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Abstract

In order to deal with the increasing demand for wireless networks, diverse require-
ments will be defined for future standards such as the sixth generation mobile communica-
tions standard (6G). Focusing on applications for low-cost devices represented by Internet-of-
Things (IoT), there are severe limitations on signal processing and power consumption. Thus,
physical layer techniques for future cellular networks should be designed by taking these hard-
ware limitations into account.

Multiple-input multiple-output (MIMO) systems have been getting much attention for the last
several decades due to their attractive potential for performance enhancement, and several trans-
mission schemes have been investigated in MIMO systems. Among them, in this dissertation, we
focus on two MIMO transmission schemes, namely spatial multiplexing and spatial modulation,
due to their potential for spectral efficiency enhancement as the number of antennas increases.
These approaches require no channel state information at the transmitter side, but inter-channel
interference (ICI) is not avoidable at the receiver. Therefore, the receiver needs to employ MIMO
signal detection to separate the interfering transmit symbols. However, it generally requires high
computational complexity with the increase in the number of antennas. Consequently, it may
lead to high latency and high power consumption, which is not acceptable for low-cost devices
as in IoT networks.

Motivated by the above background, we focus on a matched-filter (MF) detector known as
the lowest complexity MIMO detector. In this dissertation, we first derive the statistical property
of MF detector through exact mathematical analysis over Rayleigh fading channel. Based on
this property, we apply MF detector to coded MIMO spatial multiplexing and spatial modulation
systems. For spatial multiplexing, we propose a new interference cancellation (IC) approach
so as to improve the error rate performance, developed as MF detector with QIC (MF-QIC) to-
gether with design criteria for polar codes. The simulation results demonstrate that MF-QIC
outperforms other conventional signal detectors with the presence of channel estimation error.
For spatial modulation, we apply MF detector as a sub-optimal detection by introducing an ap-
propriate scaling, referred to as scaling MF detector. We also optimize the decoding metric for
coded spatial modulation based on the derived statistical property for MF detector.
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Chapter 1
Introduction

1.1 Background and Motivation

M
assive number of diverse devices attempt to connect to wireless networks, and the de-
mand for wireless communication is increasing day by day. Therefore, recent and future

mobile standards need to satisfy several directional requirements [1]. Specifically, as an exam-
ple in the fifth generation mobile communications standard (5G), the system requirements are
specified in three categories defined as enhanced mobile broadband (eMBB), ultra reliable low
latency communications (URLLC), and massive machine type communications (mMTC) [2].
For future mobile communications such as the sixth generation (6G) [3], it will be extended
in a way that integrates these conditions represented by ultra-mMTC (umMTC) and massive
URLLC (mURLLC) [4,5]. Considering the background that the main focus until the fourth gen-
eration (4G) has been to enhance the data rate corresponding to eMBB as in 5G, physical layer
techniques should be redesigned optimized for never-before-seen applications in future wireless
communications. Among them, the acceleration of Internet-of-Things (IoT) is almost certain,
and a massive number of low-cost devices attempt to communicate through wireless networks
with severely limited computational resources and power consumption [6]. Based on this back-
ground, the main aim of this dissertation is to develop a new low-complexity physical layer
technology with high power efficiency that simultaneously accommodates massive devices. In
pursuing this end, this dissertation mainly investigates two essential technologies, multiple-input
multiple-output (MIMO) [7] and channel coding [8], as described in the following.

Channel Coding

In wireless networks, channel coding performed by the error correcting codes is an essential
technology to improve the resulting error rate performances with the aim of getting closer to
Shannon capacity [9]. It is known as the theoretical achievable spectral efficiency over AWGN
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channels, and it is expressed as

C = B log2 (1 + SNR) , (1.1)

where B represents a channel bandwidth, and SNR is signal-to-noise ratio (SNR) at the receiver.
In general, SNR can be improved by the increase of transmission power. However, its limitation
is specified by 3GPP as well as the laws of each country according to the guideline for human
protection. Thus, there is a severe restriction on the capacity improvement by SNR. In con-
trast, the channel bandwidth B can also contribute the capacity enhancement linearly as shown
in (1.1). In practice, 5G, the most recent mobile standard, adopts significant broadband commu-
nication up to 800 MHz at millimeter wave (mmW), whereas that in LTE is up to 20 MHz. As
a result, 5G has achieved a dramatic increase in terms of data rate compared to LTE. However,
in order to ensure such broadband frequency resources, it has no other choice to use high fre-
quency bands that have never been adopted in the past cellular networks due to extremely severe
propagation loss. Based on the above observation, further investigation of channel coding so
as to achieve Shannon capacity is still one of the most important challenges even toward future
wireless communications [8].

In this work, we address three error correcting codes known to be approaching Shannon limit
listed as follows:

• Turbo codes have been proposed by Berrou et al. in 1993 [10], which is known as the
first capacity approaching error correcting codes. They are composed of two recursive
convolutional codes (RCCs) which are parallel concatenated via an interleaver. The turbo
decoder generally employs soft-input soft-output (SISO) decoding corresponding to each
RCC based on Bahl, Cocke, Jelinek, and Raviv (BCJR) algorithm [11]. Its output in terms
of extrinsic information is exchanged by iterative decoding process between two SISO
decoders. Turbo codes have been adopted a lot of wireless communication standards such
as 3G and LTE.

• Low-density parity-check (LDPC) codes were introduced by Gallarger in 1961 [12], and
refound after a few decades [13] according to the development of computing potential.
Their sparse parity check matrix enables the practical implementation based on the mes-
sage passing algorithm. Furthermore, LDPC codes designed with density evolution have a
potential to achieve within 0.0045 dB from Shannon limit [14]. Thus, the recent standards
adopt LDPC codes such as data channel in 5G.

• Polar codes were recently discovered by Arikan in 2008 [15]. It has been theoretically
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Figure 1.1: The achievable gain by multiple-antenna transmission.

demonstrated that they can achieve the capacity limit over symmetric binary-input discrete
memoryless channels with practical computational resources. Polar codes are constructed
based on channel polarization principle, but its optimal design for well-known fading chan-
nel model is still challenging as well as the practical propagation environment. Neverthe-
less, their performance with short block length is known to be superior to that of turbo and
LDPC codes. Thus, polar codes have been adopted in control channel in 5G.

Multiple-Input Multiple-Output (MIMO)

In order to enhance the spectral efficiency as well as energy efficiency, multiple-antenna
technique named multiple-input multiple-output (MIMO) is adopted in recent wireless standards
such as LTE and Wi-Fi. Furthermore, MIMO becomes de facto standard since system con-
figuration in 5G is established on the premise of MIMO. There are a variety of transmission
schemes in MIMO systems, and each of them can provide different gains. In 5G as an example,
mainly three transmission schemes are supported for point-to-point communication as illustrated
in Fig. 1.1. Note that these techniques can be also applied in combination. Beamforming is one
of the essential techniques in 5G, and it improves the signal-to-noise power ratio (SNR) by the
control of phase shifter at the multiple antennas. As a result, the enhancement on power effi-
ciency is expected by beamforming, and its gain is also called beamforming or array gain. Espe-



4 1. Introduction

cially for mmW communications, beamforming by massive transmit antennas, namely massive
MIMO [16, 17], is necessary at the base station (BS) to provide sufficient coverage due to high
attenuation by large pathloss with respect to the distance. However, in general, it requires the
channel information at the transmitter in some way such as the channel state information (CSI),
the directions-of-departure (DoD), or Directions-of-Arrival (DoA). Spatial diversity approach is
employed so as to reduce the effect of power attenuation due to fading. A few schemes have
been investigated in the literature, and among them, space-time block code (STBC) [18] and
space-time trellis code (STTC) [19] are well-known approaches, since they can be implemented
simply but achieve good performances. However, the practical diversity technique limits the im-
provement in terms of system capacity. Spatial multiplexing represented by Bell Labs Layered
Space-Time (BLAST) [20, 21] is a MIMO technique to improve the spectral efficiency without
any band expansion by the parallel transmission of the different information sequence from dif-
ferent antennas. Furthermore, the previous work revealed that the capacity improves linearly
with the number of antennas over ideal uncorrelated fading channels [22]. Therefore, compared
with the other transmission schemes described above, we may conclude that multiplexing gain
is the most attractive in MIMO systems. The main drawback in spatial multiplexing is higher
complexity for signal detection at the receiver compared to other schemes. Since the computa-
tional complexity depends on the number of antennas, the complexity increases corresponding
to the achievable spectral efficiency. In other words, there is a tradeoff between the spectral effi-
ciency enhancement and the computational complexity for signal detection. In order to address
this issue, a new transmission approach named spatial modulation was proposed in [23], which
conveys information sequence on the antenna index in addition to the conventional constellation-
based modulation transmitted by only one active antenna. The sparseness of the transmission
symbol in spatial modulation contributes the complexity reduction, which is a challenging issue
in spatial multiplexing. Furthermore, it is known that the minimum Euclidean distance (MED)
can be increased compared with the same spectral efficiency [24]. In addition, its extension was
proposed in terms of generalized spatial modulation (GSM) [25], where the multiple antennas
are activated.

1.2 Coded MIMO System Model

Motivated by the above observations, we focus on coded MIMO spatial multiplexing and
spatial modulation systems throughout this dissertation shown in Fig. 1.2, where the detailed
description is given in the following.
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Figure 1.2: General MIMO transmission model with Nt transmit and Nt receive antennas.
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Figure 1.3: Coded modulation schemes for MIMO systems.

1.2.1 Channel Coding Principle

In this dissertation, we consider two coded modulation schemes for MIMO systems as shown
in Fig. 1.3.

For a single user scenario, channel coding is performed before antenna mapping shown in
Fig. 1.3(a), and thus, the generated codewords are mapped to and transmitted from all the transmit
antennas. Let c denote the information bit sequence. It is encoded by a binary code C with rateRc

from a binary information sequence denoted by d. A vector ofm = log2 M elements of c forms
one transmitted symbol withM -PSK orM -QAM constellations. Finally, the modulated symbol
sequence is mapped into and transmitted from all the transmit antennas. It leads to that the spatial
diversity gain can be obtained with the number of transmit antennas even if the channel is static
over each codeword transmission.
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In the case of multiple user transmission, we assume that each user has a single antenna,
and channel coding and modulation are performed at each transmit antennas. Let ck denote the
information bit sequence for the kth user. Similar to the single user case, it is encoded by a
binary code C with rate Rc from a binary information sequence denoted by dk corresponding
to the kth user. Finally, the modulated symbol sequence sk is generated from the codeword
sequence c and transmitted from the kth user (or the kth transmit antennas). In this case, the
codeword corresponding to each user can not obtain the spatial diversity gain over flat fading
channels since each codeword is received through the same channel.

1.2.2 Symbol Representation of General MIMO Transmission

Let Nt and Nr denote the number of transmit and receive antennas, respectively. The
lth transmitted symbol from the kth antenna represented by s

(l)
k is modulated by M -PSK

or M -QAM, where M is modulation order. Assuming that the transmit symbol of the se-
quence length L is transmitted from all the kth transmit antenna, it is denoted by sk =(
s
(1)
k , s

(2)
k , · · · , s(l)k , · · · , s(L)k

)
∈ X L, where X represents a set of constellation points. The

overall transmit symbol is given by

S = (s1 · · · sk · · · sNt)
T =

(
s(1) · · · s(l) · · · s(L)

)

=



s
(1)
1 · · · s

(l)
1 · · · s

(L)
1

... . . . ... . . . ...
s
(1)
k · · · s

(l)
k · · · s

(L)
k

... . . . ... . . . ...
s
(1)
Nt
· · · s

(l)
Nt
· · · s

(L)
Nt


, (1.2)

where the lth transmit symbol from all the transmit antenna is represented by s(l). Similarly, the
received symbol is defined as

R = (r1 · · · rk · · · rNr)
T =

(
r(1) · · · r(l) · · · r(L)

)

=



r
(1)
1 · · · r

(l)
1 · · · r

(L)
1

... . . . ... . . . ...
r
(1)
k · · · r

(l)
k · · · r

(L)
k

... . . . ... . . . ...
r
(1)
Nr
· · · r

(l)
Nr
· · · r

(L)
Nr


, (1.3)
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where rk and r(l) represent the received symbol at the kth antenna and the lth overall received
symbol, respectively, in which rlk corresponds to the lth received symbol at the kth antenna.
Based on the above definitions, the received symbol is expressed as

R = HS+N, (1.4)

where H = (h1 h2 · · · hNt) ∈ CNr×Nt denotes a complex channel matrix with each column
vector hk = (h1,k, h2,k, · · · , hNr,k) representing the channel corresponding to the kth transmit
antenna, andN

(
n(1) n(2) · · · n(L)

)
∈ CNr×Ns is an additive white Gaussian noise (AWGN) ma-

trix with each entry follows independent and identically distributed (i.i.d.) circularly symmetric
complex Gaussian distribution with zero mean and variance σ2

n = N0 per complex dimension,
i.e., n(l)

i ∼ CN (0, N0). Throughout this dissertation, we assume that the channel is modeled as
uncorrelated Rayleigh fading such that each element of the channel matrix H is an i.i.d. circu-
larly symmetric complex Gaussian random variable with CN (0, 1).

Finally, MIMO detector estimates the original transmitted symbol S from the received sym-
bol R based on the prior information of the channel matrix H. The detail of specific detection
algorithm is described in Chapter 1.3.

1.2.3 Spatial Multiplexing and Spatial Modulation

The transmit symbol S given by (1.2) depends on which transmission scheme is employed
at the transmitter as described in Chapter 1.1. Throughout this work, we focus on spatial multi-
plexing and spatial modulation as MIMO transmission schemes. Here, we introduce the general
system model as a framework of generalized spatial modulation (GSM) [25], since spatial mul-
tiplexing and spatial modulation can be regarded as special cases of GSM as shown in Fig. 1.4.
Note that the detailed notations for each scheme are given in each section. Let Na denote the
number of active antennas, which means that only Na antennas transmit the modulated symbols
at each symbol period indicated by l. In other words, (Nt −Na) antennas do not transmit any
symbols (or transmit null constellation points) and work as inactive antennas. In GSM systems,
in addition to the conventional transmission of modulated signals by M -PSK or M -QAM, in-
formation bits are also allocated for the combination that selects Na antennas from all the Nt

antennas. Thus, the resulting transmission rate (or spectral efficiency) is expressed as

ηGSM = log2

⌊(
Nt

Na

)⌋
+Na log2 M. (1.5)
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Spatial multiplexing
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M : Modulation orderComplexity (ML): O
(

2log2⌊(
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)⌋+Na log

2
M
NaNr

)

Figure 1.4: Generalized MIMO transmission schemes considered in this dissertation.

Since the number of candidates of the transmitted symbol also corresponds to ηGSM, the compu-
tational complexity order of GSM for MLD given by (1.9) is derived as O (2ηGSMNaNr).

Spatial Multiplexing

Spatial multiplexing corresponds to the case with Na = Nt in GSM. Thus, all the trans-
mit antennas carry the conventional M -PSK of M -QAM constellation points. From (1.5), the
transmission rate of spatial multiplexing is expressed as

ηSMX = Nt log2 M. (1.6)

It is observed from (1.6) that the maximum spectral efficiency increases linearly as the number
of transmit antennas increases. In practice, previous studies have shown that the capacity in
spatial multiplexing systems increases in proportion to the number of antennas over uncorrelated
Rayleigh fading channels [22]. Therefore, spatial multiplexing has been getting much attention
recently and adopted in several wireless communication standards such as Wi-Fi, LTE, and 5G.

Against this attractive advantage, a few critical issues are also known and widely studied.
Among them, channel correlation and computational complexity for MIMO detection are ex-
tremely serious concerns for practical implementation. The former is the performance degra-
dation due to channel correlation between the transmitter and receiver. The achievable data rate



1.2. Coded MIMO System Model 9

depends on the rank of the channel matrixH, but full rank can be obtained only by an ideal uncor-
related channel. In practical environments, since the propagation path may not be sufficient for
the number of antennas, the achievable capacity is exceeded. To deal with this issue, the concept
of cell-free MIMO has been proposed and well investigated most recently [26, 27], where it can
manage the channel correlation by introducing distributed antennas. On the other hand, the com-
putational complexity for signal detection in spatial multiplexing systems is a crucial problem
that needs to be addressed. In fact, MLD requires high complexity order of O

(
2NtMNtNr

)
,

and grows exponentially with the number of transmit antennas (or transmission rate) [28, 29].
Therefore, a drastic approach to reduce the computational complexity of MIMO detector has not
yet been established. Motivated by this background, we focus on MF detector and propose a new
coded modulation approach combined with interference cancellation (IC) technique in Chapter 3.

Spatial Modulation

In order to cope with high complexity of spatial multiplexing, spatial modulation is also a
valid approach. Spatial modulation corresponds to the case with Na = 1 for GSM [23], and its
transmission rate is given by

ηSM = log2 (NtM) . (1.7)

Compared to the spectral efficiency of spatial multiplexing, which increases linearly, that of
spatial modulation increases logarithmically with the number of antennas. In contrast, the com-
plexity order for MLD of spatial modulation is much lower than that of spatial multiplexing and
given by O (MNtNr). Furthermore, it is known that MED of spatial modulation can be reduced
compared to spatial multiplexing with the same transmission rate in some cases. As an example
with Nt = 4 and the transmission rate ηSMX = ηSM = 2, MED of spatial modulation can achieve
2 by QPSK signaling, whereas that of spatial multiplexing is 1 with BPSK signaling. Thus,
spatial modulation has the potential to achieve better performance even with lower detection
complexity. As the main drawback, the compatibility with conventional binary error correcting
codes is poor, and the applicable signal detector is limited to the optimal-based approaches such
as MLD and sphere decoding [30]. In order to tackle this problem, we derive the optimal design
of sub-optimal detection based on MF detector for spatial modulation in Chapter 4.
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1.3 MIMO Detection

Focusing on the lth transmitted symbol, (1.4) can be derived in the vector form as

r(l) = Hs(l) + n(l). (1.8)

At the receiver, the original transmitted vector s(l) is estimated as ŝ(l) by MIMO detector.

Maximum Likelihood Detector

The optimal approach is known as maximum likelihood detection (MLD), and it is performed
as

ŝ(l) = min
s

∥∥r(l) −Hs(l)
∥∥2 . (1.9)

However, its computational complexity grows exponentially with the number of transmit anten-
nas as well as bit per symbol for modulation schemem = log2 M . So as to reduce the complexity
of MLD, several reduced-complexity versions have been proposed such as tree-search-based de-
tectors [31, 32]. Nevertheless, their worst complexity order would be the same as that of MLD.

Linear Detector

Based on the above observation, the practical systems employ a low-complexity linear de-
tection. The general operation of the linear detectors is calculating the soft-output estimated
vector ŝ(l) by simple linear transform as

ŝ(l) = WHr̂(l), (1.10)

where XH is the Hermitian transpose of a matrix X, and W = (w1 w2 · · · wk · · · wNt) ∈
CNr×Nt represents the weight matrix of each linear detector, in which the kth vector wk repre-
sents the weight vector corresponding to the kth transmit antenna. A simple solution is to use
the inverse of the channel matrix H for the weight matrix in (1.10). This approach is known as
zero-forcing (ZF), which maximizes the signal-to-interference ratio (SIR). Its weight matrix is
given by

WH =
(
HHH

)−1
HH. (1.11)
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However, ZF detector causes noise power augmentation. Thus, the linear detection based on
minimum mean-square error (MMSE) is introduced, where it takes both the interference and
noise into account. As a result, MMSE detector achieves a better performance than ZF especially
compared in the low SNR region. The weight matrix of MMSE detector is expressed as

WH =

(
HHH+

N0

Nt

INt

)−1

HH, (1.12)

where IN denotes the identity matrix with size N . These linear detectors have been widely
adopted due to their simple and unified signal processing independent of modulation schemes.
However, their complexity order still grows cubicly with the number of antennas [33] due to the
requirement of matrix inversion.

1.3.1 Matched-Filter Detector

Therefore, we focus on a matched-filter (MF) detector, also known as maximum ratio com-
bining (MRC) [34–36]1 since it has been regarded as the lowest complexity detection among all
MIMO detectors [37]. MF detector is also categorized into linear detection and maximizes the
output SNR.

