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Abstract The newsvendor problem is formulated with the focus theory of
choice in which instead of using the expected utility in the existing approaches,
the optimal order quantity is determined as per which order quantity’s focus
(the most salient demand) is the most preferred. This new formulation is a
bilevel optimization problem in which the lower level chooses the focus of each
order quantity and the upper level determines the optimal order quantity.
The proposed model has maximin upper and lower level programs that are
nonsmooth. We derive the optimal order quantity under this new framework
and characterize the properties of the optimal solution. The proposed model
provides a new perspective to analyze the newsvendor problems.

Keywords Bilevel optimization · Nonsmooth · Focus theory of choice ·
Newsvendor model
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1 Introduction

The newsvendor problem is a typical one-time business decision with three
characteristics: (i) the demand for the product is uncertain; (ii) the procure-
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ment lead time exceeds the selling season; and (iii) both overstock and un-
derstock result in economic loss. Newsvendor problems reflect the essence of
many real-world business situations, ranging from manufacturing and retail-
ing fashion and sports apparel, and electronics with time sensitive components,
to managing capacity and booking in airline and hotel industries, making fi-
nal purchase or production decisions, and selling perishable food items. As
such, although studies on newsvendor problems date back to the 19th century
(Edgeworth 1888; Arrow et al. 1951), significant attention is still paid to this
research area and the classic model has been extended along different lines
such as adopting alternative objective and utility functions, employing differ-
ent pricing and return policies, and considering various settings of demand
information. For comprehensive reviews, readers are referred to (Petruzzi and
Dada 1999; Qin et al. 2011) and the edited book by Choi (2012). More research
on this important topic is reported in (Arcelus et al. 2012; Güler 2019; Mitra
2018; Huber et al. 2019; Ji and Kamrad 2019).

This research aims to address this issue by putting it within the focus the-
ory of choice framework, which offers decision aids based on salient information
instead of expected value. A growing body of evidence has shown that salience
(attention-grabbing) information plays a critical role in human decision mak-
ing (Lacetera et al. 2012; Busse et al. 2013; Brandstätter and Korner 2014).
Guo (2011) argues that an individual evaluates a decision alternative based on
some associated event (called the focus of a decision), which is most salient to
the decision maker due to its resultant payoff and probability, thereby propos-
ing a one-shot decision theory. The one-shot decision theory has been applied
to auction problems (Wang and Guo 2017), production planning (Zhu and
Guo 2020a), newsvendor models for innovative products (Guo and Ma 2014;
Zhu and Guo 2017; Zhu and Guo 2020b), multistage decision making (Guo and
Li 2014; Li and Guo 2015), and duopoly markets of innovative products (Guo
2010a). To further refine the one-shot decision theory, Guo (2019) proposes
the focus theory of choice that models and axiomatizes procedural rationality
articulated first by Simon (1976) and resolves several well-known anomalies
such as the St. Petersburg, Allais, and Ellsberg paradoxes, and violations of
stochastic dominance. The core argument of the focus theory of choice is that
the most salient event corresponds to the most-preferred action, where salience
depends on the decision maker’s specific frame of mind and reflects different
behavioral patterns in human decision processes. This argument is consistent
with the results of the psychological experiments conducted by Stewart et al.
(2016). Recently, focus theory of choice is used to solve sequential decision
problems under uncertainty (Guo 2022).

In this paper, we assume that the retailer is an optimistic decision maker
so that we analyze newsvendor problems under the positive evaluation system
of the focus theory of choice. This framework envisages the retailer’s decision
as a two-step procedure. In the first step, for each potential order quantity,
the retailer looks for his/her most salient demand by examining the payoffs of
all possible demands and that corresponding probabilities. The demand that
generates the relatively high payoff with the relatively high probability is iden-
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tified as the focus of this order quantity. In the second step, the retailer selects
the optimal order quantity by scanning through the foci of all possible order
quantities. Following the above idea, the newsvendor problem is formulated
as a bilevel optimization problem in which the lower level program is used
to choose the focus of each order quantity and the upper level program is to
determine the optimal order quantity. In the proposed bilevel optimization
model, the upper and lower levels are both maximin optimization problems. It
is well known that the bilevel optimization problem is an important hierarchi-
cal optimization problem, which plays an important role in many fields (see,
e.g., Bard 1998; Colson 2005; Colson et al. 2005; Dempe 2018) and solving
a bilevel optimization problem is very hard because its constraint region is
implicitly determined by a series of optimization problems. Since the maximin
upper and lower level programs are nonsmooth and sometimes even noncon-
vex, the proposed model cannot be solved by existing optimization methods for
bilevel optimization problems. We derive the analytical optimal order quan-
tity under this new framework and obtain the mathematical properties of the
optimal solution. Theoretical analysis shows that this research provides a new
perspective to examine the retailer ’s ordering decision.

The remainder of this paper is organized as follows. In Section 2, we es-
tablish a newsvendor model with the focus theory of choice. It is a bilevel
optimization problem with maximin upper and lower level programs. In Sec-
tion 3, we theoretically obtain the optimal solutions of the proposed bilevel
optimization problem, provide the decisional insights on the positive foci and
the optimal order quantity, and offer a comparison with the result derived by
the classic newsvendor model. In Section 4, we present an illustrative example
to show how the proposed model works and offers a comparison with other
models. Section 5 concludes this paper with some remarks. All proofs of the
theoretical results are given in Appendix.

2 The newsvendor model with the focus theory of choice

Considering a retailer who sells a short life-cycle product, his/her payoff func-
tion is given as follows:

v(x, q) =

{
r ∗ x+ s ∗ (q − x)− w ∗ q for x < q,

(r − w) ∗ q − g ∗ (x− q) for x ≥ q,
(1)

where x is the market demand, q is the order quantity, w > 0 is the wholesale
price per unit, r > 0 is the retailer price per unit, s > 0 is the salvage value
per unit, and g > 0 is the opportunity cost per unit due to stockout. Without
loss of generality, we assume r > w > s. Clearly, given an order quantity q,
v(x, q) reaches its maximum at x = q. We further make the following generic
assumptions on the uncertain demand:

(i) The demand lies on an interval X = [l, h];
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(ii) The probability density function of demand f(x) is a strictly quasi-concave
continuous function and f(x) > 0 for any x ∈ [l, h].

As a rational retailer, his/her order quantity should lie within the de-
mand interval [l, h]. We have the retailer’s lowest profit minx,q∈[l,h] v(x, q) =
min{v(l, h), v(h, l)} = min{p∗ l+s(h− l)−w∗h, (p−w)∗ l−g∗(h− l)}, occur-
ring at one of the two extreme cases when the order quantity mismatches the
realized demand. The retailer’s highest profit maxx,q∈[l,h] v(x, q) = v(h, h) =
(r − w) ∗ h occurs at x = q = h.

