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a b s t r a c t 

A new approach to sequential decision problems under uncertainty named dynamic focus programming 

is proposed with the focus theory of choice. In dynamic focus programming, there are two distinct evalu- 

ation systems: Positive and negative ones. Each possible path consisting of a decision sequence from the 

initial stage to the final stage and the associated states is examined. In the positive evaluation system, for 

each decision in the initial stage, if a path starting from it can bring about a relatively low total cost with 

a relatively high probability, then this path is selected as the positive focus path of this decision; based 

on the positive focus paths of all initial decisions, a decision maker chooses a most-preferred decision 

rule. In the negative evaluation system, for each decision in the initial stage, if a path starting from it 

can bring about a relatively high total cost with a relatively high probability, then this path is selected 

as the negative focus path of this decision; based on the negative focus paths of all initial decisions, a 

decision maker chooses a most acceptable decision rule. For a specific sequential decision problem, only 

one system is activated; as for which one works, it is strongly dependent on decision maker’s personality 

and the framing. We apply dynamic focus programming to a real bidding decision-making problem: We 

obtain the optimal decision rule and gain the behavioral insights of the decision maker. 

© 2022 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Sequential decision making involves a series of interdependent 

ecisions which are implemented at each sequential stage. Dy- 

amic programming is a powerful vehicle for solving a wide class 

f sequential decision problems ( Bellman, 1957 ). The stochastic dy- 

amic programming is used for handling sequential decision prob- 

em under risk. For comprehensive reviews, readers are referred to 

arescot et al. (2013) and Rust (2019) and the book by Schneider 

2014) . More recent research on this important topic is reported in 

hang, Ferris, Kim and Rutherford (2020) , Fei, Gülpınar and Branke 

2019) , Flapper, Gayon and Vercraene (2012) , Maggioni, Allevi and 

omasgard (2020) , Mak, Cheung, Lam and Luk (2011) , Minis and 

atarakis (2011) , Misra and Nair (2011) , Powell et al. (2014) and 

hapiro, Tekaya, da Costa and Soares (2013) . A stochastic dynamic 

rogramming problem is formulated as a maximization problem 

f an expectation of discounted sum of utilities over all stages. 

heoretically, stochastic dynamic programming allows us to com- 

ute optimal decision rules to general sequential decision prob- 

ems with non-stationary, history-dependent transition probabil- 
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ties and time non-separable utility function. However, there is 

 practical limitation to the method which Bellman termed “the 

urse of dimensionality”. To decrease dimensionality of the deci- 

ion problem, Markov process is generally considered for stochas- 

ic dynamic programming. For an infinite horizon case, a stationary 

arkov process is a basic assumption for stochastic dynamic pro- 

ramming and with this assumption the optimal value function is 

he solution of the Bellman equation, a fixed point of Bellman op- 

rator ( Blackwell, 1965 ). Solving the Bellman equation is the core 

roblem of Markovian decision process with continuous states and 

ecision variables. There is a rich literature on this topic (see, e.g., 

ertsekas & Tsitsiklis, 1996 ; Powell, 2010 ; Rust, 2017 ). 

Backward induction is a key operation in stochastic dynamic 

rogramming. However, there is a long history to question whether 

eople behave according to backward induction. After reviewing 

he empirical literature on stochastic dynamic programming, Rust 

oncluded “Indeed, introspection suggests that it is impossible that 

e literally use backward induction calculations in determining 

ur behavior, at least at a conscious level. It seems much more 

ikely that people use some sort of “forward induction” to prune 

ranches of the decision tree that seem unlikely to yield high pay- 

ffs rather than methodically assigning values to each node by 

ackward induction calculation” ( Rust, 1992 , p. 53). Hutchinson 
under the CC BY-NC-ND license 
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nd Meyer assert “It would hardly seem controversial to suggest 

hat individuals lack the ability to engage in the rather complex 

rocess of backward induction presumed by normative decision 

heory.” ( Hutchinson & Meyer, 1994 , p. 372). Further, Meyer and 

utchinson affirm “people almost never engage backward induc- 

ion, the solution used to compute optimal behavior in many dy- 

amic planning problems.” ( Meyer & Hutchinson, 2016 ). 

Stochastic dynamic programming is an expected utility-based 

pproach to maximize an expectation of discounted sum of util- 

ties over time. However, there exists a vast amount of empirical 

vidence to show that people systematically violate the axioms of 

he expected utility theory and the subjective expected utility the- 

ry (see, e.g., Allais, 1953 ; Ellsberg, 1961 ; Etner, Jeleva & Tallon, 

012 ; Kahneman & Tversky, 1979 ; Starmer, 20 0 0 ). 

This research aims to address sequential decision problems un- 

er uncertainty by putting it within the focus theory of choice 

ramework, which offers decision aids based on salient informa- 

ion instead of an expected value. A growing body of evidence has 

hown that salience (attention-grabbing) information plays a criti- 

al role in human decision making (see, e.g., Brandstätter & Korner, 

014 ; Busse, Lacetera, Pope, Silva-Risso & Sydnor, 2013 ; Lacetera, 

ope & Sydnor, 2012 ). Guo (2011) argues that an individual eval- 

ates a decision based on some associated event (called the fo- 

us of a decision), which is most salient to the decision maker 

ue to its resultant payoff and probability, thereby proposing the 

ne-shot decision theory. The one-shot decision theory has been 

pplied to many decision problems (see, e.g., Guo & Ma, 2014 ; 

ang & Guo, 2017 ; Zhu & Guo, 2020 ). To further refine the one-

hot decision theory, Guo (2017 , 2019 ) proposes the focus theory 

f choice that models and axiomatizes the procedural rationality 

rticulated first by Simon (1976) and resolves several well-known 

nomalies such as the St. Petersburg, Allais, and Ellsberg paradoxes, 

reference reversals, the event-splitting effect, and the violations 

f tail-separability, stochastic dominance and transitivity. The core 

rgument of the focus theory of choice is that the most salient 

vent corresponds to the most-preferred decision, where salience 

epends on the decision-maker’s specific frame of mind and re- 

ects different behavioural patterns in human decision processes. 

his argument is consistent with the results of the psychological 

xperiments (see, e.g., Fiedler & Glockner, 2012 ; Stewart, Hermens 

 Matthews, 2016 ; Yu, 2015 ). 

The focus theory of choice postulates that a decision maker in- 

erently owns two distinct evaluation systems: Positive and neg- 

tive. In the positive evaluation system, an event that generates a 

elatively high payoff with a relatively high probability sticks out 

s more salient. Similarly, in the negative evaluation system, an 

vent that brings about a relatively low payoff with a relatively 

igh probability has a relatively high salience. Typically, these two 

ystems correspond to different frames of mind and one of them 

s working for a particular decision situation. As for which one 

orks, it is strongly dependent on the decision maker’s person- 

lity traits: Generally, the positive evaluation system is active for 

n optimistic decision maker and the negative evaluation system is 

ctivated when a decision maker is pessimistic. Meanwhile, it can 

lso be strongly influenced by the framing ( Kahneman & Tversky, 

984 ): The negative evaluation system becomes apparent when the 

roblem is negatively framed, or the problem is critical or serious 

or the decision maker. 

In this paper, we employ the focus theory of choice to sequen- 

ial decision problems under uncertainty. Essentially, a sequential 

ecision is to seek a best current decision from all possible ones 

onsidering not only the current reward gained by this decision 

ut also the future ones obtained through its effect on the future 

tates of the system. As such, dynamic focus programming envis- 

ges a decision maker’s decision as a two-step procedure. In the 

rst step, the decision maker examines each possible path consist- 
329 
ng of a decision sequence from the initial stage to the final stage 

nd the associated states and looks for his/her most salient path by 

ssessing the total reward generated by the decision sequence and 

he corresponding probability. If a path starting from an initial de- 

ision can bring about a relatively high reward or a relatively low 

eward with a relatively high probability, then it is identified as the 

ositive or negative focus path of this decision. In the second step, 

he decision maker selects the optimal initial decision by scanning 

hrough the focus paths of all possible initial decisions; the opti- 

al initial decision’s focus path is the optimal decision rule. 

