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Abstract

A Kempe switch of a 3-edge-coloring of a cubic graph G on a bicolored cycle C swaps
the colors on C and gives rise to a new 3-edge-coloring of G. Two 3-edge-colorings
of G are Kempe equivalent if they can be obtained from each other by a sequence of
Kempe switches. Fisk proved that any two 3-edge-colorings in a cubic bipartite planar
graph are Kempe equivalent. In this paper, we obtain an analog of this theorem and
prove that all 3-edge-colorings of a cubic bipartite projective-planar graph G are pairwise
Kempe equivalent if and only if G has an embedding in the projective plane such that
the chromatic number of the dual triangulation G∗ is at least 5. As a by-product of the
results in this paper, we prove that the list-edge-coloring conjecture holds for cubic graphs
G embedded on the projective plane provided that the dual G∗ is not 4-vertex-colorable.
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1 Introduction

A Kempe switch of a 3-edge-coloring of a cubic graph G on a bicolored cycle C swaps the

colors on C and gives rise to a new 3-edge-coloring of G. Two 3-edge-colorings of G are

Kempe equivalent if they can be obtained from each other by a sequence of Kempe switches.

This is indeed an equivalence relation on the set of all 3-edge-colorings of G. Note that if we

perform a Kempe switch on each bicolored cycle of two particular colors, then we have the

3-edge-coloring obtained by the transposition of those colors.

This notion comes from Kempe’s invalid “proof” [18] of the 4-Color Theorem, where an

error was pointed out by Heawood. It became a very useful tool, however. For example, it

was used in the proofs [4, 33] of the 4-Color Theorem. (To be exact, the dual form was used

to prove the reducibility of configurations for the proof of the 4-Color Theorem. See Section

3.1 for the duality of 3-edge-colorings.)

Note that the statement of the 4-Color Theorem can be rephrased as “no planar snark

exists”, where a snark is a non-3-edge-colorable 2-edge-connected cubic graph. (Note that

the definition of a snark sometimes requires more conditions on the connectivity and girth.)

The class of snarks is known to be important, since it may contain counterexamples to

several well-known conjectures, such as the cycle double cover conjecture, the nowhere zero

5-flow conjectures, the 4-connected line graph Hamiltonian conjecture, and so on. Therefore,

properties of snarks are interesting in their own right. For example, Nedela and Škoviera
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[30] used Kempe switches in subcubic graphs to obtain results about snarks. This method

appears in several other papers as well [15, 23, 35].

As Mohar [26] explained, the number of Kempe equivalence classes has some applications

in statistical physics (see [27, 42] for example) and Markov chains [41]. Furthermore, there are

several related works on the Kempe equivalence classes: belcastro and Haas [5] constructed

some families of cubic graphs with particular numbers of Kempe equivalence classes, and

McDonald, Mohar and Scheide [24] considered Kempe equivalence classes for 4-edge-colorings

in cubic graphs. The vertex-coloring version has been also considered in several papers

[7, 9, 40].

Related to those works, it is important to study Kempe equivalence classes of 3-edge-

colorings, and in particular, we would like to check whether a given 3-edge-colorable cubic

graph has only one Kempe equivalence class. Fisk ([10, Theorem 6] and [12, Theorem 1])

proved the following theorem. As pointed out in [26], he originally expressed the statement

in the dual version.

Theorem 1 (Fisk [10]) Any two 3-edge-colorings in a cubic bipartite planar graph are

Kempe equivalent.

In this paper, we consider the case of the projective plane, and give several results on

Kempe equivalence classes. The following, which is an analog of Theorem 1, can be obtained

from our results.

Theorem 2 All 3-edge-colorings of a cubic bipartite projective-planar graph G are pairwise

Kempe equivalent if and only if G has an embedding in the projective plane such that the

chromatic number of the dual triangulation G∗ is at least 5.

In those results, we focus on bipartite graphs. Note that the 3-edge-colorability problem

for cubic graphs is well-known to be NP-complete [13], while every cubic bipartite graph

admits a 3-edge-coloring. Therefore, it is reasonable to start with cubic bipartite graphs. In

fact, Mohar [26] posed the following problem:

Problem 3 Characterize all cubic bipartite graphs that have only one Kempe equivalence

class.

Since there are infinitely many cubic bipartite graphs G embedded on the projective

plane such that the dual G∗ is not 4-vertex-colorable, Theorem 2 gives a new family of cubic

bipartite graphs having only one Kempe equivalence class.

This paper is organized as follows: In the next section, we give some notation. In Section

3, we define the type of a 3-edge-coloring, which can distinguish Kempe equivalence classes

under certain conditions, and in Section 4, we introduce the signature of a 3-edge-coloring

and show its relation to types. In Sections 5 and 6, we prove Theorem 2 establishing several

properties on types of 3-edge-colorings. In the last section, we give some remarks, and as

a by-product of the results in this paper, we prove that the list-edge-coloring conjecture

holds for cubic graphs G embedded on the projective plane such that the dual G∗ is not

4-vertex-colorable.

2 Preliminaries

A surface F 2 is a connected compact 2-dimensional manifold without boundary. A closed

curve γ on F 2 is essential if γ does not bound a 2-cell region on F 2. Otherwise, γ is

contractible. A closed curve γ on F 2 is one-sided if a tubular neighborhood of γ is a Möbius
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strip; otherwise it is two-sided. Two closed curves are homotopic if they can be continuously

deformed into each other on the surface. When the surface F 2 is the projective plane, it is

known that a closed curve is essential if and only if it is one-sided. In fact, the projective

plane has the unique homotopy class of essential closed curves. The following well-known

fact for the projective plane is used several times in this paper:

Lemma 4 Let γ1 and γ2 be two closed curves on the projective plane. Then γ1 and γ2 are

both essential (i.e. one-sided) if and only if they intersect transversally an odd number of

times.

In this paper, by a graph embedded on a surface F 2, we always mean a graph 2-cell

embedded on F 2 (i.e., an embedding on F 2 such that each face is homeomorphic to an open

disc).

A triangulation of a surface F 2 is a graph embedded on F 2 with each face triangular. In

the standard terminology, intersecting triangles in a triangulation can share only a vertex or

an edge together with its end vertices, but in this paper, we do not require the condition.

Thus, some triangulations may contain multiple edges. A facial walk in a graph embedded

on a surface is the boundary walk of some face. If it is a cycle, then it is called a facial cycle

in particular. Note that a cycle of a graph embedded on a surface F 2 can be regarded as

a closed curve on F 2. Thus, we say that a cycle is essential or contractible in the sense of

closed curves.

For a graph G embedded on a surface, the dual of G is denoted by G∗. For S ⊆ E(G),

we denote by S∗ the set of dual edges e∗ in G∗ taken over all edges e in S. In this paper, we

regard a cycle also as the set of all edges in the cycle. For example, if D is a cycle in a graph

embedded on a surface, then D stands for E(D) and we write D∗ for
(
E(D)

)∗
.

Let T be a 2-factor of a graph G embedded on the projective plane, where a 2-factor is

a spanning subgraph in which every vertex has degree exactly 2. So T consists of pairwise

vertex-disjoint cycles in G. Using the topology of the projective plane, it is easy to prove the

following lemma.

Lemma 5 Let G be a graph embedded on the projective plane, and let T be a 2-factor of

G. Then T satisfies exactly one of the following:

(I) All cycles in T is contractible, and T is 2-face-colorable.

(II) T contains exactly one essential cycle, and T is not 2-face-colorable.

