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Abstract

Despite their high prevalence, many people often misinterpret symptoms of

Autism Spectrum Disorder (ASD) and Attention Deficit Hyperactive Disorder

(ADHD) as willful or misconduct behavior. As conventional method is time-

consumptive and susceptible to human-decision-making bias, a diagnostic support

system to identify developmental disorder symptoms becomes requisite.

Previous studies have been proposing diagnostic support systems employing

either bio-signal or behavioral test. Using bio-signals, previous works measured

children’s brain activity when they performed certain tasks. Then, using fea-

tures extracted from the signals, the proposed approaches differentiated typical

from disorder children with machine learning algorithm. As these approached

required attaching sensors to children’s body that might irritate children, other

studies proposed to examine children’s behavior directly using visual sensors or

eye trackers.

This paper presents a diagnostic support system employing multiple visual

sensors and eye tracker to measure children’s behavior during indoor physical

activity and the Go/NoGo task. The proposed system comprised group-level

monitoring and individual-level monitoring. Group-level monitoring measured

children’s interaction with their environment and peers during playing activity

in nursery schools. While individual-level monitoring examined children’s game

performance and gaze behavior in playing a game version of the Go/NoGo task.

The proposed system used deep distance learning (DDL) to identify developmen-

tal disorder symptoms in children. It allowed the proposed model to measure

similarity of a query to typical and disorder groups. Using DDL also enabled re-

trieval that provided evidence-based results. Estimation results were interpreted

by employing SHAP values to provide specific information for the psychiatrist to

identify developmental disorder in children.

This study includes four sections. First, we explained our study in estimating

human activity with multiple cameras using Deep Neural Network model. Next,



based on the finding of the first study, we proposed behavioral monitoring system

employing multiple Kinect sensors and RGB cameras. Third, we examined the

relation between children’s response and gaze behavior and investigated features

relating to ASD and ADHD symptoms when they played Go/NoGo game. Last,

we proposed a diagnostic support system employing Cluster Hard Triplet Loss to

compute similarity between a query and typical and disorder groups and perform

retrieval based using the query. It also provided an interpretation of the similarity

score based on SHAP values.
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Chapter 1

Introduction

1.1 Background and Purpose

People often misinterpret invisible disorders symptoms such as impulsivity

and hyperactivity as willful misconduct and poor character. Autism Spectrum

Disorder (ASD) and Attention Deficit Hyperactive Disorder (ADHD) are exam-

ples of invisible disorders.

In Japan, the prevalence of Autism Spectrum Disorder (ASD) symptoms

among children has been estimated to be between 1.9% and 9.3% based on par-

ent and teacher reports [5]; in the USA, about 1 of 54 children was diagnosed

with ASD in 2020 [6], while in 2016, a study found that 9.41% of children had

Attention Deficit Hyperactivity Disorder (ADHD) symptoms [7].

Conventional diagnostic methods involve monitoring children’s behavior by

psychiatrists with behavioral assessment checklist. The results of behavioral

checklist, however, are prone to human decision-making bias and time-consumptive.

Previous researches have attempted to resolve this issue by utilizing human bio-

signal such as EEG [8] and fMRI [9] to differentiate typical from disordered chil-

dren. Thought previous findings suggested a promising performance of those

methods in diagnosing the disorders, they neglected the urgency to develop a

decision support system to identify high-risk disorder children. Also, methods

using fMRI and EEG required experts’ skills to be operated, hindering their
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daily applications.

In contrast, psychiatry studies recognize disorder symptoms by employing

behavioral tests that are simple to be carried out. The Go/NoGo task [10–12],

and visual attention test [13] are example of behavioral test. Previous studies

have discovered a significant difference between ASD and typical children during

a Go/NoGo task. The task requires a subject to react to the Go stimulus and

inhibit their reaction to the NoGo stimulus [12]. The stimuli can be represented by

visual objects with different colors and shapes [10,12] or by sounds with different

frequencies [11]. Studies on ASD children’s gaze behavior have observed that the

ASD group was slower to adjust their gaze to the stimulus position during eye-

tracking measurement of joint attention [13], and faced difficulty in modulating

their gaze during face-to-face conversation [14].

Other approaches have proposed behavioral monitoring system that automat-

ically tracked children’s movement to understand the difference between typical

and disorder children. The systems can be classified into a marker and marker-less

methods.

Marker systems monitor children’s behavior by attaching markers to their

bodies. Three-dimensional information of an infant’s joint can be obtained with

a motion capture system that tracks the movement of markers on the subject’s

body [15]. Marker-less approaches use a visual sensor to eliminate the use of

electrical markers in monitoring children’s activity. Previous studies used a single

RGB camera to measure infants’ general movement [16] and to monitor toddlers’

activity in a nursery room [17].

This study aims to diagnostic a decision support system employing behavioral

test and monitoring system. The proposed method included group-level and

individual-level monitoring system. Group-level involved marker-less behavioral

monitoring system that tracked children’s activity in a nursery room with multiple

RGB-D sensors. Individual-level used a game version of the Go/NoGo task to

identify children’s impulsivity and inattentiveness by measuring their response

and gaze behavior during the game. For that purpose, this paper discusses the
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following topics:

• A deep neural network to estimate human activity

Conventional CVmethods have dominated multi-view human activity recog-

nition system. Those methods involved sophisticated features extracting

methods to combine features from multiple cameras. This study proposed a

DNN model employing shared-weight to estimate human activity [1]. These

results showed DNN based method could achieve competitive recognition

rate using only 2D RGB inputs.

• Marker-less monitoring system to model behavior children

Previous studies have found that ASD and ADHD children showed excessive

physical movement, constantly changing activity, and little interest in peers.

This paper proposed a marker-less monitoring system employing multiple

RGB-D cameras [2]. We used OpenPTrack with Kinect sensors to track

children’s activity in the nursery room. Then, we model children’s behavior

with PetriNet model. The study represented typical and ASD subjects

with four features extracted from the model and statistically analyzed the

difference between the groups.

• Study on Response and Gaze Behavior during the Go/NoGo Task

Findings of previous works on behavioral test of ASD/ADHD symptoms

suggested a statistically significant difference between typical and their ASD

peers in their response and gaze behavior [3]. This paper presents a serious

game of the Go/NoGo task to measure subjects’ response and gaze behav-

ior during the task. We recruited 59 university students to take part in

the experiment and analyzed the relationship between their gaze and re-

sponse when they played the game. We performed statistical analysis and

clustering to understand the patterns in their features. We also used our

proposed game (CatChicken game) to measure response and gaze behavior

of typical and ASD children. The study investigated whether features ex-
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tracted from this information could identify the symptoms by conducting

statistical analysis.

• Diagnostic support system with deep distance learning

Findings of previous works on behavioral test of ASD/ADHD symptoms

suggested a statistically significant difference between typical and their ASD

peers in their response and gaze behavior [3]. This paper presents a serious

game of the Go/NoGo task to measure subjects’ response and gaze behav-

ior during the task. We recruited 59 university students to take part in the

experiment and analyzed the relationship between their gaze and response

when they played the game. To understand the patterns in their features,

we performed statistical analysis and clustering. We also used our proposed

game (CatChicken game) to measure response and gaze behavior of typi-

cal and ASD children. The study investigated whether features extracted

from this information could identify the symptoms by conducting statistical

analysis.

1.2 Proposed Method

Our proposed method (Fig. 1.1) comprises group and individual levels mon-

itoring. Group-level monitoring system aims to quantify children’s playing be-

havior and identify high-risk disordered children. The system measures children’s

activity with multiple cameras and evaluates their interaction with the environ-

ment and their peers.

Contrary to group-level monitoring, individual-level monitoring system assess

children’s performance during specific task. This study uses a game version of

the Go/NoGo task to measure children’s response and gaze behavior. During

the experiment, subjects respond to Go/NoGo stimulus by pressing a space bar

on the keyboard. The system tracks their gaze movement with an eye-tracker

attached on the monitor.

Finally, using the features from group and individual level monitoring, deep
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Fig. 1.1: A diagnostic support system to identify developmental disorder symp-

toms in children. The system comprises group and individual levels monitoring.

distance learning measures identify developmental disorder symptoms by mea-

suring similarity between a query and the support vectors. Model agnostic model

interprets the estimation results of the model, providing comprehensive informa-

tion to the psychiatrists about the estimation results of individuals.

1.2.1 Group-Level: Children’s Behavior Monitoring with

Multiple Cameras

Group-level monitoring measures children’s interaction with their environ-

ment and their peers utilizing multiple RGB-D cameras. Using RGB-D images,

the proposed system tracks movements and positions of children and objects to

estimate children’s activity continuously. Next, the system quantifies their play-
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ing behavior to provide comprehensive information for the psychiatrists, enabling

them to make a better diagnosis.

1.2.2 Individual-Level: Children’s Response and Gaze Mod-

ulation during the Go/NoGo Task

Individual-level monitoring offers a standardized test that is less susceptible

to bias that presents in a natural playing environment. Individual-level monitor-

ing evaluates children’s behavior during the Go/NoGo task. The system mea-

sures children’s game performance and gaze movement to identify irregularity in

their response and gaze modulation. Spatial and gaze-adjustment features are

extracted to represent the behavior of a child during the game.

1.2.3 Deep Distance Learning to Identify Developmental

Disorder Symptoms in Children

To help psychiatrists make a better judgment in identifying developmental

disorder symptoms, a diagnostic support system (DSS) must provide evidence

based and interpretable results to the users [18]. Our proposed system utilizes

deep distance learning and Shapely value to provide interpretable evidence-based

results.

As symptoms of invisible disorders (e.g., ADHD and ASD) overlap among

disorders, using DSS to determine the class of disorders may yield inaccurate

results. Deep distance learning (DDL) allows the proposed system to perform

similarity measurement between a query and support dataset, if a single query

lies in the middle of several centroids of the support sets, then it will obtain

equivalent similarity scores. DDL also enables the system to perform retrieval to

fetch similar data to the query from the support set, which the psychiatrists can

consider when making a diagnosis for patients.

The proposed system interprets the estimation results of DDS with SHAP

values. The algorithm allows the proposed system to tell the users which feature-
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related symptoms are pronounced in the patients and why the DDL produces

such estimation results. The interpretable results help provide comprehensive

metrics that psychiatrists can use to identify developmental disorder symptoms

in children.

1.3 Dissertation Outline

This thesis presents a novel Diagnostic Support System that comprises group-

level and individual-level monitoring systems (Fig. 1.2). Group-level system

monitored children’s playing behavior to identify hyperactivity and impulsivity

symptoms. Individual-level system measured children’s response and gaze behav-

ior to measure their inattentiveness and impulsivity symptoms.

Chapter 2 discusses the previous works related to this study. It reports the

benefit of using marker-less over marker monitoring system to monitor children’s

behavior. This chapter also includes the reason this study developed a serious

game of the Go/NoGo task to measure children’s motor response and gaze be-

havior. Last, it reviews the concept of diagnostic support system and how it can

help psychiatrists in making better judgment to identify developmental disorder

symptoms.

This thesis explains the detail of the proposed model in Chapter 1 that in-

cludes group-level and individual-level monitoring system. Chapter 3 and 4 de-

scribes our study related to group-level monitoring. We investigated on how we

could estimate human activity using RGB images and DNNs model in Chap-

ter 3. While in Chapter 4, we reported our behavioral monitoring system using

OpenPTrack employing multiple Kinect sensors.

Chapter 5 reports an investigation of subjects’ response and gaze behavior.

We developed a serious game version of the Go/NoGo task to measure their re-

sponse and gaze behavior when they played the game. The experimental results

suggested a significant positive relationship between the participant’s response

and gaze trajectory area. Also, this chapter presents the results in ASD chil-
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Fig. 1.2: Flowchart depicting the structure of this dissertation.

dren’s response and gaze behavior when they played the CatChicken game. The

statistical comparison showed a significant difference in gaze modulation behavior

between typical and their peers with ASD children.

Study of diagnostic support system to identify ASD symptoms is presented in

Chapter 6. The proposed system employed Deep Distance Learning (DDL) and

SHAP value to provide interpretable evidence-based results. The DDL enabled
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the system to produce evidence-based results and learn new class with only few

samples. And the SHAP value allowed the proposed DSS to interpret DDL’s

similarity score.

Last, we discussed the results, limitation, and future direction of our study in

Chapter 7.
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Chapter 2

Related Work

2.1 Children’s Behavior Monitoring with Marker

and Marker-less Methods

Marker system used sensors or electrical markers attached to children’s bodies

to monitor their activity continuously. Using a motion capture system, Meinecke

et.al [15] tracked infants’ body movement by placing 18 markers placed on their

bodies. They modeled the body movement using a rigid biomechanical model

that was represented by 53 parameters. The experimental results suggested that

the movement complexity of typical and pathological children differed, in which

the latter group’s movements were more monotone than the former. Although

the proposed system achieved promising results, the equipment’s setup process

was complicated and required many markers attached to the infants. To tackle

that problem, instead of a motion capture system, [19] utilized an accelerometer

to monitor infants’ body movement. Four accelerometer sensors were attached to

the subjects’ hands and feet and their spontaneous movement was monitored for

20 minutes. Although the biomechanical model used in this study had fewer pa-

rameters, classification results showed that the proposed approach outperformed

the accuracy of [19].

