6) and

{2-7)) can easily capture these complex responses.

3.2.5 Breakage responses under CD tests

In order to explore the effect of initial confining pressures on parficles crushing with different
densities under shearing state, mimerical simulations were performed for CD tests with two extreme
densities of dense (g, =12) and loose (g, =2) for Dogs bay sand. Figs (3-10) and (3-11) show
variations of stresses, void ratio, mean coordination number and grading index with two initially
isotropically consolidated pressures of 100 kPa and 500 kPa. Several remarkable conclusions can be

drawn when comparing these numerical results:

1) As observed in Figs (3-10h) and (3-10h), the final grading indices of the dense and loose
soils at the confining pressure of 100 kPa are lower than those for the confining pressure of 500 kPa.

Higher confining pressure is, the more breakage exhibits. The effect of confining pressure on the



breakage response is consistent with other studies (Hardin 1985, Lade, Yamamuro et al 1996,

Shahnazan and Rezvani 2013, Hyodo, Wu et al. 2017);

2) Under low confining pressure of 100 kPa (Figs (3-10a) and (3-10g)), the dense soil 1s
characterized with a peak strength, whereas, the loose soil has its strength increasing gradually.

Similarly. as the grading index. I;. of the dense soil reaches the maximum value, it approaches the

peak strength simultaneously. While, the grading index, I, of the loose soil increases gradually;

3) As observed in Figs. (3-10a), (3-10f) and (3-10h), the stresses (p',g). mean coordination
number , Cy . and grading index, I of the dense soil are higher than those of the loose soil. Based on
the interactive effect of the stresses (p' ) and the mean coordination number, C,,. formulated m Eqs.
(2-5), (2-6) and (2-7), the proposed model can easily depict the breakage phenomenon that the higher
peak strength of the dense soil can overcome the resistance effect caused by the higher mean

coordination number;

4) Due to different breakages encountered under low confining pressure (Fig. (3-10h)), the
critical state lines (CSL) formulated from Eq. (2-17) are also not unique, demonstrated by different void

ratio after shear state in Figs (3-10c) and (3-10d);

5) Under high confining pressure of 500 kPa (Figs. (3-11a) and (3-11Db)), the strengths and
grading indices of the dense and loose soils gradually increase to a similar value. Also, after shearing
state in Figs (3-11d) and (3-11f), void ratio and mean coordination number seem to approach to an

asymptotic unity. The unique CSL can be found when high confining pressure is applied.

55



40

35

b
=

Coordination number Cy
Il
(¥}

b
=

Grading index, /;
=2 = 2 o o=
[ ] A (=9 [=.-] [==]

<
=

b Ll L LLL

(k)

% —— [Cpath U EndofIC

- 4——Shear path

E Dense N
'_----,?'__E____"'l—'_ Shear path
r LC'path

Axial strain, £ %

1 Denze 0 EndofIC
P U
(&)
. ==eee Dense I mewees Dense
L [ O  EndofIC
C Densze C
C; i ]
0 10 20 30 40 30 60 10 100 1000 10000

Mean effective stress, p: kPa

100000

Figure 3-10: Effect of densities under CD fests with confming pressure 100 kPa for Dogs Bay sand:

fa), (c), {e), and (g) are variations of stress, void ratio, mean coordination number, and grading index

plofted with axial strain, respectively; (b), (d), (), (h) are variations of siress, void ratio, mean

coordination number, and grading index plotted with mean effective siress, respectively
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3.2.5 Effect of density and confining pressure on the CSL

The effect of densities and confining pressures on the CSL are further examined by a senies of
simulation of CD test with constant mean effective stress as shown in Figs (3-12z). In these simulations,

two extreme densities for Dogs Bay sand are considered with dense (g,=12) and loose
| g, =2).Samples are initially consolidated Isotropically to the desired confining pressures of 30, 50,

