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Chapter 1

Introduction

At the beginning of the 20th century, quantum mechanics was established and it
became possible to make theoretical predictions on various properties of materials.
Many theoretical approaches have appeared in order to study physical phenomena.
As one of them, the first-principles calculation is the great one which gives the good
agreement with various experimental results. This method also has the great advan-
tage that it is applicable to any target calculation compared with other approaches,
because the least number of parameters are just needed in its calculation. It is, how-
ever, well known that first-principles calculation becomemore cumbersomewith the
size of target system. For this reason, it is long-standing subject in first-principles ap-
proach to introduce the approximations with reducing the computational cost and
still preserving their physical features. This doctoral thesis includes the two stud-
ies based on the first-principles calculation, and I tried to introduce new calculation
method and theory to solve the above problem in those studies.

Generally, the one-particle effective Schrödinger equation is taken as first-principles
in quantummechanics, and there are several calculationmethods relying on the one-
particle picture; especially, this doctoral thesis is based on density functional theory
(DFT) and many-body Green’s function which are famous theories[3–8]. DFT is de-
veloped by P. Hohenberg, W. Kohn, and L. J. Sham mainly, and their calculation
results are widely applied for much more sophisticated calculations including the
Green’s function approach (W. Kohn was awarded Nobel Prize in Chemistry in 1998
for developing DFT). These theories have been applied to calculate several physical
phenomena such as stable structures, excitation energies, transition matrices related
to photo absorptions, direct and inverse photoemission, etc.

Photoemission, inverse photoemission, and photo absorption in optical experi-
ments are useful to obtain information on electronic states ofmaterials (see Fig. 1.1)[9].
In a direct photoemission experiment, the final state on the material has one hole
which was originally occupied by a photoelectron. Since the energy and momen-
tum conservation laws are satisfied in the direct photoemission process among the
photoelectron, the photoelectron gives the excitation energy and the energy level
information of occupied states. On the other hand, in a similar way, inverse photoe-
mission gives the excitation energy and the energy level information of unoccupied
(which is called empty) states. (Notice that photoabsorption is a little different from
direct and inverse photoemission, and a more complicated process appears because
the excited electrons stay in the material interacting with the holes created in that
process.) A hole state created in direct photoemission process is affected by sur-
rounding electrons, so its behavior is different from a bare hole. Therefore, the hole
affected by other electrons around the hole is called quasi-hole (see Fig. 1.2). For sim-
ilar reason, an electron created in inverse photoemission process does not exist as a
bare electron in the material, but is affected by surrounding electrons. This electron
affected by the surrounding electrons is called quasi-electron (see Fig. 1.2). In this
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FIGURE 1.1: Schematic figure of direct photoemission. A photon in-
jected into the system gives energy to an electron, which is excited
and leaves the system as a photoelectron. The observation of the pho-
toelectron gives information of density of state, energy levels, and so

on.

doctoral thesis, I call both quasi-hole and quasi-electron as quasiparticle (QP) for
simplicity[10–12]. This QP obeys the one-particle effective Schrödinger equation,
which is called the Dyson equation for QP or the QP equation. The QP equation
is cumbersome and is difficult to solve without approximations, which means this
method needs expensive computational cost in the original procedure. So, the de-
velopment of good approximations andmethods is important to improve discrepan-
cies with experimental spectra and calculated ones. In my first study, I developed a
new precise method to calculate the spin-orbit coupling with Kohn-Sham (KS) DFT
framework, as published inAnnalen der Physik, 531. 9 (2019): 1900060. [1] (see section
1.1 and details are given in chapter 3), and in the second one, I elucidated the validity
to normalize quasiparticle wave functions (QPWFs) in QP theory, showed that the
Dyson equation can be hermitized under Baym-Kadanoff’s conservation law, and
gave the interpretation of the extended KS equation, as published in Physical Review
B. 104. 20 (2021): L201116. [2] (see section 1.2 and details are given in chapter 4).
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FIGURE 1.2: In a material, a bare particle can not be observed, and
one particle picture have to be applied to the collective electron taking
other electrons. Therefore, in QP theory, quasi-hole in direct photoe-
mission and quasi-electron in the inverse photoemission have to be
treated. (a) denotes the original bare hole schematic picture, but this
picture can not be observed by actual experiments, i.e., direct photoe-
mission. (b) denotes the quasi-hole schematic picture, which can be

applied to the actual electron picture.

1.1 Spin-orbit coupling in QP theory

For accuracy of calculation which reproduces optical experiments, spin dependent
effects are also important. One of physical phenomena related to them is the spin-
orbit coupling (SOC), which is derived from theDirac equation in the classical limit[13].
Specifically, for the Hamiltonian including the SOC, angular momentum and spin
are not good quantum numbers, and the SOC induces band spin splitting which
may produce spin currents in spintronics devices. Therefore, it is important to de-
velop quasiparticle (QP) theory including the SOC effects in order to promote active
studies on spintronics and new phenomena related to spin properties.

In QP theory, SOC calculation is cumbersome because even non-spin dependent
QP equation requires expensive computational cost. As a solution to the cumber-
some problem, generally Kohn-Sham (KS) density functional theory (DFT) orbitals
are used to calculate the SOC splitting because the quasiparticle wave functions (QP-
WFs) are thought to be very similar to the KS orbitals. This approximation are based
on the assumption that the screening effects from the core electrons for the SOC
are considered relatively small[14, 15], and this approach is the main methods used
widely.

In previous papers[15, 16], the SOC has been calculated by using both the pseudo
potential and all-electron methods. In those calculations, the SOC has two different
forms, i.e., the S · L form under the spherical symmetry of the Coulomb potential,
V(r) ≃ V(|r|), and the exact original form derived from the Dirac equation[13]. we
have to treat the exact form in order to precisely treat valence electrons existing in
the intermediate space of nuclei. The reason is that generally the Coulomb poten-
tial does not satisfy spherical symmetry V(r− Rn) ̸= V(|r− Rn|) in the interatomic
region, where r and Rn denote the electron and nucleus position coordinates, re-
spectively. As a solution for this difficulty, I propose to apply the S · L form near the
nuclei and the exact form in the intermediate space among nuclei with all-electron
mixed basis (AEMB) approach[17]. AEMB expands one-particle wave function as
both local basis (numerical atomic orbitals) and non-local basis (plane waves). This
study was reported in Takeru Nakashima and Kaoru Ohno. “Spin-Orbit Coupling
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FIGURE 1.3: Many excited states in the photoemission: (a) Illustration
of an excited state including some hole states, (b) Illustration of an
excited state including only one hole state, which is the main final

state observed in the photoemission.

in All-ElectronMixed Basis Approach”. Annalen der Physik, 531 9: 1900060 (2019).[1].
Details are discussed in chapter 3. The purpose of chapter 3 is to develop a method
to calculate SOC with AEMB, which takes into account both the contribution from
valence electrons in the intermediate space between nuclei, where spherical symme-
try is broken, and the contribution from inner orbitals. This method can be applied
to combine the SOC and QP theory in perturbation theory.

1.2 The finite number problem in QP theory

Generally, Kohn-Sham (KS) orbitals are taken as initial values for quasiparticle (QP)
calculation[9, 14, 18–21]. But, it is empirically known that in the actual calculation,
the number of the quasiparticle wave functions (QPWFs) for occupied levels is finite
and the same number equal to the number of electrons in the system, i.e. the number
of KS orbitals. This is inconsistent with theoretical requirements, that the number of
the QPWFs is infinite. In recent QP calculations, these QPWFs obtained in actual
calculation are normalized in order to conserve the electron number, albeit there is
no clear justification for such normalization. I try to elucidate the justification of this
treatment focusing on the Ward identity and explain the relationship between the
normalization and the Ward identity by physical intuition. Additionally, I elucidate
that the QP equation can be divided into two equations, which have the real part of
the QP energy and the imaginary part of the QP energy as eigenvalues, respectively.
The equation having the real part of the QP energy as eigenvalue can be regarded as
the extended KS equation, whose eigenstates are non-orthogonal mutually.

There are a lot of excitations in many-body excited states |ΨN−1
µ ⟩ in photoemis-

sion process. We can classify these states into the state, including multi hole and
Auger like process, (see Fig. 1.3 (a)) and the state, including only one hole state (see
Fig. 1.3 (b)). I consider that the state, including one hole only, is the main state ob-
served in photoemission. This physical intuition can be related to the limited vertex
function and the Ward identity[22, 23]. The Ward identity is derived from the vertex
function when taking the limit of energy and momentum transfers between three
points of the vertex function, that is, the situation of the Ward identity means that
the energy and momentum transfer in terms of the Coulomb interaction does not
appear. Then, the Ward identity corresponds to the multiple excitations not related
to the main QP state, which means that the Ward identity can be treated as renor-
malized factor for QP state (see Fig. 4.1 and details in chapter 4). I consider that
the Ward identity leads to the state including one quasi-hole picture. So, the Ward
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identity guarantees that the electron number is conserved and makes the QPWFs
normalized. (This interpretation is justified from the fact that the Ward identity is
proved by the continuity equation for the electron number[7, 24].) This study was
reported in Takeru Nakashima, Hannes Raebiger, and Kaoru Ohno. “Normalization
of exact quasiparticle wave functions in the Green’s function method guaranteed
by the Ward identity”. Physical Review B, 104 20: L201116 (2021).[2]. Details are dis-
cussed in chapter 4. The purpose of chapter 4 is to elucidate the relationship between
the normalization of the QPWFs and the vertex correction in QP theory, and intro-
duce the extended KS equation under Baym-Kadanoff’s conservation law. In other
words, this study gives the justification of the normalized QPWFs and the physical
intuition of the Ward identity.

1.3 The organization of doctoral thesis

In chapter 2, I explain the theory basis for mymain studies; specifically, density func-
tional theory (DFT), spin-orbit coupling (SOC) and their forms, all-electron mixed
basis (AEMB), and Green’s function theory. This doctoral thesis contains two main
studies, i.e., (i) the development of the calculation of SOC in the AEMB in chapter
3 and (ii) the elucidation for the relation between the vertex correction and the nor-
malization of the quasiparticle wave function (QPWFs) in chapter 4. In chapter 5,
summary is given.
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Chapter 2

Theoretical framework

In this chapter, I explain some previous key theories and studies of relevant top-
ics. Section 2.1 is devoted to the explanation of density functional theory (DFT)
because the spin-orbit coupling (SOC) is calculated within Kohn-Sham (KS) DFT in
the first study; Annalen der Physik, 531:1900060 (2019)[1]. Section 2.2 is devoted to the
SOC, which is an important relativistic correction derived from the Dirac equation.
Section 2.3 is devoted to the explanation of the all-electron mixed basis (AEMB).
This method is applied to calculate the SOC effects contributed from both core and
valence electrons efficiently. Section 2.4 is devoted to the brief explanation of the
Green’s function method, QP theory, and some theories related to the second study;
Physical Review B 104: L2011116 (2021)[2].
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2.1 Density functional theory

Density functional theory (DFT) is one of the most powerful tools to study material
properties and has been widely used in various fields[3, 4, 25]. DFT is composed
of two theories, i.e., Hohenberg-Kohn (HK) theorem and Kohn-Sham (KS) theory[3,
4]. According to HK theorem, physical quantities in the ground state can be ex-
pressed as a functional of the electron density. HK theorem gave the basis to calcu-
late physical properties depending on only the electron density. This great success
led to KS theory, which allows us to use a set of non-interacting one-particle effective
Schrödinger equations (called KS equations) instead of true many-body Schrödinger
equation. In the following, let me introduce these theories.

2.1.1 Hohenberg-Kohn theorem

Suppose that a general Hamiltonian H is

H =
∫

drψ†(r) (T(r) +Uext(r))ψ(r)

+
1
2

∫
dr1dr2v(r1 − r2)ψ†(r1)ψ†(r2)ψ(r2)ψ(r1), (2.1)

where ψ and ψ† are, respectively, electron’s annihilation and creation field opera-
tors, the first term is the one-particle operator including a kinetic term T and a local
external potential term Uext, and the second term represents an electron-electron
Coulomb interaction. (Please notice that we use the Hartree atomic unit m = e =
h̄ = 1 for simplicity.) Symbolically each term in Eq. (2.1) is represented by H =
T +Uext + V; T, Uext, and V denote, respectively, the kinetic energy, the local exter-
nal potential, and the electron-electron Coulomb interaction. The electron density
n(r), which is key physical quantity in DFT, is defined by

n(r) = ⟨ΨN
0 |ψ†(r)ψ(r) |ΨN

0 ⟩, (2.2)

where ΨN
0 denotes a ground state for a system composed of N electrons, satisfying

the true Schrödinger equation

H |Ψ0 ⟩ = EN
0 |ΨN

0 ⟩.

We can consider that the electron density is determined by the external potential
uniquely, which is trivial, but on the other hand it is not clear that the external po-
tentialUext is determined by the eletron density n(r) uniquely. This unique property
is shown by reductio ad absurdum.

Firstly, consider the following two eigenvalue problems

H |Ψ ⟩ = E |Ψ ⟩ (2.3a)
H′ |Ψ′ ⟩ = E′ |Ψ′ ⟩, (2.3b)

where Ψ, Ψ′ are the ground states respectively, and H′ is H withUext replaced by the
different external potential U′

ext. We assume that these ground states Ψ and Ψ′ give
the same electron density n(r). The minimal property of the ground state shows that

E′ = ⟨Ψ′ |H′ |Ψ′ ⟩ < ⟨Ψ |H′ |Ψ ⟩ = ⟨Ψ |H +U′
ext −Uext |Ψ ⟩, (2.4)
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so that
E′ < E+

∫
dr
[
U′

ext(r)−Uext(r)
]
n(r). (2.5a)

In the same way, we get

E < E′ +
∫

dr
[
Uext(r)−U′

ext(r)
]
n(r). (2.5b)

Equations (2.5) show the contradiction,

E+ E′ < E+ E′. (2.6)

Therefore, from reductio ad absurdum, the electron density n(r) is a unique functional
of the external potential Uext, i.e., n[Uext], which is called the first HK theorem.

Secondly, the each term (kinetic and interaction terms) is also the functional of
the electron density since the ground state Ψ is the functional of the electron density.
We therefore define

F[n] = ⟨Ψ | (T +V) |Ψ ⟩, (2.7)

where F[n] is generally called universal function, valid for any number of particles
and any external potential. Using F[n], the total energy for the ground states is

EUext =
∫

drUext(r)n(r) + F[n], (2.8)

which equals the ground state energy for the correct n(r). As an additional condi-
tion, n(r) should satisfy the following equation

N[n] =
∫

drn(r) = N. (2.9)

The energy functional

EUext [Ψ
′] = ⟨Ψ′ |Uext |Ψ′ ⟩+ ⟨Ψ′ | (T +V) |Ψ′ ⟩, (2.10)

has the minimum value for the correct ground state Ψ and suppose that Ψ′ corre-
sponds to the ground state for the different external potential U′

ext. From Eq. (2.10),
the following inequality is satisfied

EUext [Ψ
′] =

∫
Uext(r)n′(r)dr+ F[n′] > EUext [Ψ] =

∫
Uext(r)n(r)dr+ F[n], (2.11)

which shows that the the correct density among all electron densities corresponding
to any external potential Uext makes the total energy functional EUext get minimal.
This is called second HK theorem. This HK theorem makes the electron density the
basic variable for the recent studies. In next section, we derive the KS theory from
HK theorem.
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2.1.2 Kohn-Sham theory

By using HK theorem, we can transform a many-body problem into a virtual single-
particle problem, i.e., one-particle effective Schrödinger equation which is called KS
equation. From HK theorem, total energy for any system is determined by electron
density n(r). The classical Coulomb interaction (which is the Hartree term) is sepa-
rated from the universal function F[n] for convenience

F[n] =
1
2

∫
dr1dr2v(r1 − r2)n(r1)n(r2) + G[n], (2.12)

where G[n] is a universal function like F[n]. Equation (2.8) becomes

E =
∫

Uext(r)n(r)dr+
1
2

∫
dr1dr2v(r1 − r2)n(r1)n(r2) + G[n]. (2.13)

It is very difficult to find the explicit form of G[n], so we introduce a non-interacting
kinetic energy Ts[n] with density n(r)

G[n] = Ts[n] + Exc[n], (2.14)

where Exc[n] is called exchange-correlation term. Restriction conditions, Eq. (2.9),
gives

δN =
∫

δn(r)dr = 0. (2.15)

The method of Lagrange multiplier with Eqs. (2.8), (2.12), and (2.15), shows

δ (E[n]− αN) =
∫

dr
[
Uext(r) +

∫
dr′v(r− r′)n(r′) +

δTs[n]
δn(r)

+
δExc[n]
δn(r)

− α

]
δn(r).

(2.16)
Assume that the electron density for the non-interacting system is represented by

n(r) =
N

∑
i=1

|ϕi(r)|2, (2.17)

and that the kinetic energy for the non-interacting system is

Ts[n] = −1
2

N

∑
i=1

∫
drϕ∗

i (r)∇2ϕi(r). (2.18)

Combining Eqs. (2.16), (2.17), and (2.18) gives a one-particle effective Schrödinger
equation giving the same electron density with the true many-particle system inter-
acting each other(

−1
2
∇2 +Uext(r) +

∫
dr′v(r− r′)n(r′) +

δExc[n]
δn(r)

)
ϕi(r) = ε iϕi(r), (2.19)

which is called the KS equation, their eigenvalues are called KS eigenvalues or KS
energies, and eigenstates are called KS eigenstates or KS orbitals. This theory is
called KS theory[4].