Attaching marker to children’s body may harm them or influence their behav-
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ior during the experiment. Marker-less methods utilized visual, lidar, or radar

sensors to estimate positions of subjects and objects. Previous studies utilized

a single RGB camera to measure infants’ general movement [16] and to monitor

toddlers’ activity in a nursery room [17]. While the former monitored individual

infant’s behavior continuously, the latter faced occlusion problems when moni-

toring a group of children’s behavior.

2.2 Children’s Behavior During the Go/NoGo

Task

Go/NoGo task requires a subject to respond to the Go stimulus, but inhibits

his action to the NoGo stimulus. This task can be classified as an action restraint

since if the NoGo stimulus appears, then the subject must inhibit his action before

execution [12].

Previous researches [10, 12, 20] represented the stimulus on a monitor as two

distinct characters, colors, and shapes. Some of them also used sound with a

different frequency to show when the participant had to respond and when they

did not have to [11].

During the Go/NoGo task, a participant can respond by pressing a spacebar,

clicking a left mouse, or touching a screen [20]. Response time (RT) defines the

time difference between when the stimulus appears and when the participant

reacts. Standard deviation, coefficient variability, and kernel density estimations

were used to calculate its variability (RT Var) [20].

Since it was not invasive, many previous works used the Go/NoGo task to

identify developmental disorder symptoms.

Bezdjian et.al [10] found that ADHD children showed higher NoGo errors

and higher reaction time variability. The study also stated that Go error related

to both verbal and IQ performance of children, while Go RT only correlated to

the latter. Another work furthered this idea by conducting a meta-analysis of

RT-var in ADHD. The results showed RT-var was specific not only to ADHD
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symptoms but also to general mental disorders correlating with working memory

and behavior inhibition.

2.3 Gaze Modulation of ASD CHildren

Since impairment in basal ganglia affects a person’s visual attention, previous

studies investigated the difference between typical and disordered children by

measuring their gaze behavior [13,21]. They tracked the subjects’ eye movement

and analyzed the gaze modulation when the subjects performed visual attention

tasks [13] or interacted with others [14].

Difficulties in modulating gaze presented in children with Autism Spectrum

Disorder (ASD) during fixation task experiments and when having dyadic inter-

action [13,14]. ASD children showed lower gaze modulation and could not focus

on their interlocutors’ face during the interaction: they got distracted with the

surroundings more often than the control group.

2.4 Application of Serious Game for Children

with Developmental Disorder Symptoms

A serious game intends to bring an entertaining and non-invasive method to its

users. They can engagingly learn or perform certain skills, e.g., visual attention,

language, and social skills. In mental health, most previous works used serious

games to rehabilitate disordered patients [22–24]. The system implementation

involved the addition of game elements into the training task to enhance users’

motivation.

The games required the patients to accomplish objectives relating to the dis-

order’s symptoms. Games proposed by Faja et.al. [22] and Beaumont et.al. [23]

trained ASD children’s face recognition and social skills by challenging them to

identify characters’ face morphological features and to decode their thought and

emotion. BrainGame Brian [24] delivered working memory, inhibition, and cog-
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nitive task as a role-playing game, in which a player took part in those tests by

solving problems of characters in the game.

2.5 Overview of a Diagnostic Support System

Clinical diagnostic support systems (CDSS) aims to help clinicians in making

diagnosis by combining their knowledge with suggestion provided by the sys-

tem [18]. The system comprises knowledge-based and non-knowledge-based sys-

tems. The latter uses expert medical knowledge, literature, and patient-directed

information to create a rule-based decision support system. It works by retrieving

data from patients and database to evaluate the rule and producing suggestions.

Conversely, the former employs machine learning to leverage information of pa-

tients in making outputs.

The functions of CDSS are to improve patient safety [25], clinical manage-

ment [26], cost containment [27], and diagnostic support [28]. Clinical diagnostic

support (CDS) provides suggestions to clinicians in making diagnostic of pa-

tients. Previous works’ findings employing non-knowledge-based diagnostic sup-

port showed high accuracy in detecting neuropathies, diabetic retinopathy, and

tumor. In other studies, CDS was employed to enhance radiology images [29].

One of issues caused slow implementation of CDS were physicians’ bias and

negative perception because of uninterpretable suggestions. This paper attempted

to resolve this issue by employing interpretable deep distance learning. Deep dis-

tance learning computed similarity score between a query and support sets and

retrieved similar support sets from the database. SHAP value [30] interpreted

the similarity score, providing interpretable suggestions.
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Chapter 3

A Deep Neural Network Model

for Multi-view Human Activity

Recognition

3.1 Introduction

Occlusion often occurs when observing human activity using a single cam-

era [31]. The occlusion causes information loss that leads to failure of activity

recognition in single-view human activity recognition. Previous studies have at-

tempted to resolve this issue with multiple-view technique that uses multiple

cameras to compromise information loss when occlusion appears in a single cam-

era [31,32].

Multi-view human activity recognition (MVHAR) comprises conventional com-

puter vision (CV) and DNN-based methods. Conventional CV methods have

represented human movement as low-level features such as histogram of gradient

(HoG) [33], silhouettes [34], and optical flow [35], extracted from the sequence of

RGB images. Then, the features were categorized with classification algorithms

or transformed to higher-level representation. Previous works estimated human

activity either by combining features from multiple inputs followed by classifier
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algorithm or by estimating actions from a single input followed by score fusion or

vote. Studies employing conventional CV aimed to improve the recognition rate

of MVHAR with effective features-extraction and features-utilization algorithms.

In contrast with conventional CV methods, DNN approach combines features

extractor and classifier into single pipeline. A DNNmodel automatically discovers

representation and recognizes the patterns in given data using an end-to-end

learning algorithm [36].

Previous works on DNNs in MVHAR have involved early [1] or late fusion

to combine multiple inputs [37]. Early fusion resulted in a DNN model with a

modest number of parameters, which combined features from the early layer [1].

However, the combinations of inputs in an early layer with this approach may

cause highly variant features, making it prone to over-fitting. Meanwhile, late

fusion combined features from multiple cameras by treating inputs individually

with multiple models [37,38]. Individual models in this approach may have fewer

variant features but a high number of parameters, which consume more memory.

Other DNN approaches have attempted to solve the multi-view human action

recognition by employing multimodal inputs [39–43], multi-task training [38],

and cross-view learning [44,45] algorithm.

This paper presents a novel DNN model using a shared-weight application

for multi-view human action recognition. The shared-weight application enabled

the model to perform late fusion with fewer parameters than the multi-block

technique. The model used multi-view images as inputs to produce multiple hy-

potheses. Then, using the score-fusion, the model computed the final prediction.

Since the prior knowledge about informative inputs among multiple views was

unknown, we trained the proposed model to treat each prediction score equally

with arithmetic mean or weight the hypothesis with geometric mean. The model

applied an attention network to filter out uninformative features from each view.

The model comprises pre-trained CNNs, attention layers, RNN, and Softmax

layers. The study conducted exploration studies for structural optimization and

performed transfer learning with pre-trained CNNs to prevent over-fitting in the
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training process. We compared the performance of the proposed model perfor-

mance to that of the-state-of-the-art application on IXMAS [46] and i3DPost [47].

We conducted an online evaluation and comparative study with the single-view

model to determine its efficiency in the actual situation.

3.2 Proposed Model [1]

Our proposed model comprises CNNs, attention layer, RNN, and Softmax

blocks (Fig 3.1). We extracted features from multiple-view inputs by feeding

them to CNNs block. Then, attention-layer filtered out uninformative features

by applying attention mask to the latent variables. The proposed model em-

ployed RNN to understand temporal information before computing probability

of activity classes with Softmax layer. The proposed model shared the weight of

pre-trained CNNs and RNN across multiple inputs but used different attention

and Softmax layers for each input.

This study involved an examination of the pre-trained models VGG-19 and

VGG-16 [48] comprising five blocks with different numbers of CNNs. This paper

refers to I-th CNN in N -th block as blockN convI.

3.2.1 Attention Layer

The proposed model assumed that significant transformation occurred only

in certain parts of image sequences when subjects performed actions. Thus, it

should focus on certain frames in estimating activities. To filter out uninformative

features, our proposed model employed an attention layer [49] that weighted

important features with higher probability and the others with lower probability.

Given the feature vector F of shape T ×G, the attention mask was computed

by averaging attention scores over G. The first step to determine relevant features

was to estimate attention probability at each time step for the G dimension. For

the feature map at the t-th time step ft, attention probability was given by
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Fig. 3.1: Architecture of the proposed model. Pre-trained CNNs and LSTMRes

were shared across inputs.

st = gatt(ft; θt) (3–1)

αt = softmax(st) (3–2)

where gatt was an attention network with weight θt, and st was the attention

score map for the feature map. The attention score αt was the probability pro-

duced from Softmax function incorporating the subject of interest with a higher

probability than the rest. Dense, convolutional, and RNN layers can be used

as attention networks [50]; the proposed model employed a dense layer for the

attention network because, in the preliminary experiment, we found CNN and

RNN caused over-fitting. Besides, the proposed model intended to filter out un-

informative frames and not features in each frame, such as in sequence2sequence

model [51].

After computing attention probability at each time step, the relevant features
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were calculated using

f̂t = ft ⊙ αt (3–3)

where ⊙ represents the element-wise operator or the Hadamard product [52]. Eq.

3–3 weights features extracted from pre-trained CNNs with αt.

3.2.2 Residual Learning in LSTM

A long short-term memory (LSTM) architecture [53] was proposed to solve

the problem of vanishing and exploding gradients associated with conventional

recurrent neural networks (RNN) [36]. The architecture, however, still can suf-

fer from degradation problems caused by deeper neural network structure [54].

Residual learning was proposed to tackle this issue by introducing a shortcut

connection from the earlier to the later layers that helps the earlier layer get

a-”fresh”-gradient from the latter one during backpropagation [55].

In contrast to the highway network approach [56], residual learning formu-

lation [55] involved an identity shortcut to ensure ongoing learning. Residual

function H(zi) could be expressed as:

H(zi) = Fi(zi,Wi) +Wszi−m (3–4)

where F (zi,Wi) and zi−m represent the original mapping and output from the

earlier layer, respectively and Ws was a linear projection that was used when

the dimension between F (z,Wi) and zi−m was unequal, as realized via linear

mapping.

In LSTM, residual mapping could be accomplished by introducing a shortcut

connection to the adjacent layer, from layer t to t + 1 [57] (Eq. 3–5), or by

establishing a connection to the memory cell [1] (Eq. 3–6, implementation: Fig

3.2).

ht = ot ⊙ tanh(Ct) + ht−1 (3–5)

ht = ot ⊙ tanh(Ct +Wsxt) (3–6)
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Fig. 3.2: Architecture of LSTM with residual learning. Implementation of resid-

ual learning in LSTM with shortcut connection after forgetting of old information

and addition of the new information. The dotted line shows shortcut connection.

Here, ot, Ct, ht represent the output gate, memory cell, and hidden units,

respectively.

3.2.3 Score Fusion

Arithmetic or geometric means are used to combine prediction scores from

Softmax layers. With the former, scores from all cameras were treated as a

mixture, while the latter allows one prediction result from a single camera to

veto other outcomes. The proposed model calculated final prediction scores using

arithmetic mean (Eq. 3–7)or geometric mean (Eq. 3–8).

Here, yac represent the probability score of an action a from camera c. M and

N are respectively the total number of actions and cameras.
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Ya =

∑N
c yac
N

(3–7)

Ya =

N

√∏N
c yac∑M

a
N

√∏N
c yac

(3–8)

3.3 Method

3.3.1 Datasets and Evaluation Metric

The IXMAS dataset [46] is a benchmark in MVHAR algorithm evaluation

that comprises videos of 12 subjects performing 13 actions: watch checking, arms

crossing, head-scratching, sitting, getting up, turning around, walking, waving,

punching, kicking, pointing, picking something up, and throwing. Videos were

recorded using five cameras at 23 fps. Subjects performed each action three times

with free positioning and orientation.

The i3DPost dataset [47] was recorded using eight synchronized cameras with

a resolution of 1920x1080 and 25Hz progressive scan. The eight subjects per-

formed 12 actions (walking, running, jumping, bending, waving, jumping in place,

sitting-standing, running-falling, walking-sitting, running-jumping-walking, hand-

shaking, and pulling), creating 96 multi-view videos of human activity.

The proposed model’s performance was evaluated with categorical cross-entropy

loss, classification accuracy, and F1-score metrics. The accuracy rate was com-

puted by averaging top-1 accuracy for given data, while F1-score was the average

F1-score for all classes.