100, 200, 500, 1.000, 2.000, 5.000, 10.000, and 20.000 MPa, and then shearing state are performed with
constant mean effective stress. After sheaning state, the failure points of each tests are connected fo
create the CSL for dense and loose soil (Fig. 3-173). Based on these analysis results, the CSL for the
dense soil and loose soil change from non-unique to unique states when the confining pressures vary
from lower to higher values, respectively. Under low confining pressure, due to the high peak strength,
the dense soil exhibits more breakage than the loose soil. Thus, the CSL for the dense soil locates at
lower positions as compared to the CSL for the loose soil. However, under higher confining pressures,
there is no-peak strength, whereas, the coordination mumber tends to approach to asymptotical unity
{Fig. 3-12D). Thus, the CSL for dense and loose soil are unified. This non-uniqueness was also noficed
with study by (Tengattini, Das et al. 2016). However, the thermo-dynamic model by (Tengattini, Das
et al. 2016) did not incorporated the coordination number, therefore, there was no clear frend of how

density can effect breakage response reported.
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Figure 3-12: Non-uniqueness of critical state lines under different densities and different confining
pressures by series of simulations of the proposed model for Dogs Bay sand- (a) on e—log p'plane; (b)

variations af mean coordination number at critical state.
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Chapter 4 : Numerical simulation of pile’s responses on

crushable soils

4.1 Validation of the implementation of the proposed model into
Plaxis 3D
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Figure 4-1: Comparison beftween the implemented model USDM in Plaxis and the elementary
model

The bearing capacity problems of shallow and pile foundations with the Morh-Coulomb model
are simulated by Plaxis and the simulation results are validated with beaning capacity formula given in
The Appendix Bl and B2. These validations demonstrate the capability of Plaxis in modelling load
and failure problems in geotechnical field To study the response of pile foundation on crushable soils,
the USDM of the proposed model is implemented into Plaxis. However, it is crucial to verify whether

this implementation is cormrect or not before any further simulations of load and failure response. For
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this purpose, the implementation was verified with elementary model under consolidated undrained
triaxial test. In this verification, the Dog Bays sand material properties given in the table 3-1 are utilized.
The initial confining pressure is 100 kPa and initial void rafio is 1.8. The Fig 4-1 compare the variations
of stress-strain and grading index between the USDM and elementary model. As can be observed from
the Fig 4-1, the results of stress-strain and grading index by both simmlations of the USDM and
elementary model show wvery well agreement The comparisons demonstrated that the current
implementation could capture the behavior of the crushable soil Thus, the FEM model by Plaxis
incorporated the USDM of the proposed model can be utilized for simulating the load and failure of

single pile foundation on crushable soils.

4.2 Simulation of single pile foundation on crushable soil

In this section, the pile’s responses on crushable soils are examined through FEM simulation
incorporated the proposed model Regarding the geometry for simulation, a quarter of pile model is
chosen as simplification for simulation (Fig. 4-2). As can be observed in the Fig 4-2_ Pile’s diameter
15 1.0 m, pile’s length is 10.0 m, the outer boundary with the length of 5.0m, and the so0il’s thickness
below the pile” tip is 5m Boundary conditions are also described in Fig 4-2. Figure 4-3 presents the
meshing model with 20635 elements of 10-node tetrahedral elements. In order to save computation time,
the finer meshes are defined at the pile tip and pile shaft while, the coarser meshes are assigned at the

outer boundanes.
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Figure 4-2: Pile's geometry

Figure 4-3: Meshing model for pile foundation



Table 4-1: Pile parameter with linear elastic model

Parameter Description Value Unit
E Young's Modulus 27 (GPa)
Ve Poisson’s ratio 02

Table 4-2: Parameter for the interface’s element

Parameter Description Value Unit
k. stiffness along to the interface 10 (MPa)

stiffness normal to the
Fn interface 10 (MPa)