There are two distinct differences between stochastic dynamic 

rogramming and dynamic focus programming. First, instead of 

alculating the expected utility dynamic focus programming looks 

or the optimal decision rule corresponding to the most salient 

ath. Second, stochastic dynamic programming employs backward 

nduction whereas dynamic focus programming utilizes forward 

alculation which is close to human being intuition. 

The remainder of this paper is organized as follows. In Section 

 , we propose dynamic focus programming under the positive 

valuation system. In Section 3 , we propose dynamic focus pro- 

ramming under the negative evaluation system. In Section 4 , we 

nalyze a real bidding decision-making problem by using dynamic 

ocus programming: The optimal decision rule is obtained, and 

he behavioral insights of the decision maker are gained. Section 

 concludes this paper with some remarks. 

. Dynamic focus programming under the positive evaluation 

ystem 

.1. The basic settings of dynamic focus programming 

A decision maker is faced with the problem in a probabilis- 

ic system which evolves through time and should choose a se- 

uence of decisions to achieve a final outcome. The performance 

f a sequence of decisions is evaluated by a predetermined cri- 

erion. Decisions are made at points of time referred to as deci- 

ion stages. Here we consider discrete decision stages and denote 

he length of decision stages as T such that the initial decision 

s at stage 0 while the last decision is at stage T − 1 . A t = { a i,t }
 t = 0 , . . . , T − 1 ) and X t = { x i,t } ( t = 0 , . . . , T ) are the sets of deci- 

ions and states at stage t , respectively where we use the subscript 

 to stand for a generic element of the sets. Set X 0 = { x 0 } which

eans that the current state is x 0 . When we choose a k,t at stage 

 , the possible state at stage t + 1 is an element of X t+1 . The state

 i,t at stage t will turn into x ∈ X t+1 at stage t + 1 with the proba-

ility p t+1 (x | x i,t , a k,t ) for a decision a k,t . p t+1 (x | x i,t , a k,t ) is called a

ransition probability. Note that we consider a Markov process be- 

ause the transition probability depends on the past only through 

he current state of the system and the decision selected by a de- 

ision maker in that state. Denote c t+1 ( x i,t , a k,t , x j,t+1 ) as the cost 

enerated by the state transition from x i,t to x j,t+1 when we choose 

 k,t . The set of the possible costs corresponding to x i,t and a k,t 

s expressed as C t+1 ( x i,t , a k,t ) = { c t+1 ( x i,t , a k,t , x j,t+1 ) } . Given X 0 = 

 x 0 } , A t , X t , C t+1 ( x i,t , a k,t ) and p t+1 (x | x i,t , a k,t ) for any x i,t , a k,t ,

 = 0 , . . . , T − 1 and X T , the sequential decision is to choose an op-

imal decision at each stage to minimize the total cost. 

With the initial state x 0 , each decision a k, 0 at stage 0 can gen- 

rate N possible final outcomes through N paths where 

 = | X T | ∗
∏ 

i =1 , ... ,T −1 

| X i | ∗ | A i | . (1) 

We use s (t) and a (t) to represent a generic state 

nd a generic decision at stage t , then we can de- 

ote a path from the initial stage to the final stage as 

 a (0) , ( s (1) , a (1) ) , . . . , ( s ( T − 1 ) , a ( T − 1 ) ) , s (T ) } and use 〈 d〉 
o represent the set of all possible paths generated by the initial 
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ecision a (0) = d ∈ A 0 from stage 0 to stage T. For z ∈ 〈 d〉 , its total

ost denoted as c( z, d ) is given as 

 ( z, d ) = 

∑ 

k =1 , ... ,T 

βk −1 c k ( s ( k − 1 ) , a ( k − 1 ) , s ( k ) ) , (2) 

here β is the discount factor and specified by β = 

1 
1+ r with a 

iscount rate r in this paper; its probability denoted as p( z, d ) is 

p ( z, d ) = 

∏ 

k =1 , ... ,T 

p k (s ( k ) | s ( k − 1 ) , a ( k − 1 ) ) . (3) 

Satisfaction function. The satisfaction function of d ∈ A 0 for a 

ath z ∈ 〈 d〉 is defined as 

 ( z, d ) = 

( 

1 − c ( z, d ) 

max 
a ∈ A 0 ,y ∈ 〈 a 〉 

c ( y, a ) 

) /( 

1 −
min 

a ∈ A 0 ,y ∈ 〈 a 〉 
c ( y, a ) 

max 
a ∈ A 0 ,y ∈ 〈 a 〉 

c ( y, a ) 

) 

. (4) 

For a given d ∈ A 0 , u ( z, d ) represents the decision maker’s sat-

sfaction level about the resulting cost if the path arises as z ∈ 

 d〉 . Clearly, u ( z, d ) reaches its maximum at min 

a ∈ A 0 ,y ∈〈 a 〉 c( y, a ) , that

s, amongst all the paths originating from x 0 , the path generates 

he lowest cost has the highest satisfaction level. This satisfaction 

unction is fundamentally different from a utility function. A util- 

ty function is used to represent a decision-maker’s different risk 

ttitude by using a convex function, a linear function, or a con- 

ave function. By contrast, the satisfaction function here is simply 

 normalized cost function representing relative positions of dif- 

erent costs exogenously determined by the decision maker. It is 

ell known that utilities appear to be extremely sensitive to the 

dopted elicitation methods and different assessment approaches 

ften lead to distinct utilities (Hershey et al., 1982 ; Johnson & 

chkade, 1989 ). In addition, eliciting utility is very time-consuming 

 Goodwin & Wright, 2014 ). On the other hand, obtaining the satis- 

action function is easy because it is simply a value function. 

Relative likelihood function. The relative likelihood function of 

 path z ∈ 〈 d〉 is defined as 

( z, d ) = p ( z, d ) / max 
a ∈ A 0 ,y ∈ 〈 a 〉 

p ( y, a ) . (5) 

Clearly, amongst all paths originating from x 0 , the path with 

he highest probability has the highest relative likely degree of 1. 

 relative likelihood function is a normalized probability density 

unction for a continuous random variable (or a normalized prob- 

bility mass function for a discrete random variable) to represent 

he relative likelihood positions of different outcomes. Instead of 

sing the original values of costs and probabilities, the satisfaction 

nd relative likelihood functions are taken as the basic decision in- 

uts because a mounting body of evidence suggests that relative 

alues are more perceptible (have a higher accessibility) than ab- 

olute values and play a more important role in human decision 

aking ( Frank, 1985 ; Solnick & Hemenway, 1998 ). 

.2. Dynamic focus programming model under the positive 

valuation system 

Under the positive evaluation system, for ∀ d ∈ A 0 , we denote 

 p (d) as the set of optimal solutions of the following optimization 

roblem: 

ax 
z∈ 〈 d 〉 

min { ϕ ∗ π( z, d ) , u ( z, d ) } (6) 

here ϕ is a positive real number. (6) is derived from the rep- 

esentation theorem of positive foci ( Guo, 2019 ). Note that both 

( z, d ) and u ( z, d ) are dimensionless and between 0 and 1, and ϕ
orks as a scaling factor that directly affects whether a likelihood 

r a satisfaction arises from the inner minimization operation in 

6). 
330 
For z 1 , z 2 ∈ 〈 d〉 , if π( z 1 , d ) ≥ π( z 2 , d ) and u ( z 1 , d ) ≥ u ( z 2 , d ) ,

e have min { ϕ ∗ π( z 1 , d ) , u ( z 1 , d ) } ≥ min { ϕ ∗ π( z 2 , d ) , u ( z 2 , d ) } . 
learly, for ∀ d ∈ A 0 , (6) is used to seek a path which has a rel-

tively high relative likelihood degree and generates a relatively 

igh satisfaction level. Increasing ϕ makes ϕ ∗ π( z, d ) bigger and 

llows u ( z, d ) to arise more easily out of the inner minimization 

peration in (6), leading to an optimal z therein with a relatively 

igh satisfaction level and a relatively low likelihood. Conversely, 

ecreasing ϕ makes π( z, d ) to take a more prominent role in de- 

ermining the output of (6), resulting in an optimal z with a rela- 

ively high likelihood and a relatively low satisfaction level. Hence, 

can be interpreted as a weight that a decision maker balances 

is/her emphasis on the satisfaction level and the relative likeli- 

ood degree. Increasing ϕ means that the decision maker aims to 

ursue a higher satisfaction by somewhat sacrificing the relative 

ikelihood. Therefore, ϕ can be used to measure how optimistic the 

ecision maker is: The higher the value of ϕ, the more optimistic 

he decision maker. 