KS theory is applied to predict the band structures observed by the photoemis-
sion and inverse photoemission, and photo absorption experiments with no justifi-
cation. The KS eigenvalues and eigenstates are treated as each electron’s energy and
orbital in the material, but it is well known that those treatment is incorrect and the
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energy gap is underestimated by KS theory due to the discontinuity in the correla-
tion functional with electron density[14, 18, 19, 26–29] (of course, it is already shown
in the previous studies that the identification of KS orbitals and quasiparticle wave
functions (QPWFs) only near the Fermi level is good approximation[14, 26, 30, 31]).
The Kohn and Sham(1965)’s original paper[4] proposed the simple approximation
as

Exc[n] =
∫

n(r)εxc(n(r))dr, (2.20)

where εxc(n(r)) is calculated from a homogeneous systemwith electron density n(r).
This approximation is called local density approximation (LDA) and has been used
widely[25] (spin dependent LDA was also introduced[5]). Also other famous ap-
proximations are introduced to improve the LDA results. As one of them, gen-
eralized gradient approximation (GGA) takes into account the correction for the
gradient of the local density ∇n(r).[25, 32–35]. These approximation forms lead
to removal of the ambiguity in the effective potential δExc/δn from the exchange-
correlation function Exc.

LDA and GGA have the advantage of being simple in form due to their locality.
It is well known that the LDA and GGA are appropriate for calculations of clusters
including s- and p-orbitals; but on the other hand not appropriate for some system
including d-orbitals. In order to get the precise calculation for complex systems, we
have to consider the non-local term[35, 36] or have to take into account orbital de-
pendent correction like Hubbard +U approach. The justification of this non-locality
is already proven byA. Seidl, A. Görling, P. Vogl, J. A.Mahewski, andM. Levy(1996),
whose method is famous as generalized KS equation[37]. In this aspect of the non-
locality importance, the self-energy correction in QP theory is very essential too, and
it is big problem to clarify the relation between QP theory and KS theory (the second
study[2] gives one solution for this problem).
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2.2 Spin-orbit coupling

The spin-orbit coupling (SOC) is one of the relativistic effects derived from the Dirac
equation[13, 38]. The SOC is responsible for energy level splitting and fine struc-
ture, playing the important role for spintronics devices because the SOC reduces
band gaps and gives band structures as the sources inducing spin currents. For this
reason, developing a new method for the SOC calculation is noticeable to activate
these fields.

2.2.1 Spin-orbit coupling around nuclei

The exact SOC is defined by[13, 38]

HSOC = − 1
4c2

σ · (E× p) =
1
2c2

S · (∇V × p) , (2.21)

where σ is the Pauli’s spin matrix, S = σ/2 is the spin operator, E = −∇V is the
electric field, p = −i∇ is the momentum operator, and c = 137.036 is the light ve-
locity in Hartree atomic unit (m = e = h̄ = 1). Generally, Eq. (2.21) is used for plane
wave basis calculation in homogeneous electron systems. Here, we can introduce a
symmetry approximation

V(r− Rn) ≃ V(|r− Rn|), (2.22)

for the potential in the neighborhood around each nucleus because the Coulombic
potential is mainly contributed from the nearest nucleus, in neighborhood around
each nucleus. For brevity, take the coordinate of nucleus as the origin and ∇V × p
becomes

∇V × p ≃ 1
r

∂V(r)
∂r

L, (2.23)

where L = r× p denotes orbital angular momentum operator. Using Eqs. (2.22) and
(2.23), Eq. (2.21) becomes

HSOC =
1
2c2

1
r

∂V(r)
∂r

S · L. (2.24a)

This equation is rewritten as

HSOC =
1
2c2

1
r

∂V(r)
∂r

1
2
(S+L− + S−L+) + SzLz, (2.24b)

where S =
(
Sx, Sy, Sz

)
and S± = Sx ± iSy operating on spin state, called the spin

ladder operator, satisfy following equations

S+ | sz = +
1
2
⟩ = 0, (2.25a)

S+ | sz = −1
2
⟩ = | sz = +

1
2
⟩, (2.25b)

S− | sz = +
1
2
⟩ = | sz = −1

2
⟩, (2.25c)

S− | sz = +
1
2
⟩ = 0. (2.25d)
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FIGURE 2.1: Structure and contour lines of potentials; dotted lines de-
note the isolated atomic potential contour lines and solid lines denote
the total Coulomb potential contour lines; (a) illustration for isolated

contours, (b) illustration for total contours.

Also L± = Lx ± iLy, operating on orbital momentum state like S±, satisfy following
equations

L± | l,m ⟩ =
√

l(l + 1)−m(m± 1) | l,m± 1 ⟩. (2.26)

Especially, L± | l,m ⟩ = 0 in the case l < |m ± 1|. From these relations, Eqs. (2.24)
under Eq. (2.22) is valid near the nucleus; on the other hand this approximation
is not valid in interatomic regions, where the potential has a non-symmetric form
(see Fig. 2.1). The matrices of Eq. (2.24) are easily calculated by the orthogonality of
atomic orbitals | n, l,m, sz ⟩ = | n, l,m ⟩ | sz ⟩; ⟨ n′, l′,m′ | n, l,m ⟩ = δn′,nδl′,lδm′,m

⟨ n′, l′,m′ | L± | n, l,m ⟩ =
√

l(l + 1)−m(m± 1)⟨ n′, l′,m′ | n, l,m± 1 ⟩. (2.27)

Therefore, Eqs. (2.24) are suitable for ab initio calculations with local atomic basis.
On the other hand, the SOC contributed from valence electrons, including d- and f-
orbitals, have to be calculated by the exact SOC form equation (2.21). That is because
d- and f-orbitals are expanded broadly in the interatomic regions (see Fig. 2.2). In my
thesis, Takeru Nakashima and Kaoru Ohno. “Spin-Orbit Coupling in All-Electron
Mixed Basis Approach”. Annalen der Physik, 531 9: 1900060 (2019).[1], I propose a
new calculation method taking into account the full SOC effects contributed from
the core and valence electrons using the both SOC forms, Eqs. (2.21) and (2.24)
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FIGURE 2.2: Each electron density for s- and d-orbital around nucleus
is represented schematically. This sketches show that d-orbitals are
expanded and may deform the potential in the intermediate space

between nuclei

2.3 All-electron mixed basis approach

First-principles calculation is highly dependent on the capability of computer, and
their computational cost is dependent on various methods for first-principles calcu-
lations. One of the issues related to the computational cost is choice of basis func-
tions. This means that the computational cost is lower when the wave function is
well represented by a small set of basis functions. There are several basis approaches
developed in order to perform the precise calculation efficiently.

Linear combination of atomic orbitals (LCAO) can enable us to treat the localized
wave functions like inner orbitals efficiently. But, LCAO has the intrinsic problem of
incomplete basis set, which has difficulty in perturbation theory or spectral expan-
sion. LCAO approach such as Gaussian basis approach has the basis set superposi-
tion error (BSSE) too.

In order to remove these problems, it is very important to develop a newmethod
which combines the PW expansion technique with the LCAO technique to remove
pseudopotentials in the PW expansion methods and to make the basis set complete
in the LCAOmethods. This is the main idea to introduce the all-electron mixed basis
(AEMB) approach[17].

AEMB expands one-particle wave functions as both local basis and non-local
basis[17, 39],

| ϕ ⟩ = ∑
i
| ϕL

i ⟩CL
i + ∑

j
| ϕNL

j ⟩CNL
j , (2.28)

where ϕL
i and ϕNL

j denote local and non-local basis, respectively, and if those basis
show orthogonality each other, their coefficients are Cα

i = ⟨ ϕα
i | ϕ ⟩. Our method

takes local basis as numerical isolated atomic orbitals (AOs) and non-local basis as
plane waves (PWs). For example, the Kohn-Sham (KS) wave function is expanded
as

ϕλ(r) = ∑
jnlm

cAO
λ,jnlmϕAO

jnlm(r− Rj) +
1√
Ω

∑
G

cPWλ,Ge
iG·r (2.29a)

= ∑
jnlm

cAO
λ,jnlmRnl(rj)Ylm(r̂ j) +

1√
Ω

∑
G

cPWλ,Ge
iG·r , (2.29b)

where Rnl(r j) and Ylm(r̂ j) are the radial function and the spherical harmonics of
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FIGURE 2.3: (a) The schematic two regions, composed of the non-
overlapping atomic spheres and the interatomic regions. In the non-
overlapping atomic sphere, the wave function is represented by the
linear combination of AOs and PWs. On the other hand, in the in-
teratomic region, the wave function is expanded by PWs only. (b)
The true wave function is represented by both yellow region and
green region. In yellow region, the wave function is represented by
AOs and in green region, the wave function is represented by PWs.
Therefore, this separation treatment says that the wave function is
represented by AOs and PWs in the non-overlapping atomic spehere
and the wave function in the regions except non-overlapping atomic

sphere is represented by PWs only.

each atom, r j = r − Rj, r̂ j = r j/rj, Rj denotes nucleus coordinate, Ω is the volume
of the unit cell, G is reciprocal lattice vector. Here j, n, l, and m are atomic species,
principal quantum number, angular momentum quantum number, and magnetic
quantum number, respectively. In our code, TOMBO[1, 17, 40–45], the atomic wave
function is composed of cubic harmonics instead of spherical harmonics and the
matrix calculation is performed analytically. AOs describe the cusp-like behavior in
the wave function near the nuclei. All AOs are confined inside the non-overlapping
atomic spheres, which remove the computation of complicated overlap integrals be-
tween AOs centered at adjacent atoms (see Fig. 2.3)[17]. In our code, TOMBO, the
numerical atomic orbital is obtained from the Herman-Skillman code. The Herman-
Skillman code gives numerical atomic orbitals solving the Hartree-Fock equation
self-consistently. Therefore, those numerical atomic orbitals include the screening
effect partially, which means that the orbitals tend to be broader than the hydrogen-
like orbitals.
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2.4 Green’s function theory

The first application of the Green’s function technique in physics is introduced into
quantum field theory[46, 47] and their applications are well known already[8, 48–
53]. Recently, a method has been applied to condensed matter physics, i.e. strong
correlation theory and first-principles calculation, mainly based onHedin’smethod[6–
8, 54]. The Green’s function gives various information, excitation energies in many-
body systems, ionization energy, transition density matrix, and polarizability and so
on, without knowing the explicit wave function[7, 53–55]. Additionally, the Green’s
function approach is very convenient to give the one-particle picture in perturba-
tion theory. In this chapter, I put brief explanations about the basic knowledge and
general applications of the Green’s function method and the Hedin’s approach.

2.4.1 One- or two-particle Green’s function

Originally, the Green’s function is the concept appearing in mathematics (details in
appendix A). Here, we focus on the Green’s function appearing as a propagator in
quantum field theory and condensed matter physics. There are a lot of great texts,
reviews, and papers[7–9, 48, 50–55].

The one-particle Green’s function for electron field (zero temperature) is defined
by

G(1, 2) = −i⟨ΨN
0 | T

[
ψ(1)ψ†(2)

]
|ΨN

0 ⟩ ; ⟨ΨN
0 |ΨN

0 ⟩ = 1, (2.30)

where numbers are abbreviations for position and time coordinates, i.e. i = (ri, ti),
ψ(i) and ψ†(i) denote electron annihilation and creation field Heisenberg operator,
respectively,

ψ(i) = e+iHtiψ(ri)e−iHti , (2.31a)

ψ†(i) = e+iHtiψ†(ri)e−iHti , (2.31b)

in the Heisenberg representation, while ψ(ri) and ψ†(ri) electron annihilation and
creation operator in the Schrödinger representation (notice that Eqs. (2.31) are no
longer valid if ∂H/∂t ̸= 0). T[· · · ] is Wick’s time ordered product[56], and ΨN

0 is the
N-particle ground state as H |ΨN

0 ⟩ = EN
0 |ΨN

0 ⟩, defined by Eq. (2.1). Wick’s time
ordered product is defined by

T [A1(t1)A2(t2)] = A1(t1)A2(t2)Θ(t1 − t2)− A2(t2)A1(t1)Θ(t2 − t1), (2.32)

where Ai corresponds to an electron field operator, i.e. fermion operator, and Θ is
the Heaviside’s step function

Θ(t1 − t2) =

{
1 ; t1 − t2 > 0
0 ; t1 − t2 < 0

. (2.33)

In the general Green’s function method in classical quantum mechanics, it is helpful
to suppose the time translational symmetry, i.e. G(1,2) depends only on the differ-
ence t1 − t2, for convenience

G(1, 2) = G(r1, r2|t1 − t2). (2.34a)
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Upon taking the time Fourier transformation, Eq. (2.34a) becomes

G(r1, r2|ω) =
∫

dτ G(r1, r2|τ)e+iωτ. (2.34b)

Equations (2.34) make any one-particle physical value ⟨A⟩ computable. Suppose
that any one-particle physical operator like kinetic operator

A =
∫

dr ψ†(r)A(r)ψ(r), (2.35)

which leads to

⟨A⟩ =
∫

dr⟨ΨN
0 |ψ†(r)A(r)ψ(r) |ΨN

0 ⟩

=
∫

dr1dr2δ(r1 − r2)⟨ΨN
0 |ψ†(r2)A(r1)ψ(r1) |ΨN

0 ⟩

= −
∫

dr1dr2 δ(r1 − r2)A(r1)⟨ΨN
0 | T

[
ψ(r10)ψ†(r20+)

]
|ΨN

0 ⟩.

Using Eq. (2.30), ⟨A⟩ can be represented by the one-particle Green’s functionG(r1, r2|0−)
in time space, where 0− denotes a negative infinitesimal number,

⟨A⟩ = −i
∫

dr1r2 δ(r1 − r2)A(r1)G(r1, r2|0−). (2.36a)

Here, please notice that G(r1, r2|0−) = G(r1t, r2t+) because we suppose the time
translational invariance. Owing to Eqs. (2.34), ⟨A⟩ can be represented also byG(r1, r2|ω)
in ω space

⟨A⟩ = −i
∫

dr1dr2
∫ dω

2π
δ(r1 − r2)A(r1)G(r1, r2|ω)e−iω0− . (2.36b)

From Eqs. (2.36), specifically electron density n(r) = ψ†(r)ψ(r) becomes

⟨n(r)⟩ = −iG(r, r|0−) =
∫ dω

2π
G(r, r|ω)e−iω0− . (2.37)

Above discussion shows that if the one-particle Green’s function is known, easily
one-particle physical value is calculated. (Please notice that we do not explain the
Green’s function G(k| · · · ) for wave number space because we do not focus on a
homogeneous electron system, where G(1,2) depends on the difference r1 − r2, in
this doctoral thesis.)

The two-particle Green’s function[47] is defined, like the one-particle Green’s
function G Eq. (2.30), by

K(1, 2; 3, 4) = −⟨ ΨN
0 | T

[
ψ(1)ψ(2)ψ†(4)ψ†(3)

]
|ΨN

0 ⟩ ; ⟨ΨN
0 |ΨN

0 |= ⟩1. (2.38)

Equation (2.38) can be applied to two-particle physical value in similar way of the
one-particle Green’s function, like Eqs. (2.36). Specifically, the electron-electron Coulomb
interaction Eint = ⟨V⟩ can be calculated by the two-particle Green’s function

Eint =
1
2

∫
dr1dr1v(r1 − r2)K(r10, r20; r10+, r20+), (2.39)
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where also please notice that K(r10, r20; r10+, r20+) = K(r1t, r2t; r1t+, r2t+) ∀t, un-
der time translational invariance. Equations (2.1), (2.36), and (2.39) show that total
energy Etotal = ⟨T⟩+ ⟨U⟩+ ⟨V⟩ is

Etotal = −i
∫

dr1dr2δ(r1 − r2) (T(r1) +Uext(r1))G(r1, r2|0−)

+
1
2

∫
dr1dr1v(r1 − r2)K(r10, r20; r10+, r20+). (2.40)

Above discussion implies that the Green’s function has a lot of information related
to one- and two-particle behaviors. Therefore, if the Green’s function is known, we
can know various physical properties. As one of the famous examples, the spectral
function (which is observed in photoemission and inverse photoemission) is calcu-
lated by the Green’s function. In order to explain the spectral function, we need to
explain quasiparticle wave functions (QPWFs) and quasiparticle (QP) energies, and
I put the details in latter section. Spectral function A(r1, r2|ω) in frequency space is
related with the one-particle Green’s function G(r1, r2|ω) as follows

Re (G(r1, r2|ω)) = P
∫

dω′ A(r1, r2|ω′)

ω′ − ω
, (2.41a)

Im (A(r1, r2|ω)) = − 1
π
Im (G(r1, r2|ω)) sgn(ω − µ), (2.41b)

where P
∫
· · · denotes Cauchy principal value, µ is a chemical potential, and sgn is

the sign function defined by

sgn(x) = Θ(x)− Θ(−x). (2.42)

Spectral function is represented by QPWFs and plays an important role for Lehmann
representation, which is used in self-consistent GW approach[57, 58].
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2.4.2 Dyson equation

Section 2.4.1 explains that the Green’s function gives one- or two-particle informa-
tion and leads to easy calculations of various physical values. Here, we have to
consider a method to obtain the Green’s function in actual calculations.