3.3.2 Pre-processing and Learning

To reduce distortion in images and ensure the features were on the same

scale, RGB-normalization and feature standardization were performed in pre-

processing.We computed individually mean and standard deviations for feature
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Fig. 3.3: Sample clips from IXMAS dataset. Five cameras were used to record

activities of subjects.

standardization for each dataset. And gamma correction applied to images for

experiments using the IXMAS dataset; the gamma value was 1.5.

In the experiments, the proposed model was trained with scenario I (LSTMRes

evaluation), scenario II (evaluation of the pre-trained model, MSLTMRes and

score fusion, and implementation of online classification), and scenario III (a

comparison of the proposed model with state-of-the-art methods) (Table ??). In

all scenarios, backpropagation with RMSProp optimizer [58] was used.
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3.4 Results

3.4.1 Exploration Studies

This section details the results of exploration studies using the IXMAS dataset.

The experiments included:

1. a performance comparison of LSTMRes with LSTMResKim [57], LSTM,

and Convolutional LSTM (ConvLSTM) [59],

2. an investigation on the impact of fine-tuning pre-trained CNNs with VGG-

19 and VGG-16; other models such as ResNet [55] and Inception [60] were

not used because they impaired the recognition rate of the proposed model,

3. an evaluation on using a multiple-block approach and shared-weight tech-

nique, and

4. a comparison of features fusion with score fusion using arithmetic and geo-

metric means.

The experimental protocols used in the experiments varied (Section Pre-processing

and Learning). And in every experiment, we used the most optimal structure for

the succeeding experiment.

A LSTMRes vs LSTMResKim

Fig 3.4 depicts the performances of LSTM, LSTMRes, and LSTMResKim on

IXMAS based on training and validation errors. The results suggested that vali-

dation errors of the proposed model with the LSTMRes were lower than that with

LSTMResKim. The training error with LSTMRes decreased steadily throughout

the learning process. But instability appeared in those of LSTMResKim after the

60th iteration.

In contrast, the LSTMRes approach exhibited slightly lower training and vali-

dation loss than LSTM and ConvLSTM. The performances of LSTM and LSTM-

Res were identical. These outcomes indicated that performing residual learning
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in the LSTM memory cell provides insignificant improvement with the model. In

consideration of these results, we used LSTMRes used for the rest of the experi-

ments reported here.
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Fig. 3.4: Training and validation errors of LSTM, LSTMRes, LSTMResKim, and

ConvLSTM. From the start until the end of learning, LSTMResKim had lower

performance than the others.

B Pre-trained CNNs

VGG-16 and VGG-19 models trained with the ImageNet dataset were exam-

ined as CNN blocks for the proposed model. We conducted experiments using the

intermediate block4 pool and the last block5 pool layers to find an appropriate

pre-trained model and clarify the effect of fine-tuning. The first experiment used

the intermediate layer as a feature extractor without fine-tuning the parameters,

while the second applied it. The last experiment was conducted by fine-tuning

the CNNs (from block4 conv2 to block5 conv3).

Figure 3.5 illustrates the performance of the proposed model with different

CNN blocks. The results showed three things. First, employing VGG-16 as a

CNN block produced higher DNN model accuracy. The lowest recognition rate

with VGG-19 in the intermediate layer experiment was higher than that with

VGG-16. But the proposed model achieved an average increase in accuracy rate

by 1.14 ± 0.89% using either the intermediate or last-layer of VGG-16. Second,

fine-tuning the last block of pre-trained CNNs improved insignificantly (n = 396,

average p > 0.05) the proposed model’s performance. Fine-tuning VGG-16 and
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VGG-19 improved respectively the accuracy rate by 4.29% and 2.52%. Third,

fine-tuning of pre-trained CNN parameters may impair the performance of the

proposed model, whose accuracy rate decreased by 2.02% with fine-tuning block4

(intermediate)
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Fig. 3.5: Accuracy of the proposed model with different pre-trained CNNs.

Average recognition rates of proposed model: VGG-19(intermediate): 90.40%;

VGG-16(intermediate): 90.90%; VGG-19(fine-tuned intermediate): 88.38%;

VGG-16(fine-tuned intermediate): 91.41%;VGG-19(last): 92.92%; VGG-16(last):

94.69%.

C Shared Weight, no MSLSTMRes

We previously found that MSLTMres yielded higher accuracy than the base-

line model [1]. However, the recognition rate came at the expense of computa-

tional time and parameter numbers.

Given the benefits of shared-layer DNN in language modeling [61], we inves-

tigated related effects in multi-view action recognition, sharing the pre-trained

VGG-16 and stacked LSTMRes of the proposed model across inputs from all cam-

eras. Different attention layers were used for different views, and feature fusion

was used to compute action probability.

An improvement (n = 396, p = 0.617) was observed with the use of shared-
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weight LSTMRes in the proposed model (Fig 3.6). The proposed model exhibited

a 1.01 % higher accuracy than with the use of MSLSTMRes. Shared-weight ap-

plication also resulted in fewer parameters (the proposed model: 70,304,393, [1]:

351,323,711) and lower complexity with the proposed model, improving compu-

tation time.
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Fig. 3.6: Average accuracy rate of the proposed model. Comparison between

MSLSTMRes (94.69 %) and MV-DNN (95.70%).

D Score Fusion

This experiment compared the proposed approach’s performance when using

features and score fusions. Features fusion estimates action probability using a

combination of the features from cameras. Scores fusion, however, combined the

prediction scores from multi-view inputs using the related arithmetic or geometric

mean.

This experiment used pre-trained VGG-16 and shared-weight LSTMRes as

CNN and RNN blocks for the proposed model, respectively. The models were

trained with scenario II (Section Pre-processing and Learning)

The proposed DNN model exhibited an average accuracy of 97.22 % with the
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arithmetic mean on IXMAS (Fig 3.7), which was 1.51% higher than the DNN

model with feature fusion. Scores fusion with the geometric mean created the

opposite effect, decreasing the proposed model’s accuracy rate by 1.77 %. These

results suggested the DNN model performed better when using the arithmetic

mean as the score fusion.
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Fig. 3.7: Average accuracy rate of the proposed model using LSTMRes with

feature-fusion and score-fusion techniques. Accuracy of shared-weights LSTMRes

with feature fusion (95.71%), and score fusion employing the arithmetic mean

(97.22%) and geometric mean (93.93%).

E Final Configuration

The above exploratory studies showed that the employment of VGG-16 (block5 pool),

shared-weight LSTMRes, and shared fusion with the arithmetic mean signifi-

cantly improved (n = 396, p = 0.004) the performance of the proposed model by

7.07± 14.03%, compared to the model in our previous work [1]. The highest im-

provement (4.29%) was observed with pre-trained VGG-16 as a CNN block and

fine-tuning of its last layer (Table 3.1), while the lowest improvement (1.01%)

was gained when MSLSTMRes was replaced with shared LSTMRes. Although

higher-resolution than in previous research [1] was used here (128 x 128 vs 73 x
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73 pixels), the recognition rate with the proposed model increased by only 0.25%.

Such improvement is insignificant, considering the small dataset.

Table 3.1: Average accuracy gain (%)with new configurations.

Configuration Accuracy Improvement

Previous work [1] 90.15 -

128 x 128 image 90.40 0.25

Pre-trained VGG-16 94.69 4.29

Shared-LSTMRes 95.70 1.01

Score fusion 97.22 1.52

Total 7.07

Application of the optimized configuration also increased the accuracy of the

proposed model in recognizing actions performed by hands (e.g., watching check,

arms crossing, waving, and punching) (Fig 3.8). The highest improvement (25%)

was achieved in the identification of waving. We used the aforementioned new

configuration for the next experiments: comparison of the proposed model with

a single-input model and the state-of-the-art methods.

3.4.2 Single-view Classification

We performed an experiment on IXMAS with 13 actions to investigate the

proposed model’s performance using multi-view and single-view inputs. Compar-

ison results (Fig 3.11) of the model using multi-view inputs and single-view inputs

demonstrated that combining information from multi-view resulted in significant

(n = 396, average p < 0.05) higher improvement. Also, the results signified that

using inputs from Cam5 caused the model to produce a 37.18% lower recognition

rate while using information from the other views yielded a 15.92± 1.23% lower

accuracy rate.
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Fig. 3.8: Improvement of recognition rate with the revised model for each class.

There was no improvement in recognizing the-”sit down/get up/pick up”-actions,

as perfect recognition rate was achieved by the model with the previous structure.

The highest accuracy gain was in recognizing wave action (25%).

3.4.3 Comparison with State-of-the-art Methods

We compared the proposed model to state-of-the-art methods on IXMAS and

i3DPost (Table 3.2 and 3.3). Note that their results were not reproduced and

the proposed model used 2D RGB images as inputs. Following the previous

studies’ experiment protocol, we evaluated the proposed model on the IXMAS

dataset, with 11 subjects performing 10-action. We used data of all subjects in

the evaluation of 13 actions on IXMAS and 10 and 12 actions on i3DPost. This

experiment used learning scenario III (Sec. Pre-processing and Learning).

In evaluation with IXMAS,the proposed model significantly outperformed all

2D methods in recognizing 11 actions by 12.05% on average (Table 3.2). Perfor-

mance was higher than with 3D methods [46,62] but was slightly lower than the

outcomes reported in [63]. Also, the proposed model got a 4.46% higher accuracy

rate than other DNN models using 2D inputs and achieved competitive results

to the models using 2D + optical flow inputs. Yet, the accuracy rate of proposed
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Fig. 3.9: Comparison between multi-view and single-view approaches. Recog-

nition rate of proposed model utilizing multi-view inputs (93.67 ± 3.39%) and

single-view inputs from Cam 1 (80.34± 7.57%), Cam 2 (82.487± 8.10%), Cam 3

(79.70± 6.66%), Cam 4 (79.27± 9.56%), and Cam 5 (59.19± 16.37%).

model was 2.33% lower than that of the methods employing adaptive score fusion.

In addition, the model produced a recognition of 96.37% in classifying 13

actions, outperforming Pehlivan et al. [62] with the use of 3D features. However,

the proposed DNN model’s recognition rate was still lower than 4D models [64].

The performance of the proposed DNN model in recognizing 10 actions on

i3DPost was comparable to state-of-the-art methods (Table 3.3). The proposed

model often misclassified actions with similar body configurations such as jumping

and bending and exhibited confusion with differentiation of single and combined

actions, such as“ walking”and“ running-jumping-walking” (Fig 3.10). The

model achieved higher performance in classifying 10-action and 2- interaction.
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Table 3.2: Comparison for recognition (%) using the proposed model with state-

of-the-art methods on IXMAS .

Method Input 11 Actions 13 Actions

Holte et al. [64] 4D 100.00 100.00

Turaga et al. [63] 3D 98.78 -

Spurlock et al. [65] Dynamic 94.24 -

Weinland et al. [46] 3D 93.30 -

Pehlivan et al. [62] 3D 90.91 88.63

Vitaladevuni [66] 2D 87.00 -

Chaaraoui et al. [34] 2D 85.86 -

Liu et al. [67] 2D 82.80 -

Khan et al. [39] * 3D 99.60 -

Gao et al. [35] * 2D + optical flow 99.60 -

Purwanto et al. [41] * 2D + optical flow 97.22 -

Gnouma et al. [40] * 2D 92.81 -

Proposed model 2D 97.27 96.37

The ”Input”-column indicates type of features used in the approaches. Khan et

al. [39] utilized 50:50 training and test evaluation method, while Gnouma et

al. [40] merely evaluated their model with 10 actions. * indicates DNN based

approach or the methods employing CNN based features.

The proposed model got an average F1-score higher than 0.9 for all classes with

all datasets (Table 3.4). The proposed model achieved the lowest F1-score when

evaluated with 10-action of i3DPost while testing it with 11-action of IXMAS

yielded the highest F1-score.

3.4.4 Online Classification

In the online scenario, we did not segment individual action sequences via

the action labels as described in Sections Exploration Studies and Comparison
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Fig. 3.10: Average accuracy rate of proposed model on i3DPost. The row and col-

umn represents action: walk(1), run(2), jump(3), bend(4), hand-wave(5), jump-

in-place(6), sit-stand up(7), run-fall(8), walk-sit(9), run-jump-walk(10), hand-

shake(11), pull(12). A and B illustrates experimental result on 10 and 12 actions,

respectively.

Table 3.3: Comparison for recognition (%) of proposed model with state-of-the-

art methods on i3DPost .

Method Input 10 Actions 12 Actions

Spurlock et al. [65] Dynamic 97.65 -

Holte et al. [64] 4D 97.50 -

Kose et al. [68] 3D 95.50 -

Tran et al. [69] * 3D 96.70 -

Mygdalis et al. [70] * 3D 95.51 -

Angelini et al. [71] * Skeleton 99.47 -

Proposed model 2D 93.75 (75/80) 96.87 (93/96)

The ”Input”-column shows the type of features used in the methods.