Next, based on the optimal solution to (6), we define the posi- 

ive focus path of a given d ∈ A 0 . 

Definition 1. If there exists a unique element in Z p (d) , this 

lement is the positive focus path of d, denoted by z ∗p (d) . 

f there is more than one element in Z p (d) and �z ∈ Z p ( d )

uch that π( z, d ) > π( z ∗p ( d) , d ) , u ( z, d ) ≥ u ( z ∗p ( d) , d ) or π( z, d ) ≥
( z ∗p ( d) , d ) , u ( z, d ) > u ( z ∗p ( d) , d ) for z ∗p (d) ∈ Z p (d ) , then z ∗p (d ) is a

ositive focus path of d. 

From Definition 1, we know that dominated paths are excluded 

nd z ∗p (d) is the most favorite path for d. For one d, there may be

ultiple positive focus paths and the set of z ∗p (d) is denoted as 

 

∗
p (d) . 

Next, amongst all the positive focus paths of all d ∈ A 0 , we seek

he optimal d p such that 

in 

{
κ ∗ π

(
z ∗p ( d p ) , d p 

)
, u 

(
z ∗p ( d p ) , d p 

)}
= max 

z∈ Z ∗p 
min 

{
κ ∗ π

(
z, d + ( z ) 

)
, u 

(
z, d + ( z ) 

)}
, (7) 

here parameter κ is a positive real number, Z ∗p = 

 z| z ∈ Z ∗p (d) , d ∈ A 0 } and d + (z) stands for a d ∈ A 0 whose pos- 

tive focus path is z. (7) is from the representation theorem for 

n optimal decision in the positive evaluation system ( Guo, 2019 ). 

he set of d p is denoted as D p . 

For ∀ d 1 , d 2 ∈ A 0 , if ∃ z 1 ∈ Z ∗p ( d 1 ) such that π( z 1 , d 1 ) ≥ π( z 2 , d 2 )

nd u ( z 1 , d 1 ) ≥ u ( z 2 , d 2 ) hold for any z 2 ∈ Z ∗p ( d 2 ) , we have

in { κ ∗ π( z 1 , d 1 ) , u ( z 1 , d 1 ) } ≥ min { κ ∗ π( z 2 , d 2 ) , u ( z 2 , d 2 ) } . It im- 

lies that (7) seeks the initial decision whose positive focus path 

as a relatively high relative likelihood degree and can generate a 

elatively high satisfaction level. 

Similar to the interpretations of parameter ϕ, a heightened κ
levates the level of π( z, d + ( z) ) relative to u ( z, d + ( z) ) and leads 

o finding an initial decision whose positive focus path is relatively 

igh in satisfaction but relatively low in likelihood. Conversely, a 

educed κ lowers the level of π( z, d + ( z) ) relative to u ( z, d + ( z) ) 
nd results in an initial decision whose positive focus path is rel- 

tively high in likelihood but relatively low in satisfaction. Since 

7) is used for identifying decisions based on their positive focus 

aths, κ can be interpreted as the decision-maker’s confidence in- 

ex on his/her decision: The higher the value of κ , the more con- 

dent the decision-maker. 

Definition 2. If there is only one element in D p , this 

lement is the optimal initial decision under the positive 

valuation system, denoted as d ∗p and z ∗p ( d ∗p ) is the opti- 

al decision rule under the positive evaluation system. If 

here is more than one element in D p and �d ∈ D p such 

hat π( z ∗p ( d) , d ) > π( z ∗p ( d ∗p ) , d ∗p ) , u ( z ∗p ( d) , d ) ≥ u ( z ∗p ( d ∗p ) , d ∗p ) or

( z ∗p ( d) , d ) ≥ π( z ∗p ( d ∗p ) , d ∗p ) , u ( z ∗p ( d) , d ) > u ( z ∗p ( d ∗p ) , d ∗p ) for d ∗p ∈
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Table 1 

The costs of all the paths of two initial decisions. 

c( z 1 , 1 , a 1 ) c( z 1 , 2 , a 1 ) c( z 1 , 3 , a 1 ) c( z 1 , 4 , a 1 ) c( z 1 , 5 , a 1 ) c( z 1 , 6 , a 1 ) c( z 1 , 7 , a 1 ) c( z 1 , 8 , a 1 ) c( z 1 , 9 , a 1 ) 

2 2 2 3 1.5 1.5 2 2 2 

c( z 1 , 10 , a 1 ) c( z 1 , 11 , a 1 ) c( z 1 , 12 , a 1 ) c( z 1 , 13 , a 1 ) c( z 1 , 14 , a 1 ) c( z 1 , 15 , a 1 ) c( z 1 , 16 , a 1 ) c( z 1 , 17 , a 1 ) c( z 1 , 18 , a 1 ) 

3 3 1.5 2 2 2 3 3 3 

c( z 2 , 1 , a 2 ) c( z 2 , 2 , a 2 ) c( z 2 , 3 , a 2 ) c( z 2 , 4 , a 2 ) c( z 2 , 5 , a 2 ) c( z 2 , 6 , a 2 ) c( z 2 , 7 , a 2 ) c( z 2 , 8 , a 2 ) c( z 2 , 9 , a 2 ) 

3 3 3 4 2.5 2.5 3 3 3 

c( z 2 , 10 , a 2 ) c( z 2 , 11 , a 2 ) c( z 2 , 12 , a 2 ) c( z 2 , 13 , a 2 ) c( z 2 , 14 , a 2 ) c( z 2 , 15 , a 2 ) c( z 2 , 16 , a 2 ) c( z 2 , 17 , a 2 ) c( z 2 , 18 , a 2 ) 

4 4 2.5 1.5 1.5 1.5 2.5 2.5 2.5 
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 p , then d ∗p is an optimal initial decision and z ∗p ( d ∗p ) is the opti-

al decision rule under the positive evaluation system. 

It follows from Definition 2 that d ∗p is the decision which 

eakly dominates the other ones if there are other elements in 

 p . 

.3. An illustrative numerical example 

Consider a time-invariant system with finite states. The set of 

tates is X = { 0 , 1 , 2 } and the set of decisions is A = { a 1 , a 2 } . We

et T = 2 and x 0 = 1 . The transition probability matrix associated 

ith a 1 is 

 a 1 = 

[ 

0 . 8 0 . 1 0 . 1 

0 . 1 0 . 8 0 . 1 

0 . 1 0 . 1 0 . 8 

] 

. (8) 

The transition probability matrix associated with a 2 is 

 a 2 = 

[ 

0 . 1 0 . 7 0 . 2 

0 . 2 0 . 1 0 . 7 

0 . 1 0 . 8 0 . 1 

] 

. (9) 

The cost generated by a 1 is always 1. Taking the decision a 2 , 

f x t+1 > x t , the cost is 0.5, otherwise the cost is 2. The discount 

ate r is 0. What is the optimal decision rule to minimize the total 

ost? 