Consider the Heisenberg equation of motion for electron annihilation operator

i
∂

∂t1
ψ(1) = [ψ(1),H]

= h(1)ψ(1) +
∫

d3v(1, 3)ψ†(3)ψ(3)ψ(1), (2.43)

where H is represented by

H =
∫

drψ†(r)h(r)ψ(r) +
1
2

∫
dr1dr2v(r1 − r2)ψ†(r1)ψ†(r2)ψ(r2)ψ(r1), (2.44)

where h(r) = T(r) +Uext(r) is one-electron operator; T(r) = −∇2/2 is kinetic en-
ergy and Uext(r) is external potential, and anti-commutation of electron field opera-
tors are used [

ψ(r1),ψ†(r2)
]
+
= δ(r1 − r2), (2.45a)

[ψ(r1),ψ(r2)]+ = 0, (2.45b)[
ψ(r1)†,ψ†(r2)

]
+
= 0, (2.45c)

and v(1, 3) = v(r1 − r3)δ(t1 − t3) is introduced. Multiplying ψ†(2) by both sides of
Eq. (2.43) and taking Wick’s time ordered and inner product with ground state ΨN

0
for Eq. (2.44), we obtain a governing equation composed of the one-particle Green’s
function G and the two-particle Green’s function K

i
∂

∂t1
G(1, 2)− h(r)G(1, 2) + i

∫
d3v(1, 3)K(1, 3−; 2, 3+) = δ(1, 2), (2.46)

where δ(1, 2) = δ(r1 − r2)δ(t1 − t2) and the following relation is used[48],

T
[

∂

∂t1
ψ(1)ψ†(2)

]
=

∂

∂t1
T
[
ψ(1)ψ†(2)

]
− δ(1, 2).

Here, we have to notice that there are several time orders for the two-particle Green’s
function as follows ∫

d3 v(1, 3)T
[
ψ†(3+)ψ(3−)ψ(1)ψ†(2)

]
(2.47a)

=
∫

d3 v(1, 3)T
[
ψ†(3+)ψ(3)ψ(1−)ψ†(2)

]
(2.47b)

=
∫

d3 v(1, 3)T
[
ψ†(3++)ψ(3+)ψ(1)ψ†(2)

]
(2.47c)

=
∫

d3 v(1, 3)T
[
ψ†(3+)ψ(3)ψ(1+)ψ†(2)

]
(2.47d)

=
∫

d3 v(1+, 3)T
[
ψ†(3+)ψ(3)ψ(1)ψ†(2)

]
(2.47e)

=
∫

d3 v(1, 3−)T
[
ψ†(3+)ψ(3)ψ(1)ψ†(2)

]
. (2.47f)
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The expression used for discussion depends on papers, and there are still other rep-
resentations. In order to make Eq. (2.46) solvable self-consistently, introduction of
the following integral transformation is important∫

d3Σ(1, 3)G(3, 2) = −i
∫

d3v(1, 3)K(1, 3−; 2, 3+). (2.48)

This integral kernel Σ is called self-energy, and the main difficulty in the Green’s
function approach is how to obtain the practical form of this kernel. Substitute
Eq. (2.48) into Eq. (2.46), we obtain

i
∂

∂t1
G(1, 2)− h(r1)G(1, 2)−

∫
d3Σ(1, 3)G(3, 2) = δ(1, 2), (2.49a)

which is called Dyson equation in differential form in time space. Also, taking time
Fourier transformation to Eq. (2.49a) gives

ωG(r1, r2|ω)− h(r1)G(r1, r2|ω)−
∫

dr3Σ(r1, r3|ω)G(r3, r2|ω) = δ(r1 − r2), (2.49b)

which is called Dyson equation in the frequency space, and the time Fourier trans-
formation for the self-energy is introduced like the one-particle Green’s function

Σ(r1, r2|t1 − t2) =
∫ dω

2π
Σ(r1, r2|ω)e−iω(t1−t2). (2.50)

Using Eqs. (2.40) and (2.48), electron-electron Coulomb interaction Eint is

Eint = +
i
2

∫
d(12)Σ(1, 2)G(2, 1+), (2.51a)

which is also represented by

Eint = +
i
2

∫
dr1dr2

dω

2π
Σ(r1, r2|ω)G(r2, r1|ω)e+iω0+ . (2.51b)

These Eint representations with self-energy are called Galitskii-Migdal formula[48].
Then, we can easily calculate the total energy with the one-particle Green’s func-
tion[48]

Etotal = −i
∫

d(12)
[

δ(1, 2)h(1)− 1
2

Σ(2, 1)
]
G(1, 2+). (2.52)

Classically, there are two trends in the Green’s function approach studies[53]; one
is based on the Heisenberg equation of motion and another is many-body pertur-
bation theory (MBPT) relying on Gell-Mann& Low’s adiabatic theorem and Wick’s
theorem for zero temperature (Bloch-Dominics theorem for finite temperature)[56,
59–61]. MBPT is currently the dominant approach because it is very difficult to ob-
tain the self-energy based on the Heisenberg equation of motion[6, 52, 62, 63]. In
MBPT, self-energy Σ(1, 2) is divided into Hartree term vH(1)δ(1, 2) and mass term
M(1, 2) for convenience

M(1, 2) = +i
∫

d(34)G(1, 3)W(1+, 4)Γ̃(3, 2; 4). (2.53)

In this doctoral thesis, in order to distinguish between self-energy and self-energy
except theHartree term, Σ is called the self-energy and M is treated as the self-energy
except the Hartree term, which is called mass term to avoid confusion. W denotes
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dynamically screened Coulomb interaction defined by

W(1, 2) =
∫

d3 ϵ−1(1, 3)v(3, 2), (2.54)

where ϵ−1 denotes the inverse (longitudinal) dielectric matrix. The inverse dielectric
matrix is calculated by

ϵ−1(1, 2) = δ(1, 2) +
∫

d(34)v(1, 3)χ̃(3, 2), (2.55)

where χ̃ denotes the (irreducible) polarizability. In actual calculation, ϵ−1 is ob-
tained by Adler-Wiser’s pertubative random-phase approximation[64, 65] or using
the following relation, ϵ(k)−1 = ϵ−1(k) for homogeneous system. Also, substitut-
ing Eq. (2.55) into Eq. (2.54), we understand that the dynamically screened Coulomb
interaction satisfies the following integral equation

W(1, 2) = v(1, 2) +
∫

d(34)W(1, 3)χ̃(3, 4)v(4, 2), (2.56)

and (irreducible) polarizability is defined by

χ̃(1, 2) = −iG(1, 3)G(4, 1+)Γ̃(3, 4; 2). (2.57)

Γ̃ denotes scalar (irreducible) vertex function defined by the following integral equa-
tion

Γ̃(1, 2; 3) = δ(1, 2)δ(2, 3) +
∫

d(4567)
δM(1, 2)
δG(4, 5)

G(4, 6)G(7, 5)Γ̃(6, 7; 3). (2.58)

From Eqs. (2.49), we obtain the inverse Green’s function G−1(1, 3), satisfying∫
d3G−1(1, 3)G(3, 2) = δ(1, 2), (2.59)

and analytically defined by

G−1(1, 3) =
(
i

∂

∂t1
− h(1)

)
δ(1, 3)− Σ(1, 3), (2.60)

Suppose the non-interacting Green’s function G−1
0 satisfying∫

d3 G−1
0 (1, 3)G0(3, 2) =

(
i

∂

∂t1
− h(1)

)
G0(1, 2) = δ(1, 2). (2.61)

Combining Eqs. (2.60) and (2.61) shows that the Dyson equation (2.49a) is∫
d3
(
G−1
0 (1, 3)− Σ(1, 3)

)
G(3, 2) = δ(1, 2), (2.62)

which gives that

G(1, 2) = G0(1, 2) +
∫

d(34)G0(1, 3)Σ(3, 4)G(4, 2). (2.63)

This is also the Dyson equation. These Eqs. (2.53), (2.56), (2.57), (2.58), and (2.63) are
represented by Fig. 2.4 (a), (b), (c), (d), and (e), respectively. These 5 coupled equa-
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FIGURE 2.4: Hedin’s coupling 5 equations represented by Feynman
diagram[7].

tions are introduced by Hedin (1965)[6] and solved self-consistently like Fig. 2.5.
We have to notice that it is very difficult to solve the 5 coupled equations self-
consistently. so the GW approximation has great meaning in this Hedin’s calcula-
tion, and that brief explanation for GW approximation is put in the next subsec-
tion[6–9, 54, 58, 66].



2.4. Green’s function theory 23

FIGURE 2.5: Flow chart to solve the Hedin’s 5 coupled equations self-
consistenly

2.4.3 GW approximation

GW approximation makes the Hedin’s coupled equations solvable, and actually
gives good agreement with experimental results[6–9, 14, 18–21, 54, 58, 66]. The dif-
ficulty to solve Hedin’s 5 coupled equations self-consistently is accompanied in the
vertex function Γ̃. Hedin introduced the approximation for Γ̃ as[6, 54]

Γ̃(1, 2; 3) ≃ δ(1, 2)δ(2, 3), (2.64)

which corresponds to neglect the second term in Eq. (2.58) and reduces the Hedin’s
5 coupled equations into 4 coupled simple equations

G(1, 2) = G0(1, 2) +
∫

d(34)G0(1, 3)Σ(3, 4)G(4, 2), (2.65a)

M(1, 2) = +iG(1, 2)W(1+, 2), (2.65b)

W(1, 2) = v(1, 2) +
∫

d(34)W(1, 3)χ̃(3, 4)v(4, 2), (2.65c)

χ̃(1, 2) = −iG(1, 2)G(2, 1+). (2.65d)

Here please notice that Σ(1, 2) = δ(1, 2)vH(1) + M(1, 2). The form of Eq. (2.65b)
is symbolically GW, that is why this approximation is called GW approximation.
GW approximation neglects the calculation step for Γ̃ part (e) in Fig. 2.5. This simple
approximation leads tomore reasonable calculations comparedwith the full Hedin’s
5 coupled equations approach. In terms of computational cost, the GW approaches
are preferred in a lot of previous papers and shows the great successes.
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2.4.4 Baym-Kadanoff’s conservation law

As another approach to obtain a self-energy form in MBPT, Baym-Kadanoff’s con-
servation law is very famous method to give a good approximation form of the
two-particle Green’s function K[7, 67, 68]. In Baym and Kadanoff’s original paper
(1961)[67], there are three conditions in order to conserve macroscopic physical val-
ues; as examples, number, momentum, total angular momentum, and energy, and
so on. Specifically, Baym and Kadanoff’s three conditions are as follows

A. For a given approximate two-particle Green’s function K, the approximate
G satisfies both left- and right-eigenvalue equations, described later such as
Eqs. (2.69).

B. The two-particle Green’s function K satisfies the following symmetry

K(1, 3; 1+, 3+) = K(3, 1; 3+, 1+).

C. The two-particle effective interaction Ξ = δM/δG satisfies the following sym-
metry

Ξ(1, 2; 3, 4) = Ξ(2, 1; 4, 3). (2.66)

It is very important that mainly, if conditions (A) and (B) are satisfied, the one-
particle Green’s function G obtained from the Dyson equation satisfies all the conser-
vation laws[67]. These three conditions proposed by Baym and Kadanoff (1961)[67]
are equal to be one condition proposed by Baym (1962)[68]. Briefly, the equal condi-
tion proposed by Baym (1962) [68] is as follows

D. the self-energy has the ⟨Φ−derivable⟩ representation

Σ(1, 2) =
δΦ

δG(2, 1)
, (2.67)

analogous to the Luttinger-Ward functional Φ[49, 69, 70] such as Fig. 2.6.

In MBPT, taking together from these diagram derived from Φ leads to the conserva-
tions of macroscopic physical values. In other respect, Eq. (2.67) guarantees that the
left-Dyson equation

− i
∂

∂t2
G(1, 2)− h(2)G(1, 2)−

∫
d3G(1, 3)Σ̄(3, 2) = δ(1, 2), (2.68)

and right-Dyson equation (2.49a) have the same self-energy kernel, Σ = Σ̄[7]. For
simplicity, it is useful to introduce the following abstract form in frequency space

(ω − h− Σ(ω))G(ω) = 1, (2.69a)
G(ω) (ω − h− Σ(ω)) = 1, (2.69b)

where G(r1, r2|ω) = ⟨ r1 |G(ω) | r2 ⟩[71]. These are the left- and right-eigenvalue
problems in frequency space similar to conventional ones[26]. Equations (2.69) play
important roles in my study[2] for the normalization of QPWFs, which leads to the
extended Kohn-Sham equation.
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FIGURE 2.6: The functional Φ for Baym-Kadanoff’s conservation law;
(a), (b), and (c) is first, second, and third order terms on potential,
respectively, example Φ diagram. Especially, (a) gives the Hartree-

Fock diagrams.

2.4.5 Quasiparticle wave function

One of the advantages in the Green’s function approach is that it can be used to cal-
culate arbitrary physical quantities without explicit wave functions. But, of course,
one can also introduce virtual single-particle wave functions, which is called QP-
WFs. QPWFs have two forms in the zero temperature Green’s function approach.

ϕµ(1) = ⟨ΨN−1
µ |ψ(1) |ΨN

0 ⟩, (2.70a)

ϕν(1) = ⟨ΨN
0 |ψ(1) |ΨN+1

ν ⟩, (2.70b)

where ΨN±1
λ are eigenstates for (N ± 1)-particle system, satisfying H |ΨN−1

µ ⟩ =

EN−1
µ |ΨN−1

ν ⟩ and H |ΨN+1
ν ⟩ = EN+1

ν |ΨN+1
ν ⟩, and they denote occupied (occ) and

emptied (emp) states, respectively (also, Eqs. (2.70b) and (2.70b) are called quasi-
hole and quasi-electron, respectively). Because ψ(1) is Heisenberg representation,
Eqs. (2.70) become

ϕλ(1) = ϕλ(r1)e−iελt1 , (2.71)

where ϵλ denotes

εµ = EN
0 − EN−1

µ , (2.72a)

εν = EN+1
ν − EN

0 , (2.72b)
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together, and the suffix µ and ν denote occ and emp states respectively. QPWFs in
position component are defined by

ϕµ(r1) = ⟨ΨN−1
µ |ψ(r1) |ΨN

0 ⟩, (2.73a)

ϕν(r1) = ⟨ΨN
0 |ψ(r1) |ΨN−1

ν ⟩. (2.73b)

Using the commutation relation of electron creation and annihilation operators Eq.
(2.45a), we can obtain the completeness represented by QPWFs[44],

δ(r1 − r2) = ⟨ΨN
0 | [ψ(r1)ψ†(r2) + ψ†(r2)ψ(r1)] |ΨN

0 ⟩
= ∑

ν∈emp
⟨ΨN

0 |ψ(r1) |ΨN+1
ν ⟩⟨ ΨN+1

ν |ψ†(r2) |ΨN
0 ⟩

+ ∑
µ∈occ

⟨ΨN
0 |ψ†(r2) |ΨN−1

µ ⟩⟨ ΨN−1
µ |ψ(r1) |ΨN

0 ⟩

= ∑
λ∈all

ϕλ(r1)ϕ∗
λ(r2)

= ∑
µ∈occ

ϕµ(r1)ϕ∗
µ(r2) + ∑

ν∈emp
ϕν(r1)ϕ∗

ν(r2). (2.74)

This equation is derived from the completeness condition in Fock space

1+ ∑
N=1

1
N! ∑

i
|ΨN

i ⟩⟨ ΨN
i | = IFock ; ⟨ΨN

i |ΨN′
i′ ⟩ = δN,N′δi,i′ , (2.75)

where IFock denotes the identity operator for the Fock space. Equation (2.74) means
that any state | f ⟩ in one-particle space is expanded byQPWFs, | f ⟩ = ∑λ | ϕλ ⟩⟨ ϕλ | f ⟩,
which are defined as f (x) = ⟨ x | f ⟩ and ϕλ(x) = ⟨ x | ϕλ ⟩. This interesting point is
that {ϕλ} is not orthogonal each other due to the self-energy’s dependent on QP en-
ergy, Σ(ελ). Especially, the electron density matrix ρ(1, 2) = ⟨ΨN

0 |ψ†(2)ψ(1) |ΨN
0 ⟩

is represented by

ρ(1, 2) = ⟨ΨN
0 |ψ†(2)ψ(1) |ΨN

0 ⟩ = ∑
µ∈occ

⟨ΨN
0 |ψ†(2) |ΨN−1

µ ⟩⟨ ΨN−1
µ |ψ(1) |ΨN

0 ⟩

= ∑
µ∈occ

ϕ∗
µ(2)ϕµ(1) = ∑

µ∈occ
ϕ∗

µ(r2)ϕµ(r1)e−iεµ(t1−t2), (2.76)

which means that the electron density is represented by infinite number of occ QP-
WFs. (This requirement that the representation for the electron density needs the
infinite number of occ QPWFs makes the QP calculation very difficult.)

The one-particle Green’s function, Eq. (2.30), is represented by QPWFs

G(1, 2) = −iϕµ(r1)ϕµ(r2)e−iεµ(t1−t2)Θ(t1 − t2) + iϕν(r1)ϕν(r2)e−iεν(t1−t2)Θ(t2 − t1),
(2.77a)

and Eq. (2.34b) becomes

G(r1, r2|ω) = ∑
µ

ϕµ(r1)ϕ∗
µ(r2)

ω − ϵµ − i0+
+ ∑

ν

ϕν(r1)ϕ∗
ν(r2)

ω − ϵν + i0+
, (2.77b)

where 0+ is infinitesimal number. Using Eqs. (2.49b) and (2.77b), the residue around
each QP energy like Fig. 2.7 gives the Dyson equation for each QPWF

h(r1)ϕλ(r1) +
∫

dr3Σ(r1, r2|ϵλ)ϕλ(r2) = ϵλϕλ(r1), (2.78a)
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FIGURE 2.7: The residue around each QP energy in frequency space.

which is also called the QP equation. The KS wave functions and QPWFs are con-
sidered to be very similar, and generally the KS states are treated as initial states
in actual QP calculations like Fig. 2.8[9, 14, 19, 20, 28]. The number of occ QPWFs
obtained in such calculation is finite (which is equal to the electron number). This is
in contradiction with the requirement that original QP theory has infinite number of
occupied states (mathematically which is shown in Eq. (2.76) and the norms of the
QPWFs are less than one ⟨ ϕλ | ϕλ ⟩ ≤ 1). The explanation for the norm of QPWFs is
put in subsection 4.2.2.