Evaluation was performed with the proposed model based on actions performed

by one subject and two subjects (”12 Actions”-column). Mygdalis et al. [70]

validated their model’s performance using 3-fold cross-validation. * indicates

DNN based approach or the methods employing DNN based features.

with State-of-the-art Methods. Rather, a sliding window was used to create

N clips from video content. The proposed model should determine early and
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Table 3.4: Average F1-score of the proposed model with 11 and 13 actions of

IXMAS, and 10 and 12 actions of i3DPost.

F1-Score (mean ± S.D.)

IXMAS-11 0.975 ± 0.026

IXMAS-13 0.963 ± 0.025

i3DPost-10 0.937 ± 0.062

i3DPost-12 0.969 ± 0.038

ambiguous actions (Fig 3.11) from unfinished sequences of actions or transitions

phases between actions. To clarify how much information is required for the

proposed model to make an accurate prediction, variable sliding time window t

was used with the values of 10, 20, 30, 40, and 50. We trained the proposed model

using learning scenario II (Section Pre-processing and Learning) for recognition

actions with each time step. The final prediction was the average probability

scores overtime.

t=42 t=45 t=48 t=51 t=54 t=57 t=60

t=777 t=780 t=783 t=786 t=789 t=792 t=795

A

B

Fig. 3.11: Example of ambiguous-action clips. A: sequence of images from early

watch-checking action. B: sequence of ambiguous actions (transition from punch-

ing to kicking action).

The experimental results (Fig 3.13) show that the highest accuracy and F1-

score were got with t = 50. The accuracy and F1-score of the proposed model

increased with longer sliding window values. However, this did not represent a

proportional correlation, as the recognition rate was 0.69% lower at t = 20 than

at t = 10.
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Fig. 3.12: Percentage labels in dataset and accuracy rate of the proposed model.

A: percentage of classes in IXMAS dataset segmented with t equaled to 50. B:

accuracy of the proposed model for each class with t = 50.

The imbalance dataset (Fig 3.12 (A)) did not impair the overall performance

of the proposed model: the proposed model achieved F1 scores higher than 0.6

in all scenarios. Besides, the proposed model classified sitting-down, getting-up,

and picking-up actions with over 80% accuracy rate, even though the percentage

of data based on such actions was lower than the others. Yet, the experimental

results for t = 50 (Fig 3.12 (B)) shows issues with the proposed model in differen-

tiating actions performed only by hands (e.g., head-scratching, waving, punching,

pointing, and throwing), with a recognition rate at less than 70%.

3.5 Concluding Remarks

This study presents a novel DNN method for estimating human activity

through multiple-view inputs. Even though we trained the proposed model with

only a few RGB-image datasets, experimental results showed it could achieve

competitive results. Comparison to the-state-of-the-art showed that MV-DNN

outperformed conventional CV and DNN-based method using 2D inputs and got

comparable results to approaches using 3D and 4D inputs.

The results also confirmed the advantage of using multiple-view inputs to

estimate human activity in dynamic environment, in which self or inter-object
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Fig. 3.13: Average accuracy rate of the proposed model in online classification.

A: accuracy of the proposed model with a varying number of sliding windows:

t = 10 (64.24 ± 4.26%); t = 20 (63.55 ± 3.45%); t = 30 (69.36 ± 5.43%), t =

40 (72.60 ± 5.15%), and t = 50 (73.64 ± 7.15%). B: average F1-score of the

proposed model with a varying number of sliding windows: t = 10 (0.63 ± 0.08);

t = 20 (0.62 ± 0.10); t = 30 (0.7 ± 0.06%), t = 40 (0.72 ± 0.07%), and t = 50

(0.73 ± 0.11%)

occlusion could occur. The proposed model attained higher accuracy rate when

using multiple-view inputs than a single-view input. Similar to previous works’

finding [31,32], this study found that combining information from multiple views

resulted in a higher accuracy rate of the proposed model in MVHAR. That proved

that additional information from another view could compromise the information

loss caused by occlusion.

Despite its promising performance, the proposed model got an accuracy rate

of less than 80% in online classification. Clips of transition from one action to

another one caused ambiguous-action clips that impacted the proposed model’s

recognition rate.
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Chapter 4

Modeling Behavior of ASD and

Typical Children during Class

Activity

4.1 Introduction

Previous works on ASD and ADHD children behavior have signified that

disorder children behavior during play activities differed from their typical peers.

Children with ADHD and ASD symptoms showed excessive physical movements,

preference playing alone, and repetitive behavior [72].

Marker-less behavior monitoring system estimates children behavior without

attaching markers or sensors to the children’s body. Using tracking results, the

system attempts to identify developmental disorder symptoms in children. Using

a single camera, previous works have developed a system to monitor infants’

general movement [16]. Yet, the method employing a single camera faced difficulty

to monitor children behavior in nursery room during play activities because of

occlusion [17].

This study employed multiple RGB cameras and Kinect sensors to track chil-

dren behavior in the nursery room. Our proposed approach modeled the behavior
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of children with PetriNet and represented each subject with four features. Statis-

tical comparison was performed to find the difference between typical and ASD

groups (Fig. 4.1).

Person and Object

Tracking

Activity Estimation

Mutual Information

Behavior Modeling

Preprocessing and Outlier Removal

Student-t Test

Method

Analysis

Fig. 4.1: Study flow diagram of Chapter 4.

4.2 Modeling Children’s Behavior [2]

The proposed system comprised three steps: children and object tracking,

children’s activity estimation, and behavior modeling.
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Fig. 4.2: Overview of behavior monitoring system proposed in this study.

4.2.1 Children and Object Tracking

The proposed model tracked positions of children and toys with OpenPTrack

[73] (online-tracking) and OpenPose [74] (offline-tracking). OpenPose is an open

source library that can track persons’ skeleton in a real-time from a sequence

of images. The API works by combining tracking results from multiple Kinect

cameras to form 3D skeleton. In contrast, OpenPose detects human skeleton

body from a single image and produces 2D joint-skeleton.

This study estimates objects’ position with Yolo library [75]. Yolo divides

an image into several grid cells, and then estimates class probability of each cell

before combining them to segment objects. OpenPTrack combines Yolo’s object

detection results with depth information to locate the objects in 3D space.

4.2.2 Activity Estimation and Behavior Modeling

Our proposed system estimated children’s activity using k-NN algorithm.

First, the system computed centroid positions of children by averaging neck, left

and right shoulder positions. Then, it calculated the Euclidean distance between

a child’s centroid and toys positions. The system assumed the closest toy to the

child as the activity that was being performed by them.

PetriNet [76] (Fig. 4.3) was used to model the behavior of children. It con-
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sisted of three components: playing states, transitions, and flows. For K activ-

ities and L external stimulus, the Petri net of a child’s behavior was defined as

N = (P, I, I0, Tp, Ti, T0, F ) where:

P = {P1, P2, P3, . . . , PK}

I = {I1, I2, I3, . . . , IL}

I0 = {I0}

Tp = {T1,1, T1,2, . . . , Tk,k‘, . . . , TK,K}

Ti = {T1,I1 , . . . , TK,IL , . . . ;TI1,1, TIL,K}

T0 = {T1,I0 , . . . , TK,I0 ;TI0,1, . . . , TI0,K}

F ⊆ PT ∪ IT ∪ I0T0

PT = (P × Tp) ∪ (Tp × P )

IT = (I × Ti) ∪ (Ti × I)

IT0 = (I0 × T0) ∪ (T0 × I0)

(4–1)

Using action set Sn(t) ∈ {P, I} and stimulus set SI(t) ∈ {I, I0} from the

network, the proposed system extracted five features from a child: their frequency

to change (Hn) and to perform (Rn
k) activity; the average number of other children

in the same state (Fk); their frequency to play alone (An); and their tendency to

follow external stimulus (Pi). For the T time-step, those features were computed

using the following formulas:
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Fig. 4.3: PetriNet used in the proposed system to model a child’s behavior.

Hn =

∫ T

0

f(Sn(t), Sn(t+ 1))dt

Rn
k =

∫ T

0

f̄(Sn(t), Pk)dt

Fn =
1

T

∫ T

0

N∑
i=0,i ̸=n

f̄(Sn(t), Si(t))dt

P n
I =

1

T

∫ T

0

f̄(SI(t), Sn(t))dt

An =
1

T

∫ T

0

ant dt

(4–2)
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where,

f(s, s′) =

{
1 s ̸= s′

0 s = s′

ant =

{
1

∑N
i=0,i ̸=n f̄(Sn(t), Si(t)) = 0

0 others

(4–3)

and f̄(s, s′) is complement of f(s, s′).

4.3 Method

Participants

Four male and two female disorder preschooler children participated in this

study. The children were recruited from a special nursery school in Hiroshima

prefecture, Japan. Exclusion criteria included any physical disorder and disabil-

ities. All children had been diagnosed with having Autism Spectrum Disorder

(ASD) and attention deficit symptoms. Before the experiment, subjects took

Developmental Quotient (DQ) test and their score ranged from 85 to 112.

The control group included five males and four females typical preschooler

children that did not have any physical and psychological disorder. We requited

them from another nursery school in Hiroshima prefecture, Japan. The experi-

ments for disorder and typical children were conducted separately in their nursery

school.

4.3.1 Preprocessing and Data Analysis

A Mutual information

Mutual information (MI) [77] measures mutual dependence between two ran-

dom variables (X and Y), in which the value is non-negative. High MI signifies

that knowing the value of X determines the value of Y, while a zero value of MI

means X and Y are independent.
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Mutual information of two variables can be got by estimating the Kullback-

Leibler distance DKL between the joint probability P (X,Y ) and the product of

marginal probability P (X)P (Y ), which is written as:

I(X;Y ) = DKL(P (X,Y )|P (X)⊗ P (Y )) (4–4)

And for X = {x1, x2, . . . , xN} the MI of each feature is computed as the

following equation:

I(xn;Y ) =
I(xn;Y )∑N
i=1 I(xi, Y )

(4–5)

The value of mutual dependence ranges from 0 to 1, in which 1 shows strong

dependence between X and Y , while 0 implies that they are independent. This

paper presents the mutual dependence score on a percentage scale.

4.3.2 Experiment Protocol

In this study, we conducted two experiments (Fig. 4.4) involving nine typical

and six disorder children. Typical and disorder groups took part in the former and

later experiments, respectively. The first experiment used four network cameras

to record children’s activity in a nursery room. The activity states comprised puz-

zle, hula-hoop, mat, and trampoline. We performed person and object tracking

in an offline manner using OpenPose [74] and Yolo [75] for every single camera.

Different to the first experiment, we used not only network cameras but also

OpenPtrack with three Kinect V2 to track children’s pose and object’s position

in an online manner (Fig. 4.5). Tracking results from OpenPTrack [73] were

streamed from UDP port and saved locally in the master PC. The activity states

in this experiment comprised trampoline, slide, and puzzles.

Although the activity of a child was estimated for each frame, we assigned

the activity label at time k by considering the maximum occurrence of activity

within 30 seconds using the following formula:
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Fig. 4.4: The study conducted the first (A) and second (B) experiments in two

different schools with different environments.

Subject

Teacher

A B

Fig. 4.5: (A) Recording results of multiple RGB cameras. (B) Tracking results

of OpenPTrack with multiple Kinect sensors.

Pk = argmax
x

{yn ∈ Y |x ∈ yn} (4–6)

where yn = {yk+1, yk+2, . . . , yk+30}.
In both experiments, we categorized the activity into two types: dynamic and

static. The static activity of the first and the second experiments was the puzzle,

and the others were classified as dynamic. The ratio of a child to perform static

activity over dynamic activity (Sn) was defined as:
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Sn =
Rn

static

1
N

∑N
i=1 R

n
dynamici

(4–7)

4.4 Results

4.4.1 Statistical Analysis

Mutual information scores suggested that the frequency of changing activity

and the duration of playing alone were more informative than the average number

of children in the same state and the frequency of changing activity to differentiate

typical from ASD children.
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Fig. 4.6: Mutual dependence between children’s behavior features and children’s

diagnosis results. Behavior features comprises the frequency of changing activity

(Hn: 50.72%), the average number of children in the same state (Fn: 14.24%), the

duration of playing alone (An: 28.51%), and the frequency of performing static

activity (Sn: 7.37%).

The statistical comparison results agreed with the mutual information scores.
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The results suggested a significant difference (p < 0.05) between typical and

ASD groups for Hn and An by both Student t and MannWhitney U tests. Also,

MannWhitney U test signified that ASD children showed solitude behavior; the

p-value of Hn < 0.05.

Table 4.1: Statistical comparison with Student t and Mann-Whitney U tests.

Behavior features comprise the frequency of changing activity (Hn), the average

number of children in the same state (Fn), the duration of playing alone (An),

and the frequency of performing static activity (Sn).