Let us consider this problem by dynamic focus programming. 

rom (1), we know that there are | X 1 | ∗ | A 1 | ∗ | X 2 | = 3 ∗ 2 ∗ 3 = 18

aths for initial decisions a 1 and a 2 , respectively. We have 

 a 1 〉 = { { a 1 , ( 0 , a 1 ) , 0 } , { a 1 , ( 0 , a 1 ) , 1 } , { a 1 , ( 0 , a 1 ) , 2 } , 
{ a 1 , ( 0 , a 2 ) , 0 } , { a 1 , ( 0 , a 2 ) , 1 } , { a 1 , ( 0 , a 2 ) , 2 } , 
{ a 1 , ( 1 , a 1 ) , 0 } , { a 1 , ( 1 , a 1 ) , 1 } , { a 1 , ( 1 , a 1 ) , 2 } , 
{ a 1 , ( 1 , a 2 ) , 0 } , { a 1 , ( 1 , a 2 ) , 1 } , { a 1 , ( 1 , a 2 ) , 2 } , 
{ a 1 , ( 2 , a 1 ) , 0 } , { a 1 , ( 2 , a 1 ) , 1 } , { a 1 , ( 2 , a 1 ) , 2 } , 
{ a 1 , ( 2 , a 2 ) , 0 } , { a 1 , ( 2 , a 2 ) , 1 } , { a 1 , ( 2 , a 2 ) , 2 } } 

nd 

 a 2 〉 = { { a 2 , ( 0 , a 1 ) , 0 } , { a 2 , ( 0 , a 1 ) , 1 } , { a 2 , ( 0 , a 1 ) , 2 } , 
{ a 2 , ( 0 , a 2 ) , 0 } , { a 2 , ( 0 , a 2 ) , 1 } , { a 2 , ( 0 , a 2 ) , 2 } , 
{ a 2 , ( 1 , a 1 ) , 0 } , { a 2 , ( 1 , a 1 ) , 1 } , { a 2 , ( 1 , a 1 ) , 2 } , 
{ a 2 , ( 1 , a 2 ) , 0 } , { a 2 , ( 1 , a 2 ) , 1 } , { a 2 , ( 1 , a 2 ) , 2 } , 
{ a 2 , ( 2 , a 1 ) , 0 } , { a 2 , ( 2 , a 1 ) , 1 } , { a 2 , ( 2 , a 1 ) , 2 } , 
{ a 2 , ( 2 , a 2 ) , 0 } , { a 2 , ( 2 , a 2 ) , 1 } , { a 2 , ( 2 , a 2 ) , 2 } } . 

Let us take { a 1 , ( 1 , a 2 ) , 2 } as an example to explain its meaning. 

 a 1 , ( 1 , a 2 ) , 2 } that is the twelfth element of 〈 a 1 〉 shows the path 

hat starting from x 0 = 1 the decision maker chooses a 1 , then the 

tate remains the same, subsequently the decision maker chooses 

 2 , then the state turns into 2. 

We use z 1 ,i (i = 1 , . . . 18 } and z 2 ,i (i = 1 , . . . 18 } to stand for

he i th element of 〈 a 1 〉 and 〈 a 2 〉 , respectively. Considering (2)

nd setting r = 0 , we calculate the total cost of each path, for

xample, c( z 1 , 3 , a 1 ) = c 1 ( 1 , a 1 , 0 ) + c 2 ( 0 , a 1 , 2 ) = 1 + 1 = 2 and all
331 
he results are shown in Table 1 . The probability of each path of 

ach initial decision is calculated by (3), for example, p( z 1 , 3 , a 1 ) = 

p(0 | 1 , a 1 ) ∗ p(2 | 0 , a 1 ) = 0 . 1 ∗ 0 . 1 = 0 . 01 and all the results are

hown in Table 2 . With the data in Table 1 , the satisfaction level

s calculated by (4) and all the results are shown in Table 3 . With

he data in Table 2 , the relative likelihood degree is calculated by 

5) and all the results are shown in Table 4 . 

Using (6) with the data in Tables 3 and 4 and setting ϕ
s 0.5, 1 and 5, respectively, we can obtain Z p ( a 1 ) = { z 1 , 8 } ,
 p ( a 1 ) = { z 1 , 12 } and Z p ( a 1 ) = { z 1 , 12 } for ϕ being 0.5, 1 and 5,

espectively; Z p ( a 2 ) = { z 2 , 15 , z 2 , 17 } , Z p ( a 2 ) = { z 2 , 15 } and Z p ( a 2 ) =
 z 2 , 15 } for ϕ being 0.5, 1 and 5, respectively. Let us take 

 = 1 as an example to show how (6) works. At ϕ = 1 , (6)

ecomes max 
z∈〈 d〉 min { π( z, d ) , u ( z, d ) } . If z = z 1 , 1 and d = a 1 , from 

ables 3 and 4 we have min { π( z 1 , 1 , a 1 ) , u ( z 1 , 1 , a 1 ) } = min{0.125, 

.8} = 0.125. Similarly, setting d = a 1 we can obtain the values of 

in { π( z, a 1 ) , u ( z, a 1 ) } for z = z 1 , 2 , z = z 1 , 3 , . . . , z = z 1 , 18 as 0.016,

.016, 0.016, 0.109, 0.031, 0.125, 0.8, 0.125, 0.25, 0.125, 0.875, 

.016, 0.016, 0.125, 0.016, 0.125 and 0.016, respectively so that 

e have max 
z∈〈 a 1 〉 

min { π( z, a 1 ) , u ( z, a 1 ) } = max{0.125, 0.016, 0.016, 

.016, 0.109, 0.031, 0.125, 0.8, 0.125, 0.25, 0.125, 0.875, 0.016, 

.016, 0.125, 0.016, 0.125, 0.016} = 0.875 which is the value of 

in { π( z 1 , 12 , a 1 ) , u ( z 1 , 12 , a 1 ) } . Thus, we have Z p ( a 1 ) = { z 1 , 12 } for 

 = 1 . According to Definition 1, the positive focus path of a 1 is

btained as z ∗p ( a 1 ) = z 1 , 12 for ϕ being 1. Similarly, we can have 

 

∗
p ( a 1 ) = z 1 , 8 and z ∗p ( a 1 ) = z 1 , 12 for ϕ being 0.5, and 5, respectively;

e can have z ∗p ( a 2 ) = z 2 , 15 , z ∗p ( a 2 ) = z 2 , 15 and z ∗p ( a 2 ) = z 2 , 15 for ϕ
eing 0.5, 1 and 5, respectively. All the results are listed in Table 5 .

From the positive focus paths of different initial decision for 

arious ϕ 

′ s shown in Table 5 , we understand that, z 2 , 15 is an 

nique positive focus path which dominates all the other paths 

f a 2 ; for a 1 , increasing ϕ from 0.5 to 1, the positive focus path 

hanges from z 1 , 8 to z 1 , 12 while u ( z 1 , 8 , a 1 ) = 0 . 8 < u ( z 1 , 12 , a 1 ) = 1

nd π( z 1 , 8 , a 1 ) = 1 > π( z 1 , 12 , a 1 ) = 0 . 875 . It means that increasing

leads to a positive focus path with a higher satisfaction level at 

 lower relative likelihood degree. 

