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Abstract
A simple geometric mechanism: ‘the locus of intersections of perpendicular
bisectors and normal lines’, often arises in many guises in nonlinear sciences.
In this paper, a new application of this simple geometric mechanism is given.
Namely, we show that this mechanism gives answers to all four basic problems
on envelopes created by hyperplane families (existence problem, representation
problem, equivalence problem of definitions, uniqueness problem) at once.
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1. Introduction

Throughout this paper, let n be a positive integer. Moreover, all manifolds, functions and
mappings are of class C∞ unless otherwise stated.

A simple geometric mechanism: ‘the locus of intersections of perpendicular bisectors and
normal lines’, often arises in many guises in physical sciences. For example, as Richard Feyn-
man elegantly explained in [9], the orbit of a planet around the Sun can be understood as a
consequence of this mechanism under the assumption of the inverse-square law (see figure 1
where the circle is the hodograph of the velocity vectors of a planet, that is to say, the circle
is a curve drawn by the end points of the vectors that are parallel to the velocity vectors and
start at a fixed point P. The orbit of the planet is similar to the locus of intersections Bt of the
perpendicular bisectors of velocity vectors

−→
PAt and the normal lines to the circle at At). This is
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Figure 1. Locus similar to the orbit of a planet.

Figure 2. Locus of an α particle.

an example in celestial mechanics. In the same book [9], one can find that even the historical
discovery of atomic nucleus due to Ernest Rutherford can be explained as a consequence of this
simple geometric mechanism (see figure 2 where the centre of circle O is an atomic nucleus.
The orbit of an α particle is the locus of intersections Bt of the perpendicular bisectors of the
segment PAt and the normal lines to the circle at At). This is an example in nuclear physics.

In crystallography, one can find such the mechanism in the so-called Wulff construction for
the equilibrium shape of a crystal. A brief explanation of the Wulff construction is as follows.
Given an equilibrium crystal, take an arbitrary point P inside the crystal and fix it. Georg Wulff
discovered in [20] the so-called Gibbs–Wulff theorem which asserts that the length from the
fixed point P to the foot of the perpendicular to the tangent space to the face of the crystal
is proportional to its surface energy density of the face. Let γ : S2 → R be the surface energy
density function of the equilibrium crystal. The graph of γ with respect to the polar coordinates
about the point P defines the mapping g : S2 → R

3. The mapping g is often called the polar
plot of γ or the γ-plot or the Wulff plot. Set f = 2g and suppose that the image f (S2) has the
well-defined normal vectors at any point f (x). Then, by the Gibbs–Wulff theorem, the accu-
rate shape of the crystal surface is proportional to the shape obtained by our simple geometric
mechanism: ‘the locus of the intersection of the perpendicular bisector of the vector

−−−→
P f (x) and

the normal line to f (S2) at f (x)’. This is the Wulff construction and the constructed shape is
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Figure 3. The Wulff construction and the Cahn–Hoffman vector formula in the plane.

called the Wulff shape. Notice that in general f is a continuous mapping and thus from the
viewpoint of rigorous mathematics, the Wulff construction is not a well-defined construction
method in general. Nevertheless, Hoffman and Cahn showed in [11] that if γ : S2 → R is dif-
ferentiable, then the image f (S2) has a well-defined normal vector at each point f (x) and the
set {∇γ(x) + γ(x)x|x ∈ S2} is exactly the shape obtained by our simple geometric mechanism
for the point P and the surface f (S2). The Wulff construction and the Cahn–Hoffman formula
in the plane is depicted in figure 3. For details on the Wulff construction and Wulff shapes, see
for instance [8, 10].

Moreover, it is a surprising fact that our simple geometric mechanism: ‘the locus of
intersections of perpendicular bisectors and normal lines’ can be applied even to seismic
survey (see 7.14 (9) of [6]).

In mathematics, our simple geometric mechanism: ‘the locus of intersections of perpen-
dicular bisectors and normal lines’ is called the anti-orthotomic of a mapping f having a
well-defined normal vector to its image at each point (for details on anti-orthotomics, see 7.14
of [6]. See also [15] where anti-orthotomics are generalized to frontals and [16] where more
elementary explanation on anti-orthotomics can be found.). In mathematics as well, there are
examples where anti-orthotomics are effectively applied (see [6]).