#
Mean S.D. Student MannWhitney

Typical ASD Typical ASD p p

Hn -0.021 3.567 0.451 1.473 0.000 0.001

Fn -0.145 -0.291 0.178 0.066 0.080 0.034

An -0.104 2.508 0.644 2.567 0.011 0.002

Sn -0.404 0.284 0.155 1.174 0.100 0.069

The corresponding mean values of those significantly different variables sug-

gested that children with ASD symptoms showed a tendency to change their

activity, play alone, and separate themselves from others more often than the

typical group.

4.5 Concluding Remarks

The study investigated whether it is possible to identify ASD disorder symp-

toms in children by employing tracking results from multiple camera. The pro-

posed system tracked children’s activity in the nursery room with multiple RGB

cameras and Kinect sensors. Using PetriNet, the behavior of typical and ASD

children was modeled and four features were extracted from it.

Statistical comparison between the groups and mutual information scores sig-

nified that ASD children had higher tendency to play alone and change their

activity. These results agree with previous findings [78] that stated children with
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ASD disorder symptoms change their activity more frequently than the control

group and have little interest in peers.

Two limitations in this study are the accuracy of tracking results and the

separate environments used in the experiments. We realized that involving over

seven subjects in the experiment impaired OpenPTrack’s performance employing

three Kinects that forced us to perform tracking manually. Second, we did not

change the playing room during experiments to get the natural behavior of chil-

dren. While it allowed us to minimize the possibility of the children altering their

behavior intentionally, it also introduced bias in our results since the groups did

not perform activities in the same environments. Future studies may experiment

with different protocols: instead of measuring children’s natural behavior, they

can evaluate how children react and adapt to a new environment. Also, future

experiment should consider the number of cameras must be proportionate to the

number of children in one session.
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Chapter 5

Investigation of Response and

Gaze Behavior during the

Go/NoGo Task

5.1 Introduction

Studies on performance during the Go/NoGo task of children with ADHD and

ASD symptoms have discovered a significant difference between those children’s

response and their typical peers [4, 10, 79]. Higher response time variance was

found to be related to both of disorders and might be caused by variability in

neural activation of children with the disorders [80].

Previous studies of ASD children have observed that gaze-adjustment of chil-

dren with ASD symptoms was slower during eye-tracking measurement of joint

attention [13], and more irregular during face-to-face conversation [14]. They also

have found that temporal features from gaze modulation were more informative

than global-spatial features in identifying ASD symptoms on children.

Using features from gaze movement, other studies extend those works by uti-

lizing machine learning to differentiate automatically typical from ASD children.

They asked participants to take part in face-to-face conversation [81] or to com-
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plete visual tasks such as viewing a sequence of face images [82] or identifying

directional cues [83]. Then they used spatial features extracted from children’s

eye movement distribution to recognize ASD symptoms in children.

This study aims to measure children’s response and gaze behavior during

Go/NoGo task. We developed a game version of Go/NoGo task (CatChicken

game) that measure children’s response and gaze behavior through spacebar and

an eye-tracker, respectively. Afterwards, we extracted features from their motor

response and gaze behavior and performed statistical analysis to identify infor-

mative features (Fig. 5.1).

Object and Gaze Position

Motor Response

Preprocessing and Outlier Removal

Spatial and Gaze Adjustment 

Features

Student-t Mann–Whitney U

Method

Analysis

Fig. 5.1: Study flow diagram of Chapter 5.
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5.2 A Serious Game Based on Go/NoGo Task

[3]

The CatChicken system comprises training and evaluation functions (Fig.

5.2). Using the training function, an instructor can change the game’s parameters

that include the task duration, the appearance time of a stimulus, the proposition

of stimuli, the interval between two consecutive stimuli, and the locations at which

a stimulus appears. While using the evaluation function, those parameters can

be fixed to create a standardized task for all subjects.

The game interface represents Go and NoGo stimuli as “cat” and “chicken”

characters, respectively. The game requires the subject to respond to a “chicken”

character by pressing a spacebar and inhibit their action towards a “cat” charac-

ter. A character can appear in one of nine locations represented by red flowers.

The system outputted the user’s response types and time, and stimulus and eye

locations on the monitor (Fig. 5.3).

A user responded to the stimulus by pressing the spacebar. The system cat-

egorized a subject’s response as one of four types: Go-positive if the subject

responded to the Go character; Go-negative if he missed it; NoGo-positive if

he inhibited his action in response to the NoGo character; NoGo-negative if he

reacted to it. Different audio feedback was given when the subject responds cor-

rectly and incorrectly towards the stimulus. The system was equipped with a

Tobii 4C eye tracker that recorded the user’s eye position on the monitor contin-

uously. The eye tracker sampling rate was 90Hz (interlaced), and its operating

distance was 50 cm to 95 cm. Stimuli and eye locations on the monitor were

normalized to the unit interval [0, 1] by dividing the pixel coordinates by the

window’s coordinate length.
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Fig. 5.2: Architecture of the CatChicken system. The game produces raw data

that consist of the subject’s response types and times, and locations of stimulus

and gaze over time.

5.3 Relation Between Response and Gaze Be-

havior

This sections explains the results of our study in relation between subject’s re-

sponse and their gaze behavior. We developed a serious game version of Go/NoGo

task and measured participants’ response and gaze behavior using the system.

Statistical and clustering analysis were conducted to understand the data pat-

terns.
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A

B C

Fig. 5.3: Game interface of the CatChicken system. (A) Nine red flowers rep-

resenting the locations in which a stimulus can appear; (B) Go and (C) NoGo

characters.

5.3.1 Game Performance and Gaze Behavior Features

This study represents each participant with four response and two gaze-

behavior features. Response features includes Go-error, NoGo-error, response

time (RT), and variance of RT (RT-var). Go and NoGo error score were the

frequency of a child to respond incorrectly towards Go and NoGo stimulus, re-

spectively. RT was the average value of the difference between spawn time of
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stimulus (ts) and the participant’s reaction time (trc). RT-var was the standard

deviation of response times.

trs = ta − tr (5–1)

Gaze behavior features comprised gaze trajectory area and gaze-to-object po-

sition. Gaze trajectory are was estimated with the Convex Hull algorithm; its

value ranged from 0 to 1. The gaze-to-object position was the Euclidian distance

between subjects’ gaze position and the stimulus position when they responded

to the stimulus.

5.3.2 Method

A Participants

We explained about the aim and procedure of this study to participants and

asked their consents before starting the experiment. The study was approved by

the Research Ethics Committee of the Prefectural University of Hiroshima (letter

no: 15MH070) and was conducted under the amended Declaration of Helsinki.

We conducted two experiments in this study. The first involved university

students and aimed to investigate the relation between subjects’ response and

gaze behavior. The second had an aim to identify the difference of response and

gaze behavior between typical and ASD children.

In the first experiment, we recruited 59 university students from Hiroshima

Prefecture and Yokohama National universities. The participants comprised 31

males and 28 females, with an average age of 25 ± 3.30 years. All participants

did not have physical and mental disorders.

The experiment comprised four steps. First, an instructor calibrated eye-

tracker for the subject and explained the game UI. Next, the subject fill in their

personal information. Then, they took one-minute training under the instructor’s

supervision before participating in 10-minute evaluation. Finally, the instructor

explained the detail of the experimental results.
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The second experiment involved two typical (11 and 7 years) and one ASD

child (3 years) to identify the difference of their response and gaze behavior. All

subjects were male and did not have any physical disorders. This experiment

followed the same procedure as the first experiment. However, all children took

part in a 3-minute test instead of a 10-minute evaluation.

B Pre-processing and Statistical Analysis

Before performing statistical analysis, features were normalized with z-normalization.

Linear correlation between game performance and gaze behavior features was

calculated using Pearson correlation. The correlation coefficient and significant

values were respectively represented as p and r.

This study also performed clustering with K-Means to identify patterns in

participant’s response time and gaze movement. The number of cluster(k) was

set to {2, 3, 4, 5}; the clustering results were eveluated with Silhouette score.

In the clustering process, each subject was represented by RT, RT-var, and gaze

trajectory area.

5.3.3 Results

A Relation between Participants’ Response and Gaze Behavior

Analysis results showed that statistically significant (p < 0.05) relationship

existed between gaze trajectory area and Go-error percentage, RT, and RT-var

(Table 5.1). All relationships were positive that mean higher gaze trajectory area

yielded higher Go-error, RT, and RT-var.

The most significant relationship (p = 0.002) was between gaze trajectory

area and Go-error percentage. Its correlation of determination (r2) was 0.157,

which meant that 15.7% of variation in gaze trajectory area could be explained

by Go-error percentage. The relation was greater in male than female subjects.

Also, the standard deviation showed that high variance of Go-error was presented

in all subjects.
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Table 5.1: Statistical analysis results of game performance and gaze behavior

results. r and p stand for correlation coefficient and p-value. The variance (STD)

was computed using standard deviation.

Mean (± S.D.) Gaze Area (r) Gaze Area (p)

Error (%)

Go 0.35 ± 5.92 0.397 0.002

M 0.23 ± 4.84 0.480 0.006

F 0.48 ± 6.92 0.385 0.043

NoGo 0.72 ± 8.44 0.201 0.126

M 0.62 ± 7.85 0.301 0.099

F 0.82 ± 9.04 0.124 0.528

RT

All 460 ± 28.6 0.304 0.019

M 456 ± 27.3 0.308 0.092

F 463 ± 29.6 0.290 0.135

Go 460 ± 62.1

NoGo 386 ± 130.8

RT Var

All 56.29 ± 13.38 0.354 0.006

M 52.52 ± 12.31 0.467 0.008

F 60.46 ± 13.28 0.223 0.254

Trajectory Area

M 0.47 ± 0.15

F 0.49 ± 0.14

The correlation coefficients suggested that subjects with greater gaze area

responded faster with higher variance. The results, however, suggested that sig-

nificant relationship was more pronounced in male than female groups (p > 0.05).
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Table 5.2: Silhouette score of clustering with different values of k

K 2 3 4 5

Silhouette score 0.33 0.27 0.26 0.26

Table 5.3: Statistical comparison between the first and second clusters for gaze

trajectory area, response time(RT), and response time variance (RT-var).

Gaze Area RT RT-var

Student-t 0.001 0.000 0.000

B Clustering Results

The silhouette scores of clustering demonstrated that the higher the value of

k was, the lower the silhouette score became.The most optimal performance was

achieved with k equaled to 2.

The clustering results showed 28 and 31 people belonged to the first and

second clusters, respectively. A significant difference between those clusters was

found in the values of gaze-trajectory area, RT, and RT-var features.

Members of the first cluster modulated their gaze on the middle of the screen

(average of gaze area = 0.42), while those of the second cluster adjusted their

gaze to stimulus position (average of gaze area = 0.53). The results also showed

that people belong to the second cluster responded slower with higher variance.

5.3.4 Preliminary Results of an ASD Child

Line chart of RT and RT-var suggested that ASD child responded slower with

higher variance than typical group; on average, ASD child responded 59 ms slower

with 80 ms higher variance.

Gaze modulation of the ASD child was more dispersed than his typical peers

(Fig. 5.7). Typical children’s gaze trajectory area was 0.1 smaller than the

ASD child’s. Although the difference was insignificant, the plot showed that gaze

modulation of typical children was more structured than that of ASD child.

The ASD child’ RT and RT-var became more similar to the typical children’s
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A

B

Fig. 5.4: Scatter plots of participants’ gaze belonging to the first (A) and second

(B) clusters. The gaze trajectory areas from left to right: first cluster are 0.28,

0.56, 0.17, and 0.65; second cluster are 0.61, 0.83, 0.73, and 0.67.

after he took part in rehabilitation. The child’s response became ±100 ms faster

after taking rehabilitation, yet more stable: the response time variability de-

creased ±146 ms after the second and the third treatment.

Similarly to RT and RT-var results, the ASD child’s gaze modulation seemed

to improve after the rehabilitation. His gaze trajectory area decreased after each

rehabilitation; the average decrements was 0.23. The gaze pattern resembled that

of typical children, which adjusted their gaze to the stimulus’ position.
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Fig. 5.5: Average (A) and variability (B) of the child’s response time before and

during rehabilitation.

5.4 Investigation of Response and Gaze Behav-

ior of Children with ASD Symptoms [4]

This study aims to investigate the difference between response and gaze be-

havior of typical and ASD children during Go/NoGo task. Also, we conduct
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Fig. 5.6: Average (A) and variability (B) of subjects belong to first and second

clusters

a statistical comparison of spatial and temporal features to find out the most

informative features.

5.4.1 Features

Using the CatChicken game, we measured children’s response and game per-

formance during the Go/NoGo task. The game represented“Go”and“NoGo”
stimulus as“ Cat”and“ Chicken” characters, respectively. The subjects re-
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A B C D

E F

Fig. 5.7: An ASD child gaze trajectory: before rehabilitation (A), after first

(B), second (C), and third (D) treatments. Gaze behavior of typical children: 11

year-old(E) and 7 year-old (F). The areas from left to right are 0.68, 0.64, 0.30,

0.36, 0.574 and 0.573.

sponded to the stimulus by pressing the space bar on the keyboard and the

system tracked the participant’s gaze movement with eye-tracker attached to the

monitor.