In what follows, we first derive the weight matrix of MF detector based on the SNR maxi-
mization criteria. From (1.10), the kth output is expressed as

ŝk = wH
khks

(l) +wH
kn. (1.13)

The signal power in (1.13) is given by

E

{∣∣∣wH
khks

(l)
k

∣∣∣2} =
∣∣wH

khk

∣∣2 Et (1.14)

where Es denotes the transmit power per transmit antenna. Likewise, the noise power is calcu-
lated by

E
{∣∣wH

kn
∣∣2} = E

{
wH

kn
(
wH

kn
)∗}

= E
{
wH

kn
(
nTw∗

k

)∗}
= wH

kE
{
nnT

}
wk = wH

kwkN0. (1.15)

1Note that MF can be also applied at the transmitter side, and in such a scenario, it is widely known as maximum
ratio transmission (MRT) and conjugate beamforming (CB) especially in a framework of massive MIMO [16]. In
this dissertation, we focus only on the case where MF is adopted at the receiver.
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Thus, the SNR of the linear filter output is expressed as

γlinear =

∣∣wH
khk

∣∣2
wH

kwk

· Et

N0

, (1.16)

From Cauchy-Schwartz inequality, the following expression holds for any vectors represented
by a and b:

∣∣aHb
∣∣2 ≤ aHabHb, (1.17)

with equality if and only if b = ca (c is an arbitrary constant). By substituting a = wk and
b = hk into (1.17), the following formula holds:∣∣wH

khk

∣∣2
wH

kwk

(1.18)

Therefore, the SNR of the linear detector output in (1.16) is maximized with wH
k = ckh

H
k , where

ck is arbitrary constant for the kth linear detector output. Here, we simply consider the case
with ck = 1 for any transmit antenna index k ∈ {1, · · · , Nt}. As a result, the kth weight vector
of MF detector is given by

wH
k = ckh

H
k = hH

k , (1.19)

and we finally get the weight matrix of MF detector expressed as

WH = CHH = HH, (1.20)

where C = diag (c1, c2, · · · , ck, · · · , cNt) ∈ CNt×Nt is a diagonal matrix in which the kth di-
agonal element corresponds to ck. We note that the scaling by C does not affect the resulting
performance for spatial multiplexing. In contrast, the optimal scaling parameter exists for spatial
modulation. The details are described in Chapter 4.

It is obvious that MF detector does not require any calculation for the weight matrix genera-
tion, and this fact enables the lowest complexity detection only by the operation in (1.10). On the
other hand, those of ZF and MMSE are given by (1.11) and (1.12). It includes the inverse matrix
generation, and thus, ZF and MMSE require much more complexity than MF even though it is
lower compared to MLD. In general, there is a tradeoff between the error rate performance and
computational complexity for MIMO detectors, and various approaches have been proposed in
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the literature. Therefore, the development of computationally efficient symbol detection schemes
plays an important role.

1.4 Outline and Contributions

This dissertation is summarized as follows:

• In Chapter 2 titled as “Performance Analysis of Matched-Filter Detector over Rayleigh
Fading Channel”, we analyze the statistical property of MF detector over uncorrelated
Rayleigh fading channel. Throughout the mathematical analysis, we derive the exact dis-
tribution of the MF output in a closed-form formula. Based on that, we derive the uncoded
BER expression for arbitrary PSK and QAM modulation. For coded MIMO systems, we
present the optimal metric for channel decoder in terms of log-likelihood ratio and the
mutual information.

• In Chapter 3 titled as “Matched-Filter Detector with Quadrature Interference Cancel-
lation for Uplink MIMO Spatial Multiplexing”, we propose a new interference cancel-
lation technique for uplink coded multi-user MIMO spatial multiplexing systems, namely
quadrature interference cancellation (QIC). It is designed for MF detector based on the
statistical property derived in Chapter 2. Since the concept of QIC is similar to multilevel
coded modulation (MLD), the parameters associated with error correcting codes should be
carefully addressed. Thus, we also provide the design criteria of code rate and construction
by taking polar codes as an example. Furthermore, the approximated theoretical expres-
sion in terms of block error rate (BLER) performance is also developed. Numerical results
demonstrate that our proposed polar-coded MF-QIC outperforms other conventional ap-
proaches even in the presence of channel estimation error.

• In Chapter 4 titled as “Scaling Matched-Filter Detector for MIMO Spatial Modula-
tion”, we consider coded MIMO spatial modulation where MF detector is employed as
sub-optimal detection. In order to apply MF detector to spatial modulation, we first intro-
duce appropriate scaling. Unlike the optimal detection such as MLD, the log-likelihood
ratio is not clear for the sub-optimal detection since its derivation is different from con-
ventional spatial multiplexing. Therefore, based on the analytical results in Chapter 2, we
derive the optimal metric of scaling MF detector for channel decoding.

• Chapter 5 concludes this dissertation.
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Chapter 2
Performance Analysis of Matched-Filter Detector

over Rayleigh Fading Channel

In this chapter, we exactly analize the statistical property of MF detector over uncorrelated
Rayleigh fading channels.

Published as:
Y. Hama and H. Ochiai,“Performance Analysis of Matched-Filter Detector for MIMO Spatial Multiplexing over Rayleigh Fading Channels
with Imperfect Channel Estimaiton,”IEEE Trans. on Commun., vol. 67, no. 4, pp. 3220-3233, May. 2019.

2.1 Introduction

Massive MIMO or a large scale MIMO, which involves a large number of antennas at the
transmitter and/or receiver sides, has turned out to be promising in terms of its significantly
high spectral efficiency and reliability at least from the theoretical viewpoint [16, 17, 38–40].
There are various approaches towards realization of MIMO systems, and spatial multiplexing is
one of the promising approaches as the capacity increases linearly with the number of transmit
antennas under the assumption of independent fading [7, 20, 21]. For the signal detection in
spatial multiplexing systems, the MLD may be applicable to the systems with a few antennas,
but not necessarily suitable for MIMO spatial multiplexing systems with much more antennas.
Therefore, as the number of antennas increases, the conventional low-complexity linear detectors
become a realistic option. There are several representative linear detectors well investigated in the
literature. Among them, the zero-forcing (ZF) detector can maximize the signal-to-interference
ratio (SIR), but it causes noise power augmentation. This problem is solved by the minimum
mean-square error (MMSE) detector, where it considers both the interference and noise, leading
to a better performance than the ZF detector especially in low signal-to-noise ratio (SNR) regime.

The above two linear detectors have been widely studied, but their complexity still grows with
the cubic order of the number of antennas [33] due to the requirement of matrix inversion. On
the other hand, another well known, even lower-complexity detector is the matched-filter (MF)
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detector, also known as the maximum ratio combining (MRC) detector [34–37]1. In fact, the MF
detector has been regarded as the lowest computational complexity detector among all practical
MIMO detectors studied in the literature [37], but at the cost of severe performance degradation.
Since the matched filter operates such that the output SNR is maximized for each transmit an-
tenna and thus does not take into account the interference caused by the symbols transmitted from
the other antennas, its performance without channel coding is prohibitively poor in high SNR.
Nevertheless, in the case of low SNR, recent studies demonstrate that near optimal performance
can be achieved with the assistance of powerful channel coding, and this is especially the case
when the number of antennas is large [42]. This fact has motivated us to study the fundamental
performance limit of the MF detector in MIMO spatial multiplexing systems. Due to the central
limit theorem, the performance of the MF detector can be easily analyzed in the framework of
massive MIMO. However, invoking such an approximation generally requires the assumption of
large antennas.

We note that the exact performance analysis for MIMO systems is still challenging, even
for simple cases such as those over uncorrelated Rayleigh fading channels. The performances
of linear detectors depend on the signal-to-interference-plus-noise ratio (SINR) [43], and the
closed-form bit error rate (BER) expressions of the ZF detector are discussed in [44], where the
error rate performance and outage probabilities of MMSE detector are also examined based on
the high SNR approximation. In [45], based on the Gamma distribution approximation of the
MMSE receiver output, the approximate BER expression is derived. In [46], on the other hand,
the exact instantaneous BER (conditioned on a channel realization) is derived in a closed form
for a general quadrature amplitude modulation (QAM) signaling under the framework of MMSE
detection, but in practice, the average BER expression for a typical Rayleigh fading scenario
would be desirable if it is expressed by a simple closed-form equation. Very recently, based on
the assumption of large number of receive antennas, the distribution of the output of ZF detector
and the resulting coded performance have been derived in [47].

Since the ZF detector is able to remove all the interfering symbols, its output contains only
the two terms, i.e., signal and noise. On the other hand, the MF detector should take into account
the correlation between the desired and interfering symbols. Therefore, the exact analysis of MF
detector would be more complicated than that of ZF detectors. In [48], the outage probability of

1In the literature of MIMO-MRC systems, MRC detectors are linked with transmit beamforming assuming that
channel knowledge is available at both the transmitter and receiver [41], in which case a single stream is transmitted
over multiple transmit antennas. On the other hand, this chapter focuses on MIMO spatial multiplexing where each
antenna transmits its own symbol and thus the transmitted symbols interfere with each other at the receiver, even
with MRC detection. Thus, the theoretical framework of this chapter is significantly different from the conventional
MIMO-MRC system.



16 2. Performance Analysis of Matched-Filter Detector over Rayleigh Fading Channel

the MF precoder is derived under the framework of downlink multi-user massive MIMO, which
is shown to become accurate with a large number of antennas. The exact expression of the
outage probability for MF precoder is also derived in the very recent work [49], but it involves
an expression with an infinite summation. Therefore, the asymptotic forms are developed under
the framework of massive MIMO systems.

To the best of the authors’ knowledge, the exact and closed-form expressions for uncoded
BER under the framework of MIMO spatial multiplexing with arbitrary numbers of transmit and
receive antennas, even with simple uncorrelated Rayleigh fading channels, has not been well
developed in the literature. Therefore, in this chapter, we study the exact performance of the MF
detector without any restrictions on the numbers of transmit and receive antennas. To this end,
we first derive the exact and closed-form probability distributions of the MF detector output. We
then derive the closed-form BER expressions of uncoded MIMO systems with BPSK, QPSK,
and square-type M -ary QAM signaling with arbitrary numbers of transmit and receive anten-
nas. Our results can be seen as the MIMO generalization of the MRC detector over Rayleigh
fading channels whose closed-form BER expressions are well known in the case of single-input
multiple-output (SIMO) scenarios [50]. Furthermore, we derive an approximate cumulative dis-
tribution function (cdf) when the number of antennas becomes large. Using this result, we also
derive the asymptotic BER expression for QAM. The developed result can also be used for the
derivation of the optimal and closed-form log-likelihood ratio (LLR) expression with the MF
detector in the case of coded MIMO systems. Furthermore, it enables us to calculate the mutual
information which serves as the performance limit of the coded MIMO systems over ideally in-
terleaved channels. The results are confirmed by Monte-Carlo simulations using a low-density
parity-check (LDPC) code [12], justifying our findings in this chapter. We will also find that the
optimal LLR expression based on the exact metric developed here matches with that based on
the simple Gaussian distribution modeling, which may justify the use of simple Gaussian-based
metric for coded MIMO systems with MF detector. Furthermore, considering the application
of MF detector to a more practical scenario, we extend our exact analysis to the systems with
imperfect channel estimation.

Our fundamental analytical framework will be built on single-user MIMO systems where
both the transmitter and receiver can have an arbitrary number of antennas, but the derived ana-
lytical results as well as the insight gained may be applicable to the uplink of multi-user MIMO
systems where hundreds of antennas are placed at the base station (BS). For such systems, the
use of MF detector may substantially simplify the complexity overhead of the signal processing
imposed for the BS. Our main objective is, through rigorous theoretical analysis, to elucidate
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the conditions where the MF detector may be beneficial in terms of the number of antennas and
channel SNR, for both uncoded and coded cases.

This chapter is organized as follows. In Section 3.2, we describe the system model adopted
throughout this chapter. The exact analysis of the MF detector output is performed in Section 2.3.
The closed-form BER expressions in the cases of uncoded BPSK, QPSK, and M -QAM are
derived in Section 2.4. Section 2.5 is devoted to the development of the optimal metric for coded
cases as well as the corresponding mutual information, where the simulation results that support
the theoretical results are also provided. Our analysis is extended to the practical scenario with
channel estimation error in Section 2.6. Finally, Section 4.6 concludes this chapter.

2.2 MIMO Spatial Multiplexing System

The general MIMO system model has been already introduced in Section 1.2. Here, we
describe the detailed system model considerred in this chapter.

2.2.1 System and Channel Models

We consider a single-user Nt × Nr MIMO spatial multiplexing system, where Nt and Nr

denote the numbers of antennas at the transmitter and receiver, respectively. We denote a set of
the transmit symbols throughNt antennas by the column vector s = (s1, s2, · · · , sNt)

T ∈ XNt×1

where X ⊂ C denotes a set of the constellation points to be transmitted from each antenna.
Throughout this chapter, we focus on the lth transmit symbol through MIMO channel given
by (1.8), and omit the symbol index l for simplicity. Thus, the received symbol vector r ∈ CNr×1

is expressed as

r = Hs+ n, (2.1)

where n = (n1, n2, · · · , nNr)
T ∈ CNr×1 is an additive white Gaussian noise (AWGN) vector

and H = (h1 h2 · · · hNt) ∈ CNr×Nt is a complex channel matrix. Each column vector hk =

(h1,k, h2,k, · · · , hNr,k)
T represents the channel corresponding to the kth transmit antenna with

k ∈ {1, 2, · · · , Nt}.
In order to analyze the performance in a mathematically rigorous manner, we further make

the following basic assumptions throughout this chapter: Each element ni of the noise vec-
tor n follows an independent and identically distributed (i.i.d.) circularly symmetric complex
Gaussian random variable with zero mean and variance σ2

n = N0 per complex dimension, i.e.,
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ni ∼ CN (0, N0). Also, the channel is modeled as uncorrelated Rayleigh fading such that each
element of the channel matrix H is an i.i.d. circularly symmetric complex Gaussian random
variable with zero mean and unit variance, i.e., hi,k ∼ CN (0, 1). Therefore, E

{
|hi,k|2

}
= 1

for any pair of i ∈ {1, 2, · · · , Nr} and k ∈ {1, 2, · · · , Nt}, where E {·} denotes an expectation
operation.

Finally, as is often the case with MIMO spatial multiplexing systems, we assume that the
transmitter does not have the knowledge of channel state information (CSI) but the receiver has
the perfect knowledge, i.e.,H is available at the receiver side but not at the transmitter side. The
assumption of perfect CSI at the receiver will be relaxed later in Section 2.6, where the effect of
channel estimation errors is also analyzed.

2.2.2 Transmitter Model

Since the transmitter does not have any CSI, we assume that the transmit energy is dis-
tributed equally over the entire transmit antennas. In other words, each transmit antenna is
assumed to generate a statistically independent symbol without any precoding and we denote
the average symbol energy per transmit antenna by Et. Let the kth transmit symbol be de-
noted by sk = xk + jyk where xk, yk ∈ R. Then, in the case of BPSK, we set yk = 0

and define X = {−
√
Et,
√
Et} ⊂ R. Likewise, for QPSK, both xk and yk are chosen from

X = {−
√

Et/2,
√

Et/2}. In the case of square-type M -ary QAM composed of two indepen-
dent

√
M -pulse amplitude modulation (PAM) constellations, both xk and yk are chosen from

X = {−(
√
M − 1)A, · · · ,−3A,−A,A, 3A, · · · , (

√
M − 1)A} where A =

√
3Et/2(M − 1).

Without loss of generality, the reduction of energy due to path loss and shadowing is normal-
ized such that the average energy per transmit antenna is expressed in terms of the average energy
of the received symbol Es as Et = Es/Nt. (Or, in other words, Et is the received symbol energy
observed at each receive antenna normalized by the number of transmit antennas.) Furthermore,
we define the parameter γs = Es/N0 which corresponds to the average SNR per receive antenna.

The SNR per bit, denoted by γb, is commonly defined as

γb ≜
Es

mN0

=
γs
m
, (2.2)

where m is the number of bits per symbol (i.e., m = 1 for BPSK and m = 2 for QPSK), and
thus

Et

N0

=
m

Nt

γb =
γs
Nt

. (2.3)
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2.2.3 Receiver Model

The primary role of MIMO detector is to output the estimate ŝk = x̂k + jŷk corresponding
to the transmitted symbol sk, which can be further used by the soft-decision channel decoder in
the case of coded systems.

GivenH at the receiver, the general operation of the MIMO linear detector is to calculate the
soft-output vector ŝ = (ŝ1, ŝ2, · · · , ŝNt)

T ∈ CNt×1 by linear transformation:

ŝ =
1√
Nr

WHr, (2.4)

whereW = (w1 w2 · · · wNt) ∈ CNr×Nt is the weight matrix andXH represents the Hermitian
transpose of a matrix X. Note that for analytical convenience and without loss of generality, we
here introduced the scaling matrix C = 1√

Nr
INt so as to normalize the variance of the detector

output throughout this chapter.

For the ZF detector, the weight matrix is given by the pseudo-inverse of the channel ma-
trix [51]

WH =
(
HHH

)−1
HH, (2.5)

which requires the complexity order of O(N3
t ) due to the inversion operation of Nt ×Nt matrix

in addition to matrix multiplication. On the other hand, for the MF detector, the weight matrix is
simply chosen identical to the channel matrix, i.e.,

WH = HH, (2.6)

or equivalently,

wH
k = hH

k . (2.7)

Therefore, no matrix inversion is necessary, and thus the complexity order is dominated by matrix
multiplication operation only, which grows linearly with Nr per each transmit antenna. The
benefit of MF detector over the other detectors thus becomes significant especially when the
number of the transmit antennas becomes large, as in the case of massive MIMO scenarios.
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2.2.4 Remark

Our subsequent analysis is valid for any combination of antennas at the transmitter and re-
ceiver as long as the channels follow uncorrelated Rayleigh fading. However, the assumption
of large antennas at both sides for point-to-point communications may not be realistic. In fact,
our analytical model can be easily extended to the uplink of a single-cell multi-user MIMO
system where most of the obtained results may be applicable. In such a system, each cell con-
sists of a single BS with Nr receive antennas and Nt single-antenna users [39, 52]. In fact, our
Nt×Nr MIMOmodel directly applies to the system if the power control of the users is appropri-
ately performed such that the average SNR of all the users (antennas) is identical. Furthermore,
the geometrical separation of users in the uplink justifies the use of uncorrelated fading model
for each transmit antenna. Many recent theoretical studies on multi-user MIMO systems such
as [38, 49, 53, 54] are based on such an ideal assumption, which we also follow in this chapter.

2.3 Exact Analysis of MIMO Systems with MF Detector Out-
put

In this section, we derive the conditional probability density function (pdf) of the MF detector
output for the system and channel models described in the previous section. The result will be
utilized for performance studies of uncoded and coded MIMO spatial multiplexing systems in
the subsequent sections.

2.3.1 A Probabilistic Model for Output of MF Detector

Let šk ≜ (s1, s2, · · · , sk−1, sk+1, · · · , sNt)
T denote a vector of the transmit symbols where

the symbol from the kth antenna is excluded. Let p̌k denote its square norm, i.e.,

p̌k ≜ ∥šk∥2. (2.8)

Our main finding in this section is as follows.

Theorem 1. The pdf of the real part of the MF output of the kth transmit antenna, x̂k ≜ ℜ{ŝk},
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conditioned on its input xk ≜ ℜ{sk} and all the other transmit symbols šk, is expressed by

px̂k
(x̂|xk = x, p̌k) =

√
Nr

(Nr − 1)!
√

x2 + p̌k +N0

[
p̌k +N0

2 (x2 + p̌k +N0)

]Nr−1

e
−

2
√

Nr

(√
x2+p̌k+N0|x̂|−xx̂

)
p̌k+N0

×
Nr−1∑
i=0

(Nr − 1 + i)!

2i i! (Nr − 1− i)!

[
2
√

Nr (x2 + p̌k +N0) |x̂|
p̌k +N0

]Nr−1−i

, (2.9)

which is the pdf conditioned on p̌k. The corresponding pdf pŷk (ŷ|yk = y, p̌k) for the imaginary

part ŷk ≜ ℑ{ŝk} is also given by (2.9) with x and x̂ replaced by y and ŷ, respectively.