To reframe the newsvendor model under the paradigm of the focus theory of
choice, we next convert the retailer’s payoff function to a satisfaction function
and the probability density function to a relative likelihood function.
Satisfaction function: Let V be the range of the retailer’s payoff function
v(x, q), u : V → [0, 1] is called a satisfaction function if

u(v1) > u(v2) ⇐⇒ v1 > v2, ∀ v1, v2 ∈ V,

and ∃ vc ∈ V such that u(vc) = maxv∈V u(v) = 1.
For a given order quantity q, u(x, q) represents the retailer’s satisfaction

level about the resulting payoff if demand arises as x. Clearly, given an order
quantity q, u(x, q) reaches its maximum at x = q. The satisfaction function
is only a value function that converts payoffs to relative satisfaction levels. In
this research, we define the satisfaction function as follows:

u(x, q) =
v(x, q)−minx,q∈[l,h] v(x, q)

maxx,q∈[l,h] v(x, q)−minx,q∈[l,h] v(x, q)
. (2)

Relative likelihood function: π : X → [0, 1] is called a relative likelihood
function if

π(x1) > π(x2) ⇐⇒ f(x1) > f(x2), ∀ x1, x2 ∈ X,

and ∃ xc ∈ X such that π(xc) = maxx∈X π(x) = 1.
For any x ∈ X, π(x) is called its relative likelihood degree. In this research,

we define the relative likelihood function as follows:

π(x) =
f(x)

maxx∈X f(x)
. (3)

A relative likelihood function is a normalized probability density function to
represent the relative likelihood positions of different outcomes. Instead of
using the original values of payoffs and probabilities, the focus theory of choice
takes the satisfaction and relative likelihood functions as the basic decision
input because a mounting body of evidence suggests that relative values are
more perceptible (have a higher accessibility) than absolute values and play
a more important role in human decision making (Frank 1985; Solnick and
Hemenway 1998).

Since f(x) is a strictly quasi-concave continuous function on [l, h], there
exists c0 ∈ [l, h] such that f(c0) = maxx∈[l,h] f(x), we know that π(x) attains



Title Suppressed Due to Excessive Length 5

its unique maximum at x = c0, π(x) is strictly increasing on [l, c0] and strictly
decreasing on [c0, h].

The focus theory of choice postulates that a decision maker inherently
owns two distinct evaluation systems: positive and negative. Typically, these
two systems correspond to different frames of mind and one of them is working
for a particular decision situation. Generally, the positive evaluation system
is active for an optimistic decision maker and the negative evaluation system
is activated when a decision maker is pessimistic. In this paper, we assume
that the decision maker is an optimistic retailer. Hence, we only analyze the
newsvendor problem and derive its optimal order quantity under the positive
evaluation system.

In this case, for a given decision action q ∈ Q = [l, h], we denote Xp(q) as
the set of optimal solutions to the following optimization problem:

max
x∈X

min{φ ∗ π(x), u(x, q)}, (4)

where parameter φ is a positive real number. (4) is derived from the positive
focus representation theorem in (Guo 2019). Note that both π(x) and u(x, q)
are dimensionless and between 0 and 1, and φ serves as a scaling factor that
directly affects whether the outcome with a higher relative likelihood or a
higher satisfaction arises from the inner minimization operation in (4). Given
q, for x1, x2 ∈ X, if π(x1) ≥ π(x2) and u(x1, q) ≥ u(x2, q), then we have
min{φ ∗ π(x1), u(x1, q)} ≥ min{φ ∗ π(x2), u(x2, q)}. Clearly, for any decision
action q (order quantity in the newsvendor context), (4) seeks the outcome (de-
mand) that brings a relatively high relative likelihood degree and a relatively
high satisfaction level. Increasing φ makes φ∗π(x) bigger and allows u(x, q) to
arise more easily out of the inner minimization operation in (4), leading to an
optimal x therein with a relatively high satisfaction level (payoff) and a rela-
tively low relative likelihood (probability) (Guo 2019). Conversely, decreasing
φ makes π(x) to take a more prominent role in determining the output of (4),
resulting in an optimal x with a relatively high relative likelihood (probability)
and a relatively low satisfaction level (payoff). Hence, φ can be interpreted as a
weight that a retailer balances his/her emphasis between the satisfaction level
and the relative likelihood degree. Increasing φ means that the retailer aims
to pursue a higher payoff by somewhat sacrificing the probability. Therefore,
φ can be used to measure how optimistic the retailer is: the higher the value
of φ, the more optimistic the retailer.

Since π(x) and u(x, q) are both strictly quasi-concave continuous functions
in x on X, we know that for any given order quantity q ∈ Q, there is a unique
element in Xp(q), denoted by xp(q) and referred to as the positive focus of
order quantity q. Next, among all the positive foci for different actions (order
quantities), we seek the optimal q∗ by the following optimization problem:

max
q∈Q

min{κ ∗ π(xp(q)), u(xp(q), q)}, (5)
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where κ is a positive real number. (5) follows from the representation theorem
for an optimal action under the positive evaluation system in (Guo 2019). The
set of q∗ is denoted by Q∗.

For any q1, q2 ∈ Q, if u(xp(q1), q1) ≥ u(xp(q2), q2) and π(xp(q1)) ≥ π(xp(q2)),
then we have min{κ∗π(xp(q1)), u(xp(q1), q1)} ≥min{κ∗π(xp(q2)), u(xp(q2), q2)}.
This implies that (5) finds an order quantity whose focus has a relatively high
relative likelihood degree and yields a relatively high satisfaction level. Simi-
lar to the interpretations of parameter φ, a heightened κ elevates the level of
κ ∗ π(xp(q)) relative to u(xp(q), q) and leads to an order quantity whose focus
is relatively high in satisfaction but relatively low in likelihood. Conversely, a
reduced κ lowers the level of κ ∗ π(xp(q)) relative to u(xp(q), q) and results
in an order quantity whose positive focus is relatively high in likelihood but
relatively low in satisfaction. Since (5) is used for identifying actions (order
quantities) based on their positive foci, κ can be interpreted as the retailer’s
confidence index on his/her decision: the higher the value of κ, the more con-
fident the decision maker (retailer).