As remarkable feature, the present study[2] proved that QPWFs also obey the
left- and right-eigenvalue problems similar to conventional ones[26]. This require-
ment is very surprising and interesting. From Eq. (2.69b) in the same way, we obtain
the left-eigenvalue problem

h(r2)ϕ∗
λ(r2) +

∫
dr3ϕ∗

λ(r3)Σ(r3, r2|ελ) = ϕ∗
λ(r2)ελ. (2.78b)

Equations (2.78a) and (2.78b) look complicated, then it is helpful to introduce the
abstract forms like Eq. (2.69) for simplicity

(h+ Σ(ϵλ)) | ϕλ ⟩ = ϵλ | ϕλ ⟩, (2.79a)
⟨ ϕλ | (h+ Σ(ϵλ)) = ⟨ ϕλ | ϵλ. (2.79b)

These left- and right-eigenvalue equations are very useful relation in various dis-
cussions and play important roles to derive the extended KS equation in my the-
sis; Takeru Nakashima, Hannes Raebiger, and Kaoru Ohno. “Normalization of ex-
act quasiparticle wave functions in the Green’s function method guaranteed by the
Ward identity”. Physical Review B, 104 20: L201116 (2021).[2]. The details for the
extended KS equation are explained in chapter 4.
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FIGURE 2.8: The example flow chart for the self-consistent GW calcu-
lation
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Chapter 3

New method to calculate the SOC
with AEMB

This chapter shows a new method to calculate the spin-orbit coupling (SOC) (see
chapter 2.2) with all-electron mixed basis (AEMB) approach (see chapter 2.3), and
this study is reported in the following paper; Takeru Nakashima and Kaoru Ohno.
“Spin-Orbit Coupling in All-electron Mixed Basis Approach”. Annalen der Physik,
531 9: 1900060 (2019).[1]. The SOC is the one of the relativistic effects derived from
the Dirac equation, as explained in chapter 2[13]. The SOC splits band structures,
which play important roles in spintronics devices[72, 73]. I tried to develop a new
calculation method to improve difficulties of combining the quasiparticle (QP) the-
ory and the SOC calculation, and hope that the present study will be useful for the
active study in spintronics fields.

It is very difficult to include the SOC directly in the QP equation because even
only the QP equation requires much more computational cost to solve. In order to
avoid this computational difficulty, the present method makes use of the similarity
between the quasiparticle wave functions (QPWFs) and Kohn-Sham (KS) orbitals[14,
15], that is, the SOC splitting is taken as perturbation and calculated by using KS
orbitals. Their results are combined with results from QP theory.

In the framework of KS theory to calculate the SOC, there is the SOC form prob-
lems (which is already discussed in subsection 2.2). The exact Hamiltonian for the
SOC is represented by Eq. (2.21)

HSOC = − 1
4c2

σ · (E× p) =
1
2c2

S · (∇V × p) ,

and under spherical symmetric approximation for the effective potentialV(r−Rn) ≃
V(|r− Rn|) in KS theory, HSOC becomes

HSOC =
1
2c2

1
r

∂V(r)
∂r

S · L.

This equation is also represented by

HSOC =
1
2c2

1
r

∂V(r)
∂r

1
2
(S+L− + S−L+) + SzLz,

using the ladder operators defined in subsection 2.2. It is clear that Eqs. (2.24) are
not valid in the intermediate space between nucleus (see Fig. 2.1).

In actual first-principles calculations, the choice of basis is very important prob-
lem, i.e., atomic-like basis, free electron-like basis, or mixed basis. It is well known
that atomic-like basis set is suitable for calculations of the target wave functions lo-
calizing around nucleus. Because of this property, the atomic-like basis set tends to
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be applied to the isolated system. On the other hand, the free electron-like basis set
is suitable for the target wave functions expanding in space, specifically like valence
electrons related to bonds. Therefore, the free electron-like basis set tends to be ap-
plied to the crystal systems using pseudo-potentials. There are various basis choice
problems, but I omit the details here because that is not main problem for the present
study (the basis problem is explained briefly in subsection 2.3).

In my study, I try to take into account the SOC correction from both the core elec-
trons around the nuclei and the valence electrons in the intermediate space among
nuclei, using the AEMB. In the AEMB method, a spherical domain is set around
each nucleus, and where the wave function is expressed in terms of both numerical
atomic orbital and plane wave basis (see Eqs. (2.29) and section 2.3)

ϕλ(r) = ∑
jnlm

cAO
λ,jnlmϕAO

jnlm(r− Rj) +
1√
Ω

∑
G

cPWλ,Ge
iG·r , (3.1a)

= ∑
jnlm

cAO
λ,jnlmRnl(rj)Ylm(r̂ j) +

1√
Ω

∑
G

cPWλ,Ge
iG·r , (3.1b)

where Rnl(r j) and Ylm(r̂ j) are the radial function and the spherical harmonics of
each atom, r j = r − Rj, r̂ j = r j/rj, Rj denotes nucleus coordinate, Ω is the volume
of the unit cell, G is reciprocal lattice vector. Here j, n, l, and m are atomic species,
principal quantum number, angular momentum quantum number, and magnetic
quantum number, respectively. Outside the spherical domain, the wave function is
represented in the plane wave basis only

ϕλ(r) =
1√
Ω

∑
G

cPWλ,Ge
iG·r . (3.2)

This method is very suitable for the calculation of the SOC, which incorporates the
asymmetry of the nuclear potential (see Figs. 2.1-2.3). For the atomic orbital basis in
the spherical domain around each nucleus, the SOC representation matrix is calcu-
lated from Eq. (2.24), and the SOC representation for plane wave basis is calculated
from Eq. (2.21). In the following, I explain the formulation to calculate these SOC
matrices, how to get the final results, and the agreement of the calculation results
with the experimental results.
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3.1 Spin-orbit coupling in Kohn-Sham theory

The original spin-orbit coupling (SOC) in the one-electron Hamiltonian is expressed
by Eq. (2.21). In the all-electronmixed basis (AEMB) approach, atomic orbitals (AOs)
are well localized inside the non-overlapping atomic sphere, where the potential
around the j-th atom can be regarded as spherically symmetric, Vj(rj), to a very
good approximation (see Figs. 2.1-2.3). Then, the electric field can be expressed as

E = −∇Vj = −
r j
rj

dVj

drj
,

where r j = r − Rj denotes the electron coordinate around the nuclear position Rj.
Therefore, using the angular momentum L = r j × p, we can rewrite Eq. (2.21) as

HSOC =
1
2c2

1
rj

dVj

drj
S · L. (3.3)

In the AEMB approach, the Kohn-Sham (KS) wave function of the λ-th level is ex-
pressed as

φλ(r) =
1√
Ω

∑
G

cλ
Ge

iG·r + ∑
jnlm

cλ
jnlm ∑

nlm
Rnl(rj)Klm(r̂ j) (3.4a)

= ∑
G

cG⟨ r |G ⟩+ ∑
jnlm

cjnlm⟨ r | jnlm ⟩, (3.4b)

where Ω is the volume of the unit cell, cλ
G and cλ

jnlm are the expansion coefficients, G
is the reciprocal lattice vector, and Rnl(rj) and Klm(r̂ j) represent, respectively, the nu-
merical radial function in logarithmic mesh and the (angular part) cubic harmonics
constituting the AO.

In my study, for simplicity, the local density approximation (LDA) is applied to
Eq. (2.20), which leads to

δExc[n]
δn(r)

= ϵxc(n(r)) +
∂ϵxc(n(r))

∂n(r)
n(r), (3.5)

in Eq. (2.19). The effective KS potential V is defined by

V(r) =
∫

dr′v(r− r′)n(r′) +Uext(r) + ϵxc(n(r)) +
∂ϵxc(n(r))

∂n(r)
n(r), (3.6)

and the KS equation is represented by a simple form(
−1
2
∇2 +V(r)

)
ϕi(r) = ε iϕi(r). (3.7)

Additionally, actual calculations in the present study are performed by using the
following Hamiltonian

HKS = H0 + HSOC, (3.8a)

H0 = −1
2
∇2 +V(r)− p4

8c2
+

1
8c2

∆V(r). (3.8b)

The present calculation takes the SOC Hamiltonian as perturbation.
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3.1.1 SOC matrix calculated from spin states

In KS theory, for spin polarized system, KS effective potential V is dependent on
spin states[5]. In order to calculate the SOC by this spin dependent potential, we
calculate the SOC matrix defined by spin states as follows

HSOC =
1
4c2

S ·
{
∇(V↑ +V↓)× p

}
+

1
8c2
(

σzS+ Sσz
)
·
{
∇(V↑ −V↓)× p

}
=

1
4c2

S ·
{
∇(V↑ +V↓)× p

}
+

1
8c2
(
| ↑ ⟩⟨ ↑ | S− | ↓ ⟩⟨ ↓ | S+ S | ↑ ⟩⟨ ↑ | − S | ↓ ⟩⟨ ↓ |

)
·
{
∇(V↑ −V↓)× p

}
.

(3.9)

Thus we have

⟨ ↑ |HSOC | ↑ ⟩ = 1
2c2

⟨ ↑ | S | ↑ ⟩ ·
{
∇V↑ × p

}
, (3.10a)

⟨ ↑ |HSOC | ↓ ⟩ = 1
4c2

⟨ ↑ | S | ↓ ⟩ ·
{
∇(V↑ +V↓)× p

}
, (3.10b)

⟨ ↓ |HSOC | ↑ ⟩ = 1
4c2

⟨ ↓ | S | ↑ ⟩ ·
{
∇(V↑ +V↓)× p

}
, (3.10c)

⟨ ↓ |HSOC | ↓ ⟩ = 1
2c2

⟨ ↓ | S | ↓ ⟩ ·
{
∇V↓ × p

}
. (3.10d)

For spherical potential for AOs defined inside the non-overlapping sphere,∇Vσ × p
can be replaced by (1/r)(dVσ/dr)L, and Eqs. (3.10a)-(3.10d) become

⟨ ↑ |HSOC | ↑ ⟩ = 1
2c2

⟨ ↑ | S | ↑ ⟩ · L 1
r
dV↑
dr

, (3.11a)

⟨ ↑ |HSOC | ↓ ⟩ = 1
4c2

⟨ ↑ | S | ↓ ⟩ · L 1
r
d
dr

(V↑ +V↓), (3.11b)

⟨ ↓ |HSOC | ↑ ⟩ = 1
4c2

⟨ ↓ | S | ↑ ⟩ · L 1
r
d
dr

(V↑ +V↓), (3.11c)

⟨ ↓ |HSOC | ↓ ⟩ = 1
2c2

⟨ ↓ | S | ↓ ⟩ · L 1
r
dV↓
dr

. (3.11d)

This treatment corresponds to the use of an averaged potential (V↑ + V↓)/2 for the
calculation of the off-diagonal terms in terms of spin states. There are three kinds
of matrix elements for the SOC hamiltonian, PW-PW, PW-AO and AO-AO, to be
calculated. Each calculation method for these kinds of matrix is explained next three
subsections.
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3.1.2 SOC matrix calculated from basis; PW-PW

The PW-PWmatrix is calculated as follows

⟨G, sz |HSOC |G′, s′z ⟩ = ⟨G, sz |
1
2c2

S · (∇V × p) |G′, s′z ⟩

=
1
2c2

⟨G, sz | S · (∇V × p) |G′, s′z ⟩

=
1
2c2

⟨G | (∇V × p) |G′ ⟩ · ⟨ s′z | S | s′z ⟩, (3.12)

where |G, sz ⟩ denotes the direct product of the PW |G ⟩ and the spin function | sz ⟩
with the spin eigenvalue sz = 1

2 or − 1
2 . Since the potential is expanded in Fourier

space as

V(r) = ∑
G′′

ṼG′′eiG
′′·r, (3.13)

the PW-PWmatrix elements can be identified to be

⟨G, sz |HSOC |G′, s′z ⟩ =
i

2c2
ṼG−G′ ⟨ sz | S | s′z ⟩ ·

[
G×G′] . (3.14)

Specifically, the PW-PW matrix depending on the spin eigenvalues is implemented
into the code (TOMBO) as follows

(1) sz = s
′
z = + 1

2

⟨G,+
1
2
|HSOC |G

′
,+

1
2
⟩ = i

ṼG−G
′

4c2
[G×G

′
]z, (3.15a)

(2) sz = s
′
z = − 1

2

⟨G,−1
2
|HSOC |G

′
,−1

2
⟩ = −i

ṼG−G
′

4c2
[G×G

′
]z, (3.15b)

(3) sz = + 1
2 , s

′
z = − 1

2

⟨G,+
1
2
|HSOC |G

′
,−1

2
⟩ = i

ṼG−G
′

4c2

(
[G×G

′
]x +

1
i
[G×G

′
]y

)
, (3.15c)

(4) sz = − 1
2 , s

′
z = + 1

2

⟨G,+
1
2
|HSOC |G

′
,−1

2
⟩ = i

ṼG−G
′

4c2

(
[G×G

′
]x −

1
i
[G×G

′
]y

)
, (3.15d)

where the indices (x, y, z) represent the individual components. (Here, I assumed
the spin unpolarized systems but the generalization to spin polarized systems is
straightforward.)
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3.1.3 SOC matrix calculated from basis; AO-AO

The SOC matrices (AO-AO, AO-PW) related to AOs are calculated by Eq. (3.3) and
using the identity

S · L =
1
2
(S+L− + S−L+) + SzLz, (3.16)

which can be used for the spherical harmonics because AOs are well confined in the
non-overlapping atomic sphere (this is explained in section 2.3). Here, S± = Sx ± iSy
and L± = Lx ± iLy are ladder operators. From this expression Eq. (3.16), it is obvious
that different l, l′ pairs do not contribute,∫

Y∗
lm(r̂ j) (S · L)Yl′m′(r̂ j)dr̂ j = ⟨ jlm | S · L | jlm ⟩ = 0 ; l ̸= l′, (3.17)

and it is only necessary to consider the matrix elements sandwiched with the same
angular momentum quantum number l. The cubic harmonics K are defined as (here
and hereafter we omit the suffix j)

K0,1 = Y0,0, K11 =
1√
2
(Y1,1 −Y1,−1), K12 =

i√
2
(Y1,1 +Y1,−1), K13 = Y1,0,

(3.18a)

K2,1 =
1√
2i
(Y2,2 −Y2,−2), K2,2 =

1√
2i
(Y2,1 −Y2,−1), K2,3 =

1√
2
(Y2,1 +Y2,−1),

K2,4 = Y2,0, K2,5 =
1√
2
(Y2,2 +Y2,−2), (3.18b)

K3,1 =
1√
2
(−Y3,2 +Y3,−2), K3,2 =

1
4
(−

√
5Y3,3 +

√
3Y1,1 −

√
3Y3,−1 +

√
5Y3,−3),

K3,3 = − i
4
(−

√
5Y3,3 +

√
3Y1,1 +

√
3Y3,−1 +

√
5Y3,−3),

K3,4 = Y3,0, K3,5 =
1
4
(−

√
3Y3,3 +

√
5Y1,1 −

√
5Y3,−1 −

√
3Y3,−3),

K3,6 = − i
4
(−

√
3Y3,3 −

√
5Y1,1 −

√
5Y3,−1 +

√
3Y3,−3), K3,7 =

1√
2
(Y3,2 +Y3,−2),

(3.18c)

apart from the prefactor
√
(2l + 1)!!/

√
4πrl . In the TOMBO code [17], in the numer-

ical part the cubic harmonics functions are used, therefore we have to consider the
matrix element derived from the cubic harmonics K instead of spherical harmonics
Y. This makes the analytical calculation of S · L matrix difficult because the ladder
operating on cubic harmonics is cumbersome.