Proof. We first identify that the pdf of the output ŝk conditioned on sk, p̌k, and αk is expressed by
Gaussian distribution and then derive the desired distribution by averaging out the conditioning
random variable αk. An alternative approach by identifying the output as the quadratic form of
real-valued Gaussian random variables is given in Section 2.6.2.

From (2.4), the kth estimated symbol ŝk output from the corresponding MF detector is ex-
pressed as

ŝk =
1√
Nr

wH
k r =

1√
Nr

wH
k

(
hksk +

Nt∑
ℓ=1,ℓ̸=k

hℓsℓ + n

)

=
1√
Nr

Nr∑
i=1

|hi,k|2 sk +
1√
Nr

{
Nr∑
i=1

Nt∑
ℓ=1,ℓ̸=k

h∗
i,khi,ℓsℓ +

Nr∑
i=1

h∗
i,kni

}
︸ ︷︷ ︸

ñk

, (2.10)

where ñk is the sum of the interference and noise terms.

px̂k

(
x̂|xk =

√
Et/m

)
=
√
Nr

(Nr − 1)!
√

N0 [{m (Nt − 1) + 1} γb/Nt + 1]

[
m(Nt − 1)γb/Nt + 1

2 [{m (Nt − 1) + 1} γb/Nt + 1]

]Nr−1

× e
−

2
√

Nr

(√
[{m(Nt−1)+1}γb/Nt+1]|x̂|−

√
γb/Ntx̂

)
π
√

N0{m(Nt−1)γb/Nt+1}

×
Nr−1∑
i=0

(Nr − 1 + i)!

2i i! (Nr − 1− i)!

[
2
√

Nr [{m (Nt − 1) + 1} γb/Nt + 1] |x̂|
π
√
N0 {m(Nt − 1)γb/Nt + 1}

]Nr−1−i

(2.11)
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Let us now assume that the entries of the matrixH are i.i.d. random variables with CN (0, 1)

as defined in Section 2.2.1, except for the column vector hk that corresponds to the kth transmit
antenna, which is considered to be known at the detector. Furthermore, the column vector s is
considered as fixed as well. Under this condition, it is easy to observe that the output ŝk is a
complex Gaussian random variable with mean given by

E { ŝk |hk} =
1√
Nr

Nr∑
i=1

|hi,k|2 sk =
√

Nrαksk, (2.12)

where αk can be seen as a signal attenuation factor expressed as

αk ≜
1

Nr

Nr∑
i=1

|hi,k|2 =
1

Nr

∥hk∥2 , (2.13)

and variance given by

VAR ( ŝk |hk) = E
{
|ñk|2

∣∣hk

}
=

1

Nr

Nr∑
i=1

|hi,k|2
Nt∑

ℓ=1,ℓ̸=k

E
{
|hi,ℓ|2

}
|sℓ|2 +

1

Nr

Nr∑
i=1

|hi,k|2 E
{
|ni|2

}
=

1

Nr

∥hk∥2
{

Nt∑
ℓ=1,ℓ̸=k

|sℓ|2 +N0

}
= αk

(
∥šk∥2 +N0

)
= αk (p̌k +N0) , (2.14)

which depends only on p̌k instead of šk. Note that αk in (2.13) is normalized such that E {αk} =
1.

Therefore, conditioned on sk, p̌k, and αk, the pdf of the output ŝk is expressed as

pŝk (ŝk|sk, αk, p̌k) =
1

παk (p̌k +N0)
e
−|ŝk−

√
Nrαksk|2

αk(p̌k+N0) . (2.15)

Consequently, the pdf for the real-valued random variable x̂k = ℜ{ŝk} is given by

px̂k
(x̂k|xk, αk, p̌k) =

1√
παk (p̌k +N0)

e
− (x̂k−

√
Nrαkxk)

2

αk(p̌k+N0) . (2.16)

Since hi,k follows CN (0, 1) and i.i.d., the signal attenuation factor αk defined in (2.13) is a



2.3. Exact Analysis of MIMO Systems with MF Detector Output 23

sum of the square of 2Nr i.i.d. real-valued zero-mean Gaussian random variables with the vari-
ance of each random variable given by 1/2Nr. As a result, αk follows a chi-square distribution
with 2Nr degrees of freedom where its pdf is expressed as [50]

pαk
(α) =

NNr
r e−NrααNr−1

(Nr − 1)!
. (2.17)

The resulting pdf of (2.16) unconditioned on αk is given by

px̂k
(x̂k|xk, p̌k) =

∫ ∞

0

pαk
(α) p (x̂k|xk, αk = α, p̌k) dα

=
NNr

r

(Nr − 1)!
e
2
√
Nr

x̂kxk
p̌k+N0

1√
π (p̌k +N0)

∫ ∞

0

αNr− 3
2 e

− x̂2k
α(p̌k+N0)

−Nrα

(
1+

x2k
p̌k+N0

)
dα

=
NNr

r

(Nr − 1)!
e
2
√
Nr

x̂kxk
p̌k+N0

1√
π (p̌k +N0)

× 2

(
x̂2
k

Nr (p̌k +N0 + x2
k)

)Nr
2

− 1
4

KNr− 1
2

(
2
√
Nrx̂2

k (p̌k +N0 + x2
k)

p̌k +N0

)
, (2.18)

where Kµ(z) is the modified Bessel function of the second kind. Using the following identity
that holds for a positive integer n

Kn+ 1
2
(z) =

√
π

2z
e−z

n∑
r=0

(n+ r)!

r!(n− r)!(2z)r
, (2.19)

and after some rearrangement, we obtain (2.9). The result for ŷk = ℑ{ŝk} follows in exactly the
same manner.

2.3.2 Expression for PSK Signaling or Large Nt

We now consider the cases when the signal is modulated by constant envelope (i.e., PSK)
or the number of transmit antennas Nt is large. In the former case, we have |sℓ| =

√
Et with

probability 1 and thus p̌k = (Nt − 1)Et. Similarly, if Nt is large such that the law of large
numbers applies, we have

p̌k =
Nt∑

ℓ=1,ℓ̸=k

|sℓ|2 ≈
Nt∑

ℓ=1,ℓ̸=k

E
{
|sℓ|2

}
= (Nt − 1)Et. (2.20)

For example, in the case with BPSK and QPSK signaling, substituting (2.20) into (2.9) and
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setting xk =
√

Et/m, wherem = 1 for BPSK andm = 2 for QPSK, we obtain (2.11), shown at
the top of this page.

2.3.3 Asymptotic Form for Large Nr

Note that the variance of αk is given by

VAR (αk) =
1

Nr

, (2.21)

which becomes 0 as Nr increases. Therefore, as the number of receive antennas increases, the
attenuation factor approaches unity due to the law of large numbers sinceE {αk} = 1. Therefore,
from (2.16), it can be approximated as

px̂k
(x̂k|xk, p̌k) ≈

1√
π (p̌k +N0)

e
− 1

p̌k+N0
(x̂k−

√
Nrxk)

2

. (2.22)

Furthermore, in the case of PSK signaling or large Nt cases such that (2.20) is valid, we obtain

px̂k
(x̂k|xk) ≈

1√
πN0 {m(Nt − 1)γb/Nt + 1}

e
− 1

N0{m(Nt−1)γb/Nt+1}(x̂k−
√
Nrxk)

2

, (2.23)

which corresponds to the commonly used Gaussian approximation for MF output without con-
ditioning on the input signaling.

2.3.4 Numerical Comparisons

We examine the exact theoretical distributions of the MF output developed in this section by
comparing with those obtained based on Monte-Carlo simulations. The results are compared in
Fig. 2.1 for the case of BPSK signaling with Es = 1 and γb = 0 dB. The numbers of antennas
are chosen as 2, 8, and 32 with Nt = Nr. The pdf of MF output is calculated by the closed-form
expression of (2.11). Both the results show perfect agreement, which justifies the accuracy of our
derivation. The theoretical pdf based on the asymptotic form of (2.23), which is valid for any Nt

in the case of PSK as long as Nr is large enough such that αk can be modeled as constant, is also
shown in Fig. 2.1, where, as expected, considerable discrepancy is observed when the number
of antennas is small. In particular, while the asymptotic distribution follows Gaussian, the exact
distribution in the case of Nt = Nr = 2 exhibits noticeable skewness and thus far from being
Gaussian. With the increase of the number of receive antennas, however, all the distributions
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Figure 2.1: Comparison of the pdf of MF detector output calculated by the closed-form theo-
retical expressions (both exact and asymptotic) as well as Monte-Carlo simulations with BPSK
signaling (Es = 1 and γb = 0 dB).

may converge as expected.

We further investigate the difference between the exact expression (2.11) and its asymptotic
form (2.23) by the Kullback-Leibler divergence (KLD). Let p(x) and q(x) denote the pdfs of the
continuous random variables P and Q. The KLD is defined as

DKL (P ∥ Q) ≜
∫ ∞

−∞
p(x) log

p(x)

q(x)
dx. (2.24)

The KLD is always non-negative and becomes 0 if and only if the two distributions are identical.
Figure 2.2 shows the KLD with p(x) given by the Gaussian approximation, i.e., (2.23), and q(x)
by the exact distribution, i.e., (2.11), when N = Nt = Nr with several SNR values. We observe
that as the number of antennas increases or SNR decreases, the KLD decreases as expected. As
an example, the KLD of SNR −15 dB with N = 10 is almost the same as that of SNR 30 dB
with N ≈ 30. This behavior justifies that even if the number of antennas is not so large, the
conventional Gaussian approximation becomes effective if the SNR is low.
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Figure 2.2: Comparison of the KLD between the pdf of MF detector output calculated by the
exact closed-form theoretical expression and asymptotic expression with BPSK signaling. Note
that the vertical axis is in logarithmic scale.

2.4 Exact BER Analysis

Based on the results developed in the previous section, in this section we derive the closed-
form BER expressions in the case of BPSK, QPSK, and M -QAM signaling without any re-
strictions on the numbers of antennas Nt and Nr. It will be shown that the obtained results are
the generalization of the well-known BER expressions developed for the receiver diversity with
MRC over Rayleigh fading channels.

2.4.1 Cumulative Distribution Function of MF Output

The conditional cumulative distribution function (cdf) of MF output x̂k is expressed as

Fx̂k
(X|xk = x, p̌k) ≜ Pr ( x̂k < X | xk = x, p̌k)

=

∫ X

−∞
px̂k

(x̂|xk = x, p̌k) dx̂. (2.25)
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By substituting (2.9) into (2.25) and performing integration, we have

Fx̂k
(X|xk = x, p̌k) =

(
1

2
− x

2
√

x2 + p̌k +N0

)Nr

e

2
√
NrX√

x2+p̌k+N0−x

×
Nr−1∑
i=0

(
Nr − 1 + i

i

)(
1

2
+

x

2
√
x2 + p̌k +N0

)i

×
Nr−i−1∑

l=0

1

l!

(
−2
√
NrX√

x2 + p̌k +N0 − x

)l

, for X ≤ 0,

1−

(
1

2
+

x

2
√

x2 + p̌k +N0

)Nr

e

−2
√
NrX√

x2+p̌k+N0+x

×
Nr−1∑
i=0

(
Nr − 1 + i

i

)(
1

2
− x

2
√
x2 + p̌k +N0

)i

×
Nr−i−1∑

l=0

1

l!

(
2
√
NrX√

x2 + p̌k +N0 + x

)l

, for X > 0.

(2.26)

2.4.2 BER Expressions for BPSK and QPSK Signaling

The exact BER performance in the case of BPSK and QPSK signaling with Gray mapping
can be calculated by way of the cdf of (2.26) with (2.20) and x =

√
Et/m as

Pb = Pr
(
x̂k < 0 | xk =

√
Et/m, p̌k = (Nt − 1)Et

)
= Fx̂k

(
0 | xk =

√
Et/m, p̌k = (Nt − 1)Et

)
=

1

2
−

√
Et/m

2
√(

Nt − 1 + 1
m

)
Et +N0

Nr

×
Nr−1∑
i=0

(
Nr − 1 + i

i

)1

2
+

√
Et/m

2
√(

Nt − 1 + 1
m

)
Et +N0

i

. (2.27)

By substituting Et of (2.3) into the above expression, the resulting BER of MF detector can
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be expressed in terms of γb for BPSK as

Pb =

(
1− µ

2

)Nr Nr−1∑
i=0

(
Nr − 1 + i

i

)(
1 + µ

2

)i

, (2.28)

where the SNR parameter µ ∈ (0, 1) is expressed as

µMF,BPSK =

√
γb/Nt

γb + 1
=

1√
Nt +

Nt

γb

. (2.29)

Note that the expression (2.28) agrees with the well-known BER expression for BPSK with
MRC using Nr receive antennas over Rayleigh fading channel (i.e., [50, Eq. (13.4-15)]), and
the only difference is that now the parameter µ ∈ (0, 1) is a function of Nt given by (2.29).
Therefore, the above result can be seen as a generalization of the SIMOMRC detector to MIMO
spatial multiplexing with Nt transmit antennas. Furthermore, for a given Nr, the BER of (2.28)
approaches 0 as µ approaches 1. Therefore, achieving higher µ for a given value of γb will be
desirable in terms of the resulting BER. However, from (2.29) we observe that µ → 1/

√
Nt as

γb → ∞, and thus as Nt increases, µ monotonically decreases, which confirms that increasing
Nt should monotonically increase the achievable BER in the case of MIMO MF detection.

Likewise, for QPSK we have the same form as (2.28) but now µ is expressed as

µMF,QPSK =

√
γb/Nt

(2− 1/Nt) γb + 1
=

1√
(2Nt − 1) + Nt

γb

. (2.30)

Comparing (2.30) with (2.29), we observe that as γb increases, the parameter µ of QPSK ap-
proaches 1/

√
2Nt − 1, instead of the BPSK limit 1/

√
Nt. (Both expressions agree if and only

if Nt = 1.) This is due to the fact that in the case of MF detector, upon detecting the real part
of QPSK symbols, not only the real part but also the imaginary part of the QPSK symbols trans-
mitted from the other (Nt − 1) antennas will be observed as interference at the receiver. This
also explains that in the case of MIMO spatial multiplexing systems, the interference of QPSK
should be greater than that of BPSK by a factor of about 3 dB.
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It can be seen that when γb goes to infinity, we have the lower limit of BER for BPSK as

P̄b ≜ lim
γb→∞

Pb

=
1

2Nr

(
1− 1√

Nt

)Nr Nr−1∑
i=0

(
Nr − 1 + i

i

)
1

2i

(
1 +

1√
Nt

)i

. (2.31)

From (2.31), we observe that increasing Nr helps reducing the BER limit P̄b but increasing Nt

leads to increasing P̄b in return for higher bit rate or spectral efficiency.

2.4.3 Comparison with ZF Detector

ZF and MMSE are the two well-studied linear detectors. To the best of our knowledge, the
exact closed-form expression for the BER of MMSE detector has not been derived, even in the
simple i.i.d. Rayleigh fading channels with perfect CSI. On the other hand, by the fact that SNR
of the ZF detector output follows a chi-square distribution with 2(Nr −Nt + 1) degrees of free-
dom [44], the closed-form expression in the case of ZF detector with the same ideal assumptions
given the condition Nr ≥ Nt can be derived as [44, 51]2

Pb =

(
1− ν

2

)Nr−Nt+1 Nr−Nt∑
i=0

(
Nr − 1 + i

i

)(
1 + ν

2

)i

, (2.32)

where ν for both BPSK and QPSK signaling (with Gray mapping) is given by

νZF =

√
γb/Nt

γb/Nt + 1
=

1√
1 + Nt

γb

. (2.33)

The BER expression of MF in (2.28) and that of ZF in (2.32) have the first product term 1−µ
2

in common, and if the parameters µ of (2.29), (2.30) or ν of (2.33) approach 1, the bit error
rate approaches 0. Therefore, the comparison of the first product term together with the SNR
parameters provides us the following insight:

1) For low SNR case, i.e., γb → 0, both the parameters µ of MF and ν of ZF approach zero,
but the first product in the case of MF decreases with its exponent Nr, whereas that of ZF
decreases with Nr − Nt + 1. In other words, the observable diversity order of MF is Nr,

2The bit error rate expression shown in [44] is slightly different from (2.32). We have confirmed that our expres-
sion derived here is the correct version.
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Figure 2.3: The constellation points of 16-QAM signaling within one quadrant.

whereas that of ZF is Nr −Nt + 1. Therefore, in the case of MF, increase of the transmit
antennas Nt does not affect the BER in low SNR, whereas it increases the BER when ZF
is employed.

2) For high SNR case, i.e., γb →∞, the parameters µ of MF do not approach 1 whenNt > 1,
whereas ν of ZF approaches 1 irrespective of the value Nt. This explains the error floor
effect of the MF detector when Nt > 1.

3) In the case of high SNR, the increase of constellation sizes from BPSK to QPSK may
degrade the performance of MF significantly, whereas the performance remains the same
for ZF.

2.4.4 Exact BER Expression forM -QAM Signaling

The conditional cdf of MF output (2.26) can also be used for the derivation of the exact BER
performance for uncoded high-order square-type QAM. We consider the M -QAM formed by
two
√
M -PAM constellations as described in Section 2.2.2. Instead of a conventional derivation

approach which first identifies the symbol error rate and then associates the symbol error event
with bit error events, we directly develop the probability of the bit error events. In general, the
BER conditioned on p̌k can be expressed as a linear combination of the conditional cdf:

Pb (p̌k) = a0 +
L∑

n=1

anFx̂k
(cn | xk = bn, p̌k) , (2.34)

for some constants an, bn, cn ∈ R and L ∈ Z that depend on the constellation and bit mapping.
For example, in the case of M = 16 with Gray mapping, the BER conditioned on p̌k can be
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expressed through direct calculation as

Pb (p̌k) =
1

4
[1 + Fx̂k

(0 | xk = 3A, p̌k) + Fx̂k
(0 | xk = A, p̌k)

+Fx̂k
(κ | xk = 3A, p̌k)− Fx̂k

(−κA | xk = 3A, p̌k)

+Fx̂k
(−κA | xk = A, p̌k)− Fx̂k

(κA | xk = A, p̌k)] , (2.35)

with A =
√

Et/10 and κ = 2
√
Nr.

The unconditioned BER is given by

Pb =
∑
δ∈D

Pp̌k(δ)Pb (p̌k = δ) , (2.36)

where Pp̌k(δ) is the probability mass function (pmf) of p̌k and D is the set of all possible values
of δ that p̌k can take. It is expressed by (Nt − 1)-fold convolution:

Pp̌k(δ) = P|sℓ|2(δ) ∗ · · · ∗ P|sℓ|2(δ)︸ ︷︷ ︸
Nt−1

, (2.37)

where P|sℓ|2(δ) is the pmf of the square magnitude ofM -QAM symbols. For example, in the case
of 16-QAM, by letting δ1, δ2, and δ3 denote the three possible values of the square magnitude of
16-QAM |sℓ|2 as shown in Fig. 2.3, the resulting pmf is given by

P|sℓ|2(δ) =


1
4
, δ = δ1,

1
2
, δ = δ2,

1
4
, δ = δ3.

In the case of Nt = 4, the corresponding distribution is listed in Table 2.1.

By substituting (2.37) into (2.36), we can derive the exact BER expressions forM -QAM that
do not require any numerical integration.

2.4.5 Asymptotic BER Expression for QAM

The exact analysis for QAM cases requires calculation of the pmf for p̌k based on (2.37),
which generally requires high computational effort. On the other hand, if the number of transmit
antennas Nt is large enough and the law of large numbers becomes effective, the square norm p̌k

can be approximated by (2.20). By substituting (2.20) into (2.26), we can ignore the dependence



32 2. Performance Analysis of Matched-Filter Detector over Rayleigh Fading Channel

Table 2.1: The distribution of P|sℓ|2(δ) in the case of Nt = 4.
δ/Et probability
3/5 1/64
7/5 3/32
11/5 15/64
3 5/16

19/5 15/64
23/5 3/32
27/5 1/64

otherwise 0

of the conditional cdf of MF output on šk and obtain (2.38), shown at the top of the next page.