Ce cohesion of interface 0
i internal friction of interface 41 degree

[kMN/m?]
0.00

-18.57
-37.14
-55.71
-74.29
-92.86
-111.43
-130.00
-148.57

-167.14
| -185.71
.204.29

-222 86
-241.43
-260.00

Figure 4-4: Effective vertical stress at initial state

Pile’s model is simply considered as linear elastic with the parameters given in the table 4-1.
As validation in the section 4.1, the USDM for Dogs Bay sand incorporated the particle crushing and

the effect of packing density is utilized to examine the response of pile. The Dogs Bays sand’s



parameters are given in the table 3-1. The inferface properties are simply assumed with no reduction of
strength. Thus, the strength of the interface element is the strength of Dogs Bay sand
(e, =0;¢, = ¢"'=417). The stiffness along and normal to the interface are choosen with a high value of
10 MPa for simplicity. Another assumption is no crushing happen around pile’s shaft and pile’s tip at
the initial state. This assumption may be reasonable for piles constructed by replacement technique.
While, the driven pile usually exhibit crushing around pile’s tip and pile’s shaft due to high concentrated
stresses at the installation process. Gravity force is applied for initial state with the vertical stress
distnbution given in Fig 4-4 Furthermore, displacement of 10% pile diameter (§=0.18=01m) is
defined at the pile’s head. The rate of displacement is controlled by the automatic step size procedure
by Van Langen and Vermeer (1990 to save computation time. In oder to study the effect of packing
density on pile responses on crushable soils, two initial densities of &, =2.0 and &, =1.7 are used for

the simulations.

The results of deviator strains are compared in Fig 4-5 for the simulations with different
densities (g, =2.0 and g, =1.7). In these simulations, deviator strain occurred at the pile’s shaft and
pile’s fip. Larger magmitude of deviator strain show at the pile’s tip as compared to pile’s shaft. Based
on the simulation results, the failure mode can be punching shear mode as the deviator strain developed
around the pile’s tip. Deviator strain can also be detected at the pile’s head. This deviator strain at the
pile’s head may cause by the relative movement between the pile and soil due to the different stiffness

in combination with low confining pressure at the surface.

The distributions of grading index of these simulations are compared in Fig 4-6. As can be
observed in Fig_ 4-6, the distribution of grading index is more concentrated at the pile’s shaft and pile’s
tip. Moreover, grading index distribution for the simmlation of denser soil ( g, =1.7 ) shows higher than
that of the looser soil (&, = 2.0 ). This indicates that the denser soils exhibit higher breakage as compared

to the looser soil under loading of single pile.
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Figure 4-7: Comparison of grading index distribution at pile’s tip befween simulation by
Fuwajima, Hvodo ef al_ (2002) and the simulation by the proposed model

Euwajima, Hyodo ef al. (2009), conducted a model pile load test on crushable soils and then
camried out simulation for distribution of breakage factor. The comparison between the results of
simulation by Euwajima, Hyodo et al. (2009) and the simulation by the proposed model are shown in
Fig 4-7. Similar patterns of contour lines at the pile’s tip and pile shaft are observed for both simulations.
However, the simulation results by the proposed model show more breakage occurred at the pile’s fip
conner. This region with high concentrated of deviator stress and mean effective stress may cause
extreme particle crushing.
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Figure 4-8: Breakage resoponses in the region adjacent to the pile shaft; a) close view image

{Arshad, Tehrani et al. 2014); b) simulation results by the proposed method
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Figure 4-9: Load and settlement of simulations by the proposed model.
Arshad, Tehrani et al. (2014), performed cone penetration on an angular silica sand and a close view
image of broken particle around the cone’s shaft was shown in the Fig. 4-8 (a). As can be observed, the
adjacent region around cone’s shaft can be divided info three zomes: Highly cmshed particles,
moderately crushed particles, and non-crush zone. Similarly, the simulation’s result by the proposed

model also shows the exist of particle crushing zone adjacent to the pile shaft (Fig. 4-8 (b)). The
breakage reduces sharply with the distance from the pile’s shaft

The load and settlement curves by the simulations with different densifies are presented in Fig.
4-0_ As can be seen from the Fig 4-0 ultimate load cannot be detected and the load increase with the
increase of settlement. The reason for that may come from the failure mode is punching shear. The

simulation of the denser soil (&, =1.7 ) shows higher load as compared to the simulation’s results of the

looser soil (e, = 2.0 ). This simulations results are also consitant with the experimental results of pile
load tests on Dog Bays sand by Yasufuku and Hyde (1995) (Fig 1-10).
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4.3 Discussions of the simulation’s results under the effect of
density