There is a orthonormalization relation between two cubic harmonics,∫
Kl,m(r̂)Kl′,m′(r̂)dr̂ = δll′δmm′ , (3.19)

where r̂ denotes r̂ = r/|r|. For the AO-AO matrix elements, we have

⟨ jnlmsz |HSOC | jnlm′s′z ⟩ = − 1
2c2

⟨ lmsz | S · L | lm′s′z ⟩
∫ ∞

0
R2
nl(r)

dVj(r)
dr

rdr, (3.20)

where | lmsz ⟩ denotes the direct product of the cubic harmonics Kl,m and the spin
function | sz ⟩ with the spin eigenvalue sz = 1

2 or − 1
2 . For the s orbitals (l = 0),



3.1. Spin-orbit coupling in Kohn-Sham theory 35

obviously

⟨ 00sz | S · L | 00s′z ⟩ = 0, (3.21)

where s, s′z =
1
2 ,−

1
2 . For the p orbitals (l = 1), we have

⟨ 1msz | S · L | 1m′s′z ⟩ =



0 i
2 0 0 0 1

2
− i

2 0 0 0 0 i
2

0 0 0 − 1
2 − i

2 0
0 0 − 1

2 0 − i
2 0

0 0 i
2

i
2 0 0

1
2 − i

2 0 0 0 0


, (3.22a)

where the order of the element msz is 1 ↑, 2 ↑, 3 ↑, 1 ↓, 2 ↓, and 3 ↓. For the d orbitals
(l = 2), we have

⟨ 2msz | S · L | 2m′s′z ⟩ =



0 0 0 0 −i 0 1
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i
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i
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0 i
2 0 0 0 − i

2 0 0
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3
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2

i 0 0 0 0 0 −
√
3i
2 −

√
3
2 0 0

0 0 0 0 0 0 − i
2

1
2 0 0

0 − 1
2

i
2 0 0 0 0 0 0 i

1
2 0 0

√
3i
2

i
2 0 0 i

2 0 0
− i

2 0 0 −
√
3
2

1
2 0 − i

2 0 0 0
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3i
2

√
3
2 0 0 0 0 0 0 0
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2 − 1
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

,

(3.22b)

where the order of the element msz is 1 ↑, 2 ↑, 3 ↑, 4 ↑, 5 ↑, 1 ↓, 2 ↓, 3 ↓, 4 ↓, and 5 ↓.
For the f orbitals (l = 3), we have

⟨ 3msz | S · L | 3m′s′z ⟩

=


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√
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15i
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√
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√
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15i
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− 3
4
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15
4 −
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15i
4 0 0 0 0 0 0 0 0 0

0 0
√
15
4 0 0 − 1

4 i 0 −
√
15i
4 0 0 − i

4 0 0

0 0
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15i
4 0 0 i
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15i
4 0 0 i

4 0 0 0√
15
4
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15i
4 0 1
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, (3.22c)

where the order of the element msz is 1 ↑, 2 ↑, 3 ↑, 4 ↑, 5 ↑, 6 ↑, 7 ↑, 1 ↓, 2 ↓, 3 ↓, 4 ↓
, 5 ↓, 6 ↓, and 7 ↓. All these matrices have zero diagonal elements only, because
the cubic harmonics is expressed in either symmetric or antisymmetric combination
of spherical harmonics with respect to the Lz eigenvalue, i.e., the magnetic quantum
numberm, the expectation value of Lz sandwiched with the same cubic harmonics is
always zero. (Note that the second index of the spherical harmonics is the magnetic
quantum number m but the second index of the cubic harmonics is not the magnetic
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quantum number.) The third factor in Eq. (3.20),

1
2c2

∫ ∞

0
R2
nl(r)

dVj(r)
dr

rdr,

is calculated numerically in the code. (Radial function is defined numerically by
modified Hermann-Skillman code, which takes into account a screened effect ap-
proximately.)

3.1.4 SOC matrix calculated from basis; PW-AO

For the PW-AO matrix elements ⟨Gsz |HSOC | jnlm′s′z ⟩, PWs are first expanded in
terms of the cubic harmonics as

eiG·r = eiG·Rj

[
4π ∑

l
il jl(Grj)

2l+1

∑
m=1

Klm(Ĝ)Klm(r̂ j)

]
, (3.23)

where jl(x) is the spherical Bessel function, Ĝ = G/|G|, r̂ j = r j/|r j|. Therefore, the
PW-AO matrix elements are obtained as

⟨Gsz |HSOC | jnlm′s′z ⟩ =
(−i)l

2c2
e−iG·Rj

2l+1

∑
m=1

⟨ lmsz | S · L | lm′s′z ⟩Klm(Ĝ)

×
∫ ∞

0
jl(Gr)

dVj

dr
Rnl(r)rdr. (3.24)

The factor ⟨ lmsz | S · L | lm′s′z ⟩ in Eq. (3.24) is calculated by using Eqs. (3.22). The
final factor related to the radial functions in Eq. (3.24),∫ ∞

0
jl(Gr)

dVj

dr
Rnl(r)rdr,

is calculated numerically in the program code (TOMBO).
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3.1.5 Diagonalization

There are two approaches to treat the SOC. One is to use perturbation theory and
the other is to diagonalize the full Hamiltonian. In the former approach, I construct
the matrix elements sandwiched by the eigenfunctions { | λ, sz ⟩} of the unperturbed
Hamiltonian H0 as Eq. (3.8)

H0 | λ, sz ⟩ = ελ | λ, sz ⟩,

and then the SOC hamiltonian HSOC matrices become

⟨ λsz |HSOC | λ′s′z ⟩ = ∑
G

cλ ∗
G ∑

G′
cλ′

G′⟨Gsz |HSOC |G′s′z ⟩

+

(
∑
G

cλ ∗
G ∑

jnlm
cλ
jnlm⟨Gsz |HSOC | jnlms′z ⟩+ c.c.

)
+ ∑

jnlm
cλ∗
jnlm ∑

m′
cλ
jnlm′⟨ jnlmsz |HSOC | jnlm′s′z ⟩, (3.25)

where c.c. means the complex conjugate. As an approximation, one may solve the
secular equation∣∣∣∣ ⟨ λ 1

2 |HSOC | λ′ 1
2 ⟩+ (ελ − ε) δλλ′ ⟨ λ 1

2 |HSOC | λ′ − 1
2 ⟩

⟨ λ − 1
2 |HSOC | λ′ 1

2 ⟩ ⟨ λ − 1
2 |HSOC | λ′ − 1

2 ⟩+ (ελ − ε) δλλ′

∣∣∣∣ = 0,

(3.26)

in the degenerate complex of the states, | λsz ⟩ and | λ′s′z ⟩, where the KS energies ελ

and ελ′ are all the same. One can apply such an approach, for example, to the atomic
spectra or to the calculation of the core electron binding energy (CEBE) of molecules
or defects/surfaces/interfaces in X-ray photoelectron spectroscopy (XPS). A more
accurate treatment is to solve Eq. (3.26) beyond the degenerate complex of the states,
| λsz ⟩ and | λ′s′z ⟩, where ελ and ελ′ can be different. This becomes equivalent to
perform the full matrix diagonalization of H + HSOC.
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3.2 Results and Discussion

For an isolated hydrogen-like atom, we can see the eigenvalues defined by resultant
orbital angular momentum quantum number j = l + sz are split as

|ϵnlj=l+1/2 − ϵ0nl | : |ϵnlj=l−1/2 − ϵ0nl | = l : l + 1, (3.27)

so this result is used in checking the result of isolated atoms having a closed shell.
Table 3.1 shows the results calculated for the levels at the 1S0 ground state of iso-

lated rare gas atoms, Ne, Ar, and Kr. Ecalc
SOC and Ecalc

SOC(+SR) are the first-principles
results obtained by diagonalizing the full H+ HSOC without and with the scalar rel-
ativistic correction (SR), respectively. The last column lists available experimental
data [74–79] for comparison. The resulting spin-orbit splitting (SOS) Ecalc

SOC(+SR) for
Ne, Ar, and Kr shows excellent agreement with the experimental data. These SOS
values are observed in XPS experiments. It is known that the XPS results for one par-
ticular material could be diverse between different research and measurements; so if
there are differences, those values are written on the lower right. From these results,
we can see that our program works quite well. Figures 3.1 (a)-(e) show the energy

TABLE 3.1: SOS in units of eV calculated for rare gas atoms by using
the full eigenvalue problem ∆Ecalc

SOC and ∆Ecalc
SOC(+SR), where (+SR)

means the scalar relativistic correction. The available experimental
values are also listed in the last column for comparison. (Tables from

the publication[1])

Atom Level ∆Ecalc
SOC ∆Ecalc

SOC(+SR) Experiment
10Ne 1S0 2p 0.103 0.103 0.097a
18Ar 1S0 2p 2.209 2.211 2.68b±0.95

3p 0.176 0.177 0.177c
36Kr 1S0 2p 51.677 51.853

3p 7.482 7.387
3d 1.306 1.304
4p 0.615 0.597 0.666d

54Xe 1S0 3d 12.91 12.92 12.6e

4p 10.38 9.82
4d 2.59 2.58
5p 0.76 0.77

a Ref.[74].
b Ref.[75].[76].
c Ref.[77].
d Ref.[78].
e Ref.[79].

diagram of the Kohn-Sham (KS) energy eigenvalues for some levels of the rare gas
atoms. The fully diagonalized absolute energy levels (right side of each figure) are
also quite reasonable. In fact, the p orbitals for l = 1 are split into two states, j = 3

2
and j = 1

2 , and the energy shifts from ϵ0nl without complex calculations are analyt-
ically evaluated as 1

2ζn1 (j = 3
2 ) and ζn1 (j = 1

2 ), i.e., ∆ϵnp 3
2
−np : ∆ϵnp 1

2
−np = 1 : 2.

Similarly for the d orbitals corresponding to l = 2, the energy shifts are analytically
evaluated as ζn2 (j = 5

2 ) and
3
2ζn2 (j = 3

2 ), i.e., ∆ϵnd 5
2
−nd : ∆ϵnd 3

2
−nd = 2 : 3. We can

confirm that these analytical relationships are satisfied in all Figs. 3.1 (a)-(e). This
clearly indicates the validity of the present method.
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FIGURE 3.1: Energy diagram of rare gas atoms: (a) Ne (2p), (b) Ar
(2p), (c) Ar (3p), (d) Kr (2p), (e) Kr (3d), (f) Kr (2p), and (g) Kr (4p)

(Figures from the publication[1])

In Table 3.2, I show the calculated SOS of several open shell atoms Na, Mg, Al,
Si, P, S, and Cl, which have nonzero spin magnetic moment. The error bars are the
width of the slightly split levels due to the spin polarization of these systems. I
also list experimental data [80–87] for comparison. The results are fairly good for all
atoms, indicating again the validity of the present method.
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TABLE 3.2: SOS of the open shell atoms in units of eV. Ex-
perimental values are listed for comparison. (Table from the

publication[1])

Atom Level ∆Ecalc
SOC Experiment

11Na 2S 1
2

2p 0.182±0.040 0.14f
12Mg 1S0 2p 0.286 0.28g
13Al 2P 1

2
2p 0.441±0.05 0.415h±0.015

14Si 3P0 2p 0.660±0.154 0.615i±0.015
15P 4S 3

2
2p 0.941±0.279 0.87j

16S 3P0 2p 1.274±0.274 1.13k
17Cl 2P 3

2
2p 1.68±0.16 1.6k

f Ref.[80]
g Ref.[81]
h Ref.[82, 83]
i Ref.[84, 85]
j Ref.[86]
k Ref.[87]

TABLE 3.3: SOS in units of eV calculated for several molecules us-
ing full eigenvalue problem of H+ HSOC without and with the scalar
relativistic correction. For comparison, experimental data are listed

together. (Table from the publication[1])

Molecule MO ∆Ecalc
SOC ∆Ecalc

SOC(+SR) Experiment
HBr 1Σ π 0.290 0.282 0.33l

BrCN 1Σ 2π 0.169 0.168 0.18l

1π 0.061 0.081 (0.09)l

HCl 1Σ π 0.083 0.083 0.08l

HI 1Σ π 0.558 0.523 0.67l

I2 1Σg πg 0.603 0.563 0.63m

πu 0.592 0.547 0.79m

4d 1.942±0.651 1.875±0.696 1.76n

l Ref.[88].
m Ref.[89].
n Ref.[90].
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Next, I calculated the SOS for several molecules, HBr, BrCN, HCl, HI, and I2.
For the bond length, I used the following values: H-Br=1.414 Å, Br-C=1.159 Å, C-
N=1.159 Å, H-Cl=1.274 Å, H-I=1.609 Å, and I-I=2.666 Å[91]. Table 3.3 shows the
results of the SOS calculated for these molecules together with the previous exper-
iments [88, 90]. From this table, ∆Ecalc

SOC(+SR) calculated by the full H + HSOC di-
agonalization with the scalar relativistic correction shows good agreement with the
experimental values. Figures 3.2 (a)-(e) show the energy diagram for each molecular
orbital. From these figures, we can identify how the molecular orbital levels split. In
the case of molecules, the split is not simply 1:2 or 2:3 as in the rare gas atoms. This
is of course because the complicated nature of the molecular orbitals.
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FIGURE 3.2: Energy diagram of some molecules: (a) HBr (π), (b)
BrCN (2π), (c) BrCN (π), (d) HCI (π), (e) HI (π), (f) I2 (πg), (g) I2

(πu), and (h) I2 (4d) (Figures from the publication[1])

In order to see how much PWs contribute to the SOS, I estimated the SOS with
and without PWs in the calculation. As shown in Table 3.4, the AOs only results
slightly overestimate the results using both AOs and PWs. The PW contribution
is about 0.1-0.4%. Thus we can conclude that PW-PW and PW-AO parts can be
safely neglected thus saving the effort for computation of large blocks of the HSOC
matrix. In this case, the calculation using only the AO-AO block becomes similar to
the atomic mean-field integral (AMFI) approximation by Hess et al.[92]
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TABLE 3.4: PW contribution to the SOS in units of eV. (Table from the
publication[1])

Molecule MO AOs only AOs and PWs
HBr 1Σ π 0.2833 0.2828
BrCN 1Σ 2π 0.1679 0.1676

1π 0.0812 0.0809
HCl 1Σ π 0.0834 0.0832
HI 1Σ π 0.5240 0.5237
I2 1Σg πg 0.565 0.563

πu 0.548 0.547
4d 1.876 1.875

Finally, I calculated Si2p core level of silicon crystal at the Γ point. I used a sim-
ple cubic unit cell including 64 Si atoms. The calculated SOS ∆Ecalc

SOC = 0.62± 0.1 eV,
and the shifts from the original KS eigenvalue without SOC are ∆ϵ2p 3

2
−2p = 0.205±

0.05 eV and ∆ϵ2p 1
2
−2p = −0.415± 0.05 eV. Experimentally we know that the split-

ting value is 0.615± 0.15 eV[84, 85]. This result shows excellent agreement with the
experimental value.

Table 3.5 lists the size of the assumed cubic unit cell, the PW cut-off energy, and
the number of basis functions, and the number of KS levels used for the SOS calcu-
lation. It should be emphasized that the PW cut-off energy is relatively small (typ-
ically ∼ 50− 170 eV) compared to the usual PW expansion method accompanied
with pseudopotential or APWmethod (typically ∼ 300− 500 eV). As demonstrated
above, this is a distinct merit of using the all-electron mixed basis (AEMB) approach.
The number of KS levels used in the diagonalization of H+HSOC is typically 100-300
except for silicon crystal. I confirmed the result does not change even if I increase
these numbers.

For the calculations of molecules, non-overlapping atomic spheres are selected
so that they do not overlap each other and the total energy becomes smaller with
a sufficient cutoff energy for PWs (given in Table 3.5). In each atomic sphere, the
effective potential in the KS equation is assumed spherically symmetric. So, using
large atomic spheres probability gives an error. Concrete values for the radius of the
atomic sphere used in this study are listed in Table 3.6.
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FIGURE 3.3: Energy diagram of the core 2p level of silicon crystal.
(Figure from the publication[1])
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3.3 Conclusion

I have implemented the spin-orbit coupling (SOC) in the all-electron mixed basis
code, TOMBO. For this purpose, I have presented the explicit matrix form of the
SOC Hamiltonian using the cubic harmonics, which is useful in any kind of first-
principles calculations. There is a distinct merit of using the all-electron mixed basis
approach in the evaluation of the SOC, because AOs are well confined in the non-
overlapping atomic sphere, where the potential is spherically symmetric and the
standard S · L form can be used (see Fig. 2.3). The AO-AO matrices were explicitly
derived for p, d, and f orbitals in the cubic harmonics representation. The PW-AO
matrices can be calculated in a similar way when PWs are expanded in spherical
waves. On the other hand, the PW-PWmatrices can be accurately treated in Fourier
space without using the S · L form. I showed several results for the spin-orbit split-
ting (SOS) of atoms and molecules as well as silicon crystal. All the results are in
good agreement with available experimental data, suggesting the validity of the
present method. The present method is applicable to transition elements and rare
earth elements also and even solid compounds as well. Such calculations will be
planned as a future study.