In order to understand better the powerfulness of the simple geometric mechanism, we
would like to have more striking examples in mathematics where anti-orthotomics are effec-
tively applied. Namely, we want to seek mathematical problems which can be geometrically
solved by our simple geometric mechanism though it seems difficult to solve them by other
methods. This is the primitive motivation of this paper. In this paper, we show that the existence
and uniqueness problem of envelopes for a given hyperplane family is one of such problems.
Namely, we give a necessary and sufficient condition (see definition 2) for a given hyperplane
family to create an envelope. And then, we give a necessary and sufficient condition for the
uniqueness of created envelopes if the given hyperplane family creates an envelope. It seems
difficult to prove that the condition given in definition 2 is actually a sufficient condition to
create envelopes by other methods. In order to apply our simple geometric mechanism, we
need some geometric objects to which the normal line can be reasonably well-defined at each
point. Hyperplane families themselves are far from the reasonable geometric objects for our
purpose. The reasonable geometric objects are frontals (the definition of frontal is given in
the next paragraph). In order to obtain a frontal from a given hyperplane family, the mirror-
image mapping will be locally introduced. Then, it turns out that if the given hyperplane family
is creative (see definition 2 below), then the mirror-image mapping is actually a frontal such
that the normal line at each point intersects the corresponding hyperplane. Thus, we can apply
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the anti-orthotomic method developed in [15] to obtain theorems 1 and 2. The existence and
uniqueness problem of envelopes for a given hyperplane family can be easily interpreted as
the existence and uniqueness problem of solutions for a certain type of system of first order
differential equations with one constraint condition. In the author’s opinion, one of the most
attractive features of our simple geometric mechanism is that it can make all solutions and their
precise expressions clear in one shot by geometry without the need to solve the corresponding
system of differential equations with one constraint condition.

Let Sn be the n-dimensional unit sphere in the (n + 1)-dimensional vector spaceRn+1. Given
a point P ofRn+1 and an (n + 1)-dimensional unit vector n ∈ Sn ⊂ R

n+1, the hyperplane H(P,n)

relative to P and n is naturally defined as follows, where the dot in the centre stands for the
standard scalar product of two vectors (X − P) and n in the vector space Rn+1.

H(P,n) = {X ∈ R
n+1 | (X − P) · n = 0}.

Let N be an n-dimensional manifold without boundary. Given two mappings ϕ̃ : N → R
n+1 and

ν̃ : N → Sn, the hyperplane family H(ϕ̃,ν̃) relative to ϕ̃ and ν̃ is naturally defined as follows.

H(ϕ̃,ν̃) =
{

H(ϕ̃(x),ν̃(x))

}
x∈N

.

A mapping f̃ : N → R
n+1 is called a frontal if there exists a mapping ν̃ : N → Sn such that

d f̃ x(v) · ν̃(x) = 0 for any x ∈ N and any v ∈ T xN, where two vector spaces T f̃(x)R
n+1 andRn+1

are identified. By definition, it is natural to call ν̃ : N → Sn a Gauss mapping of the frontal f̃ .
The notion of frontal has been recently investigated (for instance, see [13]). In this paper, as
the definition of envelope created by a hyperplane family, the following is adopted.

Definition 1. Let H(ϕ̃,ν̃) be a hyperplane family. A mapping f̃ : N →R
n+1 is called an

envelope created by H(ϕ̃,ν̃) if the following two conditions are satisfied.

(a) f̃ (x) ∈ H(ϕ̃(x),ν̃(x)) for any x ∈ N.
(b) d f̃ x(v) · ν̃(x) = 0 for any x ∈ N and any v ∈ T xN.

In other words, an envelope created by H(ϕ̃,ν̃) is a mapping f̃ : N → R
n+1 giving a solution

of the following system of first order differential equations with one constraint condition, where
(U, (x1, . . . , xn)) is an arbitrary coordinate neighbourhood of N such that x ∈ U.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ f̃
∂x1

(x) · ν̃(x) = 0,

...
∂ f̃
∂xn

(x) · ν̃(x) = 0,(
f̃ (x) − ϕ̃(x)

)
· ν̃(x) = 0.