4.3.1 Stress induce crushing of the elements under pile’ tip

The purpose of this section to examine how stress induce crushing of the elements under pile’s
tip with the effect of density. This section 15 necessary because it can help to explain the how crushing
responses under pile tip also explain the mechanics of load transfer from pile to the surrounding soil.
As can be observed from the Fig 4-7 of the grading index distribution beneath the pile’s tip, the
breakage occurred non-uniformly and concentrated highly at the pile conner. The other results of
deviator stress, mean effective stress, volumetric strain and dewviator strain also reveal that the
concentrated of stress and strain is a zone starting from the pile conner and spreading to the 0.5D under
pile tip (Fig. 4-10). Based on the distribution of the deviator strain, it can be assumed of a shear band
formation stretched from the pile conner fo 0.5D under pile tip. A long the assumed shear band, higher
deviator stress is detected. Therefore, it is also reasonable explanation of the higher breakage occur. In
order to understand the crushing responses under the pile’s tip, 4 elements inside and outside the
assumed shear band are selected as showed in the Fig_ 4-11: Element A locates at the pile’s center and
right below the pile’s tip; Flement B stays at the pile conner; Element C locates at the pile’s center and
0.5D from the pile’s tip; Element D stays at 1.0D from the pile’s tip. Among these elements, elements
B and C are inside the assumed shear band, whereas elements A and D are outside the assumed shear
band.

As can be observed in the Fig. 4-12, element B experiences highest deviator stress and mean
effective stress, therefore, the highest breakage can be detected in the element B. In comparison between
elements A and C, one may expect more crushing occur in the element A because it locates closer to
the pile’s tip. However, based on the simulation results in Fig 4-12 (b), the element C exhibits more
crushing than element A The stress path m Fig. 4-12 (a) revealed that element C experiences higher
deviator stress than element A Therefore, the deviator stress may dominate the crushing response and
lead to more crushing for element C. Finally, element D locates far from the pile’s tip and experience
lowest stress. Therefore, it can be easily to understand the least crushing occur in the element D (Fig.
4-12). The stress inducing crushing of the elements revealed that the elements along the assumed shear
band exhibit high crushing due to the higher deviator stress.

Similarity, the stress paths, and distribution of grading indices for the simulations with loose
soil (eo = 2.0) are shown in the Figs 4-13 (a) and (b), respectively. As observed from the Figs 4-13,
Even though_ the stress paths and distnbution of grading indices of the simulations with loose soil show
similar patterns, the smaller values of stress and grading indices after the tests can be seen. Therefore,
In sinmlations with the loose soil, elements exhibit similar stress path but lower value, followed by
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smaller values of breakage as compared to the results of the elements when simulated with the dense
soil.

In order to compare the stress path and breakage of the elements under pile’s tip with different
densities, The stress path of each element are compared in Fig_ 4-14 and the variations of grading indices
are compared in Fig. 4-15_ Tt can be seen from the Fig_ 4-14, the stress paths of the elements are almost
similar apart from elements C and D with a slightly differences. Moreover, the variations of grading
indices can be observed in Fig. 4-15 that the loose soil always higher with the same mean effective
stress. The experimental evidence also demonstrated that the loose soil experienced more breakage as
compared to the dense soil under the same stress path due to their lower mean coordination number.
Therefore, the crushing responses under pile foundation structure with the effect of density can be
reasonably captured by the proposed model.
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Figure 4-10: Stress and strain under pile’s tip for the simulation with dense soil g, = 1.7
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Figure 4-13: The simulation with loose soil g, = 2.0: (a) Stress paths of the elements under
pile’s tip; (b) variations of grading index of the elements under pile’s tip
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4.3.2 Effect of crushing between crushable and uncrushable simulation

To examine the effect of particle crushing on the load-settlement curve, the simulations with

crushable and uncrushable soil were performed for the soil with different desities of loose (e, =2.0)

and dense (e, =1.7 ) (Figs. 4-16 a and b). As can be observed from Fig. 4-% (a and b), particle crushing

cause reduction of resistance for pile for both simulation results of the loose and dense cases. However,

the load vanations between the crushable and uncrshable simulations in the case of loose soil reveals

a gradual increase, while the load variations in the case of dense soil escalate significantly when the

settlement rising over 0.02m. Overall, dense soil experiment more reduction in bearing resistance due

to more crushing occurring for the simulation with the dense soil.
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4.3.3 Effect density on bearing resistance