Fx̂k
(X|xk = x) =



(
1

2
− x

2
√

x2 + (Nt − 1)Et +N0

)Nr

e

2
√
NrX√

x2+(Nt−1)Et+N0−x

×
Nr−1∑
i=0

(
Nr − 1 + i

i

)(
1

2
+

x

2
√

x2 + (Nt − 1)Et +N0

)i

×
Nr−i−1∑

l=0

1

l!

(
−2
√
NrX√

x2 + (Nt − 1)Et +N0 − x

)l

, for X ≤ 0,

1−

(
1

2
+

x

2
√

x2 + (Nt − 1)Et +N0

)Nr

e

−2
√
NrX√

x2+(Nt−1)Et+N0+x

×
Nr−1∑
i=0

(
Nr − 1 + i

i

)(
1

2
− x

2
√

x2 + (Nt − 1)Et +N0

)i

×
Nr−i−1∑

l=0

1

l!

(
2
√
NrX√

x2 + (Nt − 1)Et +N0 + x

)l

, for X > 0,

(2.38)

Using (2.38) instead of the expressions involving (2.36) and (2.37), the asymptotic BER perfor-
mance of M -QAM for a large value of Nt can be calculated by (2.36) without conditioning on
p̌k. For example, in the case of 16-QAM with Gray mapping, (2.35) reduces to

Pb =
1

4
[1 + Fx̂k

(0 | xk = 3A) + Fx̂k
(0 | xk = A)

+Fx̂k
(κ | xk = 3A)− Fx̂k

(−κA | xk = 3A)

+Fx̂k
(−κA | xk = A)− Fx̂k

(κA | xk = A)] , (2.39)
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Figure 2.4: Comparison of theoretical expressions and simulation results for the uncoded BER
in the case of Nt × Nr MIMO system (with Nr = Nt) and MF detector with BPSK and QPSK
signaling.

withA =
√

Et/10 and κ = 2
√
Nr. The above expression should become accurate as the number

of transmit antennas Nt increases.

2.4.6 Numerical Results

To examine the correctness of the developed closed-form BER expressions, we compare
the uncoded BER performances of BPSK and QPSK signaling based on (2.28) with (2.29) and
(2.30) and those obtained by Monte-Carlo simulations. The results are given in Fig. 2.4 with the
number of antennas at both sides set as 2, 4, 16, and 128. From these results, it is apparent that
our developed expressions agree well with all the simulation results.

We next compare the uncoded BER performances of 16-QAM signaling given by (2.36)
using the exact expression based on (2.35) and (2.37) (only shown for the cases with Nt = 2, 4)
as well as its asymptotic form (2.39) with (2.38) (shown for all the cases of Nt investigated),
along with the results obtained by Monte-Carlo simulations. They are compared in Fig. 2.5, and
the exact BER curves match perfectly with the simulation results even when the numbers of both
antennas are either 2 or 4. On the other hand, the asymptotic BER based on (2.39) shows some
discrepancy when the number of antennas is small. However, it tends to agree as the number of
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Figure 2.5: Comparison of theoretical expressions and simulation results for the uncoded BER in
the case ofNt×Nr MIMO system (withNr = Nt) and MF detector with Gray-mapped 16-QAM
signaling. The exact BER curves are plotted only for the cases with Nt = 2, 4.

antennas increases as expected.

We investigate the BER limit of BPSK P̄b in the case of γb →∞, i.e., (2.31), with respect to
the number of receive antennas in Fig. 2.6. We observe that increasing Nt significantly degrades
the achievable BER, but for given Nt, the error floor can be reduced by increasing Nr. These
results demonstrate how the BER of MF detector can be mitigated by increasingNr in high SNR
regime, and they clearly indicate that Nr should be increased in order for the MF detector to
become effective.

Finally, the theoretical BER expressions of MF and ZF detectors are compared in Fig. 2.7.
We observe that MF detector outperforms ZF detector in the case of low SNR as discussed in
Section 2.4.3, and the performance is not sensitive to the number of transmit antennas in this
region. On the other hand, as the SNR increases, the BER of ZF improves without error floor
due to the perfect cancellation of the symbols from other transmit antennas.
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Figure 2.6: Asymptotic uncoded BER performance with γb →∞ of MIMO spatial multiplexing
system with Nt transmit antennas and MF detection as a function of the number of receive an-
tennas Nr (BPSK signaling).

2.5 Extension to Coded MIMO Systems

In practice, any MIMO system should be operated with channel coding for performance im-
provement with enhanced diversity effect. The use of channel coding especially plays a critical
role for MF detector since it considerably suffers from the interference that leads to prohibitively
high error floor, as we have observed in the previous section through our theoretical BER perfor-
mance analysis.

In this section, we turn our attention to a more practical coded MIMO system with MF
detector, and by exploiting the exact statistical model of the MF detector output developed in
Section 2.3, we develop the optimum log-likelihood ratio (LLR) metric for low-complexity MF-
detector based MIMO systems. In particular, we will observe that the optimal LLR expression
agrees with the simple expression derived directly from the conditional Gaussian distribution.

We then investigate the performance limit of the coded MIMO system with MF detector
in the framework of ideally interleaved Rayleigh fading channels by numerical calculation of
the mutual information, followed by the corresponding simulation results based on a practical
LDPC-coded MIMO system in terms of frame error rate (FER).

For the coded system in this chapter, we focus only on BPSK signaling for simplicity, but
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Figure 2.7: Comparison of the exact BER for MF and ZF detectors. In the case of ZF detector,
the performance is the same for BPSK and QPSK, whereas degradation from BPSK is inevitable
for MF detector when QPSK is applied.

‘

‘

Figure 2.8: System model for coded MIMO systems.

its extension to QPSK and QAM is straightforward based on the conditional pdf expressions
developed in Section 2.3.

2.5.1 System Model

The block diagram of the coded MIMO system considered in this section is shown in Fig. 2.8.
At the transmitter, the binary information sequence d of length Kc is converted to the codeword
c of Nc bits by the channel encoder of rate Rc = Kc/Nc. Each codeword is interleaved (denoted
by π in Fig. 2.8) and then the resulting sequence c′ is demultiplexed such that each Nt-tuple of
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the output binary vector c is mapped onto a BPSK symbol vector x ∈ XNt×1, which will be
transmitted over the Nt ×Nr MIMO channel H described in Section 2.2.1.

At the receiver, the received symbol expressed by (2.1) is processed by MF detector as de-
scribed in Section 2.2.3 to obtain the estimated BPSK symbol vector x̂. From each estimate
BPSK symbol x̂k, the demodulator generates the LLR metric λ′

k, and a set of metrics is dein-
terleaved (denoted by π−1 in Fig. 2.8) to the original order of codeword and then the channel
decoder performs decoding to generate the estimate codeword ĉ. In what follows, we focus on
the FER, which is defined by

FER = Pr (ĉ ̸= c) . (2.40)

Due to the ideal channel interleaver, each BPSK symbol experiences statistically independent
Rayleigh fading.

2.5.2 Optimum Metric Expression for MF Detector

The exact conditional pdf for the MF-based detector derived in (2.9) can be directly employed
for the LLR derivation in the coded MIMO system. Specifically, for a given output x̂k = x̂ from
MF detector, the LLR corresponding to the kth coded bit, transmitted by the BPSK symbol xk,
is expressed in a closed form using (2.9) and (2.20) as

λ′
k = log

px̂k

(
x̂|xk =

√
Et

)
px̂k

(
x̂|xk = −

√
Et

) = log
e
−

2
√
Nr(

√
Et+p̌k+N0|x̂|−

√
Etx̂)

p̌k+N0

e
−

2
√
Nr(

√
Et+p̌k+N0|x̂|+

√
Etx̂)

p̌k+N0

=
4
√
NrEt

(Nt − 1)Et +N0

x̂. (2.41)

On the other hand, by directly employing the conditional Gaussian distribution of MF output
from (2.16), the LLR may be also expressed as

λ′
k = log

px̂k
(x̂|xk =

√
Et, αk)

px̂k
(x̂|xk = −

√
Et, αk)

= log
e
− 1

αk(p̌k+N0)
(x̂−

√
Nrαk

√
Et)

2

e
− 1

αk(p̌k+N0)
(x̂+

√
Nrαk

√
Et)

2

=
4
√
NrEt

(Nt − 1)Et +N0

x̂, (2.42)

which agrees with (2.41) and thus does not depend on αk. Therefore, it is important to mention
that the optimal metric derived from the exact pdf and that based on the conditional Gaussian dis-
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tribution turn out to be identical, which justifies the use of the conventional Gaussian distribution
in the case of coded system with MF detector.

2.5.3 Mutual Information

Based on the exact conditional pdf expressions developed in Section 2.3, we are able to cal-
culate the mutual information of the MF-detector-based MIMO system with an arbitrary number
of antennas.

The mutual information per transmit antenna, i.e., given in bit/sec/Hz/transmit antenna, is
expressed as [55]

I = log2 |X | − E

{
log2

∑
x′∈X px̂k

(x̂|xk = x′)

px̂k
(x̂|xk = x)

}
, (2.43)

where |X | denotes the cardinality of the set X and the expectation should be taken over x and x̂

(i.e., xk and x̂k).

Figure 2.9 shows the per-antenna mutual information (2.43) over the ergodic Rayleigh fad-
ing channel for various antenna cases with Nr = Nt and BPSK signaling as a function of SNR
per receive antenna. Note that the expectation in (2.43) is performed by Monte-Carlo integration
using the developed exact pdf. We observe that as the number of antennas increases, the mutual
information per antenna decreases, and as Nr → ∞, it converges to a constant value that is
achieved by Gaussian distribution with Nr →∞. From Fig. 2.9, it is observed that the required
SNR per receive antenna to achieve the per-antenna mutual information of 0.5 bits increases as
the number of antennas increases under the condition of Nt = Nr, but it rapidly converges to the
lower bound achieved by an infinite number of antennas. In other words, as long as the target
information rate is properly chosen, the amount of the required SNR per receive antenna eventu-
ally reaches the upper limit. Thus, increasing the transmit and receive antennas simultaneously
will simply increase the spectral efficiency without increasing the required SNR at each receive
antenna.

2.5.4 Simulation Results over Ideally Interleaved Fading Channel

In order to verify the theoretical performance limit suggested by the mutual information
through simulation with practical coding, we evaluate the frame error rate (FER) of LDPC-
coded system assuming an ideal interleaver such that each coded symbol experiences statistically
independent Rayleigh fading. The regular binary (3, 6) LDPC code (with code rate Rc = 1/2) is
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Figure 2.9: Mutual information per transmit antenna with BPSK signaling as a function of SNR
per receive antenna inNt×Nr MIMO system with MF detector andNt = Nr. The region where
the mutual information of each curve reaches 0.5 is enlarged for later reference.

chosen as our channel code with the codeword length Nc = 4128. For LDPC decoder, the sum-
product algorithm is employed with the maximum number of iterations given by 100. The results
are shown in Fig. 2.10. Note that the minimum required SNR to achieve an arbitrarily small FER
provided that optimal channel coding is employed corresponds to the value where the resulting
mutual information reaches 1/2 in Fig. 2.9, and the corresponding values are also indicated in
Fig. 2.10. From the results of FER using an actual LDPC code in Fig. 2.10, we observe a similar
tendency that can be inferred from the behavior of mutual information: The required SNR per
antenna to achieve the comparable FER performance should increase as the number of transmit
antennas increases, but their SNR gap becomes smaller as is inferred from Fig. 2.9.

2.6 Effect of Imperfect Channel Estimation

In the preceding sections, we have analyzed the fundamental performance of the MF detector
under the ideal assumption that the perfect CSI is available at the receiver. Such an assumption,
however, may not be necessarily the case in practical MIMO systems. Therefore, in this section,
we extend our analysis to the cases where the channel estimation error exists.
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Figure 2.10: The coded FER performance in Nt × Nr MIMO system with MF detector (where
Nr = Nt) over ideally interleaved Rayleigh fading channel. The vertical lines indicate the
corresponding minimum SNR values suggested by the analysis of mutual information.

2.6.1 System Model with Channel Estimation Error

Assuming the use of maximum likelihood (ML) channel estimation at the receiver, the esti-
mate channel can be expressed as [54, 56]

Ĥ = H+∆H, (2.44)

where ∆H = (∆h1 ∆h2 · · · ∆hNt) ∈ CNr×Nt is a complex channel estimation error matrix.
Each column vector ∆hk = (∆h1,k,∆h2,k, · · · ,∆hNr,k)

T represents the channel estimation er-
ror corresponding to the kth transmit antenna, and each entry∆hi,k is modeled as an i.i.d. random
variable CN (0, σ2

e), where σ
2
e = E

{
|∆hi,k|2

}
. With the ML channel estimation, σ2

e can be given
by [54, 56]

σ2
e =

NtN0

NtrainEtrain
, (2.45)

whereNtrain is the length of the training sequence and Etrain is the energy of the training symbols.
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2.6.2 Exact MF Output

In the case ofMF detector with channel estimation error, the weight matrix of (2.6) is replaced
by

WH = ĤH. (2.46)

Consequently, the MF output with channel estimation error is expressed as

ŝk =
1√
Nr

Nr∑
i=1

(
h∗
i,k +∆h∗

i,k

)(
hi,ksk +

Nt∑
ℓ=1,ℓ̸=k

hi,ℓsℓ + ni

)
. (2.47)

The real value of the MF output x̂k = ℜ{ŝk} is then given by

x̂k =
Nr∑
i=1

ℜ
{

1√
Nr

(
h∗
i,k +∆h∗

i,k

)}
ℜ

{(
hi,ksk +

Nt∑
ℓ=1,ℓ̸=k

hi,ℓsℓ + ni

)}

−
Nr∑
i=1

ℑ
{

1√
Nr

(
h∗
i,k +∆h∗

i,k

)}
ℑ

{(
hi,ksk +

Nt∑
ℓ=1,ℓ̸=k

hi,ℓsℓ + ni

)}
. (2.48)

Noticing that real and imaginary parts of both hi,k and ∆hi,k reserve symmetric statistical prop-
erty, the MF output can be expressed by the following quadratic form:

x̂k =
2Nr∑
i=1

ui,kvi,k, (2.49)

where ui,k and vi,k are correlated zero-mean real-valued Gaussian random variables with their
variances given by

σ2
ui,k

=
1 + σ2

e

2Nr

, (2.50)

σ2
vi,k

=
x2
k

2
+

1

2

Nt∑
ℓ=1,ℓ̸=k

|sℓ|2 +
N0

2
=

x2
k + p̌k +N0

2
. (2.51)
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The correlation coefficient between ui,k and vi,k is given by

ρi,k =

E

{
ℜ{hi,k}2√

Nr

}
xk

σui,k
σvi,k

=
xk√

(1 + σ2
e) (x

2
k + p̌k +N0)

. (2.52)

Since x̂k is the product of correlated real-valued Gaussian random variables, its pdf conditioned
on the input xk and the other transmitted symbols p̌k is expressed as

px̂k
(x̂|xk = x, p̌k)

=

√
Nr

(Nr − 1)!
√

(1 + σ2
e) (x

2 + p̌k +N0)

[
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e) (p̌k +N0) + σ2
ex

2

2 (1 + σ2
e) (x

2 + p̌k +N0)
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× e
−

2
√

Nr

(√
(1+σ2

e)(x2+p̌k+N0)|x̂|−xx̂

)
(1+σ2

e)(p̌k+N0)+σ2
ex

2

×
Nr−1∑
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2i i! (Nr − 1− i)!

[
2
√
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2 + p̌k +N0) |x̂|

(1 + σ2
e) (p̌k +N0) + σ2

ex
2

]Nr−1−i

(2.53)

Note that by substituting σ2
e = 0, (2.53) agrees with (2.9) as expected.

2.6.3 Exact BER Expression

Since (2.53) is the exact general pdf expression of the MF output with channel estimation
error, as in Section 2.4 the exact BER performance of MF detector with channel estimation error
σ2
e can be derived as (2.28) where the SNR parameter µ for BPSK is replaced by

µMF,BPSK(σ
2
e) =

1√
(1 + σ2

e)
(
Nt +

Nt

γb

) =
1√

(1 + σ2
e)
µMF,BPSK, (2.54)

and for QPSK by

µMF,QPSK(σ
2
e) =

1√
(1 + σ2

e)
(
(2Nt − 1) + Nt

γb

) 1√
(1 + σ2

e)
µMF,QPSK, (2.55)

with µMF,BPSK and µMF,QPSK given by (2.29) and (2.30), respectively. Therefore, we observe that
the channel estimation error decreases the SNR parameter µ by a factor of

√
1 + σ2

e and thus
degrades the resulting achievable BER performance.
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Figure 2.11: Comparison of theoretical expressions and simulation results for the uncoded BER
in the case ofNt×Nr MIMO system and MF detector with BPSK signaling (withNr = Nt) and
several channel estimation error cases.

2.6.4 Numerical Results

In Fig. 2.11, we compare the exact theoretical BER performance and Monte-Carlo simulation
with several estimation error cases. Perfect agreement between the two results is observed. We
also observe that by increasing σ2

e , the BER increases as expected. The analytical results may
thus help us design the train sequences in order to maintain the desired BER. In the case of
the coded MIMO system considered in Section 2.5, by employing (2.53) upon calculation of
expectation in (2.43), we can also evaluate the mutual information of MF detector with arbitrary
channel estimation error. The results with σ2

e = 0.2, 0.4, together with perfect CSI case are
compared in Fig. 2.12. We observe that the achievable mutual information will be decreased as
the channel estimation error increases.

2.7 Conclusion

In this chapter, we have theoretically analyzed the performance of MIMO spatial multiplex-
ing systems with MF detector over uncorrelated Rayleigh fading channel. The main finding of
this chapter is the exact closed-form distribution of the output of MF detector with an arbitrary
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Figure 2.12: Mutual information per transmit antenna with BPSK signaling in Nt ×Nr MIMO
system (with Nr = Nt) based on MF detector with channel estimation errors σ2

e = 0.2, 0.4.

number of antennas. This has facilitated the derivation of the uncoded BER expressions in a
closed form. In particular, comparison of MF and ZF in terms of the exact BER expressions for
BPSK and QPSK cases has elucidated their behavioral difference in high and low SNR regions.
Furthermore, for codedMIMO systems, it allows us to develop the exact closed-form LLRmetric
that is matched to the distribution of MF detector output. The results are justified by the analysis
based on mutual information as well as simulations using practical channel codes. The effect of
imperfect channel estimation on the performance of uncoded and coded MIMO systems has been
also analyzed by deriving the exact BER expressions as well as mutual information. Throughout
the theoretical analysis, we have derived the conditions of MIMO spatial multiplexing systems
where the MF detector may work properly. These results may thus serve as a design guideline
for developing MIMO systems operating with MF-based detector.

As future work, we shall investigate theMIMO systemwith channel correlation. Extension of
our analysis to the system with interference cancellation should be also meaningful with notable
practical importance.



Chapter 3
Matched-Filter Detector with Quadrature

Interference Cancellation for Uplink MIMO Spatial
Multiplexing

In this chapter, we propose a new interference cancellation technique designed for coded
uplink multiuser MIMO systems, namely matched-filter detector with quadrature interference
cancellation (MF-QIC).

Published as:
Y. Hama and H. Ochiai,“Matched-Filter Detector with Quadrature Interference Cancellation for Coded Uplink Multiuser MIMO Systems
with Massive IoT Devices,”IEEE Trans. on Wireless Commun., early access.

3.1 Introduction

With the growth of emerging Internet-of-Things (IoT) applications, new physical-layer tech-
niques should be developed that enable the connectivity of a massive number of devices with
limited spectral resources. Supporting massive machine type communications (mMTC) was one
of the major targets defined in the fifth generation mobile communications (5G). In future net-
works including the sixth generation (6G), it is redefined as ultra-mMTC (umMTC) or massive
ultra-reliable low-latency communications (mURLLC), which unifies the two challenging goals
of URLLC and mMTC defined by 5G [4,5].