Definition 1 If there is only one element in Q∗, then it is the optimal or-
der quantity under the positive evaluation system, denoted by q∗p . If there
is more than one element in Q∗ and there does not exist q∗ ∈ Q∗ such that
π(xp(q

∗)) > π(xp(q
∗
p)), u(xp(q

∗), q∗) ≥ u(xp(q
∗
p), q

∗
p) or π(xp(q

∗)) ≥ π(xp(q
∗
p)),

u(xp(q
∗), q∗) > u(xp(q

∗
p), q

∗
p) for q

∗
p ∈ Q∗, then q∗p is the optimal order quantity

under the positive evaluation system.

Definition 1 indicates that the optimal order quantity q∗p weakly dominates
all other elements in Q∗ if it contains multiple quantities.

It should be noted that the newsvendor model with the focus theory of
choice consisting of (4) and (5) is a bilevel optimization problem where (4)
is the lower level problem and (5) is the upper level problem. Since the up-
per and lower level programs are nonsmooth nonconvex maximin problems,
the proposed model cannot be solved by existing optimization methods. In
the following section, we will theoretically derive the optimal solution and its
properties.

3 Theoretical results of the newsvendor model with the focus
theory of choice

First, we furnish Lemma 1 to characterize the positive focus for any given
order quantity which is the unique optimal solution to the lower level problem
(4).

Lemma 1 For any order quantity q ∈ Q, its positive focus xp(q) is charac-
terized as follows:

(i) If φ > u(q,q)
π(q) , then xp(q) = q;

(ii) If u(c0,q)
π(c0)

≤ φ ≤ u(q,q)
π(q) and q < c0, then xp(q) is the unique solution to the

equation u(x, q) = φ ∗ π(x) in x on [q, c0];
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(iii) If u(c0,q)
π(c0)

≤ φ ≤ u(q,q)
π(q) and q ≥ c0, then xp(q) is the unique solution to the

equation u(x, q) = φ ∗ π(x) in x on [c0, q];

(iv) If 0 < φ < u(c0,q)
π(c0)

, then xp(q) = c0.

Lemma 1 confirms the role of φ in determining the focus demand of any
given order quantity q: When φ is sufficiently small in case (iv), the relative
likelihood function plays a primary part in identifying the focus xp(q) = c0,
which has the highest relative likelihood at a lower satisfaction level. When
φ increases into the middling range in case (ii) or (iii), the focus is identified
as the unique solution to the equation u(x, q) = φ ∗ π(x) in x on [q, c0] or
[c0, q], which has a higher satisfaction level, but a lower relative likelihood
degree. When φ further increases into the high range in case (i), the satisfaction
function stands out in determining the focus xp(q) = q, which possesses the
highest satisfaction level at an even lower relative likelihood. Based on Lemma
1, we obtain the following result.

Theorem 1 xp(q) is an increasing and continuous function of q on [l, h].

Theorem 1 implies that for any given order quantities qi and qj , if qi > qj ,
then the positive focus of qi is larger than or equal to the positive focus of qj .
Since π(x) is a continuous function, it is increasing on [l, c0] and decreasing on
[c0, h], the following result is natural.

Theorem 2 π(xp(q)) is a continuous function of q on [l, h], it is increasing
on [l, c0] and decreasing on [c0, h].

Theorem 2 means that the relative likelihood function of the positive focus
is a quasi-concave continuous function of q. When φ is sufficiently small such

that φ < u(c0,q)
π(c0)

holds for all q ∈ Q, as per Lemma 1(iv), we have π(xp(q)) =

π(c0) for all q ∈ Q. To study the monotonicity of the function u(xp(q), q), we
give the following lemma.

Lemma 2 For any order quantity q ∈ [c0, h], its positive focus xp(q) is deter-
mined as follows:

(i) If φ > u(h,h)
π(h) , then xp(q) = q;

(ii) If u(c0,c0)
π(c0)

≤ φ ≤ u(h,h)
π(h) , then there exists a unique solution to the equation

φ ∗ π(x) = u(x, x) on [c0, h], denoted by xφ, such that

xp(q) =

{
q for q ∈ [c0, xφ],
xq for q ∈ (xφ, h],

where xq is the unique solution to the equation u(x, q) = φ ∗ π(x) in x on
[c0, q];

(iii) If u(c0,h)
π(c0)

≤ φ < u(c0,c0)
π(c0)

, then there is a unique solution to the equation

φ ∗ π(c0) = u(c0, q) on [c0, h], denoted by qφ, such that

xp(q) =

{
c0 for q ∈ [c0, qφ],
xq for q ∈ (qφ, h],
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where xq is the unique solution to the equation φ ∗ π(x) = u(x, q) in x on
[c0, q];

(iv) If 0 < φ < u(c0,h)
π(c0)

, then xp(q) = c0.

Lemma 2 further characterizes the focus of the order quantity q ∈ [c0, h].
With the assistance of Lemma 1, we can now pinpoint the thresholds of φ,
which are independent of q such that different foci arise within different ranges
of φ values.

As mentioned earlier, φ reflects how optimistic the retailer is, Lemma 2
can thus be interpreted from a behavioral perspective as follows. When φ is at

the low range (0 < φ < u(c0,h)
π(c0)

, meaning that the retailer is not so optimistic),

its scaling effect makes relative likelihood more prominent in determining the
focus demand. As such, the retailer will always focus on the most likely demand
c0 regardless of the order quantity q. When φ increases to a slightly higher

level such that u(c0,h)
π(c0)

≤ φ < u(c0,c0)
π(c0)

, the retailer exhibits a higher optimistic

level by balancing the relative likelihood of a demand quantity and its resulting
satisfaction. When the order quantity is at the lower end, the focus remains at
the most likely demand c0, but it moves up to a higher level at the solution to
φ ∗ π(x) = u(x, q) in x, which is no more than the order quantity q. When φ

further increases to a moderately high level (u(c0,c0)π(c0)
≤ φ ≤ u(h,h)

π(h) ), the retailer

becomes even more optimistic by leaning further towards the satisfaction of a
focus demand given an order quantity. When the order quantity is at the lower
end, the focus demand will be the order quantity. But the focus demand lies
at the solution to φ∗π(x) = u(x, q) in x when the order quantity q falls within

the upper end. If φ is at a significantly high level (φ > u(h,h)
π(h) ), the retailer

becomes so optimistic that he/she simply focuses on the most rosy scenario
with the highest satisfaction level given any demand quantity, xp(q) = q.

With an increasing φ (implying a more optimistic retailer), his/her atten-
tion is gradually shifted from seeking assurance (higher likelihood) to aspiring
for profitability (higher satisfaction), leading to a heightened focus demand
that approaches the order quantity. These explanations are intuitive and con-
sistent with the behavioral patterns of decision makers at different optimistic
levels. Therefore, Lemma 2 sheds insights on how a retailer evaluates the most
attractive demand under different order quantities and how this behaviour
is linked to his/her personality attributes as reflected by the parameter φ.
Lemma 2, together with Lemma 1 and Theorem 1, yields the following result.