In order to examine the effect of density on bearing resistance the results of physical model
tests on Dogs Bay sand by Yasufuku et al. (1995) was ultilized and shown in the Fig_ 4-17 (a). In Fig_
4-17(a), the resistance of pile increased when the relative density increase from 40% to 90%. However,
in the physical model, the author performed the tests with steel pile which cause much less friction
angle at the interface layer. The friction angle between the steel plate and soil was examined by Tanaka
et al (1995) through direct shear tests. Figs 4-17 and 4-18 illustrated the shearing resistance at the
interface layer with different normal stress for Chibishi sand and Dogs Bay sand. The final results of
firction angle at the interface layer can be summarized in the Fig. 4-19. As observed from the Fig 4-19,
The friction angle of Chibishi and and Dogs bay sand reduced and reached to stable state when normal
stress increased. Also, the average friction angle for the interface layer of Dogs bay sand can be § degree.
Therefore, the current simulations are updated with the inferface friction angle of 8 degree and the
simmlation results are presented in Fig. 4-20. The experiemental results by Yasufuku et al 1995 and the
simmlation results shown good agreement indicated that the proposed model can capture the effect of
density.
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Figure 4-17: Behaviour of friction between stainless steel plate and Chibishi sand (Tanaka et
al . 1995)
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Chapter 5 : Conclusions

5.1 Conclusions

In this study, a constitutive model for crushable soil incorporated the effect of packing density
on the particle crushing phenomena through coordmation number is establish By examining the
systematic packings and experimental packing results, a general relationship between the packing
density and mean coordination mumber is proposed. A rational evolution rule for grading index
considering the contimity of packing density and crushing resistance relationship (such as increase of
density as increase of resistance against crushing due to the increase of coordination number) is
established. Subsequently, the evolution mile for grading index is incorporated into the proposed
constitutive model which takes account of crushing effect by lowing the critical state specific volume
with the changing grading due to crushing. The validity of the proposed model is verified by comparing
the simulation results with an extensive series of elementary tests. Based on the parametric studies by

the proposed model for crushable soils, several findings can be listed as:

1) under the same effective stress path (such as isotropic consolidation or 1D consolidation),
the model responses reveal that the densely packed soils with higher mean coordination number have
lesser crushing as compared to the loosely packed soils. However, the grading index density, and mean

coordination numbers approach to an asymptotical unity when the confining stress increases;

2) Under undrained shear path, the denser soil present higher breakage. The higher deviator
stress may overcome the resistance of high mean coordination number in densely packed soils and lead

to more likely crush than the loosely packed one;

3) Under drained shear path, the model responses with different densities reveal significant
effect by the magnitude of the initial confining pressure. When the initial confining pressure is low, the
dense soil shows the high peak strength The high peak strength may have stronger effect than the
resistance caused by high coordination number of the densely packed soils. Thus, the dense soil may

exhibit more breakage than the loose soil. When the inifial confining pressure is high no peak strength
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is detected. In this state, the stress paths of loosely packed soils and densely packed soil is almost the
same. Thus, the void ratio, coordinafion number, stresses, and grading index may approach fo an
asymptotical unity;

4) The CSL with different densities are also significantly affected by the confining pressures.
The non-uniqueness is detected when the confining pressure is low. The high peak strength for denser

soils is the main factor responsible for non-uniqueness at this state. However, when the confining

pressure is high, the SCL approaches the same curve.

Numerical simulation of single pile foundation on crushable soils can capture the breakage

responses under different densities. There are several findings from the simulations can be summarnized

as:
1) The failure mode of pile foundation on the crushable soils can be the punching shear mode;
2) More breakage concentrates at the pile tip and pile shaft which are consistent with
experimental results;

3) Under pile’s tip, along the assumed shear band, more breakage occurs due to higher deviator
stress. Similar stress path can be found at the elements for simulations of loose and dense cases.
However, the dense case revealed larger in the mapgnitude of stress in the elements leading to more
crushing after simulation. Comparison of the results of grading indices in the elements shows that the
grading index of the loose case always higher than the dense case when they have the same mean

effective stress;

4) Preliminary results show that denser soils exhibited more breakage and experience more

reduction of bearing resistance;

5) More resistance for the simulation of pile on crushable soil with dense soil as compared to

the loose soil.
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5.2 Future research

In the fiture research, further study of numerical simulation on crushable soils by the proposed

model mcluding:

1} Study the end bearing capacity under the effect of density
2) Smudy the skin resistance under the effect of density.