By definition, any envelope f̃ : N → R
n+1 created by a hyperplane family H(ϕ̃,ν̃) must be a

frontal with Gauss mapping ν̃ : N → Sn. For details on envelopes created by families of plane
regular curves, refer to [6]. In chapter 5 of [6], several definitions for envelope are given. For a
hyperplane familyH(ϕ̃,ν̃), definition 1 is a generalization of their definition E2 from a viewpoint
of parametrization (E2 envelope is a variety tangent to all lines of the given line family. Thus,
in the case of plane, an envelope defined by definition 1 is the same notion of E2 envelope. For
details on the definition E2, see 5.12 of [6]). The following definition, which may be regarded
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as a higher dimensional generalization of E1 from a viewpoint of parametrization (E1 envelope
is the set of the limits of intersections with nearby members of the given line family. For details
on the definition E1, see 5.8 of [6] and for the relation between definition 2 in the plane case
and E1, see subsection 2.3), is the key notion for this paper.

Definition 2. Let N be an n-dimensional manifold without boundary and let ϕ̃ : N → R
n+1,

ν̃ : N → Sn be mappings. Let γ̃ : N → R be the function defined by γ̃(x) = ϕ̃(x) · ν̃(x). Let
T ∗Sn be the cotangent bundle of Sn. A hyperplane family H(ϕ̃,ν̃) is said to be creative if there

exists a mapping Ω̃ : N → T∗Sn with the form Ω̃(x) = (ν̃(x), ω̃(x)) such that for any x0 ∈ N the
equality dγ̃ = ω̃ holds as germs of one-form at x0.

Namely,H(ϕ̃,ν̃) is creative if there exists a one-form Ω̃ along ν̃ such that for any x0 ∈ N by using
of a coordinate neighbourhood (U, (x1, . . . , xn)) of N at x0 and a normal coordinate neighbour-
hood (V , (Θ1, . . . ,Θn)) of Sn at ν̃ (x0), the one-form germ dγ̃ at x0 is expressed as follows.

dγ̃ =

n∑
i=1

(
ω̃(x)

(
Π(ν̃(x),ν̃(x0))

(
∂

∂Θi

)))
d (Θi ◦ ν̃) ,

where a normal coordinate neighbourhood (V , (Θ1, . . . ,Θn)) is a local coordinate neighbour-
hood at ν̃ (x0) obtained by the inverse mapping of the exponential mapping at ν̃ (x0), Sn inherits
its metric from the ambient space Rn+1 and Π(ν̃(x),ν̃(x0)) : Tν̃(x0)Sn → Tν̃(x)Sn is the Levi-Civita
translation. Notice that our objective manifold is the unit sphere Sn with metric inherited
from R

n+1. Therefore, the Levi-Civita translation Π(ν̃(x),ν̃(x0)) is the restriction of the rotation

R : Rn+1 → R
n+1 satisfying R(ν̃(x0)) = ν̃(x) to the tangent space Tν̃(x0)Sn. In particular, in the

case n = 1, a normal coordinate Θ at ν̃ (x) is nothing but the radian (or, its negative) between
two unit vectors ν̃ (x0) and ν̃ (x) and the Levi-Civita translationΠ(ν̃(x),ν̃(x0)) is just the restriction

of the plane rotation through Θ to the tangent space Tν̃(x0)S1.

Remark 1.1.

(a) It is reasonable to say that γ̃ is totally differentiable with respect to ν̃ if H(ϕ̃,ν̃) is creative.
(b) For a creative hyperplane family H(ϕ̃,ν̃), the map-germ (ν̃, γ̃) : (N, x0) → Sn × R at any

x0 ∈ N is called an opening of ν̃ : (N, x0) → Sn (for opening germs, see for example [12]).
Thus, definition 2 may be regarded as a globalization of the notion of opening.