Theorem 3 u(xp(q), q) is a strictly quasi-concave continuous function of q
on [l, h].

(i) If φ > u(h,h)
π(h) , then u(xp(q), q) is strictly increasing on [l, h].

(ii) If u(c0,c0)
π(c0)

≤ φ ≤ u(h,h)
π(h) , then u(xp(q), q) is strictly increasing on [l, xφ]

and strictly decreasing on [xφ, h] where xφ is the unique solution to the
equation u(x, x) = φ ∗ π(x) on (c0, h).

(iii) If u(c0,h)
π(c0)

≤ φ < u(c0,c0)
π(c0)

, then u(xp(q), q) is strictly increasing on [l, c0] and

strictly decreasing on [c0, h].
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(iv) If 0 < φ < u(c0,h)
π(c0)

, then u(xp(q), q) is strictly increasing on [l, c0] and

strictly decreasing on [c0, h].

Now we are ready to present the optimal order quantity to the proposed
newsvendor model.

Theorem 4 The optimal order quantity q∗p under the positive evaluation sys-
tem and its corresponding positive focus xp(q

∗
p) are furnished as follows:

q∗p = xp(q
∗
p) =



h if φ > u(h,h)
π(h) and κ > u(h,h)

π(h) ,

xφ if u(c0,c0)
π(c0)

≤ φ ≤ u(h,h)
π(h) and κ > φ,

xκ if u(c0,c0)
π(c0)

≤ κ ≤ u(h,h)
π(h) and φ ≥ κ,

c0 if 0 < φ < u(c0,c0)
π(c0)

or 0 < κ < u(c0,c0)
π(c0)

.

(6)

Here xφ and xκ are unique solutions to the equations u(x, x) = φ ∗ π(x) and
u(x, x) = κ ∗ π(x) with respect to x on [c0, h], respectively.

Theorem 4 implies that the optimal order quantity must lie within [c0, h]
under the positive evaluation system. This conclusion is intuitive because the
order quantity c0 brings the highest payoff with the highest relative likelihood
when q is confined to [l, c0].

As mentioned earlier, κ reflects how confident a retailer is in his/her se-
lection of decisions after examining the foci identified at the first stage. We
can interpret the behavioral patterns in the results of Theorem 4 as follows.
If the retailer is highly optimistic and highly confident (both φ and κ take
large values), then he/she will select the highest demand h as the optimal
order quantity. In the other extreme case, if the retailer has a low optimism
(confidence) level with a small φ (κ), regardless of the value of κ (φ), he/she
will take the most likely demand c0 as the optimal order quantity, which is
the lowest possible optimal quantity under the positive evaluation system. If
the retailer is moderately optimistic and confident (both φ and κ take values
in the middle range), he/she will take a value in-between as the optimal order
quantity. These results are intuitive and consistent with common sense. The-
orem 4 thus sheds insight on how different characteristics of a retailer affects
his/her order decision.
Remark 1: In the classic newsvendor model, the optimal order quantity q∗0
satisfies

∫ q∗0
l

f(x)dx = r−w+g
r−s+g where R = r−w+g

r−s+g ∈ (0, 1) is referred to as the
critical ratio. If the probability density function is symmetric, then the optimal
order quantity will be larger than c0 when R ≥ 0.5 (high margin) holds. This
conclusion is logically consistent with Theorem 4 because a high margin (with
a low w and high s) motivates the retailer to think positively, thereby acti-
vating his/her positive evaluation system. Under such a mindset, the retailer
will order more than c0. These results support the common recognition that
decision problems are inherently context dependent (Kahneman and Tversky
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1984). Therefore, R ≥ 0.5 can be regarded as a rough yardstick for employing
the proposed newsvendor model with the positive evaluation system.
Remark 2: If the probability density function is symmetric about the mode c0,

the mean of demand is also c0. When R ≥ 0.5, since u(c0,c0)
π(c0)

≤ u(q∗0 ,q
∗
0 )

π(q∗0 )
≤ u(h,h)

π(h) ,

it is concluded from Theorem 4 that when u(c0,c0)
π(c0)

≤ κ ≤ u(h,h)
π(h) and φ ≥ κ,

the optimal order quantity under the positive evaluation system is xκ which
is equal to (smaller than or larger than) q∗0 if κ is equal to (smaller than or

larger than)
u(q∗0 ,q

∗
0 )

π(q∗) ; when u(c0,c0)
π(c0)

≤ φ ≤ u(h,h)
π(h) and κ > φ, the optimal order

quantity under the positive evaluation system takes the value of xφ which is
equal to (smaller than or larger than) q∗0 if φ is equal to (smaller than or

larger than)
u(q∗0 ,q

∗
0 )

π(q∗0 )
. Especially when u(c0,c0)

π(c0)
≤ κ ≤ u(q∗0 ,q

∗
0 )

π(q∗0 )
and φ ≥ κ or

u(c0,c0)
π(c0)

≤ φ ≤ u(q∗0 ,q
∗
0 )

π(q∗0 )
and κ > φ, the retailer’s optimal solution takes a value

between the mean of demand and the classic optimal quantity.
Remark 3: Newsvendor models with the one-shot decision theory (OSDT)
have been proposed by Guo and Ma (2014). As the focus theory of choice
is a further refinement of OSDT, we can establish links between our results
in Theorem4 with those obtained with OSDT in Guo and Ma (2014). More
specifically, it is clear from Theorem4 that: When φ is equal to 1 and κ is
big enough, since u(h, h) > π(h) and π(c0) > u(c0, c0), the optimal order
quantity under the positive evaluation system will take the unique solution to
the equation u(x, x) = π(x) on [c0, h] which is the same as the optimal active
order quantity of the newsvendor model with OSDT (Theorem 13(1) in Guo
and Ma 2014); When both φ and κ are big enough, the optimal order quantity
under the positive evaluation system will take the highest demand h which is
identical to the optimal daring order quantity of the newsvendor model with
OSDT (Theorem 13(2) in Guo and Ma 2014).

4 An illustrative example and comparison with other models

This section presents an illustrative example to show how to apply the pro-
posed newsvendor model and clarify its relationship with the classic model.
Consider a retailer selling a seasonal product whose retail price r, wholesale
price w, salvage value s and opportunity cost g are 10, 6, 4 and 2 (dollars) per
unit, respectively. We have the payoff function as follows:

v(x, q) =

{
6x− 2q for x < q,

6q − 2x for x ≥ q.