3) Propose a bearing capacity equation for pile foundation based on simulation results
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APPENDIX

A. Validation of FEM model

A1. Validation ultimate bearing capacity for shallow foundation by FEM model

Shallow foundation bearing capacity was well solved by classical theory with assumption of
rigid plastic failure mechanics. In order to prove the reliability of any FEM model, the validation of the
simulations with the classical bearing capacity solution is necessary. Thus, in this study, the validation
is performed between the Plaxis with Morh-Coloumb model and the classical bearing capacity for
shallow foundation.

A1.1 Theory

Classical bearing capacity solution for shallow foundation was derived anmalytically by
assuming weightless soil ( }'=0) by Prandtl (1921). In this function, the bearing capacity, g, . can be

expressed in term of cohesion , ¢, overburden pressure, g, and the bearing capacity factors of N, and

N,
4, =cN, +q,N, (A-1)
Where N, =tan3[§+%]exp[;rtmqﬁ'} (A-2)
N, =(N, ~1)cotg’ (A3)

A1.1 Geometry

A plane strain model with geometry and mesh 1s shown in Fig. B-1. The foundation width is
2m with the prescribed displacement (of 10% foundation width) is assigned at the top. The model with
the width and the length are 7.0m and 5 0m, respectively. The meshing model with 2699 elements of
15-node triangular are generated automatically by Plaxis. Simulations are performed with 5 cases with
varying the internal friction from 0.0 to 40.0 degree.

Validation performed in Plaxis with the Morh-Coloumb model (one of available models in
Plaxis library). Morh-coloumb is one of the simple models with linear elastic and linear plastic
assumptions which are suitable for this validation. By simplify assuming associated flow mle, The
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dilation angle is equal to the friction angle (y'=¢") and then the soil’s parameter is shortern with only
four parameters . The soil’s parameters for this validation are given in the table B-1 with the internal
friction varies from 0.0 to 40 degree. The cohesion is kept constant with 10.0 kPa.

Table A- 1: Materials parameters for soil with Morh-Coloumb model

Parameter Description Value Unit

E Young's Modulus 50,000 (kPa)

Ve Poisson’s ratio 035

@' internal friction 0.0; 10.0; 20.0; 300;400
c' cohesion 100 {kPa)

Figure A-1:- Geometry for shallow foundation
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A1.2 Analysis results
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Figure A-2: Comparisons of deviator strains in five simulation’s cases

The results of different deviator strains in five simulation cases are shown in Fig A-2 As can be
observed from Fig. A-2 The wedge shape created by the distnbution of deviator strain below foundation

varies with the increase of internal friction angle. The angle [.—:r =g+%‘| derived from analytical

method is well matched with the numerical simulations by Plaxis. Moreover, the load-settlement curves
by the simulations are agreement with the analytical results by the solution of Prandil (1921) given in
Fig A-3
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Figure A-3: Comparisons of load- settlement curves of the simulations and the analytical results by
FPrandil (1921)

A2. Validation ultimate bearing capacity for circular pile foundation by FEM model

In order to examine the numerical simulation for pile foundation, the validation is also needed.
However, there were no exact solution for the problem of bearing capacity of pile foundation Thus,
this section compares the simulation with several approaches.