3 Type of a 3-edge-coloring of a cubic graph

In this section, we give a method to distinguish a Kempe equivalence class of 3-edge-colorings.

This plays the central role in this paper. To do that, we need some definitions.

3.1 The duality of 3-edge-colorings

Let G be a cubic plane graph, and let φ be a 3-edge-coloring of G. In this subsection, we

use the elements of Z2 × Z2 −
{
(0, 0)

}
as colors of φ, that is, φ is a mapping from E(G) to

Z2 × Z2 −
{
(0, 0)

}
. As explained by Tait [37], a 3-edge-coloring φ of G produces a mapping

fφ : V (G∗) → Z2 × Z2 of the dual triangulation G∗ of G as follows. First, fix a vertex of G∗

and color it by (0, 0), and then we extend the colors in the following rule: Let h and h′ be two

adjacent vertices of G∗ such that h is already colored but h′ has not been colored yet, and let

e∗ be the edge connecting them in G∗. Then we color h′ so that fφ(h
′) = fφ(h)+φ(e), where
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(1, 0)
(0, 0)

(1, 1)
(0, 1)

(1, 0)

(0, 1)

(0, 0)

Figure 1: A 3-edge-coloring φ of a cubic plane graph G and a 4-vertex-coloring fφ of G∗.

+ means the sum on Z2×Z2. Tait [37] proved that fφ is well-defined and indeed a 4-vertex-

coloring of G∗. Conversely, when we are given a 4-vertex-coloring f : V (G∗) → Z2 × Z2 in

G∗, we can define the mapping φf : E(G) → Z2 × Z2 −
{
(0, 0)

}
in G by the opposite rules,

and the obtained mapping φf is a 3-edge-coloring of G.

For example, consider a 3-edge-coloring φ of a cubic plane graph G in Figure 1, where

the red thick edges, the blue dashed-dotted line edges, and the green double line edges in G

represent those colored by (0, 1), (1, 0) and (1, 1), respectively. The 3-edge-coloring φ pro-

duces the 4-vertex-coloring fφ of G∗ as indicated by the element of Z2×Z2 in corresponding

faces.

Similarly to the planar case, we may consider the duality between a 3-edge-coloring of a

cubic graph G embedded on a non-spherical surface F 2 and a 4-vertex-coloring in the dual

G∗. In fact, each 4-vertex-coloring of the dual G∗ always produces a 3-edge-coloring of G,

but the converse does not hold. For example, consider the 3-edge-coloring φ1 on the left of

Figure 2. Suppose that we put the color (0, 0) into the central hexagon. By the coloring rule,

the top and the bottom faces must have color (1, 1) and (1, 0), respectively, but those faces

coincide, a contradiction. On the other hand, the 3-edge-coloring φ2 on the right of Figure

2 produces a 4-vertex-coloring in the dual G∗. The difference between these two colorings is

important in this paper.

3.2 Type of a perfect matching

Let G be a cubic graph, and let X be a subset of the edge set of G. Then for a perfect

matching M of G, define

σX(M) ≡ |X| − |X ∩M | (mod 2)

with σX(M) ∈ {0, 1}. In particular, when G is embedded on a surface F 2 and X = D, where

D is the dual of an essential cycle D∗ in G∗, the type σD(M) represents the topological

properties of the perfect matching M , as follows.

Theorem 6 (See [20, 22, 29]) Let G be a cubic graph embedded on a surface F 2, and let

M be a perfect matching of G. Then the following hold:

(I) σD1(M) = σD2(M) for any two homotopic cycles D∗
1 and D∗

2 in G∗.

(II) In particular, σD(M) = 0 if D∗ is a contractible cycle in G∗.

(III) The following three statements are equivalent:

• For every essential cycle D∗ in G∗, σD(M) = 0.
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φ1

e1

e2

φ2

(0, 0) (0, 0)

(0, 1)

(1, 1)

(1, 1)

(0, 1)

(1, 0)

(1, 0)

(1, 1)

(1, 0)

e1

e2

Figure 2: Two 3-edge-colorings of K3,3 embedded on the projective plane, where the projec-

tive plane is obtained by identifying the antipodal points of the outer dotted circle.

• G−M is a 2-factor that is 2-face-colorable.

• G∗ −M∗ is a bipartite quadrangulation on F 2.

3.3 Type of a 3-edge-coloring

Using the type of a perfect matching, we define the type of a 3-edge-coloring. In the remainder

of this paper, we use a, b and c for the colors of 3-edge-colorings for simplicity of notation.

Recall that φ can be regarded as a partition of E(G) into three perfect matchings Ma,Mb

and Mc, where Mx is the set of edges of color x for x ∈ {a, b, c}. In all figures, red thick line

edges, blue dashed-dotted line edges, and green double line edges represent those colored by

a, b and c, respectively.

Let φ be a 3-edge-coloring of G and let X be a subset of the edge set of G. We define

the type with respect to X, denoted by ρX(φ), of φ as the triple of σX(Mx) for x ∈ {a, b, c}.
Namely,

ρX(φ) =
(
σX(Ma), σX(Mb), σX(Mc)

)
∈ {0, 1}3.

See Figure 2 for an example. Let D = {e1, e2}. For the 3-edge-coloring φ1 on the left, we

have σD(Ma) ≡ 2− 0 ≡ 0 (mod 2), σD(Mb) ≡ 2− 1 ≡ 1 (mod 2), and σD(Mc) ≡ 2− 1 ≡ 1

(mod 2), and hence ρD(φ1) = (0, 1, 1). Similarly, we see ρD(φ2) = (0, 0, 0).

For the type of 3-edge-colorings, the following holds.

Proposition 7 For a 3-edge-coloring φ of a cubic graph G and a subset X of E(G), we have

ρX(φ) = (0, 0, 0), (1, 1, 0), (1, 0, 1), or (0, 1, 1).

Proof. Since
{
Ma,Mb,Mc

}
is a partition of E(G), we see that |X ∩Ma|+ |X ∩Mb|+ |X ∩

Mc| = |X|. Therefore,

σX(Ma) + σX(Mb) + σX(Mc) ≡ 3|X| − |X| ≡ 0 (mod 2).

This directly implies Proposition 7. □

Proposition 7 shows that ρX(φ) attains only four types. In addition, if ρX(φ) ̸= (0, 0, 0),

say ρX(φ) = (1, 1, 0), then we obtain 3-edge-colorings φ′ and φ′′ with ρX(φ′) = (1, 0, 1) and

ρX(φ′′) = (0, 1, 1) from φ by a permutation of colors. Therefore, the set of 3-edge-colorings

φ can be divided into two sets according as ρX(φ) = (0, 0, 0) or ρX(φ) ̸= (0, 0, 0) in some

sense.
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When G is embedded on a surface F 2 and X = D, where D is the dual of an essential

cycle D∗ in G∗, the type ρD(φ) represents the topological property of the 3-edge-coloring φ,

similarly to the type σD(M) of a perfect matching M . Indeed, the following holds (see [11,

Theorem 2]).

Theorem 8 Let G be a cubic graph embedded on a surface. A 3-edge-coloring φ of G

produces a 4-vertex-coloring of the dual G∗ if and only if ρD(φ) = (0, 0, 0) for every essential

cycle D∗ in G∗.

3.4 Types and Kempe equivalence classes

Now we consider a cubic graph G embedded on the projective plane. Recall that the projec-

tive plane has the unique homotopy class of essential closed curves. Therefore, by Theorems

6 (I) and 8, there are only two possibilities for the type of a 3-edge-coloring φ:

• ρD(φ) = (0, 0, 0) for an essential cycles D∗ in G∗. Then φ is said to be even. In this

case, φ produces a 4-vertex-coloring of the dual G∗.