Next, let us examine the optimal decision rule un- 

er the positive evaluation system for κ = 0 . 1 and 

= 10 by considering only the positive focus paths ob- 

ained for ϕ = 0 . 5 . Setting κ = 0 . 1 , the right-hand side

f (7) becomes max 
z∈ Z ∗p 

min { 0 . 1 ∗ π( z, d + (z) ) , u ( z, d + (z) ) } . 
ince for ϕ = 0 . 5 z ∗p ( a 1 ) = z 1 , 8 , z ∗p ( a 2 ) = z 2 , 15 , we have

 

∗
p = { z 1 , 8 , z 2 , 15 } , d + ( z 1 , 8 ) = a 1 and d + ( z 2 , 15 ) = a 2 . From Table

 we know u ( z 1 , 8 , a 1 ) = 0 . 8 and u ( z 2 , 15 , a 2 ) = 1 . From Table

 we know π( z 1 , 8 , a 1 ) = 1 and π( z 2 , 15 , a 2 ) = 0 . 875 . Since

ax 
z∈ Z ∗p 

min { 0 . 1 ∗ π( z, d + ( z) ) , u ( z, d + (z) ) } = max{min{0.1 × 1,0.8}, 

in{0.1 × 0.875, 1}} = max{0.1, 0.0875} = 0.1 which corresponds to 

 1 , we have D p = { a 1 } for κ = 0 . 1 . Likewise, we have D p = { a 2 }
or κ = 10 . According to Definition 2, we obtain optimal initial 

ecisions as a 1 and a 2 , and the optimal decision rules as z 1 , 8 
nd z 2 , 15 for κ = 0 . 1 and κ = 10 , respectively. It follows from 

he results that increasing κ will lead to an optimal decision 
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Table 2 

The probabilities of all the paths of two initial decisions. 

p( z 1 , 1 , a 1 ) p( z 1 , 2 , a 1 ) p( z 1 , 3 , a 1 ) p( z 1 , 4 , a 1 ) p( z 1 , 5 , a 1 ) p( z 1 , 6 , a 1 ) p( z 1 , 7 , a 1 ) p( z 1 , 8 , a 1 ) p( z 1 , 9 , a 1 ) 

0.08 0.01 0.01 0.01 0.07 0.02 0.08 0.64 0.08 

p( z 1 , 10 , a 1 ) p( z 1 , 11 , a 1 ) p( z 1 , 12 , a 1 ) p( z 1 , 13 , a 1 ) p( z 1 , 14 , a 1 ) p( , z 1 , 15 , a 1 ) p( z 1 , 16 , a 1 ) p( z 1 , 17 , a 1 ) p( z 1 , 18 , a 1 ) 

0.16 0.08 0.56 0.01 0.01 0.08 0.01 0.08 0.01 

p( z 2 , 1 , a 2 ) p( z 2 , 2 , a 2 ) p( z 2 , 3 , a 2 ) p( z 2 , 4 , a 2 ) p( z 2 , 5 , a 2 ) p( z 2 , 6 , a 2 ) p( z 2 , 7 , a 2 ) p( z 2 , 8 , a 2 ) p( z 2 , 9 , a 2 ) 

0.16 0.02 0.02 0.02 0.14 0.04 0.01 0.08 0.01 

p( z 2 , 10 , a 2 ) p( z 2 , 11 , a 2 ) p( z 2 , 12 , a 2 ) p( z 2 , 13 , a 2 ) p( z 2 , 14 , a 2 ) p( z 2 , 15 , a 2 ) p( z 2 , 16 , a 2 ) p( z 2 , 17 , a 2 ) p( z 2 , 18 , a 2 ) 

0.02 0.01 0.07 0.07 0.07 0.56 0.07 0.56 0.07 

Table 3 

The satisfaction levels of all the paths of two initial decisions. 

u ( z 1 , 1 , a 1 ) u ( z 1 , 2 , a 1 ) u ( z 1 , 3 , a 1 ) u ( z 1 , 4 , a 1 ) u ( z 1 , 5 , a 1 ) u ( z 1 , 6 , a 1 ) u ( z 1 , 7 , a 1 ) u ( z 1 , 8 , a 1 ) u ( z 1 , 9 , a 1 ) 

0.8 0.8 0.8 0.4 1 1 0.8 0.8 0.8 

u ( z 1 , 10 , a 1 ) u ( z 1 , 11 , a 1 ) u ( z 1 , 12 , a 1 ) u ( z 1 , 13 , a 1 ) u ( z 1 , 14 , a 1 ) u ( z 1 , 15 , a 1 ) u ( z 1 , 16 , a 1 ) u ( z 1 , 17 , a 1 ) u ( z 1 , 18 , a 1 ) 

0.4 0.4 1 0.8 0.8 0.8 0.4 0.4 0.4 

u ( z 2 , 1 , a 2 ) u ( z 2 , 2 , a 2 ) u ( z 2 , 3 , a 2 ) u ( z 2 , 4 , a 2 ) u ( z 2 , 5 , a 2 ) u ( z 2 , 6 , a 2 ) u ( z 2 , 7 , a 2 ) u ( z 2 , 8 , a 2 ) u ( z 2 , 9 , a 2 ) 

0.4 0.4 0.4 0 0.6 0.6 0.4 0.4 0.4 

u ( z 2 , 10 , a 2 ) u ( z 2 , 11 , a 2 ) u ( z 2 , 12 , a 2 ) u ( z 2 , 13 , a 2 ) u ( z 2 , 14 , a 2 ) u ( z 2 , 15 , a 2 ) u ( z 2 , 16 , a 2 ) u ( z 2 , 17 , a 2 ) u ( z 2 , 18 , a 2 ) 

0 0 0.6 1 1 1 0.6 0.6 0.6 

Table 4 

The relative likelihood degrees of all the paths of two initial decisions. 

π( z 1 , 1 , a 1 ) π( z 1 , 2 , a 1 ) π( z 1 , 3 , a 1 ) π( z 1 , 4 , a 1 ) π( z 1 , 5 , a 1 ) π( z 1 , 6 , a 1 ) π( z 1 , 7 , a 1 ) π( z 1 , 8 , a 1 ) π( z 1 , 9 , a 1 ) 

0.125 0.016 0.016 0.016 0.109 0.031 0.125 1 0.125 

π( z 1 , 10 , a 1 ) π( z 1 , 11 , a 1 ) π( z 1 , 12 , a 1 ) π( z 1 , 13 , a 1 ) π( z 1 , 14 , a 1 ) π( z 1 , 15 , a 1 ) π( z 1 , 16 , a 1 ) π( z 1 , 17 , a 1 ) π( z 1 , 18 , a 1 ) 

0.25 0.125 0.875 0.016 0.016 0.125 0.016 0.125 0.016 

π( z 2 , 1 , a 2 ) π( z 2 , 2 , a 2 ) π( z 2 , 3 , a 2 ) π( z 2 , 4 , a 2 ) π( z 2 , 5 , a 2 ) π( z 2 , 6 , a 2 ) π( z 2 , 7 , a 2 ) π( z 2 , 8 , a 2 ) π( z 2 , 9 , a 2 ) 

0.25 0.031 0.031 0.031 0.219 0.063 0.016 0.125 0.016 

π( z 2 , 10 , a 2 ) π( z 2 , 11 , a 2 ) π( z 2 , 12 , a 2 ) π( z 2 , 13 , a 2 ) π( z 2 , 14 , a 2 ) π( z 2 , 15 , a 2 ) π( z 2 , 16 , a 2 ) π( z 2 , 17 , a 2 ) π( z 2 , 18 , a 2 ) 

0.031 0.016 0.109 0.109 0.109 0.875 0.109 0.875 0.109 

Table 5 

The positive focus paths of different initial decisions under various ϕ ′ s . 

ϕ

Focus path 0.5 1 5 

a 1 z 1 , 8 z 1 , 12 z 1 , 12 

a 2 z 2 , 15 z 2 , 15 z 2 , 15 
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ule with a relatively high satisfaction level and a relatively 

ow likelihood, that is, u ( z 1 , 8 , a 1 ) = 0 . 8 < u ( z 2 , 15 , a 2 ) = 1 and

( z 1 , 8 , a 1 ) = 1 > π( z 2 , 15 , a 2 ) = 0 . 875 . 

From this simple numerical example, we understand under the 

ositive evaluation system of dynamic focus programming, each 

nitial decision is associated with its most favorite path (positive 

ocus path) and the optimal initial decision is chosen by exam- 

ning the positive focus paths of all possible initial decisions and 

he optimal decision rule is the positive focus path of the optimal 

nitial decision. In so doing, the decision maker’s personality and 

ehavioural attributes can be properly accommodated by adjusting 

he parameter values of ϕ and κ . 