The range of uncertain demand is estimated as [10, 25]. The probability
density function of uncertain demand is assumed to be triangular as follows:

f(x) =

{
17
750x− 13

60 for 10 ≤ x ≤ 15,

− 17
1500x+ 22

75 for 15 ≤ x ≤ 25.
(7)
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Clearly, f(l) = f(10) = 1
100 , f(h) = f(25) = 1

100 , f(c0) = f(15) = 37
300 and∫ 25

10
f(x)dx = 1. We can calculate the mean of demand as x0 = 16.79. In a

classic newsvendor model, the optimal order quantity q∗0 satisfies∫ q∗0

l

f(x)dx =
p− w + g

p− s+ g
, (8)

where R = p−w+g
p−s+g = 0.75 is the critical ratio. Plugging (7) into (8), we obtain

q∗0 = 19.18.
Next, let us consider the optimal order quantity of this newsvendor problem

under the positive evaluation system of the focus theory of choice. Since the
range of demand is [10, 25], we only need to consider order quantities within
the same range. Therefore, the maximal and minimal payoffs are v(h, h) =
v(25, 25) = 100 and min{v(l, h), v(h, l)} = min{v(10, 25), v(25, 10)} = 10,
respectively. We adopt (2) to normalize payoffs and obtain the satisfaction
function as follows:

u(x, q) =

{
6x−2q−10

90 for x < q,

6q−2x−10
90 for x ≥ q.

(9)

Clearly, (9) attains the highest satisfaction level of 1 at the maximal payoff
100 when x = q = h = 25 and the lowest satisfaction level of 0 at the minimal
payoff 10 when x = h = 25, q = l = 10 or x = l = 10, q = h = 25. From (9),
we know

u(x, x) =
4x− 10

90
,

and u(l, l) = u(10, 10) = 1
3 , u(c0, c0) = u(15, 15) = 5

9 , u(h, h) = u(25, 25) = 1.
Similarly, we define the relative likelihood function as per (3) as

π(x) =

{
34
185x− 65

37 for 10 ≤ x ≤ 15,

− 17
185x+ 88

37 for 15 ≤ x ≤ 25.
(10)

which is obtained by dividing the probability density function in (7) by its
maximum f(15) = 37

300 . From (10), we have π(10) = π(25) = 3
37 and π(15) = 1.

According to Theorem 4, we can directly obtain the following results:

– if φ > u(h,h)
π(h) = 12.33 and κ > u(h,h)

π(h) = 12.33, then q∗p = h = 25;

– if either 0 < φ < u(c0,c0)
π(c0)

= 0.56 (regardless of κ) or 0 < κ < u(c0,c0)
π(c0)

= 0.56

(regardless of φ), then q∗p = c0 = 15.

Briefly speaking, if the retailer is highly optimistic about uncertain market
demand and highly confident in his/her decision (both φ and κ are large, or
larger than 12.3 in this particular example), the optimal order quantity is the
highest possible value q∗p = h = 25, which is identical to the optimal daring
order quantity of the newsvendor model with OSDT (Guo and Ma 2014).
On the other hand, if the retailer’s optimism about demand uncertainty or
confidence in his/her decision is at a low level (either φ or κ is small, or in
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this example, 0 < φ < 0.56 or 0 < κ < 0.56, the optimal order quantity is the
most likely demand q∗p = c0 = 15.

Next, we consider the case when the retailer is moderately optimistic about
uncertain demand or moderately confident in his/her decision (φ or κ takes
a moderate value, or in this specific example, 0.56 ≤ φ ≤ 12.3 or 0.56 ≤ κ ≤
12.3). Solving equations u(x, x) = φ ∗ π(x) and u(x, x) = κ ∗ π(x) on [c0, h]
and denoting their solutions by xφ and xκ, respectively, we have

xφ =
7920φ+ 370

306φ+ 148
, (11)

and

xκ =
7920κ+ 370

306κ+ 148
. (12)

According to Theorem 4, we have the following results:

– if 0.56 = u(c0,c0)
π(c0)

≤ φ ≤ u(h,h)
π(h) = 12.3 and κ > φ, then q∗p = xφ;

– if 0.56 = u(c0,c0)
π(c0)

≤ κ ≤ u(h,h)
π(h) = 12.3 and φ ≥ κ, then q∗p = xκ.

For example, if φ = 5 and κ = 10, we have q∗p = xp(q
∗
p) = xφ = 23.82 by

(12); if φ = 15 and κ = 3, we have q∗p = xp(q
∗
p) = xκ = 22.64 by (12).

Particularly if φ = 1 and κ is big enough (or in this example κ > 12.3), we
have q∗p = xp(q

∗
p) = xφ = 18.26 by (11), which is the same as the optimal active

order quantity of the newsvendor model with OSDT (Guo and Ma 2014).
Given that the optimal order quantity of the classic newsvendor model is

q∗0 = 19.18, we can properly set the values of φ and κ such that the optimal
order quantity under the positive evaluation system is equal to that of the
classic model, q∗p = q∗0 = 19.18. More specifically, let xφ = 19.18 and xκ =
19.18 and solve equations (11) and (12), we have φ = κ = 1.20. According
to Theorem 4, we understand that setting φ ≥ 1.20 and κ = 1.20 or setting
φ = 1.20 and κ > 1.20 will yield the optimal order quantity under the positive
evaluation system equal to that of the classic newsvendor model, that is, q∗p =
q∗0 = 19.18. We can also set the values of φ and κ such that the optimal order
quantity under the positive evaluation system is equal to the mean of demand,
q∗p = x0 = 16.79. Similarly, let xφ = 16.79 and xκ = 16.79 and solve equations
(11) and (12), we have φ = κ = 0.76. Consequently, when 0.76 ≤ κ ≤ 1.2 and
φ ≥ κ or 0.76 ≤ φ ≤ 1.2 and κ > φ, the optimal order quantity under the
positive evaluation system will take a value between the mean of demand and
the theoretical optimal quantity of the classic newsvendor model.

In summary, under the positive evaluation system, this illustrative example
clearly shows that the highest possible value h can arise as the optimal order
quantity only if the retailer is both highly optimistic and highly confident. If
either the optimism or confidence level falls within the middle range, the op-
timal order quantity can be any value between the most likely demand c0 and
the highest possible value h contingent upon the specific values of φ and κ.
If either the optimism or confidence level falls within the low range, the most
likely demand c0 arises as the optimal order quantity. This result is consis-
tent with the general behavioral pattern of decision makers: When a retailer is
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more optimistic about uncertain demand and more confident in his/her deci-
sion, he/she tends to aim high and act more aggressively by ordering a higher
quantity.