(c) Definition 2 may be interpreted as follows. Let θ be a canonical contact one-form on
J1(Sn,R), namely at any (X0, Y0, P0) ∈ J1 (Sn,R) the one-form germ θ is expressed as
θ = dY −

∑n
i=1Ci dΘi, where (Θ1, . . . ,Θn) is a normal coordinate system at X0 and

(Θ1, . . . ,Θn, Y, C1, . . . , Cn) is a canonical coordinate system of J1 (Sn,R) at (X0, Y0, P0).
Then, a hyperplane family H(ϕ̃,ν̃) is creative if there exists a mapping Ω : N → J1 (Sn,R)

with the form Ω(x) =
(
ν̃(x), γ̃(x), c̃1(x), . . . , c̃n(x)

)
such that Ω∗θ = 0, where c̃1, . . . , c̃n :

N → R are some functions.
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Notice that in Legendrian singularity theory, at any point x0 ∈ N, the map-germ
Ω : (N, x0) → J1 (Sn,R) is assumed to be immersive and it is called a Legendrian immer-
sion; and for Legendrian immersion Ω, the mapping N 	 x 
→ (ν̃(x), γ̃(x)) is called a
wavefront or front (for details on Legendrian singularity theory and fronts, see for instance
[1, 2, 17]). On the other hand, in definition 2, Ω is not assumed to be immersive in general
and the mapping Ω is called a Legendrian mapping (for details on Legendrian mappings,
see for instance [12, 13, 18]). Thus, in definition 2, in general, the set-germ (Ω(N),Ω (x0))
may be singular at some point x0 ∈ N (for example, see example 4.1(d)).

(d) Notice that the one-form Ω̃ along ν̃ in definition 2 is not necessarily the pullback of a one-
form over Sn by ν̃ (for example, see example 4.1(c) and (d)) and the ‘creativeness’ does not
depend on the particular choice of ϕ̃, ν̃ and depends only on the hyperplane family H(ϕ̃,ν̃).

In the case that N = Sn and ν̃ : Sn → Sn is the identity mapping, for any ϕ̃ : Sn → R
n+1 the

hyperplane family H(ϕ̃,ν̃) is always creative by the following equality.

dγ̃ =

n∑
i=1

∂γ̃

∂Θi
dΘi.

More generally, if γ̃ : U → R may be expressed as the composition of ν̃ : U → Sn and a
certain function ξ : Sn → R over an open set U ⊂ N, then the hyperplane family H(ϕ̃|U ,ν̃|U)
is creative. However, there are examples showing that there does not exist a function
α̃ : Sn → R such that γ̃ = α̃ ◦ ν̃ although H(ϕ̃,ν̃) is creative (for example, see example
4.1(c) and (d)). Moreover, there are many examples such that H(ϕ̃|U ,ν̃|U) is not creative.

For instance, for any constant mapping ν̃ : R→ S1, the line family H(ϕ̃,ν̃) is not creative

where ϕ̃ : R→ R
2 is defined by ϕ̃(t) = t2ν̃(t). And, it is clear in this case that H(ϕ̃,ν̃) does

not create an envelope in the sense of definition 1. However, it is easily seen that

D =

{
(X1, X2) ∈ R

2 | ∃t s.t. F (X1, X2, t) =
∂F
∂t

(X1, X2, t) = 0

}
=
{

(X1, X2) ∈ R
2 | (X1, X2) · ν̃(0) = 0

}
�= ∅,

where F (X1, X2, t) = ((X1, X2) − ϕ̃(t)) · ν̃(t). Thus, for this example, the envelope defined
by definition 1 is different from the envelope in the sense of classical definition
(see 5.3 of [6]). For more examples on creative/non-creative hyperplane families and on
comparison of definition 2 with the classical envelopeD, see section 4. Therefore, it seems
that the current situation on both the definitions of envelope and the relation of the creative
condition (definition 2) with an envelope seems to be wrapped in mystery.

By definition, any frontal f̃ : N → R
n+1 with Gauss mapping ν̃ : N → Sn is an envelope cre-

ated by H(̃ f ,ν̃). Therefore, the notion of envelope created by a hyperplane family is the same as
the notion of frontal. Moreover, it is clear that for any mapping ν̃ : N → Sn, a constant map-
ping f̃ : N → R

n+1 is an envelope created by H(̃ f ,ν̃). On the other hand, for a constant mapping

ν̃ : R→ S1, if the line family H(ϕ̃,ν̃) does not create an envelope then ϕ̃ : R→ R
2 must be not

constant. From these elementary observations, it is natural to ask to obtain a necessary and
sufficient condition for a given hyperplane family H(ϕ̃,ν̃) to create an envelope f̃ : N → R

n+1

in terms of γ̃ : N →R and ν̃ : N → Sn. Moreover, it is also desirable to solve the following two
incidentally. ‘Suppose that a given hyperplane familyH(ϕ̃,ν̃) creates an envelope f̃ : N → R

n+1.