• ρD(φ) ̸= (0, 0, 0) for an essential cycles D∗ in G∗. Then φ is said to be odd. In this

case, φ does not produce a 4-vertex-coloring of the dual G∗.

Indeed, these two types can distinguish Kempe equivalence classes. See Figure 2 for an

example, where the 3-edge-coloring φ1 on the left is odd type, while φ2 on the right is even

type. By the following theorem, the two 3-edge-colorings φ1 and φ2 in Figure 2 are not

Kempe equivalent.

Theorem 9 If two 3-edge-colorings of a cubic graph embedded on the projective plane are

Kempe equivalent, then they have the same type.

Proof of Theorem 9. Let G be a cubic graph embedded on the projective plane and

let φ be an odd 3-edge-coloring of G. Then for every essential cycle D∗ in G∗, we have

ρD(φ) ̸= (0, 0, 0). By symmetry, we may assume that ρD(φ) = (1, 1, 0). Let C be a bicolored

cycle with respect to φ, and let φ′ be the 3-edge-coloring of G obtained by the Kempe switch

on C. It suffices to prove that ρD(φ
′) ̸= (0, 0, 0).

If C consists of edges of color a and c, then Mb is still the set of edges of color b by φ′,

so it follows from Proposition 7 that ρD(φ
′) = (1, 1, 0) or (0, 1, 1). The same also occurs if

C consists of edges of color b and c. Therefore, we may assume that C consists of edges of

color a and b.

Assume that C is contractible on the projective plane. By Lemma 4, C and D∗ intersect

transversally an even number of times. This implies that |C ∩D| is even. Since |C ∩D| =
|C ∩D ∩Ma|+ |C ∩D ∩Mb|, we obtain |C ∩D ∩Ma| ≡ |C ∩D ∩Mb| (mod 2). Therefore,

for the matching M ′
a obtained from Ma by the Kempe switch on C, we have

σD(M
′
a) ≡ |D| − |D ∩M ′

a|

= |D| −
(
|D ∩Ma| − |C ∩D ∩Ma|+ |C ∩D ∩Mb|

)
≡ |D| − |D ∩Ma| ≡ σD(Ma) = 1 (mod 2).

The same also holds for Mb, and we obtain ρD(φ
′) = (1, 1, 0).

Thus, we may assume that C is essential on the projective plane. By Lemma 4, C and

D∗ intersect transversally an odd number of times, and hence |C ∩D| ≡ 1 (mod 2). Since
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σD(Mc) = 0,

|D ∩
(
Ma ∪Mb

)
− C| = |D ∩

(
Ma ∪Mb

)
| − |C ∩D|

= |D| − |D ∩Mc| − |C ∩D|
≡ σD(Mc)− 1 ≡ 1 (mod 2).

Since Ma ∪Mb forms a set of vertex-disjoint cycles, this implies that there exists a cycle C ′

in Ma ∪Mb such that C ′ ̸= C and |C ′ ∩D| is odd. It follows from Lemma 4 that C ′ is also

essential. This implies that C and C ′ are two vertex-disjoint essential cycles, contradicting

Lemma 4. □

3.5 Questions about the types

In Theorem 9, we have given a method to distinguish two 3-edge-colorings belonging to

different Kempe equivalence classes for cubic graphs embedded on the projective plane. This

naturally poses the following questions.

• Does every cubic graph embedded on the projective plane admit an odd 3-edge-coloring

and an even 3-edge-coloring?

• Is it true that two 3-edge-colorings of a cubic graph embedded on the projective plane

are always Kempe equivalent if they have the same type?

With Problem 3 in mind, we give answers to those questions for bipartite graphs in

Sections 5 and 6, respectively.

4 Signature of 3-edge-colorings

Here we introduce the signature of 3-edge-colorings, which will be used for our proofs. The

idea has been used for several purposes, e.g. for counting the number of 3-edge-colorings

[14, 34], list-edge-colorings [2, 8] and Pfaffian labelings [31, 38]. In Section 7.3, we prove a

corollary of our results for list-edge-colorings.

4.1 Definition of the signature

For two 3-edge-colorings φ1 and φ2 of a cubic graph G, we define the signature between them

as follows. First, we focus on a vertex v in G, and let e1, e2 and e3 be the three edges incident

with v in G. Then some element, say πv, in the symmetric group of degree three acts on

the colors by φ1 and φ2. Namely, πv
(
φ1(ei)

)
= φ2(ei) for any 1 ≤ i ≤ 3. Recall that the

signature of πv is defined as sign(πv) = +1 (resp. −1) if πv is an even (resp. odd) permutation.

See Figure 3 for an example. For the vertex v on the left, we have πv
(
a) = b, πv

(
b) = c

and πv
(
c) = a, which is an even permutation (so sign(πv) = +1), while for the vertex u on

the right, we have πu
(
a) = b, πu

(
b) = a and πu

(
c) = c, which is an odd permutation (so

sign(πu) = −1). Then let

sign(φ1, φ2) =
∏

v∈V (G)

sign(πv),

which is called the signature between φ1 and φ2.

The following proposition suggests that signature can distinguish the Kempe equivalence

classes. It appeared in [8, p. 346] without proofs. Since the proof is neither difficult, nor

long, we include it here.
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φ1

v

φ2

v

φ1

u

φ2

u

sign(πv) = +1 sign(πu) = −1

Figure 3: Two vertices v and u, where sign(πv) = +1 and sign(πu) = −1.

Proposition 10 Let G be a cubic graph, and let φ1 and φ2 be two 3-edge-colorings of G.

If φ1 and φ2 are Kempe equivalent, then sign(φ1, φ2) = +1.

Proof. Let φ′
1 be the 3-edge-coloring of G obtained from φ1 by a Kempe switch on a

bicolored cycle C. It is enough to prove that sign(φ1, φ
′
1) = +1. For each vertex v ∈

V (G)−V (C), πv is the identity permutation, and hence sign(πv) = +1. Let u ∈ V (C). Since

we swap the colors of the edges in C and exactly two edges in C are incident with u, we have

sign(πu) = −1. (See the right of Figure 3.) Since |C| is even, we have

sign(φ1, φ
′
1) =

∏
v∈V (G)

sign(πv) = (−1)|C| = +1. □

It was proven in [14, Proposition 1], [16, Theorem 3.2] and [17, Parity Lemma] that any

two 3-edge-colorings of every cubic planar graph have the same signature. From this and

Proposition 10, one may expect that any two 3-edge-colorings of a cubic planar graph are

Kempe equivalent. This is generally false, but true for bipartite cubic planar graphs (see

Theorem 1).

4.2 Relation between type and signature of 3-edge-colorings

As mentioned in the previous section, for two 3-edge-colorings, having the same type is a

necessary condition to be Kempe equivalent. In this section, we explain the relation between

the type and the signature. In fact, we prove the following, which together with Proposition

10 gives another proof of Theorem 9.

Theorem 11 Let G be a cubic graph embedded on the projective plane, and let φ1 and φ2

be two 3-edge-colorings of G. Then φ1 and φ2 have the same type if and only if sign(φ1, φ2) =

+1.

We precede the proof by defining singular and non-singular edges. Note that they were

defined by Fisk [10] in the dual version. Let G be a cubic graph embedded on a surface, and

let φ be a 3-edge-coloring of G. An edge e is said to be singular (with respect to φ) if for

a face h containing e, the two edges incident with h and adjacent to e have the same color

by φ: Otherwise, e is said to be non-singular. See Figure 4 for an example. On the left,

the 2-factors G −Ma and G −Mb intersect at e non-transversally, while on the right, they

intersect at e transversally.