Here, I discussed the SOS, i.e., the relative energies, only, but it is also very impor-
tant to determine the absolute energy values in XPS. For such a purpose, we have to
go beyond density functional theory and adopt GW approximation [40]. Moreover,
although the present method allows us to calculate the SOC interaction between core
electrons and valence electrons, we have not focused the SOS of the conduction lev-
els at all. In order to see how the present method works on the conduction levels,
further investigations are necessary. All these studies are left for the future subjects.
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TABLE 3.5: Cell size and cut-off energy for each systems. (Table from
the publication[1])

System Unit cell [Å] Ecut-off (PWs) [eV] basis (AOs + PWs) levels used for SOS
Ne 12.0 104.4 4174 (5+4169) 108
Ar 14.0 129.6 9180 (9+9171) 116
Kr 14.0 76.7 4187 (18+4169) 134
Xe 18.0 46.4 4196 (27+4169) 152
HBr 14.0 172.6 14166 (19+14147) 234
BrCN 14.0 129.7 9196 (25+9171) 246
HCl 14.0 76.7 4179 (10+4169) 216
HI 12.0 176.5 9199 (28+9171) 252
I2 18.0 150.4 24459 (54+24405) 304

Si64 (crystal) 10.86 81.6 2429 (320+2109) 914
Na 18 46.4 4175 (6+4169) 114
Mg 16 58.7 4169 (6+4175) 110
Al 16 58.7 4178 (9+4169) 116
Si 16 58.7 4178 (9+4169) 118
P 16 71.0 5584 (9+5575) 122
S 16 84.6 7162 (9+7153) 120
Cl 18 46.4 7162 (9+7153) 120

TABLE 3.6: Radius of non-overlapping atomic sphere. (Ta-
ble from the publication[1])

Molecule Atom Radius of Atomic Sphere [Å]
HBr H 0.260

Br 1.139
BrCN Br 1.000

C 0.780
N 0.318

HCl H 0.200
Cl 0.999

H H 0.369
I 0.900

I2 I 0.800
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Chapter 4

Normalization of the QPWFs with
the Ward identity

The first-principles calculation treats a lot of physical properties. Especially, Kohn-
Sham (KS) density functional theory (DFT) is one of the powerful methods to be
applied for various fields with low computational cost because the one-particle ef-
fective Schrödinger equation, which is called the KS equation, plays the key role and
shows the great performance[3, 4, 25]. However, KS DFT is invalid to the cases if we
need to calculate excitation properties, i.e., precise band structures or phenomena
related to such as spectroscopic transitions obtained from optical experiments. In
order to perform the calculation of those properties including excitations precisely,
it is important to take into account the self-energy correction in quasiparticle (QP)
theory[18–20, 28]. As intuition, the self-energy correction is a kind of the effect af-
fected by surrounding electrons (see Fig. 1.2). However, in the QP calculation, it is
very cumbersome to solve Hedin’s original 5 coupled equations, simultaneously[6,
7, 54]. It is also difficult to obtain the practical form of the self-energy (which is a key
factor in QP theory) by taking sum of the infinite number of terms in many-body
perturbation theory (MBPT) (see section 2.4).

Hedin(1965) proposed to take the screened Coulomb interaction W [52] and the
one-particle Green’s function G as the main factors in his theory[6, 54]. The Hedin’s
theory gave the intuition of the screening and the GW approximation, which shows
great performance (see subsection 2.4.3)[6, 7, 14, 18, 29, 54, 58]. In Hedin’s calcula-
tion, the treatment of the screened Coulomb interaction corresponds to the random
phase approximation (RPA) in another aspect[64, 65], and it is well known that the
method is great and appropriate for the metallic system. Therefore, the GW cal-
culation has become the main method for various excitation calculations including
semiconductors or correlated systems.

As computers have been advanced, self-consistent GW calculations have also
been performed[57, 58, 93]. There are, however, still some problems in self-consistent
GW calculation, i.e., thewider band gap and reduced plasmon satellite whichworsen
the agreementwith experiments, comparedwith one-iterationGWcalculations (some-
times called one-shot GW calculation or denoted by G0W0 symbolically). It is note-
worthy that the self-consistent GW increases the QP life-time, which corresponds to
modifying the QP peak narrower. In order to improve these errors, it is considered
that the vertex function correction beyond the GW approximation is needed [58].

Additionally, there is another main problem in self-consistent GW calculations,
which I tried to solve through the present study[2]. Self-consistent GW calculations
lead to the contradiction that the number of QPs are finite although the number of
QPs are infinite theoretically. This problem implies that the number of electron in
the system is not conserved. The nonconservation is derived from the fact that the
norm of quasiparticle wave functions (QPWF) is less than one; ⟨ ϕλ | ϕλ ⟩ ≤ 1. For
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the sake of the conservation of the number of electrons in the system, generalized
self-consistent calculations have to be done with the renormalization of QPWFs.

The relation between the renormalization of QPWFs and the vertex correction
is implied in some previous papers[58, 94, 95]. In order to improve the nonconser-
vation of electron number, the QPWFs have to be renormalized but the justification
for the renormalization procedure has not been discussed thoroughly. The present
study discusses the cancellation between the renormalization of QPWFs and the ver-
tex correction, and try to explain the validity of the renormalization of QPWFs in
terms of the Ward identity[2]. (It is well known that the gauge invariance, specifi-
cally the generalized Ward-Takahashi identity, leads to the electron number conser-
vation law, i.e., continuity equation of the electron density and current density[7, 67,
68].) In addition, I gives the extended KS equation based on Baym-Kadanoff’s con-
servation law, given the validity of the renormalization of QPWFs. The studies about
the validity of the normalization for QPWFs and the extended KS equation based
on Baym-Kadanoff’s conservation law are reported in the following paper; Takeru
Nakashima, Hannes Raebiger, and Kaoru Ohno. “Normalization of exact quasipar-
ticle wave functions in the Green’s function method guaranteed by the Ward iden-
tity”. Physical Review B, 104 20: L201116 (2021).[2]. The present study gives the
one solution for the uncertain connection between KS theory and QP theory, that is,
the hermitized QP equation with normalized QPWFs is interpreted as extended KS
equation.
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4.1 The problem of the electron density

The electron density is defined by

ρ(r) = ⟨ΨN
0 |ψ†(r)ψ(r) |ΨN

0 ⟩, (4.1)

which is also expressed with an infinite number of occ quasiparticle wave functions
(QPWFs) (see chapter 2.4.5),

ρ(r) = ∑
µ∈occ

|ϕµ(r)|2, (4.2)

which makes rigorous analysis very difficult in quasiparticle (QP) theory. On the
other hand, including Kohn-Sham (KS) theory, the electron density is expressed by
a finite number of KS wave functions

ρ(r) =
N

∑
i=1

|ϕi(r)|2. (4.3)

The actual GW calculation gives the finite number of quasiparticle wave functions
(QPWFs), which is inconsistent with the theoretical equation (4.2). This leads to the
contradiction that the electron number is not conserved, i.e.,

∫
drρ(r) ≤ N, in N

electron system because the norm of the QPWF is less than one ⟨ ϕµ | ϕµ ⟩ ≤ 1.
The number of the electron density is related to the Green’s function as

ρ(r) = +i
∫ dω

2π
G(r, r|ω)e+iω0+ , (4.4)

which means that in the case the electron density is composed of the finite num-
ber of the QPWFs, the Green’s function is expressed with the finite number of the
QPWFs too. Therefore, in order to normalize the QPWFs for the electron number
conservation law, we have to discuss justification of the normalization procedure of
QPWFs.
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4.2 QP equation and the Ward identity

In subsection 2.4.1, the basic knowledge about the one-particle Green’s function and
the Dyson equation is explained. In this chapter, I explain the relation between the
quasiparticle wave functions (QPWFs) and the vertex correction with theWard iden-
tity. In recent studies, self-consistent Hedin’s calculations are done with the Kohn-
Sham (KS) orbitals and eigenvalues as initial information, and where the Green’s
function composed of the normalized QPWFs with no justification. The present dis-
cussion gives the validity to renormalize the QPWFs in Hedin’s calculations.

4.2.1 QP equation under Baym-Kadanoff’s conservation law

The one-particle Green’s function for zero temperature is defined by the ground state
ΨN

0 for many-particle hamiltonian, and electron creation and annihilation Heisen-
berg operators, and Wick’s time ordered operator T[· · · ] as

Gs(1, 2) = −i⟨ΨN
0 | T[ψs(1)ψ†

s (1)] |ΨN
0 ⟩, (4.5)

where suffixes s denote the spin state and we suppose that the spin states is good
quantum number. (Please notice that spin is not good quantum number in the case
as a hamiltonian includes the spin-orbit coupling (SOC).) In the following, we omit
the spin suffixes for simplicity. Green’s function is also represented by

G(1, 2) = −i ∑
µ∈occ

ϕµ(1)ϕ∗
µ(2)Θ(t1 − t2) + i ∑

ν∈emp
ϕν(1)ϕ∗

ν(2)Θ(t2 − t1), (4.6)

where QPWFs ϕλ(1) are defined by

ϕλ(1) = ϕλ(ri)e−iελti , (4.7)

where ϕλ(ri) is the space component of the QPWFs

ϕµ(ri) = ⟨ΨN−1
µ |ψs(ri) |ΨN

0 ⟩ ; µ ∈ occ, (4.8a)

ϕν(ri) = ⟨ΨN
0 |ψs(ri) |ΨN+1

ν ⟩ ; ν ∈ emp, (4.8b)

and ελ are quasiparticle (QP) energies, which are interpreted as excitation energies,
i.e., εµ = EN

0 − EN−1
µ and εµ = EN+1

ν − EN
0 . These QP energies’s information is ob-

tained from the photoelectron experiments, i.e., photoemission, inverse photoemis-
sion, photoabsorption, and so on. Taking the time Fourier transformation of Eq. (4.6)
gives

G(r1, r2|ω) = ∑
µ∈occ

ϕµ(r1)ϕ∗
µ(r2)

ω − εµ − i0+
+ ∑

ν∈emp

ϕν(r1)ϕ∗
ν(r2)

ω − εν + i0+
. (4.9a)

For simplicity, the abstract form corresponding to Eq. (4.9a) is introduced as

G(ω) = ∑
µ∈occ

| ϕµ ⟩⟨ ϕµ |
ω − εµ − i0+

+ ∑
ν∈emp

| ϕν ⟩⟨ ϕν |
ω − εν + i0+

, (4.9b)

where G(r1, r2|ω) = ⟨ r1 |G(ω) | r2 ⟩ and ϕλ(r) = ⟨ r | ϕλ ⟩[71].
One-particle Green’s function G(ω) follows the Dyson equation

(ω − h− Σ(ω))G(ω) = 0, (4.10a)
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and also under Baym–Kadanoff’s conservation law[67, 68]; the one-particle Green’s
function follows also left hand equation

G(ω) (ω − h− Σ(ω)) = 0, (4.10b)

where one-body term and the self-energy are written in similar operator forms; h
and Σ(ω) which are defined by ⟨ r | h | r′ ⟩ = h(r)δ(r − r′) and ⟨ r |Σ(ω) | r′ ⟩ =
Σ(r, r′|ω). This comes from the Dyson equation in two equivalent forms G(ω) =
G0(ω)+G0(ω)Σ(ω)G(ω) = G0(ω)+G(ω)Σ(ω)G0(ω), which correspond to Σ = Σ̄
in Eq. (6.6) of Ref. [7]. From Eqs. (4.10) and (4.9b) and the Cauchy’s residue integral
around each QP energy, we obtain the following Dyson equations for QPWFs

(ελ − hs − Σ(ελ)) | ϕλ ⟩ = 0, (4.11a)
⟨ ϕλ | (ελ − hs − Σ(ελ)) = 0. (4.11b)

These are also called the QP equations for left- and rigth-eigenvalue equation. Please
note that the self-energy is energy dependent, which makes the solutions of this
equation not orthogonal to each other and have the norm between 0 and 1 [71, 96,
97]. The Hermitian conjugate of Eq. (4.11b) is[

ε∗λ − h− Σ†(ελ)
]
| ϕλ ⟩ = 0. (4.12)

Eqs. (4.11) and (4.12) lead the following hermitian equation

Re(ελ) | ϕλ ⟩ =
[
hs +

1
2

(
Σ(ελ) + Σ†(ελ)

)]
| ϕλ ⟩. (4.13a)

That is, we can hermitize the self-energy just like the effective potential in density
functional theory (DFT) when we solve the QP eigenvalue problem, although the
QP energies are complex numbers. This equation gives validity of the the general
treatment to make the self-energy Hermitian. This treatment is somewhat similar
to the Vxc choice in Kotani’s quasiparticle self-consistent GW method[98]. It is seen
that

{G−1(ελ)G−1†(ελ)− G−1†(ελ)G−1(ελ)} | ϕλ ⟩ = 0,

and it should be understood that, inside Σ†(ελ) and G−1†(ελ), ελ is replaced by ε∗λ.
Also, Eqs. (4.11) and (4.12) give the following equation, the imaginary part of the QP
energies is obtained by

1
2i

{
Σ(ελ)− Σ†(ελ)

}
| ϕλ ⟩ = Im [ελ] | ϕλ ⟩. (4.13b)

From the imaginary value of the QP energy derived from Eq. (4.13b), we can esti-
mate the QP life-times. The interesting point is that Eqs. (4.13a) and (4.13b) have the
simultaneous eigenstates.
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� �
Now, I would like to briefly comment on some simple approximations apart
from the main story of the present theory. Under the assumption of translational
symmetry, the Fourier transforms in space for Eq. (4.13) give

[h(k) + ReΣ(k|ελ)] ⟨ k | ϕλ ⟩ = Re [ελ] ⟨ k | ϕλ ⟩, (4.14a)
ImΣ(k|ελ)⟨ k | ϕλ ⟩ = Im [ελ] ⟨ k | ϕλ ⟩, (4.14b)

where
⟨ k | ϕλ ⟩ =

∫
dr⟨ r | ϕλ ⟩e−ir·k.

Note that in k-space, the operators can be treated as the scalar functions, and the
convolution product gets the simple product, which leads tos

Re [ελ] = h(k) + ReΣ(k|ελ), (4.15a)
Im [ελ] = ImΣ(k|ελ). (4.15b)

These results are consistent with the relationship assumed in the conventional
electron gas model calculations[50], that is, the imaginary part of the self-energy
gives the life-time of the QP states. Moreover, this equation gives the validity
of taking only the real part of the self-energy neglecting the imaginary part in
actual calculations for the QP energy peaks position. Generally, the self-energy
is treated as the function of the real part of the QP energy Re[ελ] neglecting the
imaginary part of the QP energy Im[ελ] as[57]

Σ(ελ) ≃ Σ(Re[ελ]). (4.16)

In this case, the real part of the QP energy is calculated by only Eq. (4.13a) self-
consistently, and we can neglect Eq. (4.13b) and the imaginary effect of the QP
energy. [

h+
1
2

{
Σ(Re[ελ]) + Σ†(Re[ελ])

}]
| ϕλ ⟩ = Re [ελ] | ϕλ ⟩. (4.17)

After the self-consistent calculation get convergence, the life-time of the QP state
is estimated by using Eq. (4.13b)[99].� �

Under Baym-Kadanoff conservation law, it is very interesting to get the QP energy
(the real part) by solving such a Hermitized QP equation.
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4.2.2 Normalization with the Ward identity

Firstly, I explain the norm of the QPWFs. It is well known that the norm of the
QPWFs is less than one[71, 96, 97]. Combining Eqs. (4.9b) and (4.10a) shows

(ω − h− Σ(ω))∑
λ

| ϕλ ⟩⟨ ϕλ |
ω − ελ

= 1, (4.18)

where δ(r1 − r2)h(r1) = ⟨ r1 | h | r2 ⟩ and Σ(r1, r2|ω) = ⟨ r1 |Σ(ω) | r2 ⟩, and the in-
finitesimal number in denominator is omitted for simplicity(

ω − h− Σ(ω)

ω − εα

)
| ϕα ⟩⟨ ϕα | ϕα ⟩+ ∑

λ ̸=α

(
ω − h− Σ(ω)

ω − ελ

)
| ϕλ ⟩⟨ ϕλ | ϕα ⟩ = | ϕα ⟩.

(4.19)
In the limit (ω → εα), therefore, the above equation becomes(
1− ∂Σ(ω)

∂ω

∣∣∣∣
ω=εα

)
| ϕα ⟩ =

1
⟨ ϕα | ϕα ⟩

(
1− ∑

λ ̸=α

(
εα − h− Σ(ω)

εα − ελ

)
| ϕλ ⟩⟨ ϕλ |

)
| ϕα ⟩.

(4.20a)
Also, in similar way, combining Eqs. (4.9b) and (4.10b) shows

⟨ ϕα |
(
1− ∂Σ(ω)

∂ω

∣∣∣∣
ω=εα

)
=

1
⟨ ϕα | ϕα ⟩

⟨ ϕα |
(
1− ∑

λ ̸=α

| ϕλ ⟩⟨ ϕλ |
(

εα − h− Σ(ω)

εα − ελ

))
.

(4.20b)
The second term in the second factor on the right-hand side of Eqs. (4.20) become 0
after sandwiching by ϕα, and finally we can obtain the following equation

⟨ ϕα |
(
1− ∂Σ(ω)

∂ω

∣∣∣∣
ω=εα

)
| ϕα ⟩ = 1, (4.21)

due to left- and right-eigenvalue equation, Eqs. (4.11). This means that 1− ∂ωΣ(ελ)
plays a role of the normalization factor for the QP state ϕλ. This factor is identified
with the vertex correction by the Ward identity Γ̃q=0 in the limit q = (q, η) → 0,
i.e., the situation is that the momentum-energy transfer in terms of the Coulomb
interaction is 0.

Gauge invariance leads to various conservations[68]. As one of them, the Ward
identity is the very famous conservation equation in quantum electrodynamics as
following form[7, 22–24]

i(t1 − t2)Σ(1, 2) = δ(1, 2)−
∫

d3 Γ̃(1, 2; 3), (4.22a)

and taking the time Fourier transformation gives that

∂Σ(r1, r2|ω)

∂ω
= δ(r1 − r2)−

∫
dr3 Γ̃(r1, r2; r3|ω,ω), (4.22b)

where the Fourier transformation for Γ̃ is defined by

Γ̃(r1, r2; r3|t1 − t3, t2 − t3) =
∫ dωdη

(2π)2
e−i(ω+η)(t1−t3)e+iω(t2−t3)Γ̃(r1, r2; r3|ω + η,ω).