. Dynamic focus programming under the negative evaluation 

ystem 

Under the negative evaluation system, for ∀ d ∈ A 0 , we denote 

 n (d) as the set of optimal solutions of the following optimization 

roblem: 

ax 
z∈ 〈 d 〉 

min { θ ∗ π( z, d ) , 1 − u ( z, d ) } (10) 

here θ is a positive real number. (10) is derived from the rep- 

esentation theorem of negative foci ( Guo, 2019 ). Given that 0 ≤
 ( z, d ) ≤ 1 , we know that 0 ≤ 1 − u ( z, d ) ≤ 1 holds. As such, we

an loosely treat 1 − u ( z, d ) as the complement of the satisfaction 
332 
unction or dissatisfaction function. The difference between (10) 

nd (6) is that the satisfaction function u ( z, d ) is replaced with its 

omplement 1 − u ( z, d ) here. For z 1 , z 2 ∈ 〈 d〉 , if π( z 1 , d ) ≥ π( z 2 , d )

nd u ( z 1 , d ) ≤ u ( z 2 , d ) , we have min { θ ∗ π( z 1 , d ) , 1 − u ( z 1 , d ) } ≥
in { θ ∗ π( z 2 , d ) , 1 − u ( z 2 , d ) } . Clearly, for ∀ d ∈ A 0 , (10) is used to 

eek a path which has a relatively high relative likelihood degree 

nd generate a relatively low satisfaction level. This indicates that 

he decision maker under the negative evaluation system is more 

oncerned with the bottom line and focuses on the unfavorable 

utcome that has a relatively low satisfaction level (high cost). This 

ype of decision makers possesses a pessimistic mindset. Increas- 

ng θ means that a decision maker is more concerned about a rela- 

ively low satisfaction level (high cost). Therefore, θ can be used to 

easure how pessimistic a decision maker is: The higher the value 

f θ , the more pessimistic a decision maker. 

Definition 3. If there exists a unique element in Z n (d) , this 

lement is the negative focus path of d, denoted by z ∗n (d) . 

f there is more than one element in Z n (d) and �z ∈ Z n ( d ),

uch that π( z, d ) > π( z ∗n ( d) , d ) , u ( z, d ) ≤ u ( z ∗n ( d) , d ) or π( z, d ) ≥
( z ∗n ( d) , d ) , u ( z, d ) < u ( z ∗n ( d) , d ) for z ∗n (d) ∈ Z n (d ) , then z ∗n (d ) is

he negative focus path of d. 

The definition of the negative focus path indicates that z ∗n (d) 

s the most concerned path for d. For any ∀ d ∈ A 0 , there may be

ultiple negative focus paths and the set of z ∗n (d) is denoted as 

 

∗
n (d) . 

Next, we seek d n satisfying the following equation: 

ax { π( z ∗n ( d n ) , d n ) , τ ∗ ( 1 − u ( z ∗n ( d n ) , d n ) ) } 
= min 

z∈ Z ∗n 
max 

{
π

(
z, d −( z ) 

)
, τ ∗

(
1 − u 

(
z, d −( z ) 

))}
(11) 

here parameter τ is a positive real number, Z ∗n = 

 z| z ∈ Z ∗n (d) , d ∈ A 0 } and d −(z) stands for a d ∈ A 0 whose 

egative focus path is z. (11) is derived from the represen- 



P. Guo European Journal of Operational Research 303 (2022) 328–336 

Fig. 1. The decision tree of the bidding problem. 
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Table 6 

The negative focus paths of different initial decisions under various θ ′ s . 

θ

Focus path 0.5 1 5 

a 1 z 1 , 8 z 1 , 10 z 1 , 10 

a 2 z 2 , 17 z 2 , 17 z 2 , 1 
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ation theorem for an optimal action under the negative 

valuation system ( Guo, 2019 ). The set of d n is denoted as 

 n . For ∀ d 1 , d 2 ∈ A 0 , if ∃ z 1 ∈ Z ∗n ( d 1 ) such that π( z 1 ) ≤ π( z 2 )

nd u ( z 1 , d 1 ) ≥ u ( z 2 , d 2 ) hold for any z 2 ∈ Z ∗n ( d 2 ) , we have

ax { π( z 1 ) , τ ∗ ( 1 − u ( z 1 , d 1 ) ) } ≤ max { π( z 2 ) , τ ∗ ( 1 − u ( z 2 , d 2 ) ) } . 
t means that (11) is used for seeking the initial decision d ∈ A 0 

hose negative focus path has a relatively low relative likelihood 

egree and can generate a relatively high satisfaction level. In 

ther words, since the negative focus paths are unfavorite ones, 

he decision maker dislikes their occurrence and, thus, prefers a 

ow chance of occurring. In the meantime, he/she pursues a high 

atisfaction level (low cost) amongst these unfavorable outcomes. 

Since a higher τ makes the dissatisfaction function at the nega- 

ive focus paths to arise more easily in the inner maximization op- 

ration in (11), along with the outer minimization operations for 

ll negative focus paths, we know that increasing τ leads to an 

nitial decision whose negative focus path is relatively high in both 

atisfaction and likelihood. Choosing an initial decision associated 

ith an unfavorable outcome (negative focus path) at a relatively 

igh likelihood (as a result of increasing τ ) implies that the deci- 

ion maker is prepared and ready to accept the consequence af- 

er assessing all negative focus paths. Hence, τ can be regarded as 

he decision maker’s acceptance index on potential losses result- 

ng from his/her decision: The higher the value of τ , the more the 

cceptance level. 

Definition 4. If there exists a unique element in D n , 

his element is the optimal initial decision under the nega- 

ive evaluation system, denoted as d ∗n and z ∗n ( d ∗n ) is the op- 

imal decision rule under the negative evaluation system. If 

here is more than one element in D n and �d ∈ D n , such 

hat π( z ∗n ( d) , d ) < π( z ∗n ( d ∗n ) , d ∗n ) , u ( z ∗n ( d) , d ) ≥ u ( z ∗p ( d ∗n ) , d ∗n ) or

( z ∗n ( d) , d ) ≤ π( z ∗n ( d ∗n ) , d ∗n ) , u ( z ∗n ( d) , d ) > u ( z ∗p ( d ∗n ) , d ∗n ) for d ∗n ∈
 n , then d ∗n is the optimal initial decision and z ∗n ( d ∗n ) is the opti-

al decision rule under the negative evaluation system. 

It follows from Definition 4 that d ∗n is the decision which 

eakly dominates the other ones if there are other elements in 

 n . 

Numerical example. 

We apply the negative evaluation system of dynamic focus pro- 

ramming to the numerical example given in Section 2.3 . Using 
p

333 
10) with the data in Tables 3 and 4 and setting θ as 0.5, 1 

nd 5, respectively, we can obtain Z n ( a 1 ) = { z 1 , 8 } , Z n ( a 1 ) = { z 1 , 10 }
nd Z n ( a 1 ) = { z 1 , 10 , z 1 , 11 , z 1 , 17 } for θ being 0.5, 1 and 5, respec- 

ively; Z n ( a 2 ) = { z 2 , 17 } , Z n ( a 2 ) = { z 2 , 17 } and Z n ( a 2 ) = { z 2 , 1 , z 2 , 8 } for

being 0.5, 1 and 5, respectively. According to Definition 3, we 

ave z ∗n ( a 1 ) = z 1 , 8 , z 
∗
n ( a 1 ) = z 1 , 10 and z ∗n ( a 1 ) = z 1 , 10 for θ being 0.5,

 and 5, respectively; we have z ∗n ( a 2 ) = z 2 , 17 , z ∗n ( a 2 ) = z 2 , 17 and

 

∗
n ( a 2 ) = z 2 , 1 for θ being 0.5, 1 and 5, respectively. All the results

re listed in Table 6 . We can understand that increasing θ can 

ead to finding a negative focus path with a relatively low sat- 

sfaction and a relatively low likelihood, for example, for a 1 , in- 

reasing θ from 0.5 to 1, the negative focus path changes from z 1 , 8 
o z 1 , 10 while u ( z 1 , 8 , a 1 ) = 0 . 8 > u ( z 1 , 10 , a 1 ) = 0 . 4 and π( z 1 , 8 , a 1 ) =
 > π( z 1 , 10 , a 1 ) = 0 . 25 . Next, let us find out the optimal initial de-

ision for the case θ = 1 . Using (11) and setting τ as 0.1 and 10,

espectively, we can obtain D n = { a 1 } and D n = { a 2 } for τ being 0.1

nd 10, respectively. According to Definition 4, we obtain the op- 

imal initial decisions as a 1 and a 2 , and the optimal decision rules 

s z 1 , 10 and z 2 , 17 for τ being 0.1 and 10, respectively. Since increas- 

ng τ will emphasize the satisfaction level so that an optimal de- 

ision rule with a relatively high satisfaction level is obtained, that 

s, u ( z 2 , 17 , a 2 ) = 0 . 6 > u ( z 1 , 10 , a 1 ) = 0 . 4 . 