5 Conclusions

First, this research contributes to the literature by establishing a new newsven-
dor model with the focus theory of choice. Building upon two axioms in (Guo
2019), the proposed newsvendor model conceives the retailer’s ordering de-
cision as a two-stage procedure. Firstly, for each order quantity, the retailer
chooses the most salient demand as its focus after assessing the resulting sat-
isfaction and relative likelihood levels of all possible demands. Secondly, the
retailer determines the optimal order quantity by selecting the most preferred
focus among those of all possible order quantities. This research furnishes a
new perspective to understand the retailer’s ordering decision by accounting
for his/her optimism and confidence levels as well as the underlying behavioral
insights behind the choice.

Second, this research obtains the analytical solution to the proposed model.
It is a bilevel optimization problem with maximin upper and lower level pro-
grams that are nonsmooth and cannot be solved by existing optimization meth-
ods. We derive the theoretical results of the optimal order quantity under the
positive evaluation system and show the mathematical properties of the opti-
mal order quantity and its positive focus.

This research enriches the literature of newsvendor modeling and bilevel
optimization and will be the theoretical basis for building supply chain models
with the focus theory of choice framework.
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Appendix

Proof of Lemma 1: For any q ∈ Q, as u(q, q) ≥ u(c0, q) and 0 < π(q) ≤ π(c0),

we have u(q,q)
π(q) ≥ u(c0,q)

π(c0)
.

(i) For any x ̸= q, as φ ∗ π(q) > u(q, q), we have min{φ ∗ π(q), u(q, q)} =
u(q, q) > u(x, q) ≥ min{φ ∗ π(x), u(x, q)}. Based on (4) and the definition of
the positive focus, we have xp(q) = q.
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(ii) If u(c0,q)
π(c0)

≤ φ ≤ u(q,q)
π(q) and q < c0, then u(q, q) ≥ φ ∗ π(q) and

u(c0, q) ≤ φ ∗ π(c0). Since u(x, q) strictly decreases in x on [q, c0] and φ ∗ π(x)
strictly increases on [q, c0], there is a unique solution to the equation u(x, q) =
φ ∗ π(x) in x on [q, c0], denoted by xpl(q, φ). For any x ̸= xpl(q, φ), we
have min{φ∗π(xpl(q, φ)), u(xpl(q, φ), q)} > min{φ∗π(x), u(x, q)}. This means
xp(q) = xpl(q, φ).

(iii) Similar to case (ii), we have xp(q) = xpr(q, φ) where xpr(q, φ) is the
unique solution to the equation u(x, q) = φ ∗ π(x) in x on [c0, q]

(iv) For any x ̸= c0, as φ∗π(c0) < u(c0, q), we have min{φ∗π(c0), u(c0, q)} =
φ ∗ π(c0) > φ ∗ π(x) ≥ min{φ ∗ π(x), u(x, q)}. So, we have xp(q) = c0. ⊓⊔

Proof of Theorem 1: Since xp(q) is the unique optimal solution to the lower
level problem (4), as per the stability theory in parametric optimization (Evans
and Gould 1970), we know that xp(q) is a continuous function of q.

It follows from Lemma 1 that xp(c0) = c0 whenever φ > 0. To show the
monotonicity of xp(q), we consider the following two cases.

Let q1, q2 ∈ [l, c0] and q1 < q2. By Lemma 1, we know xp(qi) ∈ [qi, c0] for
i = 1, 2. In the following, we use contradictions to show the proof. Suppose
xp(q1) > xp(q2), then we have l ≤ q1 < q2 ≤ xp(q2) < xp(q1) ≤ c0. By the
definitions of v(x, q) and u(x, q), it is easy to verify that

u(xp(q2), q1) < u(xp(q2), q2), (A.1)

and
u(xp(q2), q1) > u(xp(q1), q1). (A.2)

Considering xp(q2) < c0, it follows from Lemma 1 that

either φ >
u(q2, q2)

π(q2)
or

u(c0, q2)

π(c0)
≤ φ ≤ u(q2, q2)

π(q2)
, (A.3)

and if φ > u(q2,q2)
π(q2)

then xp(q2) = q2, otherwise xp(q2) satisfies the equation

u(xp(q2), q2) = φ ∗ π(xp(q2)). In either case of (A.3), we have

u(xp(q2), q2) ≤ φ ∗ π(xp(q2)). (A.4)

(A.4) together with (A.1) leads to u(xp(q2), q1) < φ∗π(xp(q2)). Since xp(q1) ∈
Xp(q1) and xp(q1) ̸= xp(q2), we further have

u(xp(q1), q1) ≥ min{φ ∗ π(xp(q1)), u(xp(q1), q1)}
> min{φ ∗ π(xp(q2)), u(xp(q2), q1)}
= u(xp(q2), q1).

(A.5)

It is clear that (A.2) and (A.5) contradict each other. Thus, for any q1, q2 ∈
[l, c0], if q1 < q2 then

xp(q1) ≤ xp(q2) ≤ xp(c0). (A.6)

Similar to the above proof, we can show that for any q3, q4 ∈ [c0, h], if
q3 < q4 then

xp(c0) ≤ xp(q3) ≤ xp(q4). (A.7)



Title Suppressed Due to Excessive Length 15

(A.6) together with (A.7) provides the proof. ⊓⊔

Proof of Lemma 2: From the definitions of the satisfaction and relative
likelihood functions, one can see that π(x) is strictly decreasing and u(x, x) is
strictly increasing on [c0, h].

(i) Since φ > u(h,h)
π(h) ≥ u(q,q)

π(q) holds for any q ∈ [c0, h], it follows from Lemma

1(i) that xp(q) = q.

(ii) If u(c0,c0)
π(c0)

≤ φ ≤ u(h,h)
π(h) , then the equation φ ∗ π(x) = u(x, x) has a

unique solution xφ within [c0, h] as the monotonicity of π(x) and u(x, x) on
[c0, h]. For q ∈ [c0, xφ), as φ ∗ π(q) > u(q, q), we have xp(q) = q as per Lemma

1(i). For q ∈ [xφ, h], we have φ =
u(xφ,xφ)
π(xφ) ≤ u(q,q)

π(q) and φ ≥ u(c0,c0)
π(c0)

≥ u(c0,q)
π(c0)

.

From Lemma 1(iii), we know that there is a unique solution to the equation
u(x, q) = φ ∗ π(x) in x on [c0, q], denoted by xq, such that xp(q) = xq. In
addition, we have xp(xφ) = xφ.