The system outputted the user’s response types and time, and stimulus and

eye locations on the monitor (Fig. 5.8). Then using those information, the sys-

tem extract spatial and gaze-adjustment features [4]. Spatial features included

game performance, absolute gaze position, and gaze-to-object movement. Gaze-

adjustment features measured the distance between participants’ gaze and stim-

ulus positions when the stimulus was presented onscreen.

A Spatial Features [4]

The spatial features consisted of 6 game performance, 10 absolute gaze posi-

tion, and 8 gaze-to-object movement features (Tab 5.4. The features were com-
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Fig. 5.8: Information measured by the CatChicken system. While playing the

Go/NoGo game, CatChicken records children’s response types and times, and

locations of stimulus and gaze over time. The response types are Go-positive

(green), NoGo-positive (blue), Go-negative (orange), and NoGo-negative (red).

The values of object and gaze locations are normalized to range from 0 to 1.

puted using children’s response types and times, and locations of stimulus and

gaze.
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Table 5.4: The list of spatial features extracted from response and gaze behavior:

game performance, absolute gaze, and gaze-to-object movement features.

No # Detail

1 Go-positive The percentage of Go response

2 Go-negative The percentage of Go-negative response

3 NoGo-positive The percentage of NoGo response

4 NoGo-negative The percentage of NoGo-negative response

5 RT The average of a subject response time

6 RT-var The standard deviation of a subject response time

7 Trajectory-area The gaze trajectory area

8 Velocity-avg The average instantaneous velocity of subjects’ gaze

9 Velocity-var
The standard deviation of

the instantaneous velocity of subjects’ gaze

10 Acceleration-avg The average acceleration of subjects’ gaze

11 Acceleration-var
The standard deviation

of the velocity of subjects’ gaze along the y-axis

12 Fixation-avg The average of subjects’ fixation time

13 Fixation-var The standard deviation of subjects’ fixation time

14 Distance-avg The average of gaze distance

15 Distance-var The standard deviation of gaze distance

16 Angle-avg The average of gaze angle

17 Angle-var The standard deviation of gaze angle

18 Distance-sen Sample entropy of subjects’ gaze distance

19 Angle-sen Sample entropy of subjects’ gaze angle

20 Velocity-sen Sampe entropy of gaze velocity

21 Spatial-en The entropy of subjects’ gaze

22 Gaze-obj-en
The entropy of the distance

between subjects’ gaze and stimulus position

23 Gaze-obj-sen
Sample entropy of the distance

between subjects’ gaze and stimulus position

24 Gaze-obj-spe
Spectral entropy of the distance

between subjects’ gaze and stimulus position
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Game performance measured children’s response time (RT) and variance (RT-

var) and the percentages of their positive and negative responses towards the Go

and NoGo stimuli. RT was the average value of the time difference (Rt: equation

5–2) between when the character appeared (ta) and when the subject’s pressed

the space bar (tr); its standard deviation was RT-var. This study combined both

of them as some children had a small percentage NoGo-negative that resulted in

unreliable RT-var.

Rt = ta − tr (5–2)

Absolute gaze position features estimated the overall subjects’ gaze modula-

tion during the experiment. Gaze trajectory area was calculated with Convex

Hull algorithm; its value ranged from 0 to 1. Gaze velocity (equation 5–3) and

acceleration (equation 5–4) along the x and y axes were computed as smoothed

first and second time-derivatives of the corresponding coordinate locations, re-

spectively. Gaze distance (equation 5–5) and angle (equation 5–6) were the Eu-

clidian distance and the angle between two consecutive gaze positions: g(t) and

g(t+ 1).

v =

√
∂tx

2 + ∂ty
2 (5–3)

∂v =

√
∂2
t x

2
+ ∂2

t y
2

(5–4)

d(t) = |g(t+ 1)− g(t)|2 (5–5)

a(t) = arccos

(
g(t+ 1) · g(t)

|g(t+ 1)| · |g(t)|

)
(5–6)

Gaze-to-object features measured the relative positions of participants’ gaze

and stimulus positions. Fixation time estimated the time difference between

when the subject’s gaze entered and when it left a stimulus’ area; the area was

a circle of radius 0.25 (measured by Euclidean distance) from the center of the
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stimulus. Gaze-to-object difference was subjects’ gaze positions minus object

positions when the latter appeared on the screen. The probability and spectral

densities of the difference were computed with kernel density estimation and

Welch’s method [84] (nperseg = 32), respectively. The probability distribution

of the gaze-to-object difference was computed using 50 cells along each of the x

and y axes.

Shannon Entropy was employed to estimated the irregularity of gaze distri-

bution and was expressed as:

Hs = −
∫

p(x, y) log2(p(x, y))dxdy (5–7)

where p(x, y) was the probability density of a state in a two-coordinate plane;

while for power spectral density, p(x, y) was the sum of squared magnitudes of

the Fourier transforms of the respective x and y components. Greater entropy

shows more chaotic gaze modulation and suggests greater gaze dispersion. The

final value of gaze entropy was normalized by diving by the maximum possible

entropy log2(N), in which N was the total number of states; in this study, N

equaled to the total number of cells along the x and y axes.

This study estimated the temporal irregularity of gaze movement with Sample

entropy (sen). It is equal to the negative natural logarithm of the probability that

two subsequences of equal length m that are similar will remain similar at the

next time step [85]; lower sample entropy means higher predictability within

the original sequence. This study set m to two (low value of m can capture

local irregularity) and estimated the distance between two template vectors with

Chebyshev distance.

B Gaze-adjustment Features [4]

Gaze-adjustment features were Euclidean distance between the subject’s gaze

and stimulus position when the stimulus appeared on the screen. The value of

the distance ranged from 0 to
√
2.

Since the appearance time of a stimulus depended on the subjects’ RT, which
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varied, each gaze-adjustment was represented by auto-regressive parameters (equa-

tion (5–8)). The model’s lag L was set to two (average of AIC: −9.129); hence,

each gaze-adjustment was represented by three variables: α, θ2, and θ1. The

auto-regressive model was trained within 200 iterations.

yt = α +
L∑
i=1

θiyt−i (5–8)

During extrapolation experiment, this study computed the average value of

each coefficient for typical and ASD groups using the arithmetic means over the

respective groups.

5.4.2 Method

A Participants

Before participating in the experiment, informed consent was got from teach-

ers and parents on behalf of the children. The study was approved by the Re-

search Ethics Committee of the Prefectural University of Hiroshima (letter no:

15MH070) and was conducted under the amended Declaration of Helsinki.

We recruited 35 typical children (24 male and 11 female) and 22 children with

ASD symptoms (16 male and 6 female) from two local schools in Japan (Table

5.5). All children with ASD symptoms attended special schools and had been

diagnosed by clinicians; 10 (+ one suspected) ASD children also had attention

deficit symptoms, and seven of them were identified as having hyperactivity as

well. All participants did not have any physical disabilities and their IQ scores

were similar (p > 0.913). This study excluded one ASD child (male) and four

typical children (1 male and 3 female) because their data were corrupted. Hence,

only data of 21 ASD and 31 typical children were proceeded.

Before participating in the experiment, an instructor explained the game and

its rules to teachers and children; the instructor asked the subjects to respond

immediately when the stimulus appeared. Then, the instructor calibrated the

eye-tracker for each subject.
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Table 5.5: Differences for age and Development Quotient (DQ) scores were in-

significant (p > 0.05). The average and standard deviation (STD) of age and

DQ score of typical and ASD groups. All children participated in this study were

Japanese.

Male/Female Age (Mean ± S.D.) DQ (Mean ± S.D.)

Typical 24/11 5.0 ± 0.6 96.1 ± 3.0

ASD 16/6 4.6 ± 0.4 95.7 ± 10.4

Student t-test - 0.234 0.913

This study utilized a notebook equipped with an eye-tracker and web camera.

The participants were seated in front of the notebook. They responded to the

stimulus by pressing the spacebar on the keyboard (Fig. 5.9). The proportion

of the Go and NoGo stimuli was uniform and the order of appearance was set in

advance; their appearance time was 700 ms; the minimum and maximum of the

waiting period were 700 and 1000 ms.

All children took one-minute training before participating in four-minute eval-

uation. The instructor assisted the subjects during the training.
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Webcamera

Spacebar

Eyetracker

Fig. 5.9: Experimental protocol of this study. The distance between the child and

the monitor was about 60 cm. The notebook was equipped with a web camera

and an eye tracker.
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B Preprocessing

Figure 5.10 shows the pipeline for extracting spatial and gaze-adjustment fea-

tures from response and gaze data. Before extracting the features, preprocessing

was performed to eliminate noise and redundant data.

Raw object locations

Raw gaze locations

Response time

Outlier removal 

(MAD)

Response

Downsampling

(72Hz)
Savitzky-Golay filter

Gaze-adjustment-features

Spatial Features

Preprocessing

Fig. 5.10: Features extraction pipeline used in this study. The inputs consists of

gaze and object locations, response, and response time.

The responses whose RT was less than a threshold were considered as outliers;

6.6% of typical and 7.3% of ASD data were removed. The threshold was the RT’s

median absolute deviation [86] (104.75 ms) multiplied by a constant scale factor

of the normal distribution (1.4826): 1.4826 × 104.75 = 155.30 ms. Redundancy

in gaze data was minimized by down-sampling them from from 144 Hz to 72 Hz;

a Savitzky-Golay filter [87] (n = 5 and poly = 2) was used to perform smoothing

to prevent artifacts during numerical differentiation.

5.4.3 Statistical Analysis

Statistical comparison between groups was performed with Student t and

Mann-Whitney U [88] tests. Multiple comparisons were conducted with ANOVA

test. This study assumed that data distributions of typical and ASD groups were

independent. The false discovery rate associated with multiple comparisons was

controlled using the BenjaminiHochberg procedure [89], at the level 0.05. Hence,

significant difference was decided based on the critical value obtained from the
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BenjaminiHochberg procedure.

The effect size of a variable was calculated using Cohen’s d [90]; the first and

second groups were typical and ASD populations, respectively.

5.4.4 Results

A Spatial Features

A Statistical comparison indicated a significant difference (by both Student t

and Mann-Whitney U tests) between typical and ASD groups in eight features:

variance of fixation time, average and entropy of gaze acceleration, spectral en-

tropy of gaze-to-object-distance, sample entropy of gaze distance, gaze angle,

gaze-to-obj-distance, and velocity. Also, a substantial difference between the

groups was observed in the percentage of Go-negative and variance of gaze ac-

celeration. For all significantly different variables, the mean values of the typical

group was smaller than the ASD group. The effect sizes of the corresponding

variables were large (|d| > 0.8), except that of the average gaze acceleration,

which was moderate (d = −0.763). Similarly, the effect size of substantially dif-

ferent variable was moderate (|d| > 0.5), which suggested considerably different

to those variables’ mean value between the groups.

Contrary to gaze-related features, insignificant difference was observed in the

average response time and its variance. Within-group mean values, however,

indicated that ASD children’s response was higher than typical children (d =

−0.518).

Similar results were observed in the statistical results between typical and ASD

subjects without ADHD. Statistical analysis demonstrated a significant difference

for those eight variables, except spectral entropy and entropy of gaze-to-object-

distance, and an average of gaze acceleration. Besides, both Student t and Mann-

Whitney U tests suggested that percentage of Go positive and negative of typical

subjects differed significantly from those of ASD participants without ADHD

symptoms. The effect sizes of those variables were large (|d| > 0.8) and had

positive signs except that of the Go-positive.
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A comparison between typical and ASD children with ADHD yielded different

results.
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B Gaze-adjustment Results

The Mann-Whitney U test showed a significant difference between the groups

in the mean values of α, θ1 and θ2. The Student t-test and effect size (|d| < 0.2),

however, suggested that typical children and ASD children’s gaze-adjustment did

not differ.

Separating gaze-adjustment features according to response types (Go-positive,

Go-negative, NoGo-positive, and NoGo-negative) yielded statistically significant

differences (n = 52, p < 0.023) between typical and ASD children in all auto-

regressive coefficients by the Mann-Whitney U test, as well as greater effect size

(mean |d| > 0.4). Also, the student t-test demonstrated a significant difference be-

tween the groups in gaze-adjustment-features of Go-negative and NoGo-positive.

In brief, the results signified ASD gaze modulation differed from the typical when

they responded incorrectly to the Go stimulus and correctly to the NoGo stimu-

lus.