Then, obtain a representation formula of f̃ .’ ‘Suppose that n = 1. Then, find the precise relation
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Figure 4. The mirror-image mapping fP : UP → R
n+1.

between E1 envelope and E2 envelope.’ In this paper, as an application of our simple geometric
mechanism, all of these problems are solved as follows.

Theorem 1. Let N be an n-dimensional manifold without boundary and let ϕ̃ : N → R
n+1,

ν̃ : N → Sn be mappings. Then, the following three hold.

(a) The hyperplane family H(ϕ̃,ν̃) creates an envelope if and only if it is creative.
(b) Suppose that the hyperplane family H(ϕ̃,ν̃) creates an envelope f̃ : N → R

n+1. Then, for

any x ∈ N, under the canonical identifications T∗
ν̃(x)S

n ∼= Tν̃(x)Sn ⊂ Tν̃(x)R
n+1 ∼= R

n+1, the

(n + 1)-dimensional vector f̃ (x) is represented as follows.

f̃ (x) = ω̃(x) + γ̃(x)ν̃(x),

where the (n + 1)-dimensional vector ω̃(x) is identified with the corresponding n-
dimensional cotangent vector ω̃(x) under these identifications.

(c) Suppose that n = 1. Then, the line family H(ϕ̃,ν̃) creates an envelope (E2-envelope) if and
only if it creates an E1 envelope. Moreover, these two envelopes are exactly the same.

By theorem 1, it is natural to call ω̃ the creator for an envelope f̃ created by H(ϕ̃,ν̃). Recall
that E1 envelope (resp., E2 envelope) is the set of the limit of intersections with nearby lines
(resp., a parametrization tangent to all members of the given family). Thus, even in the case of
plane, E2 envelope is exactly the same as the envelope in definition 1.

The key idea for the proof of theorem 1 is to regard the given hyperplane family as a moving
mirror parametrized by x ∈ N. Then, for any parameter x0 ∈ N, by taking a point P ∈ R

n+1

outside the mirror H(ϕ̃(x0),ν̃(x0)), the mirror-image

fP(x) = 2 ((ϕ̃(x) − P) · ν̃(x)) ν̃(x) + P

of P by the mirror H(ϕ̃(x),ν̃(x)) must have the same information as the mirror since the mirror

is reconstructed as the perpendicular bisectors of the segment P fP(x), where x is a point in
a sufficiently small neighbourhood UP of x0. Hence, investigation of the given hyperplane
family H(

ϕ̃|UP ,ν̃|UP

) may be replaced with analysing the associated mirror-image mapping

fP : UP → R
n+1 (see figure 4). This suggests applicability of results in [15] to the problem

of this paper.
A sketch of the proof of theorem 1(a) may be given as follows. Suppose that the hyperplane

family H(ϕ̃,ν̃) is creative. Then, by definition, there exists a mapping Ω̃ : N → T∗Sn having
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Figure 5. The location ˜f P(x0) does not depend on the particular choice of P.

the form Ω̃(x) = (ν̃(x), ω̃(x)) such that the equality dγ̃ = ω̃ holds as germs of one-form at x0.
Then, by investigating the Jacobian matrix of the mirror-image mapping fP : UP → R

n+1 at
x ∈ UP directly, it turns out that for any x ∈ UP the non-zero vector

vP(x) =
n∑

i=1

(
(ω̃ (x) − P)

(
∂

∂Θ(i,ν̃(x))

))
∂

∂Θ(i,ν̃(x))
− ((ϕ̃(x) − P) · ν̃ (x)) ν̃ (x)

is perpendicular to the vector d( fP)x (v) for any v ∈ T xN, whereRn+1, Tν̃(x)R
n+1 and T∗

ν̃(x)R
n+1

are identified and ∂
∂Θ(i,ν̃(x))

= P(ν̃(x),ν̃(x0))

(
∂

∂Θi

)
. Thus, fP : UP → R

n+1 is a frontal. From the

construction, the mapping f̃ P = vP + fP : UP → R
n+1 must be exactly the same as the map-

ping f̃ P given in theorem 1 of [15]. Therefore, by theorem 1 of [15] asserting that f̃ P satisfies
both conditions (a) and (b) of definition 1, f̃ P is an envelope created by the hyperplane family
H(