A2.1 Theory

As mentioned above, there are no exact solution for the bearing capacity problems of pile
foundation. Thus, the empirnical solution and solution based on finite element analysis are chosen for
the validation. For simplicity, the weightless soil is assumed ( '=0) and the internal friction is zero
{ #'=0). The empirical solution for pile foundation proposed by NMeyerhof (1963) is expressed through
the shape factor . 5, . and depth factor .4, , as:

qp =5.deN; =% {A-4)
Where s, =1+02B, /L {A-5)
d =1+02D/B, (A-6)

D is the depth of pile, B, is pile width, I_is pile length, N, =x+2 Prandil (1921)

Another solution based on the rigorously finite element limit analysis by Salgado, Lyamin et
al (2004) . In this study, Salgado, Lyamin et al (2004), found that the Meyerhof's equation is

conservative and may reach to 20-30% .
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A2.1 Geometry
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¢=00°
7'=0.01N/m’;
E =100 MPa.

Figure A-4: Geometry for pile foundation

Figure A-5: Meshing model for pile foundation
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In order to save calculation time, a quarter of the calculation section was chosen (Fig A-4). The
so1l thickness below the pile is 15m, the pile diameter is D = 2m_ the pile depth varied from 0B to 5B,
and the calculation domain have length 20m_ Boundary condition is given as Fig A-4. The mesh model
was generated with 48975 elements 10-node tetrahedral (Fiz. A-5). The region around the pile’s tip and
pile’s shaft were carefully meshed while the region outer boundary was defined with coarser mesh. The
pile’s fip was meshed intensively due to high concentrated stress. Displacement was defined at the pile’s
head with a value of 10%8. To transfer the surface displacement to the pile’s tip is assumed to be very
stiff material Thus, the Young's modulus of pile is assumed to be 200 GPa and linear elastic model is
assigned for pile. The pile’s material 1s given in table A-2 While so0il’s parameter is given in table A-3
with Morh-Coloumb model. Soil is assumed to be cohesive soil with cohesion 1s 10.0 kPa. The interface
element is defined at the interface layer between soil and pile. For this validation, the interface layer
plays a role reduces the skin friction to near zero value. Thus, the pile is freely settlement without any
skin friction and the pile resistance is only pile’ tip bearing.

Table A- 2: Pile parameter with linear elastic model

Parameter Description Value Unit
E Young's Modulus 200 {GPa)
Ve Poisson’s ratio 0.2

Table A- 3: 5o0il’s parameter with Morh-Coloumb model

Parameter Description Value Unit
E Young's Modulus 50,000 (kPa)
Vo Poisson’s ratio 035

g’ internal friction 0.0 degree
c' cohesion 10.0 (kPa)
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A1.2 Analysis results
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Figure A-6: deviator strain distribution for pile’s foundation
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Figure A-7- Load-sefflement with different depth ratio
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The results of deviator strain distribution is given in the Fig A-6 with the failure locally at the pile’s
tip. The failure model may be the punching shear model or local shear model Next, the load-settlement
curves for different depth and pile’s diameter ratio I/D is shown in the Fig A-7. As can be observed
from the Fig. A-7, the pile’s resistance at the surface L/D = 0 has the lowest value. While, when the
depth ratio increases the more pile’s resistance gain Finally, comparisons between the empirical
solution by Meverhof (1963), the FEM simulation by Salgado, Lyamin et al (2004) and the results of
simulation are given in the table B4 The simulation results of bearing capacity factor Nc shows slightly
differences from the results of FEM simmulation by Salgado, Lyamin et al (2004). However, the results
by Meverhof (1963) show more conservative especially with the higher depth.

Table A- 4: Comparison the factor N; by previous approaches and the simulation results

1D Bearing capacity factor Ne
Salgado (2004) Meyerhof (1963)  Simulations
0 6.23 6.17 6.30
1 043 7.40 8.58
2 11.01 5.64 10.86
3 12.14 0.00 11.45
4 13.03 0.00 12.47
5 13.74 0.00 13.36
1600 1 _ o _ Numerical results (Salzado 2004)
= 1400 [ -~ Enpirical e.g (Meyerhof 1963)
g [ ® Simulation PR |
‘E 1200 | o7 ¢
&= r - L ]
g | -9
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'g : # ,“. .-"'ﬂ'--- ---‘-ﬁ.- o -h_ﬁ T ____ﬁ
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Figure A-8: Comparison of the simulation s results, Empirical resulfs by Meyerhof 1963 and
Numerical results by Salgado 2004
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