The following is easily obtained from the definition.

Lemma 12 For a cycle C in a cubic graph embedded on a surface, any two of the following

properties imply the third;

• C is a facial cycle.
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h

e e′

h

Figure 4: A singular edge e on the left, and a non-singular edge e′ on the right.

• C is a bicolored cycle.

• All edges in C are singular.

See the cycle v2v3v5v4 in Figure 5, for an example of a cycle described in Lemma 12.

v3
v5v2

v7 v11
v10v8

v12 v14
v13

v9

v4
v6v1

Figure 5: An essential cycle D∗ in G∗ represented by the outer dotted circle, and an odd

3-edge-coloring φ satisfying ρD(φ) = (1, 1, 0).

Let G be a cubic graph embedded on the projective plane. For a 3-edge-coloring φ, we

denote by NS(φ) the set of non-singular edges with respect to φ, and furthermore, for each

color x, denote by NSx(φ) the set of non-singular edges of color x for x ∈ {a, b, c}.
Let D∗ be an essential cycle in G∗. Similarly to the signatures of two 3-edge-colorings, we

define the signature of a 3-edge-coloring φ with respect to D, denoted by signD(φ), as follows:

By deleting all the edges of D, we obtain a spanning subgraph G′ of G that is contained in

a disk on the projective plane. On the disk, we can give a consistent clockwise rotation to

each vertex of G. So, for an edge uv, u and v have the same consistent clockwise rotation

if and only if uv ̸∈ D. For a vertex v, if the colors a, b and c appear on the edges incident

with v along the consistent clockwise rotation, then we set signD(πv) = +1. Otherwise we

set signD(πv) = −1. Finally, we set

signD(φ) =
∏

v∈V (G)

signD(πv).

See Figure 5 for an example, where signD(πvi) = +1 for i = 2, 5, 8, 9, 10, 12, 13, 14, and

signD(πvi) = −1 for i = 1, 3, 4, 6, 7, 11. These imply that signD(φ) = (+1)8(−1)6 = +1.

We now prove the following lemma.
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Lemma 13 Let G be a cubic graph embedded on the projective plane, let φ be a 3-edge-

coloring of G, and let D∗ be an essential cycle in G∗. Then

signD(φ) =

{
(−1)

1
2
|G|+|D|+1 if φ is odd type,

(−1)
1
2
|G|+|D| if φ is even type.

Since sign(φ1, φ2) = signD(φ1) · signD(φ2), Theorem 11 directly follows from Lemma 13.

Thus, it suffices to prove this lemma.

Proof. Let φ be a 3-edge-coloring of G. We first prove the case when φ is odd type.

By Proposition 7 and symmetry, we may assume that ρD(φ) = (1, 1, 0). Denote Ta =

G −Ma (resp. Tb = G −Mb), which is a 2-factor of G such that each cycle is bicolored by

the colors b and c (resp. by the colors a and c) in φ. Since

|D ∩ Ta| = |D| − |D ∩Ma| ≡ σD(Ma) = 1 (mod 2),

Ta transversally intersects with D∗ an odd number of times. Lemma 4 then implies that

Ta is essential. By symmetry, Tb is also essential. Therefore, again by Lemma 4, Ta and

Tb intersect transversally an odd number of times. Note that Ta and Tb only share edges

in Mc. It is easy to see that Ta and Tb intersect transversally at e ∈ Mc if and only if e is

non-singular. (See Figure 4.) Therefore, we have |NSc(φ)| ≡ 1 (mod 2).

Now we focus on each edge uv in Mc. Assume first that uv ̸∈ D. Then by the definition,

u and v have the same consistent rotations. This directly implies that signD(πu) ̸= signD(πv)

if and only if the edge uv is singular. (See Figure 4.) On the other hand, if uv ∈ D, then the

same argument implies that signD(πu) ̸= signD(πv) if and only if the edge uv is non-singular.

Therefore, for an edge uv ∈ Mc, signD(πu) · signD(πv) = −1 if and only if one of the following

hold:

• uv ̸∈ D and uv ̸∈ NSc(φ).

• uv ∈ D and uv ∈ NSc(φ).

Since Mc is a perfect matching of G, we obtain the following:

signD(φ) =
∏

uv∈Mc

(
signD(πu) · signD(πv)

)
= (−1)|Mc−(D∪NSc(φ))| · (−1)|D∩NSc(φ)|.

Since |D| − |Mc ∩D| ≡ σD(Mc) = 0, |NSc(φ)| ≡ 1 (mod 2) and |Mc| = 1
2 |G|, we have the

following, which completes the proof for an odd 3-edge-coloring.

|Mc − (D ∪NSc(φ))|+ |D ∩NSc(φ)|

=
(
|Mc| − |Mc ∩D| − |NSc(φ)−D|

)
+

(
|NSc(φ)| − |NSc(φ)−D|

)
≡ |Mc| −

(
|D| − σD(Mc)

)
+ |NSc(φ)|

≡ 1

2
|G|+ |D|+ 1 (mod 2).

The case when φ is an even 3-edge-coloring can be proven similarly. In this case, we see

that both Ta and Tb are contractible. This implies that they intersect transversally an even

number of times, and hence |NSc(φ)| ≡ 0 (mod 2). On the other hand, we have

|Mc − (D ∪NSc(φ))|+ |D ∩NSc(φ)| ≡ |Mc| −
(
|D| − σD(Mc)

)
+ |NSc(φ)|

≡ 1

2
|G|+ |D| (mod 2).

10



By the same calculation as in the previous case, this verifies the case when φ is an even

3-edge-coloring. □

We explain the above argument using an example shown in Figure 5. Recall that an

essential cycle D∗ in G∗ is represented by the outer dotted circle. The 3-edge-coloring φ is

odd type and satisfies ρD(φ) = (1, 1, 0). The 2-factor Ta = G − Ma consists of the cycle

v1v2v4v9v8v12v6v5v3v13v14v10v11v7, which is essential. Thus, Ta satisfies (II) in Lemma 5.

Similarly, the 2-factor Tb = G − Mb satisfies (II) in Lemma 5. Within edges in Mc, the

edges v1v2, v4v9, v5v6 and v7v11 are singular, while the edges v3v13, v8v12 and v10v14 are non-

singular. Thus, NSc(φ) = {v3v13, v8v12, v10v14}. We have Mc∩D = {v3v13, v7v11}. Note that
an edge vivj ∈ Mc satisfies signD(πvi) · signD(πvj ) = −1 if and only if vivj = v1v2, v4v9, v5v6
or v3v13. Therefore,

signD(φ) = (−1)4 = (−1)14/2+4+1 = (−1)
1
2
|G|+|D|+1.

As mentioned in Section 4.1, two 3-edge-colorings of every cubic planar graph have the

same signature. Note that Lemma 13 corresponds to the projective-planar analog of this

result. Actually, the proof of Lemma 13 is based on the idea of the proofs in [14, Proposition

1] and [16, Theorem 3.2].

5 The existence of a 3-edge-coloring of prescribed type

In this section, we answer the first question in Section 3.5 for bipartite projective-planar

graphs, by proving the following theorem.

Theorem 14 Every cubic bipartite graph G embedded on the projective plane has an odd

3-edge-coloring. Moreover, it has an even 3-edge-coloring if and only if the dual triangulation

G∗ has chromatic number at most 4.