Extrapolation of the gaze-to-obj distance in time using the average values of

the autoregressive coefficients suggests that separating the features (Fig. 5.11C -

J) resulted in a more apparent difference between the groups than mixing them

(Fig. 5.11A, B). ASD children adjusted their gaze to the stimulus position slower

when they responded correctly to the Go and NoGo characters and when they

reacted incorrectly to the latter stimulus (Fig. 5.11C, G, I); the velocity of their

extrapolated gaze-adjustment (Fig. 5.11D, H, J) was ±0.0014 slower compared to

the typical children (the velocity of extrapolated gaze-adjustment was computed

by averaging the negative of the first derivative of the extrapolated gaze-to-obj

distance over time). However, ASD children modulated their gaze similarly to

the typical subjects when they missed the Go stimulus (Fig. 5.11E, F).
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Fig. 5.11: Extrapolating results of Auto-regressive model using the average of

parameters. Gaze extrapolation results using mixed (A), Go positive (C) and

negative (E), and NoGo positive (G) and negative (I) coefficients. (B, D, F, H, J)

show respectively the extrapolated gaze-to-obj distance and velocity results for

mixed (typical-avg: 0.0161, ASD-avg: 0.0156), Go positive (typical-avg: 0.0178,

ASD-avg: 0.0165) and negative (typical-avg: 0.0169, ASD-avg: 0.0173), and

NoGo positive (typical-avg: 0.0170, ASD-avg: 0.0158) and negative (typical-avg:

0.0141, ASD-avg: 0.0124) coefficients. Solid and dotted green lines represent,

respectively, typical children’s extrapolated gaze-to-obj distance and the nega-

tive of its first derivative (gaze-adjustment velocity) over time. ASD children’s

extrapolated gaze-to-obj distance and gaze-adjustment velocity are represented

by sold and dotted orange lines, respectively.

A significant difference was observed between the typical and ASD children

without ADHD when they responded correctly towards the Go and NoGo stimuli

(n = 52, p <= 0.004); the corresponding effect size of those variables were large

(|d| > 0.8).

Comparison results of typical children to ASD children with ADHD indicated

that the former responded differently from the latter during Go-negative and
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NoGo-positive (n = 52, p <= 0.017). The results also demonstrated that ASD

children with and without ADHD did not differ significantly.

The ANOVA test showed a significant difference (n = 52, p < 0.04) among

those three groups for gaze-adjustment features when the subjects responded

correctly to the NoGo stimulus; the difference was insignificant in the other con-

ditions.

The extrapolation results of ASD children with and without ADHD symptoms

(Fig. 5.12 A - J) suggested that the former tended to adjust their gaze to the

stimulus position slightly faster than the latter, with respective extrapolation

gaze-adjustment velocities of 0.0153 and 0.0156. Both groups had lower gaze-

modulation speed compared to typical participants, whose average velocity was

0.0164.

5.5 Concluding Remarks

Relation between Response and Gaze Behavior during the

Go/NoGo Task

As we expected, we found that subjects’ response related to their gaze modu-

lation. Subjects with bigger gaze trajectory tended to respond slower with higher

variance. The results suggested that this relationship was stronger among male

than female subjects.

Second, clustering using K-means resulted in two separable clusters. Subjects

belong to different clusters had different gaze patterns: the ones that focused

their gaze on the middle of the screen, and the ones that adjusted their gaze to

stimulus position. Also, their RT and RT-var differed significantly, in which the

members of the first cluster responded faster with lower variance.

Finally, the preliminary result of a child with ASD symptoms showed that

gaze modulation of ASD and typical children differed. Typical children tended to

adjust their gaze position to stimulus position, while the child with ASD seemed

to have difficulty to modulate his gaze. These findings agreed with the previous
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Fig. 5.12: Extrapolating results of Auto-regressive model using the average of

parameters. Gaze extrapolation results using mixed (A), Go positive (C) and

negative (E), and NoGo positive (G) and negative (I) coefficients. (B, D, F, H, J)

show respectively the extrapolated gaze-to-obj distance and velocity results for

mixed (typical-avg: 0.0161, ASD without ADHD-avg: 0.0150, ASD with ADHD-

avg: 0.0160), Go positive (typical-avg: 0.0178, ASD without ADHD-avg: 0.0162,

ASD with ADHD-avg: 0.0162) and negative (typical-avg: 0.0169, ASD without

ADHD-avg: 0.0175, ASD with ADHD-avg: 0.0170), and NoGo positive (typical-

avg: 0.0170, ASD without ADHD-avg: 0.0165, ASD with ADHD-avg: 0.0152)

and negative (typical-avg: 0.0141, ASD without ADHD-avg: 0.0111, ASD with

ADHD-avg: 0.0140) coefficients. Solid and dotted green lines represent, respec-

tively, typical children’s extrapolated gaze-to-obj distance and the negative of

its first derivative (gaze-adjustment velocity). Extrapolated gaze-to-obj distance

and gaze-adjustment velocity of ASD children with and without ADHD symp-

toms are represented by purple and pink colors, respectively.

works [13, 91] that observed a greater irregularity of gaze movement in children

with ASD symptoms during face-to-face conversation.
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Response and Gaze Behavior of Children with ASD Symp-

toms

This chapter investigates the relationship between children’s response and

gaze behavior with ASD symptoms. The experimental results involving 35 typical

and 22 ASD subjects suggested a significant difference between typical and ASD

children. The results suggested that children with ASD symptoms had lower

accuracy and greater randomness in visual tracking of the stimuli: the relative

gaze-to-object difference was less steady over time than for typical subjects, and

predictability of ASD subjects’ gaze was lower than measured by sample entropy

of both angle and distance. A greater irregularity of gaze distance and angle may

show that ASD children over-interpreted the information of a stimulus, causing

more unintentional viewing behavior [92]. The higher value of ASD children’s

gaze-to-object entropy suggested less structured tracking in a spatial sense, while

a greater value of sample entropy value demonstrated lowered predictability of

the gaze-to-object difference as a function of time. Likewise, greater spectral

entropy signified less structure of the frequency content of ASD subjects’ gaze

signals.

Last, the statistical comparisons suggested that game performance of typical

and ASD subjects without ADHD symptoms differed substantially as indicated

by percentage of Go positive and negative, and response time variance. Also,

the results signified that different gaze modulation between typical and ASD

subjects with ADHD symptoms was more pronounced than the ones without

ADHD symptoms.
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Chapter 6

Diagnostic Support System Using

Interpretable Deep Distance

Learning to Identify

Developmental Disorder

Symptoms in Children

6.1 Introduction

A diagnostic support system requires interpretable and evidence-based esti-

mation results [18]. Explainable machine learning, e.g. Linear regression and

decision tree, offer prediction results that stockholders can easy to understand.

The performance of such algorithm, however, are outperformed by more sophis-

ticated algorithms such as Deep Learning Neural networks (DNN) that provide

a high accuracy rate in many real-world classification problems.

One of DNN’s drawbacks is black-box structure, in which studying structure of

it does not give insight into what it has learned from the data. Recent studies have

attempted to solve that issue by proposing algorithms to interpret the prediction
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results of DNN.

Model-Agnostic methods interpret black-box models’ predictions by describ-

ing how features affect the average prediction results (global methods) or individ-

ual predictions’ (local methods) [93]. Global methods can understand the general

mechanism of the model. While local methods are useful to understand why the

model’s estimation result of an input.

This study uses one of Local methods, SHAP values [30], to interpret the

model’s individual predictions to the users. The primary goal is to explain to the

users why features from a subject is much closer to one group than the others.

Also, as comorbidities are common among children with disorder symptoms,

we assume that data of disorder children have many classes that overlap each

other. Employing classification DNN requires us to provide great number of data

points per class. Therefore, this study uses deep distance learning (DDL) [94] to

measure similarity between a query in existing support vector groups.

Employing DDL gives two advantages to our proposed system. First, the

proposed system can learn to new classes with only few samples. Second, the

proposed system can perform retrievals to fetch support vectors that are similar

to the query, providing evidence-based results. Furthermore, combining it with

SHAP values [30], the proposed system can produce interepretable estimation

results based on the feature’s contribution(Fig. 6.1).

6.2 Proposed System

To deliver evidence-based results, we employed Deep Distance Learning to

perform similarity measurement and retrieval. Then, the measurement results

were interpreted by employing SHAP value that estimated how much each feature

contributed to the results (Fig. 6.2).

This study presents a novel training loss for Deep Distance Learning that

combines hard-triplet with prototypical network’s loss. The proposed loss, named

Cluster Hard Triplet loss (CsTL), compared an anchor with positive and hard
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Features from Chapter 4 and 5 Diagnostic Support System

Similarity Score SHAP ValuesRetrieval of 

Similar Support Set

Output

Proposed CentroidTripletLoss

Train DDL 

with CentroidTripletLoss

Fig. 6.1: Study flow diagram of Chapter 6.

negative centroids. Positive centroid was measured as the average embedding

vectors that had the same labels as the anchor. While hard negative centroid was

the closest centroid that had different from the anchor.
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6.2.1 Proposed Loss: Cluster Hard Triplet Loss

CsTL was motivated by Dunn index, that aimed to identify compactness and

separability of clusters. CsTL worked by minimizing and maximizing intraclass

and interclass variance, respectively. Minimizing the loss is like maximizing the

Dunn index that results in compact and separable embedding vectors (Eq. 6–1).

Similar to the triplet-loss, CsTL did not force the distance between the an-

chor and the positive centroid into zero, which prevented class collapse. Also,

comparing the anchor to centroids allowed the proposed loss to estimate mixture

density in the data. The use of Euclidian distance in this study assumed that

data-distribution was spherical.

L(θ;X ) =
P∑
i=1

K∑
a=1

[m+ d(xa,i, ci)− min
n=1...K

n ̸=i

d(xa,i, cn)]+

d(xa, xb) = D(fθ(xa), fθ(xb))

(6–1)

6.2.2 Interpretable Machine Learning

SHAP value [30] is the solution concept in cooperative game theory and can

be classified as a local model-agnostic method. In a cooperative game, a coalition

of players must cooperate to get certain games. SHAP value estimates how much

a player contributes to the overall cooperation.

To interpret estimation results of a machine learning model, SHAP value

treats the estimation task as the cooperative game. Then, it computes the con-

tributions of coalition of players (features) by subtracting the actual prediction

for the instance from the average predictions for all instances. Finally, SHAP

value is estimated by averaging marginal contribution of a feature value across

all coalitions.
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6.3 Experiment

A Datasets

OmniGlot [95] comprises 1623 distinct characters from 50 different alpha-

bets. The study followed the experiment protocol of previous studies [96–98] that

used 1200 characters as training and 423 characters as testing. Data augmenta-

tion was performed by rotating each character by multiples of 90 degrees (90, 180,

270), totaling 4800 and 1692 classes for training and testing data, respectively.

Before training, input images were resized to 28x28, and their pixel values were

normalized to 0 to 1.

A B

Sample of Training Data Sample of Test Data

Fig. 6.3: Sample of training (A) and test (B) data of Omniglot dataset. The

characters in test and training data differ.

6.3.1 Implementation Detail

Network architectures: On the Omniglot experiment, embeddings were

extracted from input images using four convolutional blocks followed by a dense
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network with 64-dimensional output space; the outputs of the network were nor-

malized with l2-norm. The architecture of a convolutional block comprised a

64-filter 3 × 3 convolution, batch normalization layer, a ReLU activation func-

tion, and a 2× 2 max-pooling layer.

Training procedures: The Omniglot network was trained using Adam with

default hyperparameter values (lr = 1e − 3, β1 = 0.9, β2 = 0.999). Exponential

decay was employed to decrease the value of lr during the training; the decay

steps and rate were 1000 and 0.8, respectively. Training was performed on 5000

episodes, in which in each episode P classes with 20-shot were used as training

data. ResNet50 was trained using the same Optimizer with different values of

learning rate (lr = 5e − 4). Training was performed on 10000 episodes that

comprised 5-shot for each of them.

6.3.2 Evaluation Protocol

In the classification problem, the model was evaluated with the N-way-K-shot

protocol. Each episode comprised one query image and K support images for

each class. The query and support images were different instances that were

taken randomly. For each evaluation test, we fixed the value of the random seed.

6.4 Results

6.4.1 Ablation Study

Evaluated on Omniglot, experimental results demonstrated CsTL was insen-

sitive to the number of classes in a training episode (Fig. 6.4). Although a

higher value of P seemed to yield a higher accuracy rate, the improvement was

statistically insignificant (avg of p−val > 0.05).

Comparison results between centroid and median indicated that using centroid

as clusters’ center yielded an average of 0.05% lower accuracy rate on Omniglot.

The results of using different values of m showed different outcomes on Om-
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Fig. 6.4: (A) Average accuracy rate of 5-way-5-shot over 1000 episodes on Om-

niglot. (B) Average accuracy rate of 5-way-5-shot over 1000 episodes on Om-

niglot. The clusters’ center was computed using median, and the value of m was

set respectively to 1.5.

niglot and Market. Evaluated on Omniglot, different values of m did not lead to

a significant discrepancy in accuracy rate.