In order to support reliable connections of massive IoT devices with limited bandwidth, the
use of multiple-input multiple-output (MIMO) techniques should be essential [7, 22]. Further-
more, massive MIMO techniques have received significant recent attention, where a considerably
large number of antennas are mounted at BS [16, 17]. Various approaches have been proposed
for massive MIMO systems to enhance the system performance, and compared to beamforming,
spatial multiplexing has a significant potential [20, 21] as it can enhance the channel capacity
linearly with the number of antennas, provided that MIMO channels are subject to uncorrelated



46
3. Matched-Filter Detector with Quadrature Interference Cancellation for Uplink MIMO

Spatial Multiplexing

fading. In multiuser massive MIMO systems, however, signal processing associated with signal
separation of massive users should become a major challenge due to practical requirements on
latency as well as power consumption. Therefore, careful selection of MIMO detectors [37, 57]
becomes critical, especially as the number of devices (or transmitting antennas) becomes sub-
stantial. Furthermore, in order to perform precise channel estimation, orthogonal pilot sequences
should be assigned to all the connecting users for each coherent time duration, which becomes
infeasible as the number of users increases under the constraint on the total available bandwidth.
As a consequence, the effect of channel state information (CSI) error should be carefully inves-
tigated for massive access networks, and developing a low complexity detector that has strong
robustness against imperfect CSI should be of significant practical importance.

This chapter focuses on a physical-layer design for the uplink of a cellular network where
a massive number of low-rate IoT devices in a single cell attempt to connect to a single base
station (BS) equipped with the receiving antennas as much as that of the total IoT devices si-
multaneously connecting. A matched-filter (MF) detector [34, 35, 37] is known to be an effec-
tive low-complexity approach for massive MIMO systems since its per user complexity grows
only linearly with the number of antennas. Several other reduced-complexity approaches have
been proposed in the literature [57], and Neumann series (NS) as well as Gauss-Seidel (GS)
methods are well-known approaches that approximate the channel inversion of linear detec-
tors [58, 59]. Belief propagation (BP)-based detectors are also known to achieve near-optimal
performance [60]. Nevertheless, these preceding studies have not considered the effect of chan-
nel estimation errors associated with massive access. On the other hand, the performance loss of
MF detector associated with imperfect channel estimation has shown to be readily tractable [61].

Our target in this chapter is IoT networks where the transmitting devices are subject to signif-
icant power constraints. The transmit power is generally affected by the peak-to-average power
ratio (PAPR) of the transmit signal, and thus each IoT device should transmit a signal with lower
PAPR for higher power amplifier efficiency [62]. Thus, we focus on the network where each IoT
device attempts to communicate with moderate information rate using QPSK signaling.

The major limitation of MF detector in the massive MIMO framework is its low per antenna

spectral efficiency, which may not be an issue for an IoT network as long as the required per

user spectral efficiency is significantly low (typically less than 1/2 bit per user per channel use),
justifying the use of BPSK modulation with powerful channel coding. One of our primary goal
in this chapter is to develop a MF-based system that can even enhance the resulting spectral effi-
ciency by employing QPSK instead of BPSK. Since MF detector in general does not attempt to
eliminate interfering signals transmitted from the other antennas, as the target spectral efficiency
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increases using higher-order modulation, the resulting performance becomes significantly in-
ferior to those based on the commonly adopted linear detectors such as zero-forcing (ZF) and
minimum mean square error (MMSE) due to massive amount of residual interference. This
performance degradation can be compensated for by the use of interference cancellation (IC).

In this chapter, we overcome the problem of low spectral efficiency of MF detector by in-
troducing quadrature interference cancellation, which we refer to as MF-QIC, in coded uplink
massive multiuser MIMO systems. As a channel coding example, we employ polar codes due
to their flexibility in code rate design [15]. By employing QPSK instead of BPSK with judi-
cious polar code design based on mutual information tailored for MF-QIC, we demonstrate that
spectral efficiency of one bit per antenna per complex channel use can be achieved even under
the challenging condition where the total numbers of IoT devices and receiving BS antennas
are identical. Our proposed MF-QIC is a combination of multi-stage decoding (MSD) [63] and
parallel interference cancellation with soft estimation.

The main contributions of this chapter are summarized as follows:

• We introduce a new IC approach based on parallel interference cancellation (PIC) with
soft estimation and multi-stage decoding, referred to as quadrature interference cancella-
tion (QIC), which significantly enhances the error performance and spectral efficiency of
MF detector.

• We develop a design guideline of polar codes associated with MF-QIC, based on the anal-
ysis of mutual information achieved by MF-QIC and Gaussian approximation (GA) con-
struction.

• We demonstrate that the proposed MF-QIC system can enjoy both low complexity and
improved error performance compared to the conventional approaches designed under the
same spectral efficiency.

• The effect of channel estimation errors on the resulting error rate performance is analyzed,
which demonstrates the robustness of the proposed MF-QIC approach against the CSI
errors, a desirable property for the uplink of massive IoT networks.

This chapter is organized as follows. In the next section, we describe a basic system model
considered throughout this chapter. Section 3.3 reviews the statistical properties of MF detec-
tor as well as its mutual information. Our proposed MF detector combined with quadrature
interference cancellation is described in Section 3.4, where the PIC with soft estimation is also
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Figure 3.1: An uplink multiuser MIMO system supporting massive IoT devices with scheduling
based on grouping according to their path loss.

introduced. Section 3.5 addresses the application of polar codes to the proposed MF-QIC sys-
tem and describes their code rate design along with performance analysis. The extension of
our proposed system to the case with imperfect channel estimation is discussed in Section 3.6.
The performance comparisons based on the extensive simulations are provided in Section 3.7.
Finally, Section 4.6 concludes this chapter.

3.2 Coded Uplink Multiuser MIMO System Model

In this chapter, we consider the uplink multiuser MIMO system as an extended framework of
MIMO spatial multiplexing considered in Chapter 2. The detailed descriptions are summarized
in this section.

3.2.1 Massive IoT Network with Scheduling

We consider the cellular network setting where a massive number of IoT devices attempt
to connect a single BS equipped with Nr receiving antennas as shown in Fig. 3.1. Each user
equipment (UE) is a low-cost low-power device with minimal transmission capabilities, and thus
has a single antenna (i.e., single MIMO layer). Since the priority in terms of system requirements
is given to higher power amplifier (PA) efficiency rather than achievable data rate, it will only
transmit low PAPR symbols such as BPSK and QPSK. LetNIoT denote the number of IoT devices
that will be served by a single BS. Since NIoT ≫ Nr in general, we assume that an appropriate
scheduling is performed such that for each time duration, the devices that experience a similar
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Figure 3.2: A block diagram of coded uplink multiuser MIMO system.

amount of path loss are selected as the same group. We further assume that the maximum number
of devices in each group is less than or equal to Nr. Letting the number of transmitting devices
in each group byNt, we define the ratio of the total number of transmitting devices and receiving
antennas as ρ ≜ Nr/Nt. For simplicity in terms of mathematical modeling, we will assume
that the scheduling is performed ideally such that each device in the same group experiences
the same path loss, whereas the fading coefficient between each transmitting device and each
receiving antenna at BS follows independent and identically distributed (i.i.d.) complex Gaussian
distribution (i.e., Rayleigh fading). Furthermore, the fading coefficients remain constant during
the transmission of each codeword (i.e., block fading). As such, each transmitting device in the
same group employs the same coding parameters and modulation order, i.e., the same modulation
and coding scheme (MCS). Under the additional assumption that all the users are synchronized
in a symbol level, the entire network can be modeled as Nr ×Nt MIMO system as described in
Fig. 3.2.

3.2.2 System Description

Based on the assumptions in the previous subsection, we will formulate our system model.
Let dk = (dk,1, dk,2, · · · , dk,Kc) ∈ {0, 1}Kc denote the binary information sequence of length
Kc sent by the kth device, where k ∈ {1, 2, · · · , Nt}. This sequence is then encoded by a
binary code C with rate Rc = Kc/Nc, where Nc denotes the codeword length. The result-
ing coded bit sequence is given by ck = (ck,1, ck,2, · · · , ck,Nc) ∈ {0, 1}Nc . Let M denote
the modulation order and m = log2 M denote the number of bits per transmitted symbol by
each device. A set of m elements of ck forms the lth transmitted symbol s(l)k ∈ X ⊂ C,
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where l ∈ {1, 2, · · · , Ns} with Ns = Nc/m, and X represents a set of M -PSK constellation
points. As a result, the modulated symbol sequence transmitted by the kth device is given by

sk =
(
s
(1)
k , s

(2)
k , · · · , s(Ns)

k

)T
∈ XNs . Let S = (s1 · · · sk · · · sNt)

T ∈ CNt×Ns denote the
matrix composed of all the transmitted symbols from Nt devices. The corresponding received
symbol matrix R = (r1 · · · rk · · · rNr)

T =
(
r(1) · · · r(l) · · · r(Ns)

)
∈ CNr×Ns is given by

R = HS+N, (3.1)

where N =
(
n(1) · · · n(Ns)

)
∈ CNr×Ns denotes an additive white Gaussian noise (AWGN) ma-

trix, andH = (h1 h2 · · · hNt) ∈ CNr×Nt is a complex channel matrix with each column vector
hk = (h1,k, h2,k, · · · , hNr,k)

T representing the channel corresponding to the kth device. The en-
tries of N follow i.i.d. circularly symmetric complex Gaussian distribution with zero mean and
variance σ2

n = N0 per complex dimension, i.e., n(l)
i ∼ CN (0, N0), where i ∈ {1, 2, · · · , Nr}.

Also, by assumption the entries of H are i.i.d. with hi,k ∼ CN (0, 1) and static over each code-
word transmission. We initially assume that perfect channel state information (CSI) is available
at the receiver side. The effect of imperfect CSI at the receiver will be analyzed in Section 3.6.

Let Es denote the average received symbol energy at the BS and let Et denote the average
transmit symbol energy per user. Due to the ideal scheduling, without loss of generality the
energy reduction caused by path loss and shadowing is normalized such that Es = NtEt and we
define the average SNR per receive antenna as γs = Es/N0.

The block error rate (BLER) is often adopted for evaluating the performance of coded sys-
tems, and throughout this chapter, we define a block as the information sequence dk of each user.
In other words, the block error corresponds to the event with dk ̸= d̂k, where d̂k is the estimated
information sequence of the kth user at the receiver, and BLER is evaluated by averaging the
block errors over all Nt users.

3.2.3 Symbol Detection

Our primary interest in this chapter lies in low complexity receiver design and thus we mainly
focus on the linear detection at BS. The estimated symbol matrix Ŝ is then expressed as

Ŝ = WHR, (3.2)

where W = (w1 w2 · · · wNt) ∈ CNr×Nt is the weight matrix and wk ∈ CNr×1 is the weight
vector applied to the received signal of the kth device, withXH representing the Hermitian trans-
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pose of a matrixX. The weight matrix of MMSE detector is given by

WH =

(
HHH+

1

γs
INt

)−1

HH, (3.3)

where IN is the identity matrix of size N . Due to the inversion of the channel matrix of
sizeNt×Nt, the resulting complexity order isO

(
Nt

3
)
, which becomes challenging for massive

connectivity scenarios. On the other hand, the weight matrix of MF detector is simply

WH = HH, (3.4)

and thus its complexity order is only O (NtNr) associated with the operation given by (3.2).
The channel decoder for C at BS requires a soft output from MIMO detector in the form of

log-likelihood ratio (LLR), and the LLR corresponding to the tth coded bit in the lth symbol of
the kth device is expressed for t ∈ {1, 2, · · · ,m} as

λ
(l)
k,t = log

∑
s0∈St

0
pŝ

(
ŝ
(l)
k |s0

)
∑

s1∈St
1
pŝ

(
ŝ
(l)
k |s1

) , (3.5)

where pŝ(·|·) represents the conditional probability density function (pdf) of the detector output
ŝ, and St

0 and St
1 are the constellation sets of PSK symbols with the tth bit labeled by 0 and 1,

respectively.

3.3 MF Detector

In this section, we briefly review the statistical properties of MF detector with a given num-
ber of receiving antennas and associated LLR metric expression, which form the basis of our
proposed MF-QIC design described in the next section. Throughout this section, we omit the
symbol index l from the associated variables such as s(l)k for simplicity.

3.3.1 Probability Distribution of MF Output

From (3.2) and (3.4), the complex-valuedMF detector output for the kth user denoted by ŝk =
ŝIk + jŝQk is expressed as

ŝk = Nrαksk + ñk, (3.6)
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where αk represents a channel coefficient and ñk corresponds to the sum of the interference and
noise, which are defined as

αk ≜
1

Nr

Nr∑
i=1

|hi,k|2 , (3.7)

ñk ≜
Nr∑
i=1

Nt∑
j=1,j ̸=k

h∗
i,khi,jsj +

Nr∑
i=1

h∗
i,kni, (3.8)

respectively.

Let šk denote a transmit symbol vector s with the kth symbol (transmitted from the kth
antenna) excluded, i.e., šk ≜ (s1, s2, · · · , sk−1, sk+1, · · · , sNt)

T . Then, as shown in [61], con-
ditioned on αk and {sk}, the MF detector output follows complex Gaussian distribution, i.e.,
ŝk ∼ CN (µMF (αk) , σ

2
MF (αk)) with its mean and variance given by

µMF (αk) = Nrαksk, (3.9)

σ2
MF (αk) = Nrαk (p̌k +N0) , (3.10)

where p̌k is the square norm of a vector šk, i.e., p̌k ≜ ∥šk∥2. Note that due to the assumption of
PSK signaling, we have

p̌k = (Nt − 1)Et. (3.11)

Consequently, the conditional pdf of the MF detector output ŝk can be expressed as

pŝk (ŝk|sk, αk, p̌k) =
1

πNrαk (p̌k +N0)
e
−|ŝk−Nrαksk|2

Nrαk(p̌k+N0) . (3.12)

3.3.2 Optimal Metric for Channel Decoding

In the case of BPSK with sk =
√
Et(1 − 2ck) for a given coded bit ck, the corresponding

LLR can be expressed using the exact distribution of the MF detector output (3.12) as

λk ≜ log
pŝk
(
ŝk|sk =

√
Et

)
pŝk
(
ŝk|sk = −

√
Et

)
=

4
√
Et

p̌k +N0

ŝIk =
4
√
Et

(Nt − 1)Et +N0

ŝIk. (3.13)
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As a reference, in the case of MMSE detector, the LLR is often approximated by resorting to
Gaussian approximation of the conditional pdf as

λk ≈
4µMMSE

σ2
MMSE

ŝIk, (3.14)

where µMMSE = wH
khk ∈ R and σ2

MMSE = Et (µMMSE − µMMSE
2) [64]. It may be worth empha-

sizing that the LLR expression of MF detector in (3.13) is exact, whereas the LLR of MMSE
detector in (3.14) is not only an approximation but also difficult to be expressed in a simple
closed form. It is also important to point out that the mean value µMMSE should be calculated
every time the channel matrix is updated.

3.3.3 Achievable Rate with Limited Numbers of BS Antennas

In order to examine the limitation of the conventional MF detector when the number of re-
ceiving antennas is not significantly larger than the number of devices (i.e., ρ ≈ 1), we study its
achievable rate based on the mutual information assuming Gaussian codebook. The signal-to-
interference plus noise ratio (SINR) observed at the MF detector output conditioned on γs and
αk can be expressed using (3.9)–(3.11) as

γMF (γs, αk) =
E
{
|Nrαksk|2

}
E
{
|ñk|2

}
=

αkNrEt

(Nt − 1)Et +N0

=
αkρ

1− 1/Nt + 1/γs
. (3.15)

Therefore, the corresponding mutual information with two-dimensional Gaussian signaling over
an ergodic fading channel, which we refer to as MF capacity, is given by

CMF (γs) = E [log2 {1 + γMF (γs, αk)}]

=

∫ ∞

0

log2 {1 + γMF (γs, αk)} pα(αk)dαk, (3.16)

where pα(x) represents the pdf of αk [61]. On the other hand, under the assumptions of the
perfect CSI at the receiver and no CSI at the transmitter, the conventional MIMO capacity is
given by [22]

CMIMO (γs) = E

[
log2 det

(
INt +

γs
Nt

HHH

)]
, (3.17)
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Figure 3.3: Comparison of per usermutual information achievable by MF detector as a function
of SNR per receive antenna with Nt = 128 and Nr = ρNt, where ρ = 1, 2, and 4. The mutual
information of MF detector with input constraint is also shown for BPSK and QPSK when ρ = 1.

which serves as an upper bound in terms of spectrum efficiency for MF detector, i.e., CMF(γs) ≤
CMIMO(γs).

Fig. 3.3 compares the MF capacity of (3.16) and MIMO capacity (3.17) with Nt = 128 and
ρ = 1, 2, and 4, as a function of SNR per receive antenna. The mutual information curves
achieved by MF detector with input constrained on BPSK and QPSK [61] are also plotted in the
case of ρ = 1, designated by IBPSK (γs) and IQPSK (γs), respectively. We note that they are nor-
malized with the number of transmitters and the resulting values thus correspond to the per user
spectrum efficiency. Since MF detector cannot cancel the inter-channel interference, its spectral
efficiency saturates at a certain limit. In addition, from the result of SINR-based capacity assum-
ing Gaussian codebook with Nr = 128 (i.e., ρ = 1), the per user mutual information is bounded
by around one bit per complex channel use and we observe that the mutual information of QPSK
constellation is already close to this bound, suggesting that no further increase of constellation
points may improve spectral efficiency. As the antenna ratio ρ increases, the relative SNR gap
between (3.16) and (3.17) evaluated at a fixed spectral efficiency decreases. In other words, the
performance of MF detector approaches that of the optimal detector as has been observed in [16].
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BPSK versus QPSK

Let us compare BPSK and QPSK in the case of MF detector. For BPSK, all transmit powerEt

is used for transmission of a single coded bit. Thus, the SINR per coded bit is expressed as

γBPSK
b (γs, αk) = γMF (γs, αk) =

αkρ

1− 1/Nt + 1/γs
. (3.18)

On the other hand, since the transmit power per coded bit is Et/2 in the case of QPSK, the
corresponding SINR is expressed as

γQPSK
b (γs, αk) =

αkρ/2

1− 1/Nt + 1/γs
. (3.19)

Comparing (3.19) with (3.18), we observe that the SINR per coded bit with QPSK signaling
is half of that achieved by BPSK regardless of the channel SNR γs. This is due to the fact that
in the case of MF detector, upon detecting the real part (I-component) of QPSK symbols, not
only the real part but also the imaginary part (Q-component) of the QPSK symbols transmitted
from the other (Nt − 1) antennas will be observed as interference at the receiver. This fact also
explains that in the case of MIMO spatial multiplexing systems, the amount of interference with
QPSK signaling should be larger than that of BPSK by a factor of about 3 dB. Conversely, we still
have room for performance improvement with MF detector by introducing suitable interference
cancellation schemes.

3.4 Matched-Filter Detector with Quadrature Interference
Cancellation

As observed in the previous section, if the numbers of transmitting devices and the receiving
antennas are equal, low-complexity MF detector cannot achieve the spectral efficiency as high
as one bit per user even with QPSK signaling. We will demonstrate that this problem can be
overcome by MF-QIC proposed in this section.

3.4.1 Soft Parallel Interference Cancellation

We first describe a soft parallel interference cancellation (soft-PIC) scheme for a coded
MIMO system with linear MIMO detector. The system block diagram for soft-PIC is shown
in Fig. 3.4. Let us define a MIMO channel decoder for a binary code C that has a matrix of
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Figure 3.4: A block diagram of soft-PIC module.