We prove Theorem 14 by using the following result, which was obtained in several papers,

see [20, 22, 29]. Note that the following theorem was in [20, 29] stated in the context of

spanning bipartite quadrangulations as in Theorem 6 (III).

Theorem 15 ([20, 22, 29]) Let G be a cubic bipartite graph embedded on the projective

plane, and let D∗ be an essential cycle in G∗. Then G admits a perfect matching M with

σD(M) = 1.

Proof of Theorem 14. It follows from Theorem 15 that G admits a perfect matching

Ma such that σD(Ma) = 1. Since G−Ma is a 2-regular bipartite graph, E(G)−Ma can be

naturally colored by two colors b and c and hence we can extend Ma to the 3-edge-coloring

of G, say φ. Since σD(Ma) = 1, we see that ρD(φ) = (1, 1, 0) or (1, 0, 1), that is, φ is an odd

3-edge-coloring.

The second half of Theorem 14 directly follows from Theorem 8. □

We also give another proof of the first half of Theorem 14, using a generating theorem

established in [19, Theorem 10] (see also [36] for a related work). To do that, we define some

terminology. An even map is a graph embedded on a surface such that every facial walk has

even length. Note that any bipartite graph embedded on a surface is an even map, while

the converse does not generally hold. The two cubic even maps T ∗
1 and T ∗

2 and the family{
(T k

3 )
∗ : k ≥ 1

}
of cubic even maps on the projective plane are depicted in Figure 6. A

2-bridging for a cubic even map on a surface is the operation for two edges contained in a

same facial cycle to subdivide them twice and add two new edges as on the left of Figure

11



T ∗
1 T ∗

2

(T k
3 )

∗

Figure 6: The two cubic even maps T ∗
1 and T ∗

2 on the projective plane and the family{
(T k

3 )
∗ : k ≥ 1

}
of cubic even maps, where k is the number of hexagons in (T k

3 )
∗. Each of

T ∗
2 and (T k

3 )
∗ contains a 3-edge-coloring, as depicted.

7. A cube addition is the operation to replace a vertex with seven vertices and nine edge as

on the right of Figure 7. A graph G on a non-spherical surface F 2 is k-representative if all

essential closed curves on F 2 intersect with G at least k times.

Theorem 16 (Kobayashi, Nakamoto and Yamaguchi [19]) Every 3-edge-connected 2-

representative cubic even map on the projective plane can be obtained from T ∗
1 , T

∗
2 or (T k

3 )
∗

for some k ≥ 1 by a sequence of 2-bridgings and cube additions.

For the even maps T ∗
1 , T

∗
2 and (T k

3 )
∗ and the two operations, we observe the following.

Lemma 17 (i) The even map T ∗
1 is not bipartite, while both T ∗

2 and (T k
3 )

∗ for k ≥ 1 are

bipartite.

Figure 7: A 2-bridging (left) and a cube addition (right), together with extensions of a

3-edge-coloring.

12



(ii) Both T ∗
2 and (T k

3 )
∗ for k ≥ 1 admit an odd 3-edge-coloring. (See Figure 6.)

(iii) Let G be a 3-edge-connected 2-representative cubic even map on the projective plane

and let G′ be the graph obtained from G by a 2-bridging or a cube addition. Then G

is bipartite if and only if so is G′.

(iv) Let G and G′ be as in (iii). If G admits an odd 3-edge-coloring, then so does G′.

For Lemma 17 (iv), we provide an example in Figure 7, which shows how to obtain an

odd 3-edge-coloring in G′. For a 2-bridging, two middle edges in the original map G might

have the same color, but even in such a case, we can easily find an odd 3-edge-coloring in

the new map G′.

Using Theorem 16 and Lemma 17, we have another proof of Theorem 14 (I).

Another proof of the first half of Theorem 14. Assume first that G is 2-representative

and 3-edge-connected. By Theorem 16, G is obtained from T ∗
1 , T

∗
2 or (T k

3 )
∗ for some k ≥ 1 by

a sequence of 2-bridgings and cube additions. Since G is bipartite, it follows from Lemma 17

(i) and (iii) that G is obtained from T ∗
2 or (T k

3 )
∗ for some k ≥ 1 by a sequence of 2-bridgings

and cube additions. Then by Lemma 17 (ii) and (iv), G admits an odd 3-edge-coloring, and

we are done.

Assume next that G is not 2-representative. Then there exist an edge e and an essential

cycle D∗ in G∗ that consists only e∗ (which is the dual edge of e and is a loop in G∗). Since

G is bipartite and cubic, G admits a 3-edge-coloring φ. If we let φ(e) = a by symmetry,

then σD(Ma) = |D| − |D ∩Ma| = 1− 1 = 0 and σD(Mb) = σD(Mc) = 1. Therefore, we have

ρD(φ) = (0, 1, 1), and hence φ is an odd 3-edge-coloring of G.

Assume finally that G is not 3-edge-connected. Since G is bipartite and cubic, G cannot

have a bridge. Therefore, there exists a 2-edge-cut {u1u2, v1v2} in G, where G−{u1u2, v1v2}
has two components, say G1 and G2, with u1, v1 ∈ V (G1) and u2, v2 ∈ V (G2). Then for

i ∈ {1, 2}, let G′
i be the graph obtained from Gi by adding the edge uivi. Since G is bipartite

and embedded on the projective plane, it is easy to see that for some i ∈ {1, 2}, say i = 1, G′
1

is a cubic bipartite graph embedded on the projective plane and G′
2 is a cubic bipartite graph

contained in a disk on the projective plane. Note that every 3-edge-coloring of G is obtained

from a 3-edge-coloring of G′
1 and that of G′

2 with uivi having the same color. Furthermore,

it is easy to see that G admits an odd 3-edge-coloring if and only if G′
1 admits an odd 3-

edge-coloring. Since G′
1 is smaller than G, we can prove by an inductive argument that G′

1

(and hence G) admits an odd 3-edge-coloring. (The base case was done by the arguments in

the previous paragraphs.) □

6 Kempe equivalence of odd 3-edge-colorings

Considering the second question in Section 3.5, the main purpose of this section is to prove

that any two odd 3-edge-colorings of a cubic bipartite graph embedded on the projective

plane are Kempe equivalent. Note that this is the projective-planar analog of Theorem

1. We prove this theorem in Section 6.4, after several arguments in Sections 6.1–6.3. The

argument in Section 6.1 is based on the proof of Theorem 1 in [10, 12], and then we need to

deal with the global structure on the projective plane in Sections 6.2 and 6.3. In addition,

we prove Theorem 2 in Section 6.5.

6.1 Canonical 3-edge-colorings

We first prepare the following important lemma on non-singular edges.
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h

e e′

h

e e′

Figure 8: The face h in the proof of Lemma 18, where e is singular, while e′ is non-singular.

Lemma 18 (Fisk [10]) Let G be a cubic graph embedded on a surface and let φ be a

3-edge-coloring of G. Then for any face h and any color x,

|E(h) ∩NSx(φ)| ≡ |E(h)| (mod 2),

where E(h) is the set of all edges in G contained in the facial cycle of h.

A proof of Lemma 18 can be found in [10, Lemma 5] and [12, Lemma 2], but we prove it

here.

Proof. Let h be a face and let x be a color. We may assume that x = a. Now we modify

the facial cycle of h together with its colors. See Figure 8 for an example of the following

argument.