(iii) If u(co,h)
π(c0)

≤ φ < u(co,co)
π(c0)

, as u(c0, x) is strictly decreasing on [c0, h],

the equation φ ∗ π(c0) = u(c0, q) has a unique solution qφ within [c0, h]. For
q ∈ [c0, qφ), as φ∗π(c0) < u(c0, q), it follows from Lemma 1(iv) that xp(q) = c0.

For q ∈ [qφ, h], as φ ∗ π(c0) = u(c0, qφ), we have φ =
u(c0,qφ)
π(c0)

≥ u(c0,q)
π(c0)

and

φ =
u(c0,qφ)
π(c0)

≤ u(c0,c0)
π(c0)

≤ u(q,q)
π(q) . By Lemma 1(iii), we know xp(q) = xq. In

addition, we have xp(qφ) = c0.

(iv) If 0 < φ < u(co,h)
π(c0)

, then φ ∗ π(c0) < u(c0, h) ≤ u(c0, q) for q ∈ [c0, h].

As per Lemma 1(iv), we have xp(q) = c0. ⊓⊔

Proof of Theorem 3: It follows from (1) that v(xp(q), q) = min{(r − s) ∗
xp(q)− (w − s) ∗ q, (r − w + g) ∗ q − g ∗ xp(q)}. Since xp(q) is continuous on
[l, h], the function v(xp(q), q) is also continuous. Considering the definition of
satisfaction function, we know that u(xp(q), q) is a continuous function of q on
[l, h].

To show the monotonicity of u(xp(q), q), we divide [l, h] into two intervals:
[l, c0] and [c0, h]. In what follows, we consider the two cases respectively.

(I) Let q1, q2 ∈ [l, c0] and q1 < q2. As per Lemma 1, we have qi ≤ xp(qi) ≤
c0 for i = 1, 2. As per Lemma 1, we have xp(q1) ≤ xp(q2). By the definition of
(1), we have

v(xp(qi), qi) = (r − w + g) ∗ qi − g ∗ xp(qi), i = 1, 2. (A.8)

In the case xp(q2) = q2, it follows from (A.8) that v(xp(q1), q1)−v(xp(q2), q2)
≤ v(q1, q1)− v(q2, q2) < 0. By the definition of satisfaction function, we have
u(xp(q1), q1) < u(xp(q2), q2).

In the case xp(q2) > q2, as per Lemma 1 (i) and (ii), we have u(xp(q2), q2) ≥
φ ∗ π(xp(q2)). If xp(q1) = xp(q2), it follows from (A.8) that v(xp(q1), q1) −
v(xp(q2), q2) < 0 due to q1 < q2 and hence, we have u(xp(q1), q1) < u(xp(q2), q2).
If xp(q1) < xp(q2), we consider the following two cases: q1 = xp(q1) and
q1 < xp(q1). If xp(q1) < xp(q2) and q1 = xp(q1), as per Lemma 1, we have
u(xp(q1), q1) ≤ φ ∗ π(xp(q1)). Considering u(xp(q2), q2) ≥ φ ∗ π(xp(q2)), we
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further have u(xp(q1), q1)− u(xp(q2), q2) ≤ φ ∗ π(xp(q1))− φ ∗ π(xp(q2)) < 0.
If xp(q1) < xp(q2) and q1 < xp(q1), we have q1 < xp(q1) < xp(q2) ≤ c0, as per
Lemma 1 (ii), we further have u(xp(q1), q1) = φ ∗ π(xp(q2)) < φ ∗ π(xp(q2)) ≤
u(xp(q2), q2).

From the above analysis, we know that u(xp(q), q) is strictly increasing on
[l, c0] whenever φ > 0.

(II) It follows from Lemma 1 that xp(c0) = c0 whenever φ > 0. In the
following, we consider the monotonicity of u(xp(q), q) for cases (i), (ii), (iii)
and (iv), respectively.

(i) For any q ∈ [c0, h], it follows from Lemma 2(i) that xp(q) = q. As
noted earlier, u(xp(q), q) = u(q, q) is strictly increasing on [c0, h]. Considering
the continuity of u(xp(q), q) and case (I), we know that u(xp(q), q) is strictly
increasing on [l, h].

(ii) Since h ≥ xφ > c0, we divide [c0, h] into the following two intervals:
[c0, xφ] and (xφ, h]. In what follows, we consider the two cases respectively.

(iia) For any q ∈ [c0, xφ], it follows from Lemma 2(ii) that xp(q) = q.
Clearly, u(xp(q), q) = u(q, q) is strictly increasing on [c0, xφ].

(iib) Let q5, q6 ∈ (xφ, h] and q5 < q6. As per Lemma 1, we have xp(qi) ≤ qi
for i = 5, 6. By the definition of (1), we know that (A.9) holds for i = 5, 6. If
xp(q5) < xp(q6), as per Lemma 2(ii), we have u(xp(qi), qi) = φ ∗ π(xp(qi)) for
i = 5, 6 and hence, we have u(xp(q5), q5) = φ ∗ π(xp(q5)) > φ ∗ π(xp(q6)) =
u(xp(q6), q6). If xp(q5) = xp(q6), (A.9) leads to u(xp(q5), q5) > u(xp(q6), q6)
due to q5 < q6 and hence, we have u(xp(q5), q5) > u(xp(q6), q6).

In summary, cases (I) and (iia) show that the function u(xp(q), q) is strictly
increasing on [l, xφ], case (iib) shows that u(xp(q), q) is strictly decreasing on
[xφ, h].

(iii) As per Lemma 2(iii), we have qφ ≥ c0. We divide [c0, h] into two inter-
vals: [c0, qφ] and (qφ, h]. In what follows, we consider the two cases respectively.

(iiia) For any q ∈ [c0, qφ], it follows from Lemma 2(iii) that xp(q) = c0. By
the definition of (1), we know that v(xp(q), q) = v(c0, q) is strictly decreasing
on [c0, qφ]. That is, u(xp(q), q) is strictly decreasing on [c0, qφ]

(iiib) Let q3, q4 ∈ (qφ, h] and q3 < q4. As per Lemma 1, we have xp(qi) ≤ qi
for i = 3, 4. By the definition of (1), for i = 3, 4, we have

v(xp(qi), qi) = (r − s) ∗ xp(qi)− (w − s) ∗ qi. (A.9)

If xp(q3) < xp(q4), as per Lemma 2(iii), we have u(xp(qi), qi) = φ ∗ π(xp(qi))
for i = 3, 4 and hence, we have u(xp(q3), q3) = φ ∗π(xp(q3)) > φ ∗π(xp(q4)) =
u(xp(q4), q4). If xp(q3) = xp(q4), (A.9) leads to v(xp(q3), q3) > v(xp(q4), q4)
due to q3 < q5 and hence, we have u(xp(q3), q4) > u(xp(q4), q4).

In summary, case (I) shows that the function u(xp(q), q) is strictly increas-
ing on [l, c0], cases (iiia) and (iiib) show that u(xp(q), q) is strictly decreasing
on [c0, h].

(iv) For any q ∈ [c0, h], it follows from Lemma 2(iv) that xp(q) = c0. It is
easy to verify from the definition of (1) that v(xp(q), q) = v(c0, q) is strictly
decreasing on [c0, h]. Considering the definition of satisfaction function, we
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know that u(xp(q), q) is strictly decreasing on [c0, h]. In summary, the function
u(xp(q), q) is strictly increasing on [l, c0] and strictly decreasing on [c0, h]. ⊓⊔

Proof of Theorem 4: Note that (6) can be equivalently divided into the
following three cases:

Case 1. When φ > u(h,h)
π(h) ,

q∗p = xp(q
∗
p) =


h if κ > u(h,h)

π(h) ,

xκ if u(c0,c0)
π(c0)

≤ κ ≤ u(h,h)
π(h) ,

c0 if 0 < κ < u(c0,c0)
π(c0)

.

Case 2. When u(c0,c0)
π(c0)

≤ φ ≤ u(h,h)
π(h) ,

q∗p = xp(q
∗
p) =


xφ if κ > φ,

xκ if u(c0,c0)
π(c0)

≤ κ ≤ φ,

c0 if 0 < κ < u(c0,c0)
π(c0)

.

Case 3. When 0 < φ < u(c0,c0)
π(c0)

,

q∗p = xp(q
∗
p) = c0, ∀ κ > 0.

For any q ∈ [l, c0), we have π(xp(c0)) ≥ π(xp(q)) and u(xp(c0), c0) >
u(xp(q), q) whenever φ > 0. This means that q∗p will not lie in the interval
[l, c0). In the following proof, we only need to consider the interval [c0, h].

Case 1. When φ > u(h,h)
π(h) , we have xp(q) = q for any q ∈ [c0, h] based on

Lemma 2(i). As noted earlier, π(x) is strictly decreasing on [c0, h] and u(x, x)
is strictly increasing on [c0, h].

If κ > u(h,h)
π(h) , then we have min{κ ∗ π(xp(h)), u(xp(h), h)} = u(h, h) >

u(xp(q), q) ≥ min{κ ∗ π(xp(q)), u(xp(q), q)} for any q ∈ [c0, h). Based on Defi-
nition 1, we have q∗p = xp(q

∗
p) = h.

If u(c0,c0)
π(c0)

≤ κ ≤ u(h,h)
π(h) , there is a unique solution to the equation u(x, x) =

κ ∗ π(x) on [c0, h], denoted by xκ. For any q ∈ [c0, xκ) ∪ (xκ, h], min{κ ∗
π(xp(xκ)), u(xp(xκ), xκ)} = min{κ∗π(xκ), u(xκ, xκ)} > min{κ∗π(q), u(q, q)} =
min{κ ∗ π(xp(q)), u(xp(q), q)} holds. This means q∗p = xp(q

∗
p) = xκ.

If 0 < κ < u(c0,c0)
π(c0)

, we have min{κ ∗ π(xp(c0)), u(xp(c0), c0)} = κ ∗ π(c0) >
κ ∗ π(q) ≥ min{κ ∗ π(xp(q)), u(xp(q), q)} for any q ∈ (c0, h]. This means q∗p =
xp(q

∗
p) = c0.

Case 2. When u(c0,c0)
π(c0)

≤ φ ≤ u(h,h)
π(h) , π(xp(q)) is decreasing on [c0, h] as per

Theorem 2, u(xp(q), q) is strictly increasing on [c0, xφ] and strictly decreasing
on [xφ, h] as per Theorem 3. This means that q∗p will lie in the interval [c0, xφ].
As per Lemma 2(ii), we have xp(q) = q for any q ∈ [c0, xφ].

If κ ≥ φ, for any q ∈ [c0, xφ), we have min{κ∗π(xp(xφ)), u(xp(xφ), xφ)} ≥
min{φ ∗ π(xp(xφ)), u(xp(xφ), xφ)} = u(xp(xφ), xφ) > u(xp(q), q) ≥ min{κ ∗
π(xp(q)), u(xp(q), q)}. Thus, we have q∗p = xp(q

∗
p) = xφ.
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If u(c0,c0)
π(c0)

≤ κ ≤ φ, then xp(q) = q for any q ∈ [c0, xφ]. Since κ∗π(xp(c0)) =

κ ∗ π(c0) ≥ u(c0, c0) = u(xp(c0), c0) and κ ∗ π(xp(xφ)) = κ ∗ π(xφ) ≤ φ ∗
π(xφ) = u(xφ, xφ) = u(xp(xφ), xφ), we know that there is a unique solu-
tion to the equation u(x, x) = κ ∗ π(x) on [c0, xφ], denoted by xκ such that
min{κ ∗ π(xp(xκ)), u(xp(xκ), xκ)} = κ ∗ π(xp(xκ)) = κ ∗ π(xκ) > κ ∗ π(q) =
κ ∗ π(xp(q)) ≥ min{κ ∗ π(xp(q)), u(xp(q), q)} holds for any q ∈ [c0, xκ) and
min{κ ∗ π(xp(xκ)), u(xp(xκ), xκ)} = u(xp(xκ), xκ) > u(xp(q), q) ≥ min{κ ∗
π(xp(q)), u(xp(q), q)} holds for any q ∈ (xκ, xφ]. This means q∗p = xp(q

∗
p) = xκ.

If 0 < κ < u(c0,c0)
π(c0)

, then xp(q) = q for any q ∈ [c0, xφ]. Since min{κ ∗
π(xp(c0)), u(xp(c0), c0)} = κ ∗ π(c0) > κ ∗ π(q) = κ ∗ π(xp(q)) ≥ min{κ ∗
π(xp(q)), u(xp(q), q)} holds for any q ∈ (c0, xφ], we have q∗p = xp(q

∗
p) = c0.

Case 3. When 0 < φ < u(c0,c0)
π(c0)

, for any q ∈ (c0, h], we have π(xp(c0)) ≥
π(xp(q)) as per Theorem 2 and u(xp(c0), c0) > u(xp(q), q) as per Theorem
3(i-ii). Based on Definition 1, for any κ > 0, we have q∗p = xp(q

∗
p) = c0. ⊓⊔
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