6.4.2 Omniglot Results

Table 6.1 shows the Comparison results of CsTL with the state-of-the-art

on Omniglot dataset. Compared to Matching networks and its variants [99–

101], CsTL attained higher accuracy rate on all evaluation protocols. Yet, it

achieved comparable and lower accuracy rate than Prototypical Net [98] and

Model-Agnostic methods [102–105].
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Evaluation of CsTL with different N and k values (Fig. 6.5) suggested that

a bigger number of support-set produced a higher accuracy rate; the significant

difference (p < 0.05) was observed when using 1-shot and 5-shot.

80.00%

85.00%

90.00%

95.00%

100.00%

5 20 50 100

A
c
c
u
ra
c
y

N-way

1-Shot 5-shot

*
*

*

*

Fig. 6.5: Average accuracy rate of CsTL over 1000 episodes on Omniglot dataset

using different values of N -way. A significant difference between 1-shot and 5-shot

groups was computed using t-test. * indicates p < 0.05.

6.4.3 AttentionTest Results: Comparison

All methods attained the same accuracy rate on differentiating typical from

ASD groups (Tab. 6.2). But, CsTL achieved a higher the Matthews correlation

coefficient (MCC) [26] score that showed a strong positive relationship between

its prediction and the ground truth labels. In recognizing new-class (adult),

CsTL attained perfect accuracy rate while k-NN got 33.33 % lower accuracy

rate. Besides, the accuracy rate of“All classes”demonstrated the degradation

of k-NN performance when adding the new class to its support sets, which was
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suggested by lower accuracy and MCC score. The same effect was not observed

in CsTL’s performance.

Table 6.2: Accuracy rate (%) and MCC score of CsTL and baseline on Atten-

tionTest dataset .

Algorithm
Typical/ASD Novel-class Combined

ACC MCC ACC MCC ACC MCC

k-NN 80.77 .61 66.67 - 79.31 .64

DNN 80.77 .60 x x x x

xGBoost 80.77 .61 x x x x

CsTL 80.77 .64 100.00 - 82.76 .73

6.4.4 Distribution and Decision Boundary of the Proposed

System

Fig. 6.6 shows distribution of latent variables of the proposed DDL. The

distribution showed a high variance of ASD children, causing a high overlap in

the distribution of the second principal component.

Decision boundary of the proposed model was decided based on the local

geometry of data distribution. Though the decision boundary was not smooth,

the higher value of neighbour k produces smoother decision boundary (Fig. 6.7).

Considering the results of data distribution and decision boundary, the pro-

posed diagnostic support system measured similarity score instead of class prob-

ability to identify developmental disorder in children. The similarity score repre-

sented how close an individual with the typical and ASD groups that was based

on the local geometry of data distribution.

6.4.5 AttentionTest Results: Retrieval

Retrieval results of DDL demonstrated that correctly classified query yielded

the first and second rank retrieved support set with the same label as the query
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Fig. 6.6: Distribution of latent variables of typical and ASD groups. For the

sake of visualization, the dimension of latent variables was reduced to two using

Principal Component Analysis (PCA, explained variance ratio: 0.71).
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Fig. 6.7: Decision boundary of the proposed model with different values of k.

(Fig. 6.8 and 6.9). While, the retrieval results of the misclassified query had a

different label from it (Fig. 6.10). The star plots also (Fig. 6.10) reveal lower

mean values and variability in the misclassified ASD subjects’ features than the

correctly classified subject (Fig. 6.9).
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Fig. 6.8: Star plots of features. The query (A) had typical label. The 1st (B),

2nd (C) and 3rd (D) rank retrieval results were typical children.
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Fig. 6.9: Star plots of features. The query (A) had ASD label. The 1st (B), 2nd

(C) rank retrieval results were children with ASD symptoms, while the 3rd one

(D) was typical children.
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Fig. 6.10: Star plots of features. The query (A) had ASD label. The 2nd rank

retrieval result was children with ASD symptoms, while the 1st (C) and 3rd (D)

ones were typical children.

6.4.6 AttentionTest Results: Similarity Score and Inter-

pretation

Similarity score measured how similar an individual was to typical and ASD

groups. SHAP value explained the similarity score for each query by estimating
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contribution of each feature to the score. The results signified features contribu-

tion in each query differed and they could provide comprehesive information to the

users (Fig. 6.8, 6.9, and 6.10). Interpretation results of correctly classified typical

child suggested that gaze-adjustment and response related features were more in-

formative than gaze-related features. With ASD query, however, response related

features (go-positive) were less informative than gaze-related features. These re-

sults indicated psychiatrists may use this interpretation to focus on examining

specific symptoms as game performance and gaze modulation related to differ-

ent disorder symptoms; RT-Var correlated to impulsivity and irregularity in gaze

modulation might correspond to inattentiveness.

6.4.7 Preliminary Results Using Features from Group-

level and Individual-level Systems

In this study, we conducted the preliminary results employing features from

group-level (Chapter 4) and individual-level (Chapter 5) monitoring systems.

Three children (3, 4, and 5 years) took part in the experiment. We added Gaus-

sian noise to the features of typical children and labeled the data as non-typical.

The results of first query (Fig. 6.14 A and B) showed that features from

individual-level monitoring suggested that the query belong to the typical group.

The second query’s results (Fig. 6.14 C and D) showed that sample entropy

of moving velocity during free-playing and gaze-related features proposed it be-

longed to non-typical group.

6.5 Concluding Remarks

The experimental results on Omniglot datasets suggested CsTL has a promis-

ing recognition rate compared to the state-of-the-art. Its application in identify-

ing typical, ASD, and adults demonstrated reliable performance showed by high

accuracy and MCC score.

Using DDL trained with CsTL, the study could retrieve support set that
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Fig. 6.11: SHAP values of similarity score for a query with typical label (A). (B)

SHAP values between the query and cluster center of typical subjects. (C) SHAP

values between the query and cluster center of children with ASD symptoms.

was like the query. Employing the SHAP value [94], this study interpreted the

model’s similarity estimation. Two limitations of this work are few benchmark

studies and the small sample of the AttentionTest dataset. The proposed loss

was evaluated on two benchmark datasets that are not enough to make a good

assessment.
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Fig. 6.12: SHAP values of similarity score for a query with ASD label (A). (B)

SHAP values between the query and cluster center of typical subjects. (C) SHAP

values between the query and cluster center of children with ASD symptoms.
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Fig. 6.13: SHAP values of similarity score for a query. (B) SHAP values between

the query and cluster center of typical subjects. (C) SHAP values between the

query and cluster center of children with ASD symptoms.
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Fig. 6.14: SHAP values of similarity score for typical (A-B) and non-typical

queries (C-D).
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Chapter 7

Conclusion

This paper discusses a novel diagnostic support system to identify developmental

disorder symptoms in children. The proposed system comprised group-level and

individual level monitoring system. Group-level system monitored children’s be-

havior in the nursery room by tracking children’s activity with multiple Kinect

sensors and RGB cameras. Individual-level system measured children’s response

and gaze behavior when they played a game version of the Go/NoGo task.

Chapter 1 describes the detail of the proposed system. Our decision support

system employed deep distance learning (DDL) and SHAP values to provide inter-

pretable evidence-based results. To measure similarity between a query and sup-

port sets, DDL used the combined features from group-level and individual-level

monitoring system. Then, SHAP value interpreted the similarity score produced

by DDL.

In Chapter 3, we address the study of Deep Neural Network (DNN) model to

estimate human activity from multiple views. The proposed DNN comprised pre-

trained CNNs, attention, RNN, and Softmax layers. It extracted features from

multiple-view with shared-weight pre-trained VGG-16 and filtered out uninfor-

mative features using attention-layer. Afterwards, the proposed model processed

the temporal information using RNN before computing the class probability with

Softmax layer. Experimental results on IXMAS and i3DPost showed that the

proposed model outperformed performance of conventional CV and DNN based
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method using 2D inputs, and achieved competitive results compared to methods

using 3D-representation and multimodal inputs [1]. The results also implied that

using multiple-view input could resolve occlusion issue that often occurred in

single-view application; multi-view application resulted in higher accuracy rate.

Besides, online classification results suggested that longer sequence of clip yielded

higher recognition rate.

Chapter 4 outlines the results of our study in quantifying children’s play-

ing behavior with marker-less method. The study used multiple Kinect sensors

and RGB cameras to track children’s activity in the nursery school. We uti-

lized OpenPTrack library to perform persons and objects tracking with multiple

Kinect sensors. After modeling children’s behavior with PetriNet, we extracted

four features from it to represent children’s behavior. Statistical comparison be-

tween typical and ASD groups demonstrated that ASD children changed their

activity and played alone more frequently than their typical peers did. The re-

sults, however, showed that the difference between the groups for other features

was insignificant [2].

While previous chapters explain the group-level monitoring, Chapter 5 presents

the investigation results of individual-level system. In this study, we developed

a serious game version of the Go/NoGo task (AttentionTest) and investigate the

relations between participants’ response and their gaze behavior during the task.

We represented respectively Go and NoGo stimulus as“chicken”and“cat”char-
acters. Participants had to respond to the chicken character when it appeared.

But, they should inhibit their action towards cat character. The proposed sys-

tem tracked participants’ gaze movement with Tobii eye-tracker mounted on the

monitor. From subjects’ response and gaze behavior, we extracted two types of

features: game performance and gaze behavior. Statistical analysis results showed

that significant positive relationship existed between subjects’ response and their

gaze behavior: participants with bigger gaze trajectory area responded slower

with higher variance [3]. Clustering of those features with K-means suggested

that there were two clusters in the population. The participants belong to the
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first cluster, focused their gaze on the center of the screen. While the members

of the second cluster adjusted their gaze to stimuli position. Also, the second

cluster’s member responded to the stimuli faster with higher variance than the

first cluster’s.

Referring to the results of our previous experiment, we conducted a study to

identify ASD symptoms in children using features extracted from their response

and gaze behavior when they played AttentionTest game. We recruited 35 typical

and 22 children with ASD in this study. During the experiment, all participants

took one minute training before participating in a four-minute evaluation. We

extracted spatial and gaze-adjustment features and performed statistical compar-

ison with Student t, Mann-Whitney U, and ANOVA test. This study conducted

two statistical comparisons: between typical and ASD groups and among typi-

cal ASD with ADHD, and ASD without ADHD groups. Statistical comparison

results signified that ASD children significantly differed from the typical ones in

their gaze related features but not in their response towards the stimulus. The

results showed higher irregularity in gaze modulation of children with ASD symp-

toms when they adjusted their gaze to stimulus position [4]. The results might

correlate with their low ability to filter out uninformative information, causing

more unintentional viewing behavior. In contrast, comparison between ASD with

and without ADHD groups showed an insignificant difference. The results, how-

ever, demonstrated higher irregularity of gaze modulation among ASD subjects

with ADHD comorbid.

Employing informative features that we found in the study explained in Chap-

ter 5, we developed a decision support system using Deep Distance Learning and

SHAP value algorithm. DDL allowed the proposed system to compute similarity

between a query and support sets, retrieve support sets that are like the query,

and perform classification of novel class; the proposed system interpreted simi-

larity scores with SHAP value. In this study, we proposed Cluster Hard Triplet

Loss (CsTL) to train the deep distance model. The loss minimized the distance

between an anchor to positive cluster and maximize the distance of it to the
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closest negative cluster. Evaluation with Omniglot dataset demonstrated CsTL

got competitive results compared to the state-of-the-art methods. Also, the DDL

outperformed k-NN and Deep Neural Network model in identifying ASD symp-

toms in children. Retrieval results provided evidence-based results: the first and

second rank results of correctly classified query had the same label as it. SHAP

value of similarity score revealed that the most informative features in differenti-

ating typical from ASD groups were gaze-adjustment features. Besides, different

in each case, game performance (RT-var, Go positive and negative scores) and

gaze behavior feature might follow afterward.

Results of this study suggested that we might use marker-less method in de-

veloping a decision support system to identify developmental disorder symptoms

such as ADHD and ASD in children. First, the results demonstrated that our pro-

posed system employing OpenPTrack with multiple Kinect sensors could identify

ASD/ADHD symptom-related features, such as frequency of changing activity

and tendency to play alone. While the individual-level system equipped with an

eye-tracker could differentiate typical of their peers with ASD/ADHD system by

extracting response and gaze related features. Last, the proposed decision sup-

port system using Deep Distance Learning trained with CsTL and SHAP value

could provide interpretable evidence-based results that might help psychiatrist in

making better judgment to identify developmental disorder symptoms.

There are three limitations to this study. First, we have not utilized both

features from group-level and individual-level monitoring system in our decision

support system to identify symptoms of ASD/ADHD in children. Also, this study

has not investigated the relation between features extracted using the proposed

system and behavioral assessment checklist, such as the Children Behavior Check-

list (CBCL). Last, it would be of interest to consider subjects across a broader

age range to enable capturing a greater variety of behaviors. Future studies

should jointly measure children’s behavior with group and individual monitor-

ing systems and combine features extracted from those features with behavioral

checklist scores.
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