Let e be an edge in E(h) colored by a. If e is singular, then the two edges in E(h) adjacent

to e have the same color, say c by symmetry. In this case, we recolor e by the color b. On

the other hand, if e is non-singular, then the two edges in E(h) adjacent to e have different

colors. In this case, subdivide e and recolor the two obtained edges by b and c so that edges

with the same color are not consecutive. After recoloring all edges in E(h) colored by a, we

finally obtain a bicolored cycle colored by b and c, and hence its length is even. On the other

hand, since the length of the new cycle is |E(h)| + |E(h) ∩ NSa(φ)|, we have the desired

equality. □

A canonical 3-edge-coloring of a cubic graph embedded on a surface is a 3-edge-coloring

such that for each color x, either
(
NSx(φ)

)∗
consists of only essential cycles or is the empty

set. (See [10, p.331].) We prove the following lemma.

Lemma 19 Let G be a cubic even map on a surface. For every 3-edge-coloring φ of G, there

exists a canonical 3-edge-coloring φ′ such that φ′ is Kempe equivalent to φ and for every

cycle D∗ in G∗, ρD(φ) = (0, 0, 0) if and only if ρD(φ
′) = (0, 0, 0).

Proof. Let G be a cubic even map on a surface F 2, and let φ be a 3-edge-coloring. Then

|E(h)| is even for each face h, and hence Lemma 18 implies that for each color x,
(
NSx(φ)

)∗ ⊆
E(G∗) forms an Eulerian subgraph of G∗. Thus,

(
NSx(φ)

)∗
can be divided into edge-disjoint

cycles in G∗. Assume that some cycle C∗ in
(
NSx(φ)

)∗
, say x = a, is contractible. Then C∗

divides the surface F 2 into the interior, which is homeomorphic to a disk, and the exterior.

Note that no edges in Mb ∪Mc intersect with C∗, and hence the edges in Mb ∪Mc that are

contained in the interior of C∗ form a set of vertex-disjoint contractible cycles. Then let

φ′ be the 3-edge-coloring obtained from φ by the Kempe switches on all such cycles. Let

C = (C∗)∗ ⊆ NSa(φ). It is easy to see the following:

• Since each edge in C is incident with exactly one vertex in the interior of C∗ and the

colors b and c are all swapped in the interior of C∗, any edge in C will be singular.

• For any other edges of color a, Kempe switches happened at both end vertices or at

neither. Therefore, such edges do not change the property (singular or non-singular).
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C∗

φ′
(C ′)∗

φ

Figure 9: Two 3-edge-colorings of a cubic even map G on the projective plane. The right

one is canonical.

• Take an essential cycle D∗ in G∗. Since C∗ is contractible, C∗ and D∗ intersect an

even number of times. Then it is easy to see that ρD(φ) = (0, 0, 0) if and only if

ρD(φ
′) = (0, 0, 0).

Therefore, the new 3-edge-coloring φ′ has fewer non-singular edges such that for every cycle

D∗ in G∗, ρD(φ) = (0, 0, 0) if and only if ρD(φ
′) = (0, 0, 0).

This operation can be performed as long as there exists a contractible cycle in
(
NSx(φ)

)∗
for some color x, and as a result, we obtain a canonical 3-edge-coloring φ′ with desired

properties. This completes the proof of Lemma 19. □

In Figure 9, we provide an example of the proof of Lemma 19. The left has two cycles in(
NS(φ)

)∗
, represented by thin lines: C∗ is one of them, which is of color a and contractible,

while the other is of color c and essential. If we perform Kempe switches on the cycles of

Mb ∪Mc inside C∗, then we obtain the 3-edge-coloring on the right with fewer non-singular

edges.

Let G be a cubic bipartite plane graph. Since no essential cycles exist on the plane, a

canonical 3-edge-coloring φ of G has no non-singular edges. It is easy to see that for the

4-vertex-coloring fφ of G∗ produced from φ, we only use three colors. (In fact, since all edges

are singular, it follows from Lemma 12 that every facial cycle in G is bicolored by φ. The

three color classes in fφ correspond to the (a, b)-faces, the (a, c)-faces, and the (b, c)-faces,

where an (x, y)-face is a face whose facial cycle is bicolored by the colors x and y.) Since such

a 3-vertex-coloring of G∗ is unique except for the permutation of colors, Lemma 19 directly

implies Theorem 1.

For the case of the projective plane, Lemma 19 states that any 3-edge-coloring φ of a cubic

even map G on the projective plane is Kempe equivalent to some canonical 3-edge-coloring

φ′ with the same type as φ.

6.2 Topological properties of non-singular edges

Now we consider a canonical 3-edge-coloring φ of a cubic bipartite graph embedded on the

projective plane and the topological property on
(
NSx(φ)

)∗
. We prove the following.

Lemma 20 Let G be a cubic bipartite graph embedded on the projective plane, let D∗ be

an essential cycle in G∗, and let φ be a canonical 3-edge-coloring of G. Then for x ∈ {a, b, c},(
NSx(φ)

)∗
consists of only one essential cycle if and only if σD(Mx) = 0

Proof. We first prove the “only if” part for x = a. Assume that
(
NSa(φ)

)∗
consists of

only one essential cycle. Then cutting the projective plane along the cycle in
(
NSa(φ)

)∗
15



u3
v3

u2

v2

u1
v1

Figure 10: Rotation on the vertices u1, v1, u2, . . . in the proof of Lemma 20.

results in a disk. Since all cycles in Mb ∪Mc = E(G) −Ma are contained in this disk, they

are contractible, and hence Mb∪Mc is 2-face-colorable by Lemma 5 (I). Then it follows from

Theorem 6 (III) that σD(Ma) = 0. The cases for x = b and x = c are symmetric, and hence

the “only if” part holds.

Next we prove the “if” part. Assume that σD(Ma) = 0, but
(
NSa(φ)

)∗
does not consist

of only one essential cycle. Since φ is canonical, we have
(
NSa(φ)

)∗
= ∅, so all edges of

color a are singular. Since σD(Ma) = 0, it follows from Theorem 6 (III) that G − Ma is

2-face-colorable. By Lemma 5, this implies that all cycles in Mb ∪Mc are contractible.

We color each vertex in one partite set of G by black, and each vertex in the other partite

set by white. Let C be an essential cycle in G, and let u1v1, u2v2, . . . , urvr be the sequence

of the edges in Ma ∩ E(C) such that they appear in C in that order and vi and ui+1 are

contained in the same cycle in Mb ∪ Mc for 1 ≤ i ≤ r, where ur+1 = u1. We take such an

essential cycle C so that r is as small as possible. By this choice, each cycle in Mb ∪Mc is

incident with either exactly two edges in Ma ∩ E(C) or no edges in Ma ∩ E(C).

For each vertex w in {ui, vi : 1 ≤ i ≤ r}, we assign a local rotation to w in the following

manner.

• If w is a black vertex, then the colors a, b and c appear in this order on the edges

incident with w along the rotation.

• If w is a white vertex, then the colors a, b and c appear in the opposite order (the order

of a, c, b) on the edges incident with w along the rotation.

See Figure 10 for an example, where all vertices u1, v1, u2, . . . , ur, vr have the consistent

rotation.

Let 1 ≤ i ≤ r. Since ui and vi belong to different partite sets of G and the edge uivi is

singular, both ui and vi have the same rotation. On the other hand, note that vi and ui+1

are contained in the same cycle in Mb ∪ Mc. Since all cycles in Mb ∪ Mc are contractible,

both edges uivi and ui+1vi+1 leave from the cycle in Mb ∪ Mc. Thus, both vi and ui+1

have the same rotation, regardless of the partite set to which they belong. These give the

consistent rotations along the sequence u1, v1, . . . , ur, vr, u1. However, this is impossible, since

the sequence corresponds to an essential cycle on the projective plane, which is one-sided.