. Case study: a bidding problem of Murakami machinery 

anufacturing co., ltd 

We use a case study introduced by Fujita and Kumada (2001, 

.42-p.43) to illustrate how dynamic focus programming works for 

olving a real sequential decision-making problem under uncer- 

ainty. The case is as follows. 

Mr. Miura, a marketing director reports to Mr. Murakami, the 

resident of Murakami Machinery Manufacturing Co., Ltd. that Fu- 
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Table 7 

The costs of all the paths of decision a 1 . 

c( z 1 , 1 , a 1 ) c( z 1 , 2 , a 1 ) c( z 1 , 3 , a 1 ) c( z 1 , 4 , a 1 ) c( z 1 , 5 , a 1 ) c( z 1 , 6 , a 1 ) 

−33 −8 −18 −8 −23 2 

c( z 1 , 7 , a 1 ) c( z 1 , 8 , a 1 ) c( z 1 , 9 , a 1 ) c( z 1 , 10 , a 1 ) c( z 1 , 11 , a 1 ) c( z 1 , 12 , a 1 ) 

−8 −8 −13 12 2 −8 
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Table 8 

The probabilities of all the paths of decision a 1 . 

p( z 1 , 1 , a 1 ) p( z 1 , 2 , a 1 ) p( z 1 , 3 , a 1 ) p( z 1 , 4 , a 1 ) p( z 1 , 5 , a 1 ) p( z 1 , 6 , a 1 ) 

0.24 0.16 0.4 0.4 0.384 0.256 

p( z 1 , 7 , a 1 ) p( z 1 , 8 , a 1 ) p( z 1 , 9 , a 1 ) p( z 1 , 10 , a 1 ) p( z 1 , 11 , a 1 ) p( z 1 , 12 , a 1 ) 

0.64 0.16 0.48 0.32 0.8 0.2 

Table 9 

The satisfaction levels of all the paths of decision a 1 . 

u ( z 1 , 1 , a 1 ) u ( z 1 , 2 , a 1 ) u ( z 1 , 3 , a 1 ) u ( z 1 , 4 , a 1 ) u ( z 1 , 5 , a 1 ) u ( z 1 , 6 , a 1 ) 

1 0.444 0.667 0.444 0.778 0.222 

u ( z 1 , 7 , a 1 ) u ( z 1 , 8 , a 1 ) u ( z 1 , 9 , a 1 ) u ( z 1 , 10 , a 1 ) u ( z 1 , 11 , a 1 ) u ( z 1 , 12 , a 1 ) 

0.444 0.444 0.556 0 0.222 0.444 
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imoto Ink Co., Ltd. is going to purchase 10 advanced printing ma- 

hines which require some special function. Fujimoto Ink Co., Ltd. 

ill choose one supplier by bidding in two months. The companies 

hich can satisfy the basic requirements are qualified for bidding 

articipation. The President calls a board meeting to discuss this 

atter. The opinions of each director are recorded below. 

R&D director: We have the HJ-3 printing machine. If we rein- 

orce one function of this machine by introducing a new compo- 

ent, then we may meet special requirements of Fujimoto Ink. For 

hat purpose, we need to make a prototype of that component and 

erform a test to see if it can be manufactured at our technical 

evel. It will cost 2 million yen to make and test the prototype. 

n my opinion, there is an 80% chance of producing the qualified 

omponent. 

Manufacturing director: There are two methods to produce the 

esigned printing machine. One is using a machine tool and the 

ther is using a crushing machine. For the first method, it will cost 

0 million yen for setup and the direct manufacturing cost per ma- 

hine is 7 million yen. For the second method, the setup cost is 15

illion yen and the direct manufacturing cost per machine is 5 

illion yen. However, the setup process of the second method is 

nstable and may fail. The probability of failure is estimated to be 

0%. Even if it fails, we can switch to the first method by adding 5

illion yen. In this case, the setup cost for the first method is not 

eeded. 

Financial director: To complete this large project, another job 

ust be stopped. However, this job can certainly make a profit of 

0 million yen. 

Marketing director: The bid price can be roughly divided into 

hree cases. One is 10 million yen per machine, then the total bid 

rice is 100 million yen. Given the technical level of the competi- 

ors and the enthusiasm for participation, the probability of a suc- 

essful bidding at this price is 50%. The second is 9 million yen per

achine, that is, 90 million yen as the total bid price. The proba- 

ility of this successful bidding is 80%. The third is 8 million yen 

er unit, that is, 80 million yen as the total bid price. In this case,

t is certainly a successful bidding. If eventually our bid fails, we 

till can do the job that the finance director mentioned and make 

 certain profit of 10 million yen. 

How should the president make a decision after he knows the 

pinions of each director? 

This sequential decision problem can be described by a decision 

ree shown in Fig. 1 . We use a 1 , a 2 , a 3 , a 4 , a 5 , a 6 and a 7 to stand for

aking a prototype, non-participating, bid price 10, bid price 9, bid 

rice 8, first method and second method in Fig. 1 , respectively; we 

se s 1 and s 2 to represent success and failure, respectively. Thus, 

e have A 0 = { a 1 , a 2 } , 
〈 a 1 〉 = {{ a 1 , ( s 1 , a 3 ), ( s 1 , a 7 ), s 1 }, { a 1 , ( s 1 , a 3 ), ( s 1 , a 7 ), s 2 }, 

{ a 1 , ( s 1 , a 3 ),( s 1 , a 6 ), s 1 }, { a 1 , ( s 1 , a 3 ), s 2 }, { a 1 , ( s 1 , a 4 ), 
( s 1 , a 7 ), s 1 }, { a 1 , ( s 1 , a 4 ), ( s 1 , a 7 ), s 2 }, { a 1 , ( s 1 , a 4 ), 
( s 1 , a 6 ), s 1 }, { a 1 , ( s 1 , a 4 ), s 2 }, { a 1 , ( s 1 , a 5 ),( s 1 , a 7 ), s 1 }, 

{ a 1 , ( s 1 , a 5 ),( s 1 , a 7 ), s 2 }, { a 1 , ( s 1 , a 5 ),( s 1 , a 6 ), s 1 }, { a 1 , s 2 } }. 

We use z 1 ,i (i = 1 , . . . 12 } to stand for the i th element of 〈 a 1 〉
hich are listed above. Considering (2) and setting r = 0 , we can 

alculate the total cost of each path of a 1 , for example, c( z 1 , 2 , a 1 ) =
100 + 70 + 5 + 15 + 2 = −8 and all the results are listed in

able 7 . The probability of each path of decision a is calculated 
1 
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y (3) and all results are presented in Table 8 . There is a unique

ertain result for a 2 ; we use z 2 to stand for this unique element 

f 〈 a 2 〉 and have c( z 2 , a 2 ) = −10 and p( z 2 , a 2 ) = 1 . The satisfaction

evel is calculated by (4) and all the results for a 1 are shown in 

able 9 . The relative likelihood degree of each path for a 1 is calcu- 

ated by (5) and all the results are shown in Table 10 . 