ϕ̃|UP ,ν̃|UP

). The mapping f̃ P : UP → R
n+1 is called the anti-orthotomic of fP : UP → R

n+1

relative to P. Calculation shows

f̃ P(x0) = ω̃ (x0) + γ̃ (x0) ν̃ (x0) . (∗)

Thus, unlike fP(x0), the location f̃ P(x0) does not depend on the particular choice of P. In other
words, in order to discover the formula (∗), the role of P is merely an auxiliary point just like
an auxiliary line in elementary geometry (see figure 5). Since x0 is an arbitrary point of N, the
hyperplane family H(ϕ̃,ν̃) creates an envelope f̃ : N → R

n+1.
Conversely, suppose that the given hyperplane family H(ϕ̃,ν̃) creates an envelope

f̃ : N → R
n+1. Then, the mirror-image mapping fP : UP → R

n+1 (resp., the mapping

gP : UP →R
n+1 defined by gP(x) =

(
f̃ (x) − P

)
· ν̃(x) + P) is called the orthotomic (resp.,

pedal) of f̃ |UP relative to the point P. It is known that both the orthotomic fP and the pedal
gP are frontals (see proposition 1 and corollary 1 of [15]). We prefer to investigate the ortho-
tomic fP rather than the pedal gP because its Gauss mapping νP : UP → Sn has characteristic

properties: νP(x) = f̃(x)− fP(x)
‖ f̃(x)− fP(x)‖ and ν̃(x) · νP(x) �= 0 for any x ∈ UP, and thus we can take a

bird’s eye view of f̃ (x). Set ω̃(x) = f̃ (x) − γ̃(x)ν̃(x) and Ω̃(x) = (ν̃(x), ω̃(x)) for any x ∈ UP.
Then, under the identification ofRn+1 and T∗

ν̃(x)R
n+1, Ω̃ having the form Ω̃(x) = (ν̃(x), ω̃(x)) is

a well-defined mapping UP → T ∗Sn. By investigating the Jacobian matrix of the mirror image
mapping fP at x ∈ UP directly again, it turns out that ω̃ is actually the creator for the envelope
f̃ |UP . Since the vector ω̃(x0) does not depend on the particular choice of P and the point x0 is
an arbitrary point of N, H(ϕ̃,ν̃) is creative.
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Theorem 1(b) is a direct by-product of the proof of theorem 1(a) (see figure 5). Theorem
1(c) seems to be not a direct by-product of the proof of theorem 1(a) although it can be proved
relatively easily by using the above argument (see subsection 2.3).

When N = Sn and ν̃ : Sn → Sn is the identity mapping, it is easily seen ω̃(x) = ∇γ̃(x).
Therefore, in the case that N = Sn and ν̃ : Sn → Sn is the identity mapping, theorem 1(b) has
been known as the Cahn–Hoffman vector formula ([11]). Theorem 1(b) is a comprehensive
generalization of their formula. Any Wulff shape is clearly a convex body and conversely it is
known that any convex body can be constructed by the Wulff construction (for instance, see
[19]). There are many Wulff shapes such that the surface energy density functions γ : Sn → R

are not differentiable (convex polytopes are typical examples). Thus, for studying Wulff shapes
having non-smooth surface energy functions, it is very significant to answer the following two
problems: ‘(a) generalize Cahn–Hoffman vector formula to the corresponding formula for any
ν̃ : N → Sn’ and ‘(b) resolution of singularities of the boundary of a convex body having non-
smooth boundary by a frontal f̃ : Sn → R

n+1’. By theorem 1(b), the problem (a) is completely
solved. As for the problem (b), to the best of author’s knowledge, only the boundary of a square
has been realized as a frontal f̃ : S1 → R

2 so far (see [15]). Although there are apparently no
published proofs at present, it is a comparatively straightforward generalization of this result
to show that the boundary of a convex polygon is realized as a frontal f̃ : S1 → R

2. However,
even in the plane case, the problem (b) for the boundary of a convex body in general seems to
be wrapped in mystery.