This completes the proof of the “if” part. □

6.3 The color factor and canonical odd 3-edge-colorings

Before proceeding to the proof, we introduce an important notation, called a color factor.

Let H be an even map on the projective plane. Put a new vertex in each face of H and

join it to all the vertices on the corresponding facial walk. Then the resulting map K is an

Eulerian triangulation, which is called the face subdivision of H and denoted by K = FS(H).

For an Eulerian triangulation K, a vertex set U is called a color factor of K if there exists
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an even map H such that K = FS(H) and U = V (K)− V (H). It is easy to see that U is a

color factor of K if and only if it satisfies both of the following conditions:

(CF1) U ̸= ∅ and U is independent.

(CF2) For any two triangular facial cycles uxy and vxy in K sharing an edge xy, u ∈ U if

and only if v ∈ U .

We use the following theorem.

Theorem 21 (Mohar [25]) Every Eulerian triangulation K of the projective plane has a

color factor. Moreover, if K is not 3-vertex-colorable, the color factor is uniquely determined.

The next lemma is well-known. We include a short proof here.

Lemma 22 Let G be a cubic bipartite graph embedded on the projective plane. Then the

dual G∗ is an Eulerian triangulation that is not 3-vertex-colorable. Thus, G∗ has the unique

color factor.

Proof. LetG be a cubic bipartite graph embedded on the projective plane. Since each facial

cycle in G has even length, each vertex in G∗ has even degree, that is, G∗ is an Eulerian

triangulation. Assume that G∗ is 3-vertex-colorable, that is, the faces of G can be colored

by three colors, say A,B and C, such that any two adjacent faces have different colors. We

color each vertex in one partite set of G by black, and each vertex in the other partite set by

white. Then for each vertex v in G, we give a rotation around v so that

• the colors A,B and C appear in the faces incident with v in this order along the rotation

if v is a black vertex,

• and the colors A,B and C appear in the faces incident with v in the opposite order

along the rotation if v is a white vertex.

This choice implies that each vertex admits a consistent rotation, which is a contradiction

since G is a graph embedded on the projective plane. Therefore, G∗ is not 3-vertex-colorable.

By Theorem 21, G∗ has the unique color factor. □

Now, we prove the next lemma, which is the main result in this subsection.

Lemma 23 Let G be a cubic bipartite graph embedded on the projective plane, let D∗

be an essential cycle in G∗, and let φ be a canonical odd 3-edge-coloring in G satisfying

ρD(φ) = (1, 1, 0). Furthermore, let U∗ be the color factor of G∗, which is obtained by

Lemma 22. Then both of the following hold:

(i) U∗ corresponds to the set of the cycles in Ma ∪Mb.

(ii) V (C∗) ∩ U∗ = ∅, where C∗ is the unique essential cycle in
(
NSc(φ)

)∗
.

Proof. Let G be a cubic bipartite graph embedded on the projective plane, let D∗ be an

essential cycle in G∗, let φ be a canonical odd 3-edge-coloring satisfying ρD(φ) = (1, 1, 0),

and let U∗ be the color factor of G∗. It follows from Lemma 20 that NSa(φ) = NSb(φ) = ∅
and

(
NSc(φ)

)∗
consists of only one essential cycle, say C∗. Note that all edges colored by a

or b are singular. Thus, by Lemma 12, each cycle in Ma ∪ Mb is facial. Let U∗ be the set

of vertices in G∗ that correspond to each cycle in Ma ∪Mb. Then it is easy to see that U∗

satisfies both conditions (CF1) and (CF2). Therefore, it follows from Theorem 21 that U∗

is the unique color factor of G∗. In particular, since E(C∗) ⊆
(
NSc(φ)

)∗
, C∗ does not pass
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U U U U

C∗
φ

U W ∩ U W ∩ U U

(C ′)∗
φ′

C∗△(C ′)∗

Figure 11: Two canonical odd 3-edge-colorings φ and φ′ in a cubic bipartite graph G em-

bedded on the projective plane.

through any face bounded by a cycle in Ma∪Mb, and hence V (C∗)∩U∗ = ∅. This completes

the proof of Lemma 23. □

See the left of Figure 11 for an example, where the cycles in Ma ∪Mb, indicated by the

symbol U , correspond to the color factor U∗ in the dual G∗. The thin curve represents the

unique cycle C∗ in
(
NSc(φ)

)∗
.

6.4 Kempe equivalence of odd 3-edge-colorings

In this section, we prove the following theorem, which is the main result in Section 6.

Theorem 24 Let G be a cubic bipartite graph embedded on the projective plane. Then

any two odd 3-edge-colorings in G are Kempe equivalent.

Proof of Theorem 24. Let G be a cubic bipartite graph embedded on the projective

plane, let D∗ be an essential cycle in G∗, and let φ and φ′ be two odd 3-edge-colorings in G.

By Lemma 19, it suffices to prove the case where both φ and φ′ are canonical odd 3-edge-

colorings. By swapping the colors (which can be expressed as Kempe switches) if necessary,

we may assume that ρD(φ) = ρD(φ
′) = (1, 1, 0).

Let C∗ and (C ′)∗ be the unique essential cycles in
(
NSc(φ)

)∗
and the one in

(
NSc(φ

′)
)∗
,

respectively. Since both C∗ and (C ′)∗ are essential cycles on the projective plane, C∗△(C ′)∗

bounds some disks on the projective plane. Let W ∗ be the vertices of G∗ that appear inside

the disks, excluding its boundary. (So, W ∗ does not contain any vertices in C∗ ∪ (C ′)∗).

Let U∗ be the color factor ofG∗. By Lemma 23 (ii), V (C∗)∩U∗ = ∅ and V
(
(C ′)∗

)
∩U∗ = ∅.

This implies that W ∗ ∩ U∗ ̸= ∅. By Lemma 23 (i), each vertex in W ∗ ∩ U∗ corresponds to

a cycle in Ma ∪Mb. Then performing Kempe switches to φ′ on all cycles corresponding to

W ∗ ∩ U∗, we obtain the following.

• For each edge in C△C ′, Kempe switches are performed at exactly one end vertex.

• For any other edges, Kempe switches are performed at both or neither end vertices.

Let φ′′ be the obtained 3-edge-coloring. Then, φ′′ satisfies that C∗ is the unique essential

cycle in NSc(φ
′′), and hence φ′′ is indeed equivalent to φ, up to the permutation of the colors.

This completes the proof of Theorem 24. □

See the right of Figure 11 for example. From the unique cycle C∗ in
(
NSc(φ)

)∗
and

(C ′)∗ in
(
NSc(φ

′)
)∗
, we take the contractible curve C∗△(C ′)∗ obtained by their symmetric
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difference. The set of all faces inside C∗△(C ′)∗ is W . From φ′, by Kempe switches on the

cycles corresponding to W ∩ U , we obtain the 3-edge-coloring φ.

6.5 Proof of Theorem 2

Let G be a cubic bipartite projective-planar graph.

We first prove the “only if” part. Assume that G has an embedding in the projective

plane such that the dual triangulation G∗ is 4-vertex-colorable. Then it follows from Theorem

14 that G admits both an odd 3-edge-coloring and an even 3-edge-coloring. By Theorem 9,

they are not Kempe equivalent, and hence there are at least two Kempe equivalence classes.

This completes the proof of the “only if” part.