Since a 2 generates a certain positive payoff (negative cost), 

here is no negative focus path of a 2 . Therefore, we analyze 

his decision problem by the positive evaluation system of dy- 

amic focus programming. Using (6) with the data in Tables 9 

nd 10 and setting ϕ as 0.1, 1 and 10, respectively, we can 

btain Z p ( a 1 ) = { z 1 , 7 } , Z p ( a 1 ) = { z 1 , 9 } and Z p ( a 1 ) = { z 1 , 1 } for ϕ
eing 0.1, 1 and 10, respectively. According to Definition 1, we 

ave z ∗p ( a 1 ) = z 1 , 7 , z ∗p ( a 1 ) = z 1 , 9 and z ∗p ( a 1 ) = z 1 , 1 for ϕ being

.1, 1 and 10, respectively shown in Table 11 . Clearly, increasing 

can lead to finding a positive focus path with a relatively 

igh satisfaction level and a relatively low likelihood, that is, 

 ( z 1 , 7 , a 1 ) = 0 . 4 4 4 < u ( z 1 , 9 , a 1 ) = 0 . 556 < u ( z 1 , 1 , a 1 ) = 1 and

( z 1 , 7 , a 1 ) = 0 . 64 > π( z 1 , 9 , a 1 ) = 0 . 48 > π( z 1 , 1 , a 1 ) = 0 . 24 . ϕ is

sed as a weight for a decision maker to balance his/her emphasis 

n the satisfaction level and the relative likelihood degree. In- 

reasing ϕ means that the decision maker aims to pursue a higher 

atisfaction by somewhat sacrificing the relative likelihood. Hence, 

can measure how optimistic the decision maker is: The higher 

he value of ϕ, the more optimistic the decision maker. Since 

here is a unique path for a 2 , it is straightforward that z ∗p ( a 2 ) = z 2 
or any ϕ. Using (4) and (5), we know u ( a 2 , z 2 ) = 0 . 489 and

( a 2 , z 2 ) = 1 . 

Next, we seek the optimal decision rule. For ϕ = 0 . 1 , the pos-

tive focus path of a 1 is z ∗p ( a 1 ) = z 1 , 7 . Since π( z 1 , 7 , a 1 ) = 0 . 64 <

( z 2 , a 2 ) = 1 and u ( z 1 , 7 , a 1 ) = 0 . 4 4 4 < u ( z 2 , a 2 ) = 0 . 489 , it follows

rom Definition 2 that under the positive evaluation system the op- 

imal initial decision is a 2 and the optimal decision rule is z 2 for 

ny κ . 

Let us further examine the case of ϕ = 10 . If we set κ as 0.1,

hen it follows from (7) and Definition 2 that under the positive 

valuation system the optimal initial decision is a 2 and optimal de- 

ision rule is z 2 ; if we set κ as 10, then we know that the optimal

nitial decision is a 1 and the optimal decision rule is z 1 , 1 . κ is in- 

erpreted as the decision-maker’s confidence index on his/her de- 

ision: The higher the value of κ , the more confident the decision- 

aker. 

We summarize the results as follows: If the president is less 

ptimistic (the case of ϕ = 0 . 1 ), he will not participate the bid-

ing; if he is very optimistic (the case of ϕ = 10 ) but less confi-

ent (the case of κ = 0 . 1 ), he will not participate the biding; if he

s very optimistic (the case of ϕ = 10 ) and very confident (the case

f κ = 10 ), he will participate the biding. Clearly, such results are 

ntuitively acceptable and can provide insights into the behavior of 

he president. 
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Table 10 

The relative likelihood degrees of all the paths of decision a 1 . 

π( z 1 , 1 , a 1 ) π( z 1 , 2 , a 1 ) π( z 1 , 3 , a 1 ) π( z 1 , 4 , a 1 ) π( z 1 , 5 , a 1 ) π( z 1 , 6 , a 1 ) 

0.24 0.16 0.4 0.4 0.384 0.256 

π( z 1 , 7 , a 1 ) π( z 1 , 8 , a 1 ) π( z 1 , 9 , a 1 ) π( z 1 , 10 , a 1 ) π( z 1 , 11 , a 1 ) π( z 1 , 12 , a 1 ) 

0.64 0.16 0.48 0.32 0.8 0.2 

Table 11 

The positive focus paths of a 1 under various ϕ ′ s . 

ϕ

Focus path 0.1 1 10 

a 1 z 1 , 7 z 1 , 9 z 1 , 1 
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Let us reexamine this case study by stochastic dynamic pro- 

ramming with the assumption that the decision maker is risk 

eutral. By backward induction, the expected monetary values of 

 3 (bid price 10), a 4 (bid price 9) and a 5 (price 8) are obtained as 

7.5, 14 and 5, respectively, and all of them choose a 7 (the second 

ethod) at the third stage. Since 17.5 > 14 > 5 holds, a 3 will be cho-

en at the second stage. Then the expected monetary value of a 1 
making a prototype) is calculated as 14 which is larger than the 

onetary value of a 2 (non-participating), that is, 10. As a result, 

he decision maker will choose a 1 as his/her optimal initial deci- 

ion, and the optimal decision rule is { a 1 , a 3 , a 7 }. 

From this case study, we understand that dynamic focus pro- 

ramming and stochastic dynamic programming handle the same 

equential decision problem by the fundamentally different ways. 

ince stochastic dynamic programming utilizes the expected value, 

t makes more sense if the decision process is repeatable while dy- 

amic focus programing is of scenario-based thinking, it is more 

uitable for a one-time decision. In stochastic dynamic program- 

ing, only a decision sequence can be obtained whereas in dy- 

amic focus programming, a focus path is obtained which provides 

ot only a decision sequence but the reason why such a decision 

equence should be chosen. In dynamic focus programming, we 

an account for the behaviors of the decision makers with different 

ersonality traits by simply adjusting the parameters. 

. Conclusions 

As a fundamental alternative for modeling and solving sequen- 

ial decision-making problems under uncertainty, dynamic focus 

rogramming is proposed. Different from stochastic dynamic pro- 

ramming that is based on the expected utility theory, dynamic 

ocus programming determines the optimal decision rule accord- 

ng to which initial decision’s focus path is the most preferred. 

Dynamic focus programming is an axiomatized approach. Guo 

2019) proposes the focus theory of choice which models and ax- 

omatizes the procedural rationality of decision-making. The core 

rgument of the focus theory of choice is that the most salient 

vent corresponds to the most-preferred decision. Accordingly, dy- 

amic focus programming claims that the most salient path corre- 

ponds to the most-preferred decision rule. 

Stochastic dynamic programming utilizes backward induction 

hereas dynamic focus programing uses forward calculation which 

s close to human being intuition. In stochastic dynamic program- 

ing, only a decision sequence can be obtained whereas in dy- 

amic focus programming, a focus path is obtained. The focus path 

onsists of not only a decision sequence from the initial stage to 

he final stage but also the associated states. The focus path pro- 

ides the reason why such a decision sequence should be chosen. 

n addition, in dynamic focus programming framing effects can be 

andled by the positive and negative evaluation systems and the 
335 
ecision maker’s personality and behavioral attributes can be prop- 

rly accommodated by adjusting the parameters. Hence, dynamic 

ocus programming makes the complicated decision-making pro- 

edure visible and no longer a black box. 

For the sake of simplification, we only consider the discrete 

ases of decision variables and random variables in this research. 

he same formulas can apply to the case that decision variable 

s continuous and to the case that random variable is continuous 

ith a conditional probability density function taking the place of 

 transition probability. 

There are several limitations of this research. The parameters 

, κ , θ and τ in the dynamic focus programing are used to re- 

ect the personal traits of the decision makers and should be given 

y themselves. However, it requires more demanding of cognitive 

ffort. Providing an appropriate approach to help decision makers 

etermine such parameters more easily will be our future research 

ork. As a new approach to the sequential decision problem, the 

heoretical analysis on the comparison of the computational com- 

lexity between dynamic focus programming and stochastic dy- 

amic programming should be done. It will be another future re- 

earch topic. 

The research on dynamic focus programming is at an early 

tage. Further research can be done from theoretical and applied 

spects. This research provides the theoretical base for the further 

esearch on sequential decision-making problems under uncer- 

ainty, which are commonly encountered in business, economics, 

nd social systems. 
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