(4.23)
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Therefore, Eq. (4.22b) shows that

Γ̃(r1, r2; q = 0|ω,ω) = δ(r1 − r2)−
∂Σ(r1, r2|ω)

∂ω
, (4.24a)

where Γ̃(r1, r2; q = 0|ω,ω) =
∫
r3Γ̃(r1, r2; r3|ω,ω), which corresponds to the limit

that the momentum and the energy transfer via Coulomb interaction is 0, that is, q =
(q, η) → 0. The above equation is represented as functions of position coordinates r.
For convenience, abstract form of Eq. (4.24a) is designated as

Γ̃q=0(ω) = 1− ∂Σ(ω)

∂ω
, (4.24b)

where ⟨ r1 | Γ̃q=0(ω) | r2 ⟩ = Γ̃(r1, r2; k = 0|ω,ω). Finally, Eqs. (4.21) and (4.24) show∫
dr1dr2ϕ∗

α(r1)Γ̃(r1, r2; q = 0|εα, εα)ϕα(r2) = 1, (4.25a)

⟨ ϕα | Γ̃q=0(εα) | ϕα ⟩ = 1, (4.25b)

which implies that the vertex function Γ̃q=0 plays a role of the normalization fac-
tor for the QPWFs. The vertex function, which connects the dynamical interaction
to a pair of Green’s functions, has an effect to make the system gauge invariant by
the Ward–Takahashi identity, and guarantees the local charge conservation by the
continuity equation [7, 100]. However, in the limit that the momentum and energy
transfer; q = (q, η) → 0, no multiple excitation is possible by taking into account
the multiple excitations not related to the main QP state. Specifically, when there
is no momentum-energy transfer via the Coulomb interaction, those multiple exci-
tations are not important for the main QP calculation (the details are explained in
later and see Figs. 4.1 and 4.2). Therefore, the vertex function in this limit counts
the (N± 1)-electron states |ΨN±1

λ ⟩with purely one electron or hole only, and has an
effect to normalize the corresponding QPWFs to unity, ignoring all the other QPWFs
involving multiple excitations. This is the physical meaning of Eq. (4.25).
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� �
Additionally as coffee break, in the expectation value, the following equation is
apparently true

⟨ ϕα |
(
| ϕα ⟩⟨ ϕα | Γ̃q=0(εα)

)
| ϕα ⟩ = ⟨ ϕα | ϕα ⟩. (4.26)

From this equation, the inverse of the vertex correction Γ̃−1
q=0 is approximated as

Γ̃−1
q=0(ελ) ≃ | ϕλ ⟩⟨ ϕλ | . (4.27)

When this approximation is applied to Eq. (4.9b), the one-particle Green’s func-
tion is approximated as

G(ω) ≃ ∑
λ

Γ̃−1
q=0(ελ)

ω − ελ
. (4.28)

But, notice that this is just approximation under Eq. (4.27) and this gives the
intuition of the validity of the Hedin’s GW approximation because the GW
approximation treating the KS results as initial values yields the one-particle
Green’s function composed of the normalized QPWFs only, which means the
one-particle Green’s function is represented by

G0(ω) = ∑
λ

1
ω − ελ

.

Specifically, mass term is calculated by
∫
G0(ω)W(ω + η)dη and this implies

that the vertex Γ̃−1 in Eq. (4.28) and vertex Γ̃ in the original mass form are
canceled each other (where the poles of QP energies from the normalized one-
particle Green’s function are considered only). The similar discussion for the
homogeneous space is attached in the appendix B.� �

FromEqs. (4.25) and (4.28), whenwe focus on the expectation value, the 2-points ver-
tex correction plays a central role of the normalization factor for the QPWFs. Now,
only for the purpose of the normalization of QPWFs, the present study introduces a
renormalization function, which satisfies

∑
s

∫
ϕ∗

λ(r1, s) Γren
q=0 s(r1, r2; ελ)ϕλ(r2, s)dr1dr2 = 1,

as

Γren
q=0 s(r1, r2;ω) = ⟨ r1, s | Γren

q=0(ω) | r2, s ⟩ = δ(r1 − r2) f (ω),

f (ω) = ∑
λ∈ all

1
⟨ ϕλ | ϕλ ⟩

∏α ̸=λ(ω − εα)

∏β ̸=λ(ελ − εβ)
. (4.29)

This is spin-coordinate independent, and f (ω) satisfies

f (ελ) =
1

⟨ ϕλ | ϕλ ⟩
=

⟨ ϕλ | Γ̃q=0(ελ) | ϕλ ⟩
⟨ ϕλ | ϕλ ⟩

. (4.30)

Then, the normalized QP states | ϕ̄λ; ελ ⟩ = | ϕ̄λ ⟩, which satisfy ⟨ ϕ̄λ; ελ | ϕ̄λ; ελ ⟩ = 1



54 Chapter 4. Normalization of the QPWFs with the Ward identity

but generally obey ⟨ ϕ̄λ; ελ | ϕ̄ζ ; εζ ⟩ ̸= 0 for λ ̸= ζ, can be constructed from the ω-
dependent states

| ϕ̄λ;ω ⟩ = Γren 1/2
q=0 (ω) | ϕλ ⟩ =

√
f (ω) | ϕλ ⟩. (4.31)

As well, the normalized Green’s function is defined by

Ḡ(ω) = Γren 1/2
q=0 (ω)G(ω) Γren 1/2

q=0 (ω) = G(ω) f (ω), (4.32)

which satisfies Ḡs(1, 2) = iρs(1, 2) for t1 < t2. That is, f (ω) becomes f (ελ) by taking
the pole of the Green’s function. It is clear that the normalized QP states satisfy the
QP equation

ελ | ϕ̄λ; ελ ⟩ = [ h+ Σ(ελ) ] | ϕ̄λ; ελ ⟩, (4.33)

which corresponds to taking the pole of Eq. (4.32) with Eq. (4.9b) in the Dyson equa-
tion. The renormalization function Γren

q=0 s(1, 2) connects the original and renormal-
ized vertex functions as

Γ̃s(1, 2; 3) =
∫

d1′ Γren
q=0 s(1, 1

′)Γ̄s(1′, 2; 3). (4.34)

There are two possibilities of choosing i = 1 or 2 of Γ̃s(1, 2; 3) to connect Γ̃ren
q=0 s(1, 1

′)

or Γren
q=0 s(2

′, 2). This has to be selected to make the resulting form with G replaced
by Ḡ symmetric. The renormalized vertex function Γ̄ is the vertex function with
factoring out a renormalization function Γren

q=0(i, i
′), Γren

q=0(i
′, i).

The separation of the renormalization function Γren
q=0 corresponds to removing

the spontaneous multiple excitations, not related to the relevant pure QP states (see
Fig. 4.1). The limit of the vertex function Γren

q=0 has no momentum-energy transfer
in terms of the Coulomb interaction; q = (q,ω) → 0. The point is that the spon-
taneous multiple excitations are not related to the main QP calculation intrinsically.
The important multiple excitations, such as the bubbles of electron-hole pairs, have
contributions to QP in terms of Coulomb interaction through momentum-energy
transfer q = (q,ω) ̸= 0. In many-body perturbation theory (MBPT), the bubbles of
electron-hole pairs is the electron density polarization in the material, which screens
Coulomb interaction (see Fig. 4.1 (a)). However, the limit of the vertex function Γq=0
does not give the momentum-energy transfer in terms of the Coulomb interaction
(see Fig. 4.1 (b)). Therefore, in the case that there is no momentum-energy transfer,
those spontaneousmultiple excitations can be factored out in using the renormalized
factor Γren

q=0 (see Fig. 4.1 (c)).
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FIGURE 4.1: (a) In the case that there is the momentum-energy trans-
fer q = (q,ω) ̸= 0 in terms of the Coulomb interaction, the Coulomb
interaction is screened by the multiple excitations such as bubbles
of electron-hole pairs. Therefore, their multiple excitations are im-
portant. (b) In the case that there is no momentum-energy transfer
q = (q,ω) = 0 in terms of the Coulomb interaction, there are spon-
taneous multiple excitations not related to main QP state. These mul-
tiple excitations are not important for each QP calculation. (c) The
unimportant spontaneous multiple excitations can be renormalized
to the renormalized factor, as the Ward identity Γren

q=0. This situation
allows us to treat the normalized pure QP states, which leads to the

normalized one-particle Green’s function.

4.3 The time-dependent QP equation

Here, the present study proposes to solve the norm problem of the quasiparticle
wave functions (QPWFs) as follows. (This problem is explained in section 4.1.) Mul-
tiplying both sides of Eq. (2.78a) by e−iελt1 and using the original Fourier transfor-
mation definition Σs(r1, r2|ελ) =

∫
d(t1 − t2)Σs(1, 2)eiελ(t1−t2), we obtain the time-

dependent quasiparticle (QP) equation [54, 63]

i∂t1ϕλ(1, s) = hs(r1)ϕλ(1, s) +
∫

d2Σs(1, 2)ϕλ(2, s). (4.35)
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Now, we can define the two-time spin density matrix D(−)
s (1, 2) and its complemen-

tary function D(+)
s (1, 2) as

D(−)
s (1, 2) ≡ ⟨ΨN

0 | ψ†
s (2)ψs(1) |ΨN

0 ⟩ = ∑
µ∈ occ

ϕµ(1, s)ϕ∗
µ(2, s), (4.36a)

D(+)
s (1, 2) ≡ ⟨ΨN

0 | ψs(1)ψ†
s (2) |ΨN

0 ⟩ = ∑
ν∈ emp

ϕν(1, s)ϕ∗
ν(2, s), (4.36b)

which are equal to ∓iGs(1, 2) for t1 ≶ t2 and satisfy an equation that is similar to
Eq. (2.49) and readily derived from Eq. (4.35),

i∂t1 D
(±)
s (1, 2) = hs(r1)D

(±)
s (1, 2) +

∫
d3Σs(1, 3)D

(±)
s (3, 2). (4.37)

Next, we can assume that these functions are expressed by normalizedQPWFs ϕ̄i(1, s)
(i = 1, 2, ...,N,N + 1,N + 2, ...) as

D(−)
s (1, 2) =

N

∑
i=1

ϕ̄i(1, s)ϕ̄∗
i (2, s), (4.38a)

D(+)
s (1, 2) =

∞

∑
i=N+1

ϕ̄i(1, s)ϕ̄∗
i (2, s). (4.38b)

Then, the necessary condition for the electron spin density

∑
s

∫
dr1ρs(r1) = ∑

s

∫
dr1D

(−)
s (1, 1) = N,

and the completeness condition Eq. (2.74) is automatically satisfied. At each time t1,
we can introduce the dual orbitals ϕ̃j(1, s) (j = 1, 2, ...,N,N+ 1,N+ 2, ...), which sat-
isfy the biorthogonality condition; such a dual basis can be constructed from Gram–
Schmidt orthogonalization method∫

ϕ̄∗
i (1, s)ϕ̃j(1, s)dr1 = δij (i, j ≤ N or i, j > N), (4.39)

and derive
∫
D(∓)

s (1, 2)ϕ̃i(2, s)dr2 = ϕ̄i(1, s) (∓ for i ⋚ N). Using this, I readily find
that Eq. (4.37) yields the equation

i∂t1 ϕ̄i(1, s) = hs(r1)ϕ̄i(1, s) +
∫

d2Σs(1, 2)ϕ̄i(2, s). (4.40)

Eqs. (4.35) and (4.40) have exactly the same form, and thus we can conclude that
ϕ̄i(1, s) is equivalent to the QPWF ϕµ(1, s) except for a normalization factor under
the condition the electron spin density is constructed by the finite number of the
normalized QPWFs. Therefore, the electron spin density ρs(r1) = D(−)

s (1, 1) is ex-
pressed by N normalized QPWFs except for normalization. Those functions are not
necessarily mutually orthogonal. Here is a hint to solve the problem. There are a lot
of independent excitations that are not directly associated with the PE and IPE pro-
cesses in the (N ± 1)-electron states |ΨN±1

λ ⟩ (see Fig. 4.2 (a)). However, they can be
eliminated in the summation over all occupied and empty states in Eqs. (2.78a), (4.2),
(4.6), (4.9) and (4.36b), and instead we accept that the QP energies have an imagi-
nary part, which represents the peak width and the inverse of the QP life-time; see
Fig. 4.2 (b). Then, each hole (electron) QP state associated with one final PE |ΨN−1

µ ⟩
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FIGURE 4.2: Illustration of (a) infinite number of (N − 1)-electron
eigenstates |ΨN−1

µ+δ ⟩withmultiple excitations around the created hole

and (b) the relevant (N − 1)-electron state |ΨN−1
µ ⟩ with the created

hole.

(IPE |ΨN+1
ν ⟩) state, which does not include any multiple excitations or Auger-like

process involving the recombination and the second excitations, etc., may have a
norm equal to the amount of one electron exactly (see Fig. 4.1 (a)-(c)). Normaliz-
ing the QPWFs corresponds to ignoring the multiple excitations not related to the
main QP states, which appears in the case there are no momentum-energy transfer
via the Coulomb interaction. That case is represented by the limited vertex function
mathematically.
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4.4 Vertex Correction

The present study shows that changing the Green’s function from G to Ḡ is equiva-
lent to replacing the vertex function Γ with Γ̄ in the exact manner. Firstly, following
Baym and Kadanoff [67] and Strinati [7], the two-particle Green’s function is sep-
arated as Kss′;ss′(1, 2; 1′, 2′) = Gs(1, 1′)Gs′(2, 2′) − Lss′;ss′(1, 2; 1′, 2′). Then, the first
GG term can be included in the one-body term as the Hartree potential vH(r1) in
Eq. (2.46). This corresponds to separating the self-energy into two terms, Σs(1, 2) =
ΣH(1, 2) + Ms(1, 2); the first and second terms represent, respectively, the Hartree
term vH(r1)δ(1, 2) and the exchange-correlation (xc) term [7]. The density-density
correlation function χ is related to L as [7]

χ(1, 2) =
∫

d3 χ̃(1, 3)ε−1(3, 2) = −i∑
ss′

Lss′;ss′(1, 2; 1+, 2+),

where χ̃ and ε−1 denote, respectively, the polarization function (which is also called
irreducible polarizability, Eq. (2.57)) and the inverse of the dielectric function. The
polarization function χ̃(1, 3) = −i ∑s Rs(1, 3, 1+, 3+) can be calculated from

Rs(1, 3; 2, 3+) =
∫

d(44′)Gs(1, 4)Gs(4′, 2)Γ̃s(4, 4′; 3), (4.41)

where the scalar vertex function satisfies the Bethe–Salpeter equation (BSE) [6, 7, 50,
54] (see also Fig. 4.3)

Γ̃s(1, 2; 3) = δ(1, 3)δ(2, 3) + ∑
s′′

∫
d(44′55′)

× δMs(1, 2)
δGs′′(4′, 4)

Gs′′(4′, 5)Gs′′(5′, 4)Γ̃s′′(5, 5′; 3). (4.42)

Then, the dielectric function is given by

ε(1, 2) = δ(1, 2)−
∫

d(33′)
δ vH(r1)

δGs′′(3′, 3)
Rs′(3′, 2; 3, 2+), (4.43)

and

∑
s′

Lss′;ss′(1, 3; 2, 3+) =
∫

d4Rs(1, 4; 2, 4+)ε−1(4, 3)

=
∫

d(455′)Gs(1, 5)Gs(5′, 2)Γ̃s(5, 5′; 4)ε−1(4, 3).

Inserting this expression into Eq. (2.46) and rewriting Eq. (2.49) as

i∂t1Gs(1, 2)− [ hs(r1) + vH(r1) ]Gs(1, 2)−
∫

d3Ms(1, 3)Gs(3, 2) = δ(1, 2), (4.44)

We find Hedin’s GWΓ expression [6, 54] for Ms(1, 3)

Ms(1, 2) = i
∫

d(34)Gs(1, 3)W(1+, 4)Γ̃s(3, 2; 4), (4.45)

whereW denotes the dynamically screenedCoulomb interaction defined byW(1, 2) =∫
d3 ε−1(1, 3)V(3, 2).
All the above is the exact formulation satisfying the conservation laws [7, 67].
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FIGURE 4.3: Diagrammatic representation of the BSE for the vertex
function Γ̃s(1, 2; 3).