Moreover, theorem 1(b) might be useful even for the study of force problems in higher
dimensional vector spaces. In [4], Petr Blaschke discovered that pedal coordinates are more
suitable settings to study force problems in R

2. Readers who want to confirm their usefulness
are recommended to refer to [4] (see also 7.24 (6) of [6] though this is not a force problem
but a very suitable problem for understanding how useful pedal coordinates are). Theorem
1(b) may be regarded as a higher dimensional generalization of pedal coordinates. Hence, it
is expected that theorem 1(b) is a very suitable expression to study force problems etc in all
finite-dimensional vector spaces over R. Example 4.2(b) might be regarded as examples in
which higher dimensional version of pedal coordinates are effectively used.

As an application of theorem 1, a characterization for a hyperplane family to create a unique
envelope is given as follows.

Theorem 2. Let ϕ̃ : N → R
n+1, ν̃ : N → Sn be mappings. Then, the hyperplane family

H(ϕ̃,ν̃) creates a unique envelope if and only if it is creative and the set consisting of regular
points of ν̃ is dense in N.

Under the assumption that Ω in remark 1.1(b) is immersive and some conditions are sat-
isfied, a unique existence result of envelopes for hyperplane families has been obtained in
[7]. Since their assumptions clearly imply that the creative condition defined in definition 2
is satisfied and the set consisting of regular points of ν̃ is dense, their result follows from
theorems 1 and 2.

Notice that non-unique existence cases, too, are intriguing cases since theorem 1 may be
effectively applied even in such cases (see example 4.2(a) and (b)).

This paper is organized as follows. Theorems 1 and 2 are proved in sections 2 and 3 respec-
tively. In section 4, examples are given. An alternative proof of theorem 1 except for theorem
1(c) is given in appendix. The alternative proof is a proof by a gauge theoretic approach. In
order to avoid unnecessary complication, the alternative proof is given only in the case n = 1.
The author has no idea on how to prove theorem 1(c) by using the alternative proof.

2595



Nonlinearity 35 (2022) 2587 T Nishimura

Figure 6. The mirror-image mapping fP : UP → R
n+1.

2. Proof of theorem 1

2.1. Proof of theorem 1(a)

2.1.1. Proof of ‘if’ part. Let x0 be an arbitrary point of N. Take one point P of
R

n+1 − H(ϕ̃(x0),ν̃(x0)) and fix it. It follows (ϕ̃ (x0) − P) · ν̃ (x0) �= 0. Let ŨP be the set of points
x ∈ N satisfying

(ϕ̃(x) − P) · ν̃(x) �= 0. (2.1)

Then, it is clear that ŨP is an open neighbourhood of x0 and the mirror image of the fixed point
P by the mirror H(ϕ̃(x),ν̃(x)) is given by

2 ((ϕ̃(x) − P) · ν̃(x)) ν̃(x) + P

for any x ∈ ŨP.
Since the hyperplane family H(ϕ̃,ν̃) is assumed to be creative, there exists a mapping

Ω̃ : N → T∗Sn with the form Ω̃(x) = (ν̃(x), ω̃(x)) such that for any x ∈ N the following equality
holds as one-form germs at x.

dγ̃ = ω̃.

Let (V , (Θ1, . . . ,Θn)) be a normal coordinate neighbourhood of Sn at ν̃ (x0). Set
UP = ŨP ∩ ν̃−1(V). Consider the mirror-image mapping fP : UP → R

n+1 defined by

fP(x) = 2 ((ϕ̃(x) − P) · ν̃(x)) ν̃(x) + P

for any x ∈ UP (figure 6). In order to show that fP is a frontal, it is sufficient to construct a
Gauss mapping with respect to fP. By using the mapping Ω̃|UP , a Gauss mapping for fP is
constructed as follows. For any x ∈ UP set X = ν̃(x). Let Π(X,X0) : TX0 Sn → TXSn be the Levi-

Civita translation. For any i (1 � i � n), set ∂
∂Θ(i,X)

= Π(X,X0)

(
∂

∂Θi

)
. Then notice that for any

x ∈ UP, under the identification of Rn+1 and T fP(x)R
n+1,〈

∂

∂Θ(1,X)
, . . . ,

∂

∂Θ(n,X)
, ν̃(x)

〉
is an orthonormal basis of the tangent vector space T fP(x)R

n+1.
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Lemma 2.1. For any x ∈ UP, the following equality holds.

d (P · ν̃) =
n∑

i=1

(
P · ∂

∂Θ(i,X)

)
d (Θi ◦ ν̃) .