LLR Λ ∈ RNt×Nc with its (k, t)th element corresponding to λk,t as its input, and outputs the
corresponding LLR Λ′ ∈ RNt×Nc :

Λ′ = D (Λ | C) . (3.20)

We also define the element-wise mapping function of a symbol matrix S ∈ CNt×Ns to its LLR
matrix Λ ∈ RNt×Nc as Λ = L (S) and its inverse as S = L−1 (Λ), where each element s ∈ S

is transformed to the corresponding m-tuples of λ ∈ Λ through (3.5). Furthermore, for a given
specific binary code C, we define the soft-PIC module, denoted by fsoft-PIC : CNt×Ns×CNt×Ns →
CNt×Ns , which calculates the element-wise distance between the MIMO detector output matrix
Ŝ ∈ CNt×Ns and the corresponding soft output obtained from a complex-valued input matrix
Š = ŠI + jŠQ ∈ CNt×Ns as follows:

fsoft-PIC

(
Ŝ, Š | C

)
≜ Ŝ−

[
WHH−

(
WHH

)
◦ INt

]
g
(
Š | C

)
, (3.21)

where A ◦ B denotes the Hadamard product of the matrices A and B, i.e.,
(
WHH

)
◦ INt is a

diagonal matrix in which its kth diagonal element is w∗
k,khk,k. In addition, g : CNt×Ns → CNt×Ns

is a soft-output matrix generator defined depending on whether the input Š is real, imaginary, or
complex-valued as

g
(
Š | C

)
≜ L−1

(
D
[
L
(
ŠI
)
| C
])

IŠI ̸=O + jL−1
(
D
[
L
(
ŠQ
)
| C
])

IŠQ ̸=O, (3.22)
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where IE is an indicator function that returns 1 if the event E is true and 0 otherwise, and O

represents the all-zero matrix.

In the case of MF detector, the soft-PIC module (3.21) can be simplified as

fMF-soft-PIC

(
Ŝ, Š | C

)
= Ŝ−HH (Hg

(
Š | C

))
+
[(
HHH

)
◦ INt

]
g
(
Š | C

)
, (3.23)

where the kth diagonal element of
(
HHH

)
◦ INt is equal to Nrαk.

Let Ŝ′ denote the output of the soft-PIC module according to (3.23) with the second input
replaced by the first one through Š ≡ Ŝ, which we refer to as MF-soft-PIC:

Ŝ′ = fMF-soft-PIC

(
Ŝ, Ŝ | C

)
. (3.24)

In what follows, we focus on a symbol level description and let s̃(l) ∈ CNt×1 denote the lth col-
umn vector of the generator output g

(
Š | C

)
. From (3.23), the soft-PIC module for MF detector

corresponding to the lth symbol s′(l) ∈ CNt×1 is performed as

s′(l) = ŝ(l) −HH (Hs̃(l)
)
+
[(
HHH

)
◦ INt

]
s̃(l), (3.25)

and the kth element of (3.25) can be expressed as

ŝ
′(l)
k = ŝ

(l)
k −

Nr∑
i=1

Nt∑
j=1,j ̸=k

h∗
i,khi,j s̃

(l)
j

= Nrαks
(l)
k +

Nr∑
i=1

Nt∑
j=1,j ̸=k

h∗
i,khi,j

(
s
(l)
j − s̃

(l)
j

)
+

Nr∑
i=1

h∗
i,kn

(l)
i , (3.26)

where s̃(l)k is the kth element of s̃(l).

BPSK Example

In the case of BPSK signaling, omitting the symbol index l for simplicity, the initial LLR λk

of the kth BPSK symbol is calculated from the MF detector output ŝk = ŝIk + jŝQk as

λk = L
(
ŝIk
)
, (3.27)
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Figure 3.5: A block diagram of MF-QIC system.

which is given by (3.13). This is input to the channel decoder, and let λ′
k denote its corresponding

output LLR. Then the kth symbol corresponding to the soft output, s̃k in (3.26), is expressed as

s̃k = L−1 (λ′
k) =

√
Et tanh

(
λ′
k

2

)
. (3.28)

After soft-PIC according to (3.26), the channel decoding should be performed to its output ŝ′

for making the final decision. Note that at this final decoding step, we calculate the LLR after
soft-PIC from ŝ′k under the condition that all the interfering symbols are successfully canceled
(i.e., p̌k ≈ 0) as

λ̂′
k =

4
√
Et

N0

ŝIk, (3.29)

which will be input to the final decoder.

3.4.2 QIC Signal Processing

The system block diagram of MF-QIC is shown in Fig. 3.5.

Transmitter

Similar to multilevel coded modulation (MLC) [65], in what follows we consider the mod-
ified transmitter where I-component and Q-component of the complex symbols are separately
encoded with the binary encoder of different code rates. Specifically, let the binary information
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sequence of the kth user, dk, be divided into two sub-sequences of lengths KI
c and KQ

c , de-
noted by dI

k and dQ
k , respectively, where the former is encoded by the binary encoder CI of rate

RI
c = KI

c/N
I
c into the codeword c

I
k and the latter by the binary encoder CQ of rateRQ

c = KQ
c /N

Q
c

into cQk , under the condition that their codeword lengths N I
c and NQ

c are identical to Nc/2. Each
set of m/2 elements of cIk forms the lth transmitted symbol sI(l)k ∈ Z ⊂ R, and that of cQk forms
s
Q(l)
k ∈ Z ⊂ R, where Z represents a set of one-dimensional constellation points. The resulting
lth complex symbol of the kth user s(l)k ∈ X with X = Z2 is generated by s

(l)
k = s

I(l)
k + js

Q(l)
k .

Note that the achievable error rate performance strongly depends on the design of the code
rates RI

c and RQ
c , which will be discussed in Section 3.5.

Receiver

After conventional detection of symbols based on MF detector, MF-QIC process will be
performed according to the following three steps: 1) soft-PIC for I-component, 2) soft-PIC for
Q-component, and 3) final detection and decoding.

1) Soft-PIC for I-component: Let Ŝ = ŜI + jŜQ denote the output of MF detector. We
decode ŜI corresponding to CI and calculate the corresponding soft output. Then we apply
the soft-PIC to only the I-component of Ŝ as

Ŝ′ = fMF-soft-PIC

(
Ŝ, ŜI | CI

)
. (3.30)

Let Ŝ′ = Ŝ′I + jŜ′Q denote the corresponding output.

2) Soft-PIC for Q-component: We decode Ŝ′Q corresponding to CQ and calculate the corre-
sponding soft output. The resulting symbol vector obtained by applying soft-PIC to only
the Q-component of Ŝ′ is expressed as

Ŝ′′ = fMF-soft-PIC

(
Ŝ′, jŜ′Q | CQ

)
. (3.31)

3) Final Detection and Decoding: Decoding is performed again to make the final decision.

The above QIC processing of Steps 1) and 2) can be iteratively repeated before Step 3) so as
to further improve its performance as illustrated in Fig. 3.5. The corresponding QIC algorithm at
the receiver is summarized in Algorithm 1, where Niter ≥ 1 represents the number of iterations.
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QPSK Example

Upon calculating (3.30), the corresponding LLR input to the decoder of CI can be expressed,
omitting the symbol index l for simplicity, as

λI
k = log

pŝk

(
ŝk|sk =

√
Et/2

)
pŝk

(
ŝk|sk = −

√
Et/2

)
=

2
√
Et

p̌k +N0

ŝIk =
2
√
Et

p̌Ik + p̌Qk +N0

ŝIk, (3.32)

where p̌Ik and p̌
Q
k denote the interference power corresponding to I-component and Q-component,

respectively. Since p̌k in (3.32) corresponds to the total power of residual interference, we substi-
tute p̌k = 0 from the second iteration when the iterative QIC is employed. We note that this is an
accurate model when all the interfering symbols are successfully canceled at the first iteration.
When calculating (3.31) after the cancellation of I-component at the first iteration, the LLR can
be expressed as

λ′Q
k =

2
√
Et

p̌Qk +N0

ŝ′
Q
k =

2
√
Et

(Nt − 1)Et/2 +N0

ŝ′
Q
k , (3.33)

where we have introduced the approximation as p̌Ik ≈ 0 and p̌Qk ≈ p̌k/2 = (Nt − 1)Et/2, an
accurate model when I-component is successfully canceled in the preceding step. At the step of
the final decision, we calculate the LLR corresponding to the symbol ŝ′′k after QIC as

λ′′
k =

2
√
Et

N0

ŝ′′k, (3.34)

which is an accurate model when all the interfering symbols are successfully canceled in the
previous steps. Finally, the information bits assigned to I-component and Q-component of the
transmitting symbols are decoded based on the real and imaginary parts of λ′′

k, respectively.

3.4.3 Complexity

We briefly discuss the computational complexity of our proposed MF-based detectors com-
bined with IC techniques. Here, we define a floating-point operation (FLOP) as the number of
complex summations and multiplications to calculate the estimated symbol vector ŝ, as widely
accepted in theMIMO detection literature [67,68]. We note that it excludes all the signal process-
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Algorithm 1 Quadrature interference cancellation
Initialization:

Ŝ← HHR
Ŝinit ← Ŝ
i← 0

Recursion:
while i < Niter do
Ŝ′ = fMF-soft-PIC

(
Ŝinit, Ŝ

I | CI
)
.

Ŝ′′ = fMF-soft-PIC

(
Ŝ′, jŜ′Q | CQ

)
Ŝ← Ŝ′′

i← i+ 1
end while

Final decision:
Decode ŜI and ŜQ for all the users to get d̂I

k and d̂Q
k

Table 3.1: Computation complexity.

detector order FLOPs
MF O (NtNr) (2Nr − 1)Nt

MF-soft-PIC O (NtNr) MF + (4Nr + 2)Nt −Nr − 1
MF-QIC O (NiterNtNr) MF + Niter {(4Nr + 2)Nt −Nr − 1}
MMSE O

(
Nt

3 +Nt
2Nr

)
2NrNt

2 + (2Nr − 1)Nt + [inverse matrix calc. of size Nt]
MMSE-soft-PIC O

(
Nt

3 +Nt
2Nr

)
MMSE +

(
Nr +

3
2

)
Nt

2 +
(
Nr − 3

2

)
Nt

MMSE-GS O
(
NiterNt

2Nr

)
(4Nr + 4Niter − 2)Nt

2 + (Nr − 2Niter + 1)Nt (only multiplications) [66]
BP O (NiterNtNr) Niter (5Nr − 1)Nt

ing related to channel decoding and demodulation (LLR calculation and constellation mapping)
since these operations commonly apply to all detectors and they increase only linearly with the
number of users. Table 4.1 lists the computational complexity corresponding to each detector
in terms of the order and the number of FLOPs, where Niter is the number of iterations for each
detector and its suitable value depends on a specific detector employed.

As a result, the computational complexity order of all our proposed MF-based detectors fol-
lows O (NtNr) as summarized in Table 4.1. MF detector without IC requires only the operation
corresponding to (3.2), and thus, its required FLOPs become (2Nt − 1)Nr due to (Nt − 1)Nr

summations and NtNr multiplications. Even with soft-PIC, the complexity order does not in-
crease since the additional complexity becomes (4Nr + 2)Nt − Nr − 1 according to (3.25). In
the case of QIC, soft-PIC module is repeatedNiter times and each iteration includes two soft-PIC
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modules. However, its complexity per iteration is almost the same as soft-PIC since the PIC
operation of soft-PIC module in (3.26) with the complex signal input s̃ = ŝ can be replaced by
two independent soft-PIC modules with the signal inputs according to s̃ = ŝI and s̃ = ŝQ.

We also list the complexity of some other competing schemes in Table 4.1. As a reference,
MMSE detector as well as that with the proposed soft-PIC are also compared. Since their com-
plexity order is cubic with the number of access users due to the matrix inversion, the use of
Gauss-Seidel method has been proposed to reduce its complexity [59]. Nevertheless, in addi-
tion to the performance degradation, its complexity order still remainsO

(
NiterNt

2Nr

)
due to the

existence of matrix multiplication operation HHH. On the other hand, belief propagation (BP)
based on Gaussian approximation has been proposed as an iterative approach to achieve the near-
optimal performance with complexity order as low as O (NiterNtNr) [60], which is the same as
our proposed MF-based detector. Their performances will be compared in Section 3.7 based on
simulation, revealing that the MF detector with the proposed IC techniques may outperform the
others.

3.5 Polar Code Design for MF-QIC

This section presents design criteria of polar codes tailored for MF-QIC based on the mutual
information derived in Section 3.3. The performance lower bounds based on GA construction are
also developed. Since our proposed MF-QIC is a combination of soft-PIC and MSD, a flexible
code rate design should be important similar to the design of MLC [65]. We thus adopt polar
codes since they are capacity approaching and their code rate can be flexibly adjusted.

In order to perform soft-PIC, the decoder should be able to generate a soft output correspond-
ing to the codeword. For this purpose, we employ belief propagation (BP) decoding instead of
successive cancellation (SC) decoding [69]. At the final decoding stage, however, one can apply
SC decoding without performance degradation.

3.5.1 Code Rate Design

The code rate design of the component codes RI
c and RQ

c plays an important role in QIC. In
this chapter, we design them based on the mutual information illustrated in Fig. 3.3.

Let us first consider the case that the I-component is successfully canceled. Then the MF
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Figure 3.6: Mutual information and SINR-based capacity per user as a function of SNR per
receive antenna in MIMO system with MF detector where Nr = Nt = 128. The corresponding
mutual information for MF detector (with and without QPSK signal constraint) is also shown.

detector output for the l symbol of the kth user can be revised as

ŝ
′(l)
k = Nrαks

(l)
k + j

Nr∑
i=1

Nt∑
j=1,j ̸=k

h∗
i,khi,j ŝ

Q(l)
j +

Nr∑
i=1

h∗
i,kn

(l)
i . (3.35)

In other words, the average power of interference observed at the MF detector output upon
decoding of Q-component may be reduced by half compared to the case without QIC. Based
on this observation, we plot the mutual information per user per complex channel use, asso-
ciated with MF-QIC with Nt = Nr = 128 in Fig. 3.6, where that of Q-component repre-
sented by IQ⋆QPSK (γs) is calculated conditioned that the I-component has been successfully can-
celed. Let I IQPSK (γs) be the mutual information for I-component with QPSK signaling defined
as I IQPSK (γs) = IQPSK (γs) /2, where IQPSK (γs) is the mutual information for MF detector in
the case of QPSK initially shown in Fig. 3.3. The mutual information of MF-QIC denoted
by IQIC⋆QPSK (γs) is calculated based on their sum. We observe that the mutual information of MF-
QIC can achieve significantly higher value than that of the conventional MF detector (without
IC). We initially set the target information rate R⋆ and determine the corresponding minimum
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required SNR from the mutual information in MF-QIC as γmin, i.e., I
QIC⋆
QPSK (γmin) = R⋆. Then, we

determine the code rates for CI and CQ from the mutual information to be RI
c = I IQPSK (γmin) and

RQ
c = IQ⋆QPSK (γmin) as sketched in Fig. 3.6.

3.5.2 Gaussian Approximation Based Construction in QIC

The performance of polar codes depends on their construction (i.e., frozen bit selection). In
this chapter, we focus on GA-based construction due to its simplicity. In this case, the design

SNR plays a key role in generating an appropriate set of frozen bits [70].

Let us recall from Section 3.3.3 that the SINR at the MF detector output conditioned on the
fading coefficient αk is given by (3.15). Considering the fact that αk approaches unity as the
number of receive antennas increases due to the strong law of large numbers, we can define the
average SINR of the MF detector output as

ΓMF (γs) ≜ E {γMF (γs, αk)} =
ρ

1− 1/Nt + 1/γs
. (3.36)

Note that the channel coefficient αk can also be taken into account when the CSI is known at the
transmitter side. For the design of I-component, we may use the SINR in the MF detector output
with QPSK signaling directly since the symbols corresponding to I-component are initially de-
tected and decoded prior to IC. Thus, the design SINR for I-component is expressed as a function
of the minimum required SNR γmin by

ΓI
des (γmin) =

ρ/2

1− 1/Nt + 1/γmin

. (3.37)

On the other hand, the effect of interference is different for Q-component since it is detected and
decoded after the cancellation of the symbols corresponding to I-component. Under the condition
that all interfering symbols corresponding to I-component are canceled correctly, the power of
the interference in Q-component will be reduced by half compared with that in I-component.
Therefore, the design SINR for Q-component can be calculated as

ΓQ
des (γmin) =

ρ

1− 1/Nt + 2/γmin
= ΓMF

(γmin

2

)
. (3.38)

Comparing (3.38) with (3.37), the average power of interference in decoding Q-component
can be reduced by half, i.e., it is equivalent to that for BPSK signaling expressed by (3.36) with
reduced channel SNR γs.
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Example for Code Rate Design and Design SNR

As an example for polar code design with MF-QIC, we consider the case with the target
rate R⋆ = 1.0, which is achieved with QPSK signaling and code rate Rc = 1/2 in principle.
From Fig. 3.6, MF-QIC can achieve the target rate when the channel SNR γs is higher than
6.0 dB, i.e., γmin = 6.0 dB. Then, we observe that suitable code rates for I-component and Q-
component are given by RI

c = 0.417 and RQ
c = 0.583, respectively. We may thus construct

the polar code with design SNR given by (3.37) and (3.38) for CI and CQ, respectively, with
γmin = 6.0 dB, which turns out that ΓI

des (γmin) = −3.96 dB and ΓQ
des (γmin) = −1.75 dB.

3.5.3 Performance Analysis of Polar Coded BLER Performance

We analyze the coded BLER performance of MF-QIC based on GA-based construction for
polar codes [71]. We first derive that for MF detector without IC schemes.

Without loss of generality, we assume that the all zero codeword is transmitted from
all the devices. We also assume for simplicity of description that the information bits
dk,1, dk,2, · · · , dk,Kc are sorted according to the order of successive cancellation decoding of polar
codes designed by GA-based construction with the design SNR given by the minimum required
SNR γmin. Let Bi denote the event that all the preceding (i − 1) information bits are correctly
decoded, i.e., Bi is the event that d̂k,1 = · · · = d̂k,i−1 = 0, where d̂k,n is the decoded bit for dk,n.
The bit error rate for the ith information bit conditioned with Bi is approximated as [70]

Pb,i (γs, αk) = Pr
(
d̂k,i ̸= 0|Bi

)
≈ Q

(√
Λ(i) (γMF (γs, αk))

2

)
, (3.39)

where Λ(i) (β) denotes the estimated output mean LLR corresponding to the ith information bit
obtained by GA-based construction with β as its initial input SINR and the condition of Bi is
excluded in the case of i = 1. The Q-function is defined as

Q (x) =
1√
2π

∫ ∞

x

e−
t2

2 dt. (3.40)
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From (3.39), the estimated BLER can be approximately computed by [70]

PBL (γs, αk) ≈ 1−
Kc∏
i=1

{1− Pb,i (γs, αk)}

= 1−
Kc∏
i=1

{
1−Q

(√
Λ(i) (γMF (γs, αk))

2

)}
. (3.41)

Since the MF output follows Gaussian distribution conditioned with the signal attenuation
factor αk, its SINR is also conditioned with αk as (3.15). Therefore, the analytical BLER perfor-
mance for MF detector is derived by averaging over αk as

P̄BL (γs) =

∫ ∞

0

PBL (γs, αk) pα (αk) dαk

=

∫ ∞

0

[
1−

Kc∏
i=1

{
1−Q

(√
Λ(i) (Γ (γs, αk))

2

)}]
pα (αk) dαk, (3.42)

where pα (αk) is the pdf of αk that follows a chi-square distribution with 2Nr degrees of free-
dom [61].

We now turn our attention to the proposed MF-QIC. Its performance depends on the inter-
ference power after QIC processing, which may not be precisely tractable. Thus, we model the
SINR at the final decoding in MF-QIC as

γMF-QIC (γs, αk) =
αkNrEt

p̌Ik + p̌Qk +N0

, (3.43)

where the residual interference power p̌Ik and p̌Qk should depend on the number of bit errors ob-
served in each codeword, and its average value should be proportional to the bit error probability.
In this chapter, we approximate the corresponding power after QIC process by its mean value,
which should become accurate as the codeword length increases due to the strong law of large
numbers. Let P̄b(γs) denote the average bit error rate (BER) over all the information bits in each
codeword. It is expressed as

P̄b (γs) =
1

Kc

Kc∑
i=1

Pr
(
d̂k,i ̸= dk,i

)
≈ 1

Kc

Kc∑
i=1

[
Pb,i (γs) Pr (Bi) +

1

2
(1− Pr (Bi))

]
, (3.44)
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where we define Pr (B1) = 1 and the bit error probability of the ith information bit is approxi-
mated as 1/2 if the event Bi does not hold.