Now please notice that, although Γ̃q=0(1, 2) does not have the third argument “3”, it
satisfies the BSE

Γ̃q=0 s(1, 2) = δ(1, 2) + ∑
s′′

∫
d(44′55′)

× δMs(1, 2)
δGs′′(4′, 4)

Gs′′(4′, 5)Gs′′(5′, 4)Γ̃q=0 s′′(5, 5′), (4.46)

which has exactly the same form as the BSE for Γ̃s(1, 2; 3) Eq. (4.42) (see Fig. 4.3).
Equation (4.46) can be obtained by integrating Eq. (4.42) with respect to “3” be-
cause

∫
d3 Γ̃s(1, 2; 3) = Γ̃q=0 s(1, 2); see, for example, Eq. (7.22) of Ref. [7]. Since the

q → 0 limit corresponds to ignoring all multiple excitations produced by energy-
momentum transfer in terms of Coulomb interaction, the replacement of Γs(1, 2; 3)
with Γq=0 s(1, 2) corresponds to treating everything as if there is only one electron
or hole in the (N ± 1)-electron states |ΨN±1

λ ⟩ (see Fig. 4.1). Therefore, the function
associated with it’s expectation value Γren

q=0 s(1, 2) has a meaning of the renormaliza-
tion factor of such a purely one-electron or one-hole quasiparticle (QP) state. The
procedure to factor out Γren

q=0 s(1, 1
′) or Γren

q=0 s(2
′, 2) symmetrically from Γs(1, 2; 3) as

Eq. (4.34) is now possible by construction. Then, the BSE for the vertex function (see
Eq. (4.42) and Fig. 4.3) becomes that for the renormalized one with Γren

q=0 s factored
out:

Γ̄s(1, 2; 3) = Γren−1
q=0 s (1, 3)δ(2, 3) + ∑

s′′

∫
d(1′44′55′)

× Γren−1
q=0 s (1, 1′)

δMs(1′, 2)
δḠs′′(4′, 4)

Ḡs′′(4′, 5)Ḡs′′(5′, 4)Γ̄s′′(5, 5′; 3). (4.47)

Next, we can find that the exchange-correlation part of the self-energy Eq. (4.45)
becomes

Ms(1, 2) = i
∫

d(34)Ḡs(1, 3)W(1+, 4)Γ̄s(3, 2; 4), (4.48)

and the dielectric function Eq. (4.43) with Rs′(3′, 2; 3, 2+) becomes

ε(1, 2) = δ(1, 2)

−
∫

d(33′44′)
δ vH(r1)

δḠs′′(3′, 3)
Ḡs(3′, 4)Ḡs(4′, 3)Γ̄s(4, 4′; 2). (4.49)

Although the calculation of the Hartree potential vH(r1) by the original QP wave
functions, i.e., the original G, was difficult, it is now easy by using the renormalized
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Ḡ as

vH(r1) = −i∑
s

∫
d2 v(1, 2)Ḡs(2, 2+). (4.50)

Then, Eq. (4.49) becomes ε(1, 2) = δ(1, 2)−
∫
d3 v(1, 3)χ̃(3, 2) with the polarization

function,

χ̃(3, 2) = −i∑
s

∫
d(44′)Ḡs(3, 4)Ḡs(4′, 3+)Γ̄s(4, 4′; 2). (4.51)

Finally, the dynamically screenedCoulomb interactionW and the exchange-correlation
part of the self-energy as well as the Hartree potential are completely expressed only
by Ḡ and Γ̄. This form is no other than the full GWΓ formula but with G and Γ re-
placed by Ḡ and Γ̄. Thus the present study succeeded in including the renormaliza-
tion function Eq. (4.29) in the formulation, and established the exact self-consistent
GWΓ form with the normalized QPWFs.
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4.5 Conclusion

In summary, what we have to do is to simply normalize all the quasiparticle wave
functions (QPWFs) to unity, although the quasiparticle (QP) energies are complex.
The point is that the two-time spin density matrix Eq. (4.36b) is expressed by N nor-
malized wave functions ϕ̄i(1). Then, the present theory proved that these functions
exactly satisfy the same equation as the time-dependent QP equation (4.35). Thus,
the exact equivalence between the normalized wave functions ϕ̄i(1) and the QPWFs
ϕµ(1) (except for the normalization factor) was established for the time-dependent
case. This is a very reasonable conclusion because each hole (electron) QP state as-
sociated with one final photoemission (PE) |ΨN−1

µ ⟩ (inverse photoemission (IPE)
|ΨN+1

ν ⟩) state should have a norm equal to the amount of one electron exactly. It is
clear that the same statement holds for the time-independent case also. If the spin
density matrix defined by ρs(r1, r2) = ⟨ΨN

0 | ψ†
s (r2)ψs(r1) |ΨN

0 ⟩ is expressed by N
normalized wave functions ϕ̄i(r) as ρs(r1, r2) = ∑N

i ϕ̄i(r1, s)ϕ̄∗
i (r2, s), these functions

satisfy exactly the same equation as the time-independent QP equation (2.78a). All
these facts imply that one can normalize the QPWFs, although they are not necessar-
ilymutually orthogonal. Here, Baym-Kadanoff’s conservation law [7, 67] guarantees
that we can solve the QP equation with the hermitized self-energy Eq. (4.13a).

I emphasize that to normalize the QPWFs is equivalent to taking into account
the Ward identity. The vertex function in the limit q → 0 counts the (N ± 1)-electron
states |ΨN±1

λ ⟩ with purely one electron or hole only, and has an effect to normalize
the corresponding QPWFs as Eq. (4.25), ignoring all spontaneous multiple excita-
tions not related to the momentum-energy transfer in terms of Coulomb interaction
(see Fig. 4.1). Therefore, to normalize the QPWFs is equivalent to replace G and Γ, re-
spectively, with Ḡ normalized by Γren

q=0 and Γ̄ factored out by Γren
q=0 everywhere. If we

assume Γ̄s(1, 2; 3) = δ(1, 3)δ(2, 3), we obtain the renormalized self-consistent GW
approximation, in which G is replaced everywhere by Ḡ. This is not equivalent to the
original self-consistent GW approximation because Γ̃s(1, 2; 3) = Γren

q=0 s(1, 3)δ(2, 3) is
not equal to δ(1, 3)δ(2, 3). The procedure is similar to that proposed by Holm and
von Barth [57, 93] but the QP energies should be treated as complex numbers. Al-
though the present theory was explained for the ground state as the initial state, it is
applicable to the excited states also by using the approach given by Ohno et al. [44,
45].

Finally, let me make a comment on Kohn-Sham’s formulation of density func-
tional theory (DFT). In their original paper[4], they never wrote that the Kohn-Sham
(KS) orbitals are mutually orthogonal, although they assumed their normalization.
If we accept this interpretation for KS theory (see Eqs. 4.13), the present formulation
of the self-consistent GWΓ (or self-consistent GW) approach using the normalized
QPWFs can be regarded as an extension of KS theory. Although an indirect rela-
tionship between the KS potential and the self-energy has been achieved by Sham
and Schlüter [20, 27], what the present study achieved is their direct equivalence in a
hermitized form Eq. (4.13a), which is exact. The only difference from the traditional
DFT is that the QPWFs are not necessarily orthogonal to each other, because the self-
energy is energy dependent. This consideration implicitly shows the justification of
the non-local effective potential and of their energy dependent (which is equal to
orbital dependent, such as Hubbard +U scheme) in the KS framework, which gives
the favor to the generalized KS framework also[37]. A non-orthogonality actually
implies that the QPWFs are interacting, or correlated, in contrast to the fictitious
non-interacting KS orbitals.
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Chapter 5

Summary

This doctoral thesis consists of an overview of two papers; (i) Takeru Nakashima
and Kaoru Ohno. “Spin-Orbit Coupling in All-electronMixed Basis Approach”. An-
nalen der Physik, 531 9: 1900060 (2019)[1] and (ii) Takeru Nakashima, Hannes Rae-
biger, and Kaoru Ohno. “Normalization of exact quasiparticle wave functions in the
Green’s function method guaranteed by the Ward identity”. Physical Review B 104
20: L2011116 (2021)[2].

As the first study, I developed the method to calculate the spin-orbit coupling
(SOC) in all-electron mixed basis approach, and which takes into account the SOC
contributed from the valence electrons and the core electrons efficiently. The calcula-
tion results show the good agreement with the experimental results, which suggests
the present method.

As the second study, I gave the justification to normalize the quasiparticle wave
functions in quasiparticle (QP) theory and introduced the extended Kohn-Sham (KS)
equation (see Eqs. 4.13). In the case of the limit of the vertex function q → 0, I intro-
duce the interpretation that there are spontaneous multiple excitations not related
to momentum-energy transfer in terms of the Coulomb interaction (see Figs. 4.1 and
4.2). Therefore, the factoring out the limit of the vertex function Γren

q=0 corresponds
to the elimination of spontaneous multiple excitations (see Fig. 4.1). Additionally, I
showed that under the Baym-Kadanoff’s conservation law, the one-particle Green’s
function satisfies the left- and right-eigenvalue equation, which gives the two type
equations having the real part of the QP energy and the imaginary part of the QP
energy as eigenvalues, respectively (see Eqs. 4.13). This equation is obtained from
hermitizing the self-energy of the original QP equation and which is interpreted as
extended KS equation.
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Appendix A

Green’s function and quasiparticle

Mathematically, the Green’s function method is the very famous technique which
solve integral problems and which has been widely applied in many-body prob-
lems[48]. This appendix is devoted to the explanation for the mathematical Green’s
function and the quasiparticle wave functions (QPWFs) derived from the bilinear
diagonal expansion.

A.1 What is Green’s function mathematically?

The Green’s function is the useful technique combining the differential and integral
equations. Firstly, suppose the differential equation

F̂(x)h(x) = g(x), (A.1)

where F̂(x) is the differential operator in the function space. For simplicity, introduc-
ing the abstract form ⟨ x | h ⟩ = h(x), ⟨ x | g ⟩ = g(x), and δ(x− x′)F̂(x) = ⟨ x | F | x′ ⟩,
Eq. (A.1) becomes

F | h ⟩ = | g ⟩, (A.2)

where F is assumed as hermitian linear operator. Also, we can introduce a linear
operator G and a linear transformation as

| h ⟩ = G | g ⟩, (A.3)

Substituting Eq. (A.3) into Eq. (A.2) shows that

FG = 1. (A.4)

In the function space, G in Eq. (A.3) corresponds to the integral kernel

h(x) =
∫

dx′G(x, x′)g(x′),

where G(x, x′) = ⟨ x |G | x′ ⟩ and Eq. (A.4) is equal to F̂(x)G(x, x′) = δ(x − x′).
Generally, this integral kernel or linear operator G is called Green’s function. This
kernel G can convert the original complex Eq. (A.2) to simple Eq. (A.4).

Consider the Hermitian eigenvalue problems

F | fi ⟩ = ai | fi ⟩, ⟨ fi | f j ⟩ = δi,j (A.5)

where fi and ai are eigenstates and eigenvalues, respectively. Using these eigen-
states, any state | ϕ ⟩ is expanded as | ϕ ⟩ = ∑i | fi ⟩⟨ fi | ϕ ⟩. Combining Eqs. (A.2)
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and (A.5) gives
ai⟨ fi | h ⟩ = ⟨ fi | g ⟩. (A.6)

If ai ̸= 0, | h ⟩ can be expanded as

| h ⟩ = ∑
i

1
ai
| fi ⟩⟨ fi | g ⟩, (A.7)

and both Eqs. (A.3) and (A.7) show that the Green’s function G is

G = ∑
i

| fi ⟩⟨ fi |
ai

; ai ̸= 0. (A.8)

Here, the point is that the Green’s function is expanded by the orthogonal normal-
ized basis. This bilinear diagonal expansion is used for the first QPWFs derivation
(see appendix A.2) There is difference between the QPWFs appearing in the first
derivation[71] and the QPWFs appearing in themain part of this doctoral thesis. The
QPWFs appearing in the main part of this doctoral thesis are not orthogonal mutu-
ally because those QPWFs are the eigenstates for the Dyson equation. Therefore, we
can not treat QPWFs in similar way shown here. This difference is important.
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A.2 Quasiparticle approximation

The concept of the quasiparticle (QP) is treated as approximation and called QP
approximation[26, 50, 71]. It is true that the original concept of QPs, introduced by
Landau, is approximation. However, the QPs appearing in the main part of this
doctoral thesis is not approximation In this appendix, I explain the derivation of the
QP concept by approximation method using left- and right-eigenvalue problems.

In the Klein and Prange’s paper (1968)[63], the QP equation is introduced firstly,
and in few years later the derivation for the QP equation is given using the left- and
right-eigenvalue problems. The derivation using the left- and right-eigenvalue prob-
lem is basic method. In this method, the one-particle Green’s function is assumed
to be spectral form, that is, the one-particle Green’s function is expanded by the di-
agonal bilinear expansion in the sets of eigenfunctions for left- and right-eigenvalue
problems[26, 71, 101]. Specifically, the one-particle Green’s function is assumed to
be expanded as follows

G(ω) = ∑
λ

| ϕλ(ω) ⟩⟨ ψλ(ω) |
ω − Eλ(ω)

, (A.9)

where ⟨ψλ(ω) | and | ϕλ(ω) ⟩ are eigenstates for the left-eigenvalue equations and
the right-eigenvalue equations, respectively,

⟨ψλ(ω) | (h+ Σ(ω)) = ⟨ψλ(ω) | Eλ(ω), (A.10a)
(h+ Σ(ω)) | ϕλ(ω) ⟩ = Eλ(ω) | ϕλ(ω) ⟩. (A.10b)

In the following discussion, the representation L(ω) = h + Σ(ω) is used for sim-
plicity. Eqs. (A.10) show that the eigenstates orthogonality; ⟨ψλ(ω) | ϕλ′(ω) ⟩ = δλ,λ′

{⟨ψλ(ω) | L(ω)} | ϕλ′(ω) ⟩ = Eλ(ω)⟨ψλ(ω) | ϕλ′(ω) ⟩, (A.11a)
⟨ψλ(ω) | {L(ω) | ϕλ′(ω) ⟩} = Eλ′(ω)⟨ψλ(ω) | ϕλ′(ω) ⟩. (A.11b)

Eqs. (A.11) lead the orthogonality for the left- and right- eigenstates

⟨ψλ(ω) | ϕλ′(ω) ⟩ = δλ,λ′ . (A.12)

From this orthogonality, the representation for the one-particle Green’s function
Eq. (A.9) is valid, which is easily verified through the discussion in appendix A.1.
(This framework using the spectral form Eq. (A.9) is also called h approximation[71])

In the QP approximation, the one-particle Green’s function has simple poles, i.e.
ϵλ = Eλ(ϵλ). Taking into account the norm of the QPs, the one-particle Green’s
function is represented by

G(ω) ≃ ∑
λ

gλ
| ϕλ ⟩⟨ ψλ |

ω − ελ
, (A.13)

where ϕλ = ϕλ(ελ), ψλ = ψλ(ελ), and g−1
λ = 1− (∂/∂ω) Eλ|ω=ελ

. The first deriva-
tion for the QP equation is done in the Layzer ’s paper[71]. In this Layzer’s deriva-
tion, the QPWFs are defined through the left- and right-eigenvalue equations. This
Green’s function spectra form is the QP approximation, which takes into account the
norm of the QP states unlike the h approximation. However, please notice that in this
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doctoral paper, the QPWFs are defined by Eqs. (2.70) using the electron field Heisen-
berg operator and themany-body eigenstates ΨN

0 , ΨN±1
λ , and through the discussion

in subsection 2.4.5, there are no approximation in the introduction of quasiparticle
wave functions representing the one-particle Green’s function. Therefore, the quasi-
particle wave functions appearing in our discussion are not approximation.
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Appendix B

Homogeneous system

The fundamental theories on the Green’s function and the quasiparticle wave func-
tions (QPWFs) have been established for a homogeneous system, i.e., translational
symmetry in space, in condensed matter physics. In this doctoral thesis, the Green’s
function is not restricted to a homogeneous system, but it is very helpful to know
the knowledge of the Green’s function in the homogeneous system. Therefore, I put
the brief explanation of the theories for the homogeneous system.

B.1 The coherent and incoherent part of the Green’s function

In the case where the system has the translational symmetry, the Green’s function
has the following form

G(r1 − r2|ω) = G(r1, r2|ω), (B.1)

and the Fourier transformation is

G(k|ω) =
∫

dr G(r|ω)e−ik·r . (B.2)

Using the above Fourier transformation, the Dyson equation becomes

(ω − h(k|ω)− Σ(k))G(k|ω) = 1, (B.3)

where convolution product becomes the direct product through the Fourier trans-
formation and ω − h(k)− Σ(k|ω) is a scalar function. Therefore, in the system the
translational symmetry is satisfied, the Green’s function is represented by

G(k|ω) =
1

ω − h(k)− Σ(k|ω)
. (B.4)

The pole of the Green’s is obtained from the solution for ω − h(k) − Σ(k|ω) = 0.
Here, the self-energy is supposed as smooth function and the root is εk. From this
consideration, the Green’s function is considered as following form

G(k|ω) =
fk(ω)

ω − εk
, (B.5)

where εk = h(k) + Σ(k|εk) (which is the pole of G(k|ω)) and fk(ω) is defined by

fk(ω) =

(
1−

Σ(k|ω)− Σ(k|εk)
ω − εk

)−1

. (B.6)
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FIGURE B.1: The pole of the Green’s function in the homogeneous
system

Please notice that fk(ω) is considered smooth function. Considering the Taylor ex-
pansion of fk(ω) around the pole εk, the Green’s function is divide to two part, i.e.,
coherent part, which is the first term in Eq. (B.7), and incoherent part,

G(k|ω) =
Zk

ω − εk
+ (incoherent part) , (B.7)

where Zk = fk(εk) and the incoherent part is the sum of a remaining terms ex-
cept 0-th Taylor expansion term of fk(ω), which are regular at the pole; ω = εk,
specifically,

Zk =

1− ∂Σ(k|ω)

∂ω

∣∣∣∣
ω=ϵk

−1

. (B.8)

The Ward identity for the homogeneous space is

Γ(k; q = 0|ω,ω) = 1− ∂Σ(k|ω)

∂ω
, (B.9)

which shows that
Zk × Γ(k; q = 0|ϵk, ϵk) = 1. (B.10)

Equation (B.10) shows that the one-particle Green’s function is represented by

G(k|ω) =
Γ−1(k; q = 0|ϵk, ϵk)

ω − εk
+ (incoherent part) . (B.11)

Using abbreviation, Γq=0(k|ω) andWq = W(q, η), the above equation yields

G(k|ω)Wq=0Γq=0(k|ϵk) = Ḡ(k|ω)Wq=0 +Wq=0Γq=0(k|ϵk)× (incoherent part) ,
(B.12)

where Ḡ(k|ω) = 1/(ω − ϵk) denotes the renormalized Green’s function composed
of the normalized QPWFs. Please notice that the coherent part and the incoherent
part are defined in the wave vector space and Eq. (B.7) is definition, which means
that the incoherent part is not defined in real position vector space, generally.
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