Proof of lemma 2.1.

d (P · ν̃) =
n∑

j=1

∂ (P · ν̃)
∂x j

(x)dx j

=
n∑

j=1

(
P ·
(

n∑
i=1

∂ (Θi ◦ ν̃)
∂x j

(x)
∂

∂Θ(i,X)

))
dx j

=

n∑
i=1

(
P · ∂

∂Θ(i,X)

)⎛⎝ n∑
j=1

∂ (Θi ◦ ν̃)
∂x j

(x)dx j

⎞⎠
=

n∑
i=1

(
P · ∂

∂Θ(i,X)

)
d (Θi ◦ ν̃) .

�

By lemma 2.1, under the identification of Tν̃(x)Sn and T∗
ν̃(x)S

n, it follows

d ((ϕ̃− P) · ν̃) = d (ϕ̃ · ν̃) − d (P · ν̃)

= dγ̃ − d (P · ν̃)

= ω̃ − d (P · ν̃)

=

n∑
i=1

(
ω̃(x) · ∂

∂Θ(i,X)

)
d (Θi ◦ ν̃) −

n∑
i=1

(
P · ∂

∂Θ(i,X)

)
d (Θi ◦ ν̃)

=

n∑
i=1

(
(ω̃(x) − P) · ∂

∂Θ(i,X)

)
d (Θi ◦ ν̃)

for any x ∈ UP. Set

vP(x) =
n∑

i=1

(
(ω̃(x) − P) · ∂

∂Θ(i,X)

)
∂

∂Θ(i,X)
− ((ϕ̃(x) − P) · ν̃(x)) ν̃(x)

for any x ∈ UP whereRn+1 and T fP(x)R
n+1 are identified and T fP(x)Sn and T∗

fP(x)S
n are identified.

By section 2.1, vP(x) is not the zero vector. Moreover, the following holds.

Lemma 2.2. For any v ∈ Tx0 N, vP(x0) is perpendicular to d( fP)x0
(v).

Proof of lemma 2.2. Calculation of the product of the vector vP (x0) and the Jacobian matrix
of fP at x0 (denoted by J( fP)x0

) is carried out as follows, where R
n+1 and T fP(x0)R

n+1 are
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identified and T fP(x0)Sn and T∗
fP(x0)Sn are identified.

vP (x0) J( fP)x0

= 2
n∑

i=1

(
(ω̃ (x0) − P) · ∂

∂Θi

)
((ϕ̃ (x0) − P) · ν̃ (x0)) d (Θi ◦ ν̃)

− 2 ((ϕ̃ (x0) − P) · ν̃ (x0)) d((ϕ̃− P) · ν̃)at x0

= 2 ((ϕ̃ (x0) − P) · ν̃ (x0))
n∑

i=1

(
(ω̃ (x0) − P) · ∂

∂Θi

)
d (Θi ◦ ν̃)

− 2 ((ϕ̃ (x0) − P) · ν̃ (x0))
n∑

i=1

(
(ω̃ (x0) − P) · ∂

∂Θi

)
d (Θi ◦ ν̃)

= 0.

�

We may consider that the point x0 is an arbitrary point of UP. Thus we have the following.

Lemma 2.3. The mapping fP : UP → R
n+1 is a frontal with Gauss mapping νP : UP → Sn

such that νP(x) · ν̃(x) �= 0, where νP(x) = vP(x)
‖vP(x)‖ .

By lemma 2.3, the hyperplane H(ϕ̃(x),ν̃(x)) and the line 
x = { fP(x) + tνP(x) |t ∈ R} must

intersect only at one point for any x ∈ UP. Define the mapping f̃ P : UP → R
n+1 by

{
f̃ P(x)

}
= H(ϕ̃(x),ν̃(x)) ∩ 
x.

Then, from the construction, f̃ P must have the following form (see p 7 of [15]).

f̃ P(x) = fP(x) − ‖ fP(x) − P‖2

2 ( fP(x) − P) · νP(x)
νP(x).

By theorem 1 of [15] (more precisely, by 3.1 in p 9 of [15]) and lemma 2.3, we have the
following.

Lemma 2.4. The mapping f̃