Thus, the residual interference power for each component is modeled as

p̌Ik = EtP̄
I
b (γs) (Nt − 1) = p̌kP̄

I
b (γs) , (3.45)

p̌Qk = EtP̄
Q
b (γs) (Nt − 1) = p̌kP̄

Q
b (γs) , (3.46)

where P̄ I
b and P̄

Q
b are the average bit error rates corresponding to I-component and Q-component

after soft-PIC in MF-QIC as shown in Fig. 3.5, respectively. They can be also estimated
from (3.44) and (3.39) by substituting the SINR of (3.19) for I-component and that with the
interference power replaced by p̌kP̄

I
b + p̌k/2 for Q-component.

The analytical BLER performance for each component in MF-QIC can be estimated
from (3.42) as P I

BL (γs) and PQ
BL (γs) by substituting (3.43) based on (3.45) and (3.46), respec-

tively. Finally, the resulting analytical BLER performance of MF-QIC is derived as

P̄MF-QIC
BL (γs) = 1−

{
1− P̄ I

BL (γs)
}{

1− P̄Q
BL (γs)

}
. (3.47)

3.5.4 Lower Bound of Polar Coded BLER Performance

Evaluation of the analytical BLER performance of MF-QIC described in Section 3.5.3 may
involve unwieldy calculation. As an alternative analytical approach, we attempt to derive perfor-
mance bounds for coded BLER with MF-QIC. In this chapter, we describe two kinds of lower
bounds referred to as MF lower bound and QIC limit. The former is a valid model under the
condition that both I- and Q-components are successfully canceled in the preceding process,
whereas the latter is valid if the cancellation of I-component is successful. We also note that
MF lower bound can be analytically derived, whereas QIC limit is derived making use of the
simulation results, but it serves as a good reference for the convergence performance of QIC.
More specifically, the MF lower bound is considered as the ideal performance limit of MF-based
detector since all the interference is assumed to be canceled correctly, and thus is a loose lower
bound for polar coded BLER performance of MF detector with IC. On the other hand, QIC limit
is derived under the condition that I-component is successfully canceled in the preceding QIC
step, yielding a reference BLER performance limit that can be approached by MF-QIC.
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MF Lower Bound

MF lower bound is based on the fact that the gram matrix HHH of the MIMO channel H
approaches the identity matrixNrINt with the increase of BS antennas [72]. It can also be derived
with under the condition that all the interfering symbols are successfully canceled (i.e., p̌k,l ≈ 0

in (3.8)) for the limited BS antennas as

γlow
MF (γs, αk) = γMF (γs, αk)|p̌k,l=0 =

αkNrEt

N0

= αkργs. (3.48)

Consequently, MF detector can improve its output SNR in proportion to the ratio of the
number of antennas at both sides. It suggests that (3.48) corresponds to the maximum SINR (or
SNR) achieved by MF detector such that all the interference is removed perfectly.

Thus, the MF limit in terms of the estimated BLER at a given minimum required SNR γmin

can be approximately computed according to Section 3.5.3 by replacing (3.43) with (3.48).

QIC Limit

In order to evaluate the performance limit of MF-QIC improved by iteration, we introduce a
numerical lower limit referred to as QIC limit. It is based on an ideal model that I-component is
successfully canceled at the first step in QIC as described in Section 3.4.2. In this manner, the re-
maining part of QIC is equivalent to MF with soft-PIC where only Q-component is encoded with
the rate RQ

c . With reference to (3.26) and the imaginary part of (3.35), we note that the average
power of signal and interference for Q-component in MF-QIC after I-component cancellation is
reduced by half from that of MF with soft-PIC for BPSK. In other words, the SINR per coded
bit of MF-QIC after successful cancellation of I-component is expressed as

Γlim
QIC (γs) = ΓQ

des (γs) =
ρ

1− 1/Nt + 2/γs
. (3.49)

Therefore, the lower bound of MF-QIC is easily obtained by the equivalent simulation of MF
with soft-PIC encoded with rate RQ

c , based on the model of (3.26) with the average power of
AWGN in the third term replaced by 2N0.

3.6 Effect of Channel Estimation Error

So far, it has been assumed that perfect CSI is available at the receiver. Since precise CSI
estimation in view of massive IoT devices under limited spectral resources is challenging, we
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investigate the effect of CSI estimation error on the resulting performance.

3.6.1 System Model with Imperfect CSI

Let ∆H denote a matrix representing the channel estimation error. For simplicity of analy-
sis, we assume that each element ∆hi,k in ∆H follows an i.i.d. circularly symmetric complex
Gaussian random variable with zero mean and variance σ2

e [56]. Assuming the use of maximum
likelihood (ML) channel estimation [54, 73], the CSI at the receiver may be expressed as

Ĥ = H+∆H, (3.50)

and its accuracy is determined by the variance of the estimation error expressed as [56, 74]

σ2
e =

NtN0

NtrainEtrain
, (3.51)

where Ntrain and Etrain represent the length and power of the training symbols, respectively.

In the case of MF detector with imperfect CSI, the weight matrix of (3.4) is replaced by

ŴH = ĤH = HH +∆HH. (3.52)

3.6.2 Achievable Rate with Imperfect CSI

We may rewrite the MF detector output (3.6) considering the channel estimation error as

ŝk = Nrαksk +
Nr∑
i=1

∆h∗
i,khi,ksk +

Nr∑
i=1

Nt∑
j=1,j ̸=k

(
h∗
i,k +∆h∗

i,k

)
hi,jsj +

Nr∑
i=1

(
h∗
i,k +∆h∗

i,k

)
ni,

(3.53)

where its exact pdf is given in [61, eq.(53)]. The average SINR of the MF detector output (3.36)
may be rewritten as

Γ̂MF
(
γs, σ

2
e

)
≜ NrEt

σ2
eEt + (1 + σ2

e) (p̌k +N0)
. (3.54)
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Figure 3.7: Mutual information and SINR-based capacity per userwith channel estimation error
as a function of SNR per receive antenna in MIMO system with MF detector where Nr = Nt =
128. The corresponding mutual information for MF detector (with and without QPSK signal
constraint) is also shown.

In the case of massive access (i.e. Nt ≫ 1), (3.54) can be approximated as

Γ̂MF
(
γs, σ

2
e

)
≈ NrEt

(1 + σ2
e) (p̌k +N0)

=
1

1 + σ2
e

ρ

1− 1/Nt + 1/γs
=

1

1 + σ2
e

ΓMF (γs) . (3.55)

As a consequence, the achievable SINR of MF detector is reduced by a factor of 1 + σ2
e .

Fig. 3.7 shows the mutual information with the channel estimation error (σ2
e = 0.2) corre-

sponding to each component of MF-QIC compared to the perfect CSI (σ2
e = 0) shown in Fig. 3.6.

As expected, the imperfect CSI may increase the minimum required SNR γmin, and in the case of
R⋆ = 1.0, the SNR penalty becomes about 4 dB. In the next section, we will perform simulations
assuming a practical scenario where the knowledge of CSI estimation error is available neither at
the transmitter nor at the receiver. We thus design the polar code without considering the effect
of σ2

e , and the receiver employs the conventional MF detector assuming σ2
e = 0.
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Figure 3.8: Polar coded BLER performance of MF-QIC in the uplink multiuser MIMO system
with Nr = Nt = 128.

3.7 Simulation Results

We evaluate our proposed MF detector with QIC through computer simulation. To this end,
we employ a non-systematic polar code with BP decoder for soft cancellation, and the number
of iterations is set as 60. Throughout our simulation, we set the codeword length as Nc = 1024.
We consider the uplink multiuser massive MIMO system with full loading (ρ = 1) as a severe
case with Nr = Nt = 128. The channel is assumed to be i.i.d. block Rayleigh fading and thus it
is static over the transmission of a single codeword.

In the case of the system with QIC, since the total codeword lengthNc is given by the sum of
two components, each codeword length is set as N I

c = NQ
c = Nc/2 = 512 bits. We evaluate and

compare the performance of MF-QIC in terms of BLER, and the block is defined as the sum of
two codewords. Therefore, we calculate the corresponding BLER as

PBL,QIC = Pr
(
dk ̸= d̂k

)
= 1−

{
1− Pr

(
dI
k ̸= d̂I

k

)}{
1− Pr

(
dQ
k ̸= d̂Q

k

)}
. (3.56)

3.7.1 Polar Coded Performance of MF-QIC with Perfect CSI

First, we assume that perfect CSI is available at the receiver and evaluate the ideal perfor-
mance with the target rate as R⋆ = 0.5. The component code rate for QIC is set as RI

c = 0.215
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and RQ
c = 0.285 based on the mutual information analysis as described in Section 3.5.1. We

evaluate the polar coded BLER performance achieved by QIC in Fig. 3.8(a). We first compare
the performance of MF detector employing soft-PIC (denoted by MF-soft-PIC) with the conven-
tional MF, MMSE (without IC), and BP achieved by BPSK signaling and code rate Rc = 1/2.
Throughout this chapter, BP-based detector is employed according to [60] based on Gaussian
approximation of the inter-channel interference, where the number of iterations in BP is set
as NBP

iter = 4 so that the uncoded BER performance converges. Severe error floor is observed
for MF detector, but MF-soft-PIC is able to cancel the interference and thus we observe no er-
ror floor, outperforming MMSE and BP. We also plot that of the conventional MF detector with
SIC, which is inferior to MF-soft-PIC. The MMSE detector combined with soft-PIC (denoted
by MMSE-soft-PIC) is also compared, which turns out to outperform MF-soft-PIC. On the other
hand, MF-QIC shows the best performance among those evaluated here, and we observe that the
corresponding BLER begins to decrease as the SNR γs exceeds the minimum required SNR γmin

even without iteration. The MF lower bound and QIC limit are also shown in Fig. 3.8(a). The
gaps between the simulated value and its QIC limit are caused by the remaining interference and
error propagation in I-component after MF-QIC, which becomes negligible by a few iterations
of MF-QIC.

We now focus on the case with R⋆ = 1.0, where we set the code rate to be RI
c = 0.417

and RQ
c = 0.583 based on the mutual information analysis in Fig. 3.6 with K I

c = 214 and
KQ

c = 298. In this case, even MF-soft-PIC may only partially cancel the interference, and thus
we still observe the error floor due to the residual interference. On the other hand, our proposed
MF-QIC can achieve one bit per complex channel use without error floor. As in the case with
R⋆ = 0.5, the performance of MF-QIC achieves QIC limit by iterative QIC as expected, and
Niter = 2 is sufficient even with R⋆ = 1.0. Nevertheless, in the case of R⋆ = 1.0, even MF-QIC
may not outperform MMSE-soft-PIC, but it should be noted that the complexity of MF-QIC is
much lower than that of MMSE-soft-PIC, and this complexity gap becomes significant asNt and
Nr increase.

We next compare the polar coded BLER performances given by the computer simulations
and the analytical expressions developed in Section 3.5.3 and 3.5.4. We evaluate the case with
the target rate as R⋆ = 0.5 with the same parameter settings as in Fig. 3.8(a). Fig. 3.9 shows the
polar coded BLER performance of MF as well as MF-QIC with up to two iterations, where all the
results indicated by discrete marks are based on the computer simulation, whereas the solid lines
(without marks) correspond to the analytical approximated BLER developed in Section 3.5.3.
(The corresponding MF lower bound as well as QIC limit are also plotted as a reference.) The
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Figure 3.9: Polar coded BLER performance of MF-based detectors through the computer simu-
lation and mathematical analysis with rate R⋆ = 0.5 in the uplink multiuser MIMO system with
Nr = Nt = 128.

analytical and simulation results for MF detector prior to QIC show good agreement. On the other
hand, we observe some gap between analytical BLER and simulation results of MF-QIC, which
is due to the approximations introduced in the derivation process. Nevertheless, our derived
analytical BLER performance can well capture the behavior of the corresponding simulation
results including the performance improvement offered by each iteration of QIC.

3.7.2 Polar Coded Performance of MF-QIC with Channel Estimation Er-
ror

We now turn our attention to the case with imperfect CSI at the receiver. We show the polar
coded BLER performance of MF-QIC (Niter = 1) with rate R⋆ = 0.5 in Fig. 3.10(a), where the
variance of CSI errors is set as σ2

e = 0, 0.05, 0.2, and 0.4. Here, we focus on the case where
the receiver does not have any knowledge of CSI error and thus it is assumed that σ2

e = 0. As
a reference, the performances of MMSE and BP with and without channel estimation error are
plotted in Fig. 3.10(a). It is apparent that the resulting performance degrades with the increase of
channel estimation error, since it decreases the channel SINR as observed in (3.54) and (3.55).
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Figure 3.10: Polar coded BLER performance of MF-QIC in the uplink multiuser MIMO system
with Nr = Nt = 128.

However, MF-QIC outperforms the other approaches compared here.

We finally examine the case with R⋆ = 1.0 in the presence of CSI error in Fig. 3.10(b),
where we compare the performances of MF-QIC atNiter = 2 with those of MMSE-soft-PIC with
reference to the results of perfect CSI shown in Fig. 3.8(b). As observed previously, MF-QIC
fails to outperform MMSE-soft-PIC under the perfect CSI condition, and this is also the case
with σ2

e = 0.05. However, when we compare the cases with larger estimation error, our pro-
posed MF-QIC eventually outperforms MMSE-soft-PIC while retaining much lower detection
complexity.

The overall simulation results suggest that our proposed MF-QIC works well and it can effec-
tively cope with the complex-valued interference which limits the performance of MIMO spatial
multiplexing with MF detector. Furthermore, since it is robust against channel estimation error,
it is a suitable approach for massive IoT networks in view of the trade-off between the error rate
performance and computational complexity.

3.8 Conclusion

In this chapter, we have proposed a low-complexity MF detector combined with quadrature
interference cancellation (QIC) in coded uplink multiuser MIMO systems. We have developed
a polar code design tailored for MF-QIC, and demonstrated that the proposed MF-QIC system
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can significantly outperform the conventional MMSE detector with significantly lower per user
complexity with strong robustness against CSI error. Our system relies on the ideal scheduling
assumption that the average signal power received from simultaneously connecting IoT devices
should be balanced. This assumption is critical as the average error rate performance is signifi-
cantly affected by the worst-case user suffering from severe path loss. Therefore, a scheduling
algorithm that forms each group of IoT devices with equivalent path loss should be established,
which is left as future work.



76

Chapter 4
Scaling Matched-Filter Detector for MIMO Spatial
Modulation

In this chapter, we propose a scaling MF detector optimized for coded MIMO spaital modu-
lation systems.

Published as:
Y. Hama and H. Ochiai,“ Performance of Coded MIMO Spatial Modulation with Scaling Matched-Filter Detector,”IEEE GLOBECOM,
Taipei, Taiwan, Dec. 2020.

4.1 Introduction

Multiple-input multiple-output (MIMO) techniques play an essential role in current wireless
communications systems due to their ability in increasing spectral efficiency as well as energy
efficiency without exploiting additional frequency resources [22]. More recently, massive MIMO
cellular systems where each base station (BS) is equipped with a large number of antennas have
become major candidates for their potential in boosting their achievable capacity and reliabil-
ity [16]. However, there are several practical issues associated with their implementation such as
high computational complexity for signal processing as well as increasing hardware complexity
associated with radio frequency (RF) components.

Spatial modulation (SM) introduced by Mesleh et al. [23] is an attractive transmission tech-
nique for MIMO systems due to its low inter-channel interference (ICI) as well as low hardware
complexity. Therefore, SM has significant implementation advantages over the conventional
MIMO schemes such as spatial multiplexing and beamforming systems, especially when the
number of antenna elements is large. In recent work, a feasible SM system for massive MIMO
is investigated [75]. Furthermore, many advanced SM schemes are proposed and their perfor-
mances are compared in terms of capacity [24]. On the other hand, many challenges still remain
for practical design of SM, among which is the design of SM systems combined with chan-
nel coding. In recent wireless communications systems, powerful capacity-approaching channel
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codes are adopted, e.g., low-density parity-check (LDPC) code and polar code in 5G NR. They
make use of a soft output from MIMO detector as their decoder input, and their performance
depends on the accuracy of the soft output [76]. Therefore, in this chapter, we focus on a design
of coded SM system where such powerful channel coding techniques are applicable.

Many theoretical studies on SM are based on the assumption of maximum likelihood (ML)
detection [24, 77]. However, its main drawback is high computational complexity. In fact, prac-
tical MIMO systems often adopt low-complexity linear detection techniques such as minimum
mean square error (MMSE). Sub-optimal detectors have also been proposed for SM but most of
them still involve complex joint detection of active index and transmit symbols.

Motivated by the above background, we focus on the sub-optimal but low-complexity SM
system based on MF detector, as was initially proposed in [23]. It first estimates the antenna
index used by symbol transmission, and then demodulates the symbol on the estimated index.
Since it detects the indices and symbols separately, it can be implemented with significantly
lower complexity compared to ML detector. However, the detector proposed in [23] may not
be directly applicable to the coded SM system. Hence, in this chapter, we focus on the scaling
MF detector upon estimating the correct index [78, 79]. The original studies on the scaling MF
detector were limited to uncoded SM systems. Therefore, in this chapter, based on mathematical
analysis we derive soft-output metrics of scaling MF detector. The computer simulation results
employing LDPC code verify the effectiveness of our proposed approach.

This chapter is organized as follows. Section 4.2 describes the system model of MIMO
SM. The statistical properties of scaling MF detector output for SM are studied in Section 4.3,
followed by its extension to coded system in Section 4.4. Extensive simulations are presented in
Section 4.5, and Section 4.6 concludes this chapter.

4.2 System and Channel Models

In this chapter, we consider a single user Nt × Nr MIMO system with spatial modulation,
where Nt and Nr denote the numbers of antennas at the transmitter and receiver, respectively.
Note that we omit the symbol index l in (1.8) to focus on the lth transmit symbol through MIMO
channel. For each symbol time slot, a single symbol is transmitted by selecting one antenna.
Let s = (s1, s2, · · · , sNt)

T ∈ CNt×1 denote a transmit symbol vector. When the mth antenna
is activated by the index modulation with m ∈ {1, 2, · · · , Nt}, the resulting symbol vector is
expressed as s = (0, · · · , 0, sm, 0, · · · , 0)T .

Suppose that each symbol is modulated by M -ary PSK or QAM, and then transmitted over
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one of Nt antennas. The total number of bits carried by one symbol transmission is expressed as
B = log2 (NtM) = Bid + Bsb where Bid = log2 Nt is the number of bits carried by the index
and Bsb = log2 M is the number of bits carried by each modulated symbol, provided thatNt and
M are integer powers of two. Let (bd) ∈ {0, 1}B denote the binary symbol vector transmitted
by this process, with b ∈ {0, 1}Bid representing the binary subvector that indicates the selected
antenna index and d ∈ {0, 1}Bsb representing the binary subvector determined by the symbol
transmitted on the selected antenna. Then the transmitted symbol is expressed asm = g (b) ,

sm = f (d) ,
(4.1)

where g : {0, 1}Bid → {1, 2, · · · , Nt} is the mapping function corresponding to index modula-
tion, and f : {0, 1}Bsb → X is the symbol mapping function with X representing a set of PSK
or QAM constellation points.

The received symbol vector, denoted by r ∈ CNr×1, is expressed as

r = Hs+ n, (4.2)

where n = (n1, n2, · · · , nNr)
T ∈ CNr×1 is an additive white Gaussian noise (AWGN) vec-

tor and H = [h1 h2 · · · hNt ] ∈ CNr×Nt is a channel matrix with its column vector hk =

(h1,k, h2,k, · · · , hNr,k)
T corresponding to the channel of the kth transmit antenna.

Throughout this chapter, we make the following assumptions for simplicity of analysis: The
transmit symbol {sm} is modulated by M -PSK or M -QAM signaling, and each element ni of
the noise vector n follows an independent and identically distributed (i.i.d.) circularly symmetric
complex Gaussian random variable with zero mean and variance σ2

n = N0 per complex dimen-
sion, i.e., ni ∼ CN (0, N0). Also, the channel is modeled as Rayleigh fading and thus each
element of the channel matrix H is an i.i.d. circularly symmetric complex Gaussian random
variable with zero mean and unit variance, i.e., hi,k ∼ CN (0, 1). Therefore, E

{
|hi,k|2

}
= 1

for any pair of i ∈ {1, 2, · · · , Nr} and k ∈ {1, 2, · · · , Nt}, where E {·} denotes expectation
operation.

LetEs denote the average energy per receive antenna, where the transmit energy is also equal
to Es, as we assume that the path loss is normalized to unity. Finally, the perfect channel state
information (CSI) is available at the receiver, whereas the transmitter does not have any CSI.
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4.3 MF Detector for Spatial Modulation

At the receiver, we adopt the matched-filter (MF) detector for MIMO symbol detection.

4.3.1 MF Detector

Let the vector ŝ = (ŝ1, ŝ2, · · · , ŝNt)
T ∈ CNt×1 denote the output of a linear detector, which

is in general given by

ŝ = WHr, (4.3)

where W = [w1, w2, · · · ,wNt ] ∈ CNr×Nt is the weight matrix and wk =

(w1,k, w2,k, · · · , wNr,k)
T is the weight vector corresponding to the kth transmit antenna, with

XH representing the Hermitian transpose of a matrix X. In the case of MF detector, the weight
matrix is given by WH = HH, or equivalently, wk = hk for all k.

Assuming that themth transmit antenna is active, from (4.2) and (4.3), the estimated symbol
vector based on MF detection is written by

ŝ = WH (hmsm + n) = HHhmsm +HHn, (4.4)

or equivalently,

ŝk = hH
khmsm + hH

kn

=


αmNrsm +

Nr∑
i=1

h∗
i,mni (k = m),

Nr∑
i=1

h∗
i,k (hi,msm + ni) (k ̸= m).

(4.5)

The first term at the top of (4.5) is a scaled version of the transmit signal sm, where the attenuation
factor αk corresponding to kth transmit antenna is defined as

αk ≜
1

Nr

Nr∑
i=1

|hi,k|2 =
1

Nr

∥hk∥2 . (4.6)

Note that αk is a random variable that follows chi-square distribution with its expectation nor-
malized as E {αk} = 1.
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Conditioned on hk, the MF output ŝk follows complex Gaussian distribution [61] with its
mean and variance given by

E { ŝk |hk} =

αmNrsm (k = m),

0 (k ̸= m),
(4.7)

VAR ( ŝk |hk) =

αmNrN0 (k = m),

αkNr (Es +N0) (k ̸= m).
(4.8)

In other words, ŝk can be modeled as complex Gaussian, i.e., ŝm ∼ CN (αmNrsm, αmNrN0)

for active index m, and ŝk ∼ CN (0, αkNr(Es +N0)) for inactive index k ̸= m. Therefore,
conditioned on x ≜ sk and αk, the probability density function (pdf) of the complex-valued
random variable y ≜ ŝk is given by

pŝk|sk (y | x, αk) =


1

παmNrN0

e
− |y−αmNrx|2

αmNrN0 (k = m),

1

παkNr (Es +N0)
e
− |y|2

αkNr(Es+N0) (k ̸= m).
(4.9)

4.3.2 Scaling MF Detector

We consider a low-complexity estimator of the active index m of transmit antenna from
the MF output ŝk. Instead of working on the MF output ŝk directly for index selection, it is
convenient to define a scaling MF output as

s̃k ≜
ŝk√
αk

. (4.10)

Then, we have the following property:

Theorem 2. For a given active index m and any inactive index ℓ (i.e., ℓ ̸= m), if the noise is

negligible, the following inequality holds for any realization of channel matrix H:

|s̃m| ≥ |s̃ℓ| , for any ℓ ̸= m. (4.11)

Proof. For any realization of the channel matrix H, it is sufficient to show that

|s̃m|2 − |s̃ℓ|2 ≥ 0. (4.12)
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Under the assumption that the noise is negligible, i.e., N0 → 0, from (4.5), the squared value of
the scaling MF output in (4.10) provided that the antenna m was selected, is expressed as

|s̃m|2 =
(
|ŝm|√
αm

)2

=
αm

2Nr
2

αm

|sm|2 = αmNr
2 |sm|2 , (4.13)

|s̃ℓ|2 =
(
|ŝℓ|√
αℓ

)2

=

(∑Nr

i=1

∣∣h∗
i,ℓ

∣∣ |hi,m|
)2

αℓ

|sm|2 . (4.14)

Substituting (4.13) and (4.14) into the left-hand side of (4.12) and noticing that |h∗
i,ℓ| = |hi,ℓ|, we

have αℓαmNr
2 −

(
Nr∑
i=1

|hi,ℓ| |hi,m|

)2
 |sm|2αℓ

=


(

Nr∑
i=1

|hi,ℓ|2
)(

Nr∑
i=1

|hi,m|2
)
−

(
Nr∑
i=1

|hi,ℓ| |hi,m|

)2
 |sm|2αℓ

≥ 0, (4.15)

where the last inequality is due to Cauchy–Schwarz inequality.

Note that without scaling [77], the relationship in Theorem 2 does not hold in general.

Theorem 2 allows us to determine the estimated index m̂ according to

m̂ = arg max
k∈{1,2,··· ,Nt}

|s̃k| . (4.16)

By defining the inverse mapping of g as g−1 : {1, 2, · · · , Nt} → {0, 1}Bid and the constellation
demapping function as f−1, the estimated binary subvectors are given byb̂ = g−1 (m̂)

d̂ = f−1 (s̃m̂) .
(4.17)

The output of the scaling MF, s̃k, also follows Gaussian distribution as s̃m ∼
CN

(√
αmNrsm, NrN0

)
for active index m, and s̃k ∼ CN (0, Nr(Es +N0)) for inactive in-
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Table 4.1: Complexity comparison of scaling MF and ML detector in parallel architecture.
detector complex multiplication

scaling MF 2Nr

ML 2NrNt +NtM +M

dex k ̸= m, i.e.,

ps̃k|sk (y | x, αm) =


1

πNrN0

e
− 1

NrN0
|y−√

αmNrx|2 (k = m),

1

πNr (Es +N0)
e
− 1

Nr(Es+N0)
|y|2

(k ̸= m).
(4.18)

Note that the pdf of the scaling MF output for inactive index is independent of αk as shown
in (4.18).

We briefly discuss the uncoded BER performance of scaling MF detector with M -PSK sig-
naling based on the simulation results shown in Fig. 4.1, where the numbers of antennas are fixed
as Nt = Nr = 4. For comparison, that of ML detector is shown with points in the same figure.
For uncoded cases, the scaling MF detector can approach ML performance with the increase
of modulation order M . The reason for this is that the error event of the index bits does not
depend on the modulation order M . Thus, their performance matches well especially in high
signal-to-noise ratio (SNR) region since MF detector is equivalent to ML detector when ICI is
negligible [61].

In the case of BPSK, the performance can be improved when the real value of the scaling MF
output in (4.16) is applied:

m̂ = arg max
k∈{1,2,··· ,Nt}

|ℜ {s̃k}| , (4.19)

since the noise power is reduced by half. Note that we have focused only on PSK signaling in
Fig. 4.1, as QAM signaling may not perform well as will be described in Section 4.5.

4.3.3 Complexity

We summarize the computational complexity of scaling MF detector compared with ML
detector in Table 4.1 where MF detector is implemented in parallel. Note that ML detector should
estimate two subvectors b and d jointly, i.e., they cannot be detected in parallel. On the other
hand, the calculation of MF detector given in (4.3) can be implemented in parallel. Therefore,
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Figure 4.1: The comparison of BER performance with scaling MF and ML detectors in uncoded
4×4MIMO system over i.i.d. Rayleigh fading channel as a function of SNR per receive antenna.

the required complex multiplication operation per single MF detector of (4.5) becomes 2Nr

even with scaling, which is independent of the number of information bits B = log2 (NtM).
Nevertheless, its performance becomes comparable with ML detector with increasing B, as was
observed in Fig. 4.1. This fact motivates us to employ scaling MF detector along with SM.

4.4 Extension to Coded System

In this section, we derive the optimal metric with PSK signaling based on the theoretical
analysis of MF detector for channel coding. Our proposed system is sub-optimal due to the fact
that we separately estimate coded bits corresponding to index part and symbol part. Therefore,
the corresponding metrics are developed separately as well.

In order to apply modern error correcting codes such as LDPC codes, it is necessary to
calculate the log-likelihood ratio (LLR) of coded bits. We first describe the LLR corresponding
to the symbol part d̂ in (4.17). Let d = (d1, d2, · · · , dBsb) denote the subvector of the transmitted
symbol. It is calculated from the pdf of scaling MF output (4.18) corresponding to the estimated
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index m̂ as [61]

λ (dℓ) = log
P (dℓ = 0|s̃m̂)
P (dℓ = 1|s̃m̂)

= log

∑
S∈(dℓ=0) ps̃m|sm (y = s̃m̂ | x = S, αm)∑
S∈(dℓ=1) ps̃m|sm (y = s̃m̂ | x = S, αm)

. (4.20)

In what follows, we derive the LLR expressions corresponding to the index part b̂ in (4.17).
To this end, we introduce two types of metrics. One is based on the distribution of scaling MF
output described in Section 4.3, and it is optimal for PSK signaling. The other is based on the
use of the absolute value given by (4.16). This is sub-optimal but can be applied to multiple
amplitude modulation schemes such as QAM signaling.

4.4.1 Distribution of the Absolute Value of Scaling MF Output

In order to derive the LLR corresponding to the index bits, the distribution of the absolute
value of the scaling MF output |s̃k| from (4.16) is required. As discussed in Section 4.3, it follows
Gaussian distribution given in (4.18). As a consequence, their absolute value corresponding
to the active index follows Rice distribution, whereas that corresponding to the inactive index
follows Rayleigh distribution. Therefore, their pdfs are expressed by [50]

p|s̃m| (x, αm) =
2x

NrN0

e
−x2+αmNr

2Es
NrN0 I0

(
2
√
αmEsx

N0

)
, (4.21)

p|s̃k| (x) =
2x

Nr (Es +N0)
e
− x2

Nr(Es+N0) , (4.22)

where I0 (x) is the modified Bessel function of the first kind with order 0.

In the case of BPSK signaling, the scaling output x̃k = ℜ{s̃k} follows folded Gaussian
distribution, and its pdf is expressed as

p|x̃m| (x|αm) =
1√

παmNrN0

e
− 1

αmNrN0
(x−

√
αmNr

√
Es)

2

+
1√

παmNrN0

e
− 1

αmNrN0
(x+

√
αmNr

√
Es)

2

, (4.23)

p|x̃k| (x) =
2√

πNr(Es +N0)
e
− 1

Nr(Es+N0)
x2

. (4.24)
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Figure 4.2: Comparison of pdfs of scaling MF detector output calculated by theoretical expres-
sions as well as Monte-Carlo simulations with BPSK signaling (Es = 1 and γb = 0 dB).

Example pdfs of the scaling MF output obtained by analysis and simulation are compared in
Fig. 4.2, where we observe that the two results match perfectly.

Note that the above expressions may not be directly applicable to QAM signaling as their
symbol amplitude is not constant.

4.4.2 Optimal LLR Metric for Index Bits (Type-1)

We derive the LLR corresponding to the index part as a metric input to the channel decoder.
First, we propose a metric derived from (4.21) and (4.22), which will be referred to as type-1 in
what follows.

Assuming that the selected antenna index is m, the posterior probability can be defined for a
set of scaling MF outputs {s̃k} as

Pm ≜ p|s̃m| (|s̃m|, αm)
Nt∏

k=1,k ̸=m

p|s̃k|(|s̃k|). (4.25)

Let b = (b1, b2, · · · , bBid) denote the subvector of the index and b(m) = g−1(m) =

(bm,1, bm,2, · · · , bm,Bid) denote the specific subvector value corresponding to the antenna index
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m. The LLR of the lth bit of b with ℓ ∈ {1, 2, · · · , Bid} is expressed as

λType-1(bℓ) = log

∑Nt

m=1,bm,ℓ=0 Pm∑Nt

m=1,bm,ℓ=1 Pm

. (4.26)

4.4.3 Sub-Optimal LLR Metric for Index Bits (Type-2)

The type-1 metric (4.26) calculates all the posterior probabilities corresponding to the trans-
mit antennas. We also propose a simple metric using only the absolute value of the scaling MF
output s̃k, which we refer to as type-2. It is expressed as

λType-2(bℓ) = log

∑Nt

m=1,bm,ℓ=0 |s̃m|∑Nt

m=1,bm,ℓ=1 |s̃m|
. (4.27)

Since (4.27) does not consider the distribution of the posterior probability, its performance is
inferior to that of (4.26). Nevertheless, since (4.27) does not take modulation constraint into
account, it is applicable to QAM.

4.5 Simulation Results

In this section, we demonstrate the uncoded and coded performance of the scaling MF de-
tector with our derived metrics through computer simulation. The channel is assumed to be
ideally interleaved Rayleigh fading in all the simulations for simplicity. The regular binary (3, 6)
LDPC code (with code rate Rc = 1/2) is chosen as our channel code with the codeword length
Nc = 1024. For LDPC decoder, the sum-product algorithm is employed with the maximum
number of iterations given by 100.

4.5.1 Comparison of Metrics

We examine the coded performance by using the two types of metrics based on Monte-
Carlo simulations. The results are compared in Fig. 4.3 with 4 × 4 MIMO SM. For the 16-
PSK signaling, the performance of type-1 metric outperforms that of type-2 due to its accuracy
in the mathematical model. On the other hand, in the case of 16-QAM signaling, its symbol
power depends on the constellation point and thus type-1 metric becomes inaccurate, resulting in
significant performance degradation. As a reference, we also show the performance in the case
of 64-PSK with type-1 and 64-QAM signaling with type-2 in Fig 4.3. With the increase of M ,
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Figure 4.3: The coded BER performance of scaling MF detector in 4×4MIMO SM system with
PSK and QAM signaling over a Rayleigh fading channel.

the performance with PSK signaling becomes inferior due to the smaller minimum Euclidean
distance of constellation points compared to that of QAM. However, when M is equal to 64 or
less, the coded performance of M -PSK signaling shows good performance resulting from the
advantage associated with optimality of type-1 metric.

For the rest of this chapter, we exclusively study the performance of M -PSK signaling. In
Fig. 4.4, we compare the coded performance using the optimal metrics given by (4.20) and (4.26).
We setM as 2, 4, 16, and 64 so that the spectral efficiency becomes 3, 4, 6, and 8 (when uncoded),
respectively, in 4 × 4 MIMO spatial modulation systems. With BPSK signaling, we also show
the performance by using real-valued metric given by (4.19). Due to the trade-off between the
spectral efficiency and energy efficiency, the BER performance degrades as the modulation order
M increases.

4.5.2 Performance Comparison under Fixed Spectral Efficiency

As an example, we compare the BER performance for a fixed spectral efficiency ofB = 8 bits
per SM symbol achieved by combination of a different number of transmit antennas Nt and
modulation order M . The results without channel coding are shown in Fig. 4.5. From these
results, we observe that the system with Nt = 128 and M = 2 achieves the best performance.



88 4. Scaling Matched-Filter Detector for MIMO Spatial Modulation

Figure 4.4: The coded BER performance of scaling MF detector in 4 × 4 MIMO system with
M -PSK signaling over a Rayleigh fading channel.

Figure 4.5: The uncoded BER performance of scaling MF detector in Nt × 4 MIMO system
withM -PSK signaling over a Rayleigh fading channel. (Spectral efficiency is 8 bit/SM symbol.)

This is because the noise power is successfully reduced by the proposed real-valued metric for
index estimation.
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Figure 4.6: The coded BER performance of scaling MF detector in Nt × 4 MIMO system with
M -PSK signaling over a Rayleigh fading channel. (Spectral efficiency considering code rate
Rc = 1/2 is 4 bit/SM symbol.)

The performance with channel coding is compared in Fig. 4.6. Since the channel coding
reduces the operating SNR, the performance in low SNR region becomes of interest. In this
case, however, due to the sub-optimality of our detector, the index error becomes dominant and
thus the results are different from Fig. 4.5.

To further investigate the effect of index error, in Fig. 4.7 we separately plot the uncoded BER
performance of index and symbol bits. The dot curves in the figure represent the ideal cases when
the index is estimated correctly, and the lower modulation order M shows better performance in
this respect. However, since lower modulation orderM also leads to a larger number of transmit
antennasNt to achieve the target rate, it causes higher BER resulting from the index bit errors. In
summary, there is a trade-off between the number of transmit antennas Nt and modulation order
M , and the optimal parameter should be chosen based on the balance between the error events
of index and symbol bits.

4.6 Conclusion

We have focused on the coded MIMO spatial modulation system with scaling MF detec-
tor, and proposed metrics for channel coding based on the mathematical analysis. Throughout
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Figure 4.7: The uncoded BER performance of scaling MF detector in Nt × 4 MIMO system
corresponding to index and symbol bits with M -PSK signaling over a Rayleigh fading channel.
(Spectral efficiency is 8 bit/SM symbol.)

computer simulations, we have demonstrated the trade-off relationship between the number of
transmit antennas and modulation order.



Chapter 5
Conclusions

In this dissertation, we have analyzed the statistical property of MF detector over uncor-
related Rayleigh fading channel. Based on the obtained theoretical results, we have designed
low-complexity detections based on MF detector for coded MIMO systems. The main focus
of this dissertation has been on the two MIMO transmission schemes, spatial multiplexing and
spatial modulation, which can be integrated by introducing generalized spatial modulation.

5.1 Summary and Contributions

Our proposal and contributions are summarized as follows:

Chapter 2

MF detector has recently been with much attention due to the advent and utilization of mas-
sive MIMO provoked by [16], where MF detector has been introduced as maximum ratio com-
bining (MRC) for uplink transmission. The author of [16] has also derived the achievable per-
formance of MRC with single cell massive MIMO systems, where the BS equips a large number
of antennas. However, it has been limited to the case with the unlimited number of the receiv-
ing BS antennas. Furthermore, the resulting performances were derived only in the form of the
capacity based on the average SINR. In other words, this analysis is insufficient since it does
not consider the modulation constellation as well as the distribution of the SINR. Motivated by
this fact, in Chapter 2, we have analyzed the exact distribution of the MF output corresponding
to M -PSK and M -QAM signaling with an arbitrary number of antennas at both the transmitter
and receiver. Based on this result, we have also derived the constellation constrained mutual
information as an ideally achievable performance with the finite number of antennas and input
alphabet. In addition, it enables the optimization of the decoding metric in terms of LLR and
derivation of the exact BER performance for coded and uncoded MIMO spatial multiplexing
systems, respectively.
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Chapter 3

In spatial multiplexing systems, massive access by low-cost devices requires high power am-
plifier efficiency as well as high computational complexity at the receiver. Also, it may cause im-
perfect channel estimation due to the lack of orthogonal pilot sequences. Thus, it is necessary to
be established a signal detection approach with high resistance for channel estimation errors. In
order to tackle this problem, we have proposed a new IC technique, namely quadrature interfer-
ence cancellation, optimized for MF detector. In practice, we have demonstrated the achievable
performances of polar coded MF-QIC, where the code design criteria and approximated BLER
performance for polar codes have also been introduced based on Gaussian approximation con-
struction. The computer simulation has revealed that it outperforms other competing approaches
such as MMSE and BP detectors even with lower complexity order.

Chapter 4

For spatial modulation, the optimal detection can be implemented with lower complexity
compared to that in spatial multiplexing due to sparsely of the transmit symbol vector. In contrast,
it is difficult to apply the sub-optimal detector based on the low-complexity linear detection,
which is widely used in the practical MIMO systems adopted in LTE and 5G. Based on this
observation, the sub-optimal detector that can be applied to coded spatial modulation systems
is urgently required. Based on the exact distribution of the MF output derived in Chapter 2, we
have first applied the appropriate scaling to MF detector so that it can estimate the active index
correctly. For coded spatial modulation systems, we have also derived the optimal decoding
metric in terms of LLR for scaling MF detector. Furthermore, we have developed the simplified
LLR expression for further complexity reduction.

5.2 Future Works

The following remaining subjects should be investigated as our future works:

• Extension of our proposed approaches to the practical channel, such as correlated Rayleigh
as well as Rician channels, should be investigated.

• Combining with the transmission algorithm such as MRT (or CB) is also meaningful work
since the transmitter in the recent wireless system often employs some multiple-antenna
transmission schemes such as beamforming and diversity techniques.
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