We next prove the “if” part. Assume that G has an embedding in the projective plane

such that the chromatic number of the dual triangulation G∗ is at least 5. Then it follows

from Theorem 14 that G admits an odd 3-edge-coloring, but no even 3-edge-colorings. By

Theorem 24, all odd 3-edge-colorings are Kempe equivalent. This completes the proof of the

“if” part. □

7 Remarks

7.1 Discussion for even 3-edge-colorings

In Section 6, we have explained several properties on odd 3-edge-colorings in a cubic bipartite

graph embedded on the projective plane. In this subsection, we explain that similar (but not

same) properties hold with odd 3-edge-colorings replaced by even 3-edge-colorings. Recall

that Lemmas 19 and 20 hold also for even 3-edge-colorings. Then similarly to the proof of

Lemma 23, we can prove the following lemma, which shows the relation to the color factor

of G∗. We leave the details for the readers.

Lemma 25 Let G be a cubic bipartite graph embedded on the projective plane, let φ be a

canonical even 3-edge-coloring in G, and furthermore, let U∗ be the color factor of G∗, which

is obtained by Lemma 22. By Lemma 20, for each color x in {a, b, c},
(
NSx(φ)

)∗
forms an

essential cycle, say C∗
x. Then the following hold:

(U1) For each x ∈ {a, b, c}, C∗
x alternates a vertex in U∗ and not in U∗.

(U2) There exists a unique vertex v∗0 in U∗ such that the three essential cycles C∗
a , C

∗
b and

C∗
c pairwise transversally intersect at v∗0.

In contrast to odd 3-edge-colorings, two even 3-edge-colorings in a cubic bipartite graph

embedded on the projective plane are not necessarily Kempe equivalent. For example, see

the two even 3-edge-colorings in Figure 12. The elements of Z2 × Z2 on faces represent the

produced 4-vertex-coloring of G∗, and (0, 0)-faces form a color factor of G∗. The central

hexagon corresponds to the vertex v∗0 in (U2) in Lemma 25. Since in each 3-edge-coloring,

the edges of any two colors form a Hamiltonian cycle, any Kempe switch only gives rise

to a 3-edge-coloring obtained by the permutation of colors. Note that the graph in Figure

12 contains exactly three Kempe equivalence classes, two of which consist of even 3-edge-

colorings and the other consists of odd ones.

After submitting the first version of this paper, Nozaki [32] pointed out that if we replace

the central hexagon of the cubic bipartite graph G in Figure 12 with G itself, see Figure

13, then the resultant graph has four Kempe equivalence classes consisting of even 3-edge-

colorings. (Both the inner side and the outer side have two even 3-edge-colorings as in Figure
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(0, 0)(0, 1) (0, 1)

(1, 0) (1, 1)

(1, 1) (1, 0)
(0, 0)

(0, 0) (0, 0)

(0, 0)

(0, 0)

(0, 0)
(0, 1)

(1, 0) (0, 1)

(1, 0)

(1, 1)(1, 1) (0, 0)(0, 1) (0, 1)

(1, 0) (1, 1)

(1, 1) (1, 0)
(0, 0)

(0, 0) (0, 0)

(0, 0)

(0, 0)

(0, 0)
(1, 1)

(0, 1) (1, 1)

(0, 1)

(1, 0)(1, 0)

Figure 12: Two even 3-edge-colorings in a cubic bipartite graph G on the projective plane

such that they are not Kempe equivalent.

12, and their combination produces four even 3-edge-colorings of the whole graph. In each

of them, the edges of any two colors form a Hamiltonian cycle, and hence they are not

Kempe equivalent.) Repeating the replacement of the central hexagon with G t times, we

can construct a cubic bipartite graph embedded on the projective plane having 2t+1 Kempe

equivalence classes consisting of even 3-edge-colorings.

7.2 Other surfaces

In this paper, we have focused on cubic graphs embedded on the projective plane. Then it

is natural to consider other surfaces. However, there do not seem to exist nice properties on

the Kempe equivalence classes even for cubic bipartite graphs embedded on the torus.

Consider the two 3-edge-colorings in Figure 14. Since the Kempe switch on the cycle

depicted by the thin black line on the left gives rise to the 3-edge-coloring on the right,

they are Kempe equivalent. Note that the left one does not produce a 4-vertex-coloring in

the dual, while the right one does. Therefore, Theorem 9 does not hold for a cubic graph

embedded on the torus, even if it is bipartite.

Furthermore, it is natural to ask how many Kempe equivalence classes a cubic bipartite

graph embedded on the torus can have. To answer this question, consider the graph in Figure

15, which is the dual of the complete graph K7 embedded on the torus, and is called the

Heawood graph. It has exactly forty-eight 3-edge-colorings all of which have the property that

the edges of any two colors form a Hamiltonian cycle. Because of this property, the number

of 3-edge-colorings contained in each Kempe equivalence class is exactly 3! = 6, and hence

the graph in Figure 15 has exactly eight Kempe equivalence classes. In addition, repeating

the replacement of one hexagon of the graph in Figure 15 with the cubic bipartite graph G

in Figure 12, we can construct cubic bipartite graphs embedded on the torus with arbitrary

many Kempe equivalence classes.
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Figure 13: A cubic bipartite graph embedded on the projective plane such that there are

four Kempe equivalence classes consisting of even 3-edge-colorings.

(0, 1) (1, 0)

(0, 0)(1, 1)

(0, 1) (1, 0)

Figure 14: Two 3-edge-colorings of a cubic bipartite graphs embedded on the torus. We

obtain the torus by identifying the top and the bottom, and the left and the right, respectively.

21



Figure 15: The Heawood graph embedded on the torus.

7.3 Application to list-edge-colorings

We prove a corollary of our results for list-edge-coloring conjecture. For a positive integer k,

an edge-list L : E(G) → 2N of a graph G is a mapping that assigns a set of colors to each edge.

An L-edge-coloring of G is an edge-coloring f such that f(e) ∈ L(e) for any edge e ∈ E(G).

If G admits an L-edge-coloring for any edge-list L with |L(e)| ≥ k for each edge e ∈ E(G),

then G is said to be k-list-edge-colorable. Since a k-edge-coloring is an L-edge-coloring with

L(e) = [k] for any edge e ∈ E(G), any k-list-edge-colorable graph is k-edge-colorable. The

converse is an open problem, which is known as list-edge-coloring conjecture:

Conjecture 26 (List-edge-coloring conjecture, see [6]) Any k-edge-colorable graph is

k-list-edge-colorable.

To attack Conjecture 26, Alon [2] posed a method using the signature of 3-edge-colorings.

Lemma 27 (Alon [2]) For a 3-edge-colorable cubic graph G, if all pairs of two 3-edge-

colorings φ1 and φ2 in G satisfy sign(φ1, φ2) = +1, then G is 3-list-edge-colorable.

Thus, Theorem 11 and Lemma 27, together with Theorem 8, imply the next corollary.

This gives a new class of graphs for which Conjecture 26 hold.

Corollary 28 Let G be a 3-edge-colorable cubic graph embedded on the projective plane.

If the dual G∗ is not 4-vertex-colorable, then G is 3-list-edge-colorable.

Note that the signature can be similarly defined for k-edge-colorings in k-regular graphs

with k ≥ 4. To be exact, Alon [2] established that Lemma 27 holds even for k-edge-colorable

k-regular graph under a suitable definition of sign(φ1, φ2). Ellingham and Goddyn [8] proved

that for every k-regular plane graph, all k-edge-colorings have the same signature. This

together with Lemma 27 implies that every k-edge-colorable k-regular planar graph is k-list-

edge-colorable. The similar situations for the projective-planar case was discussed by Abe

and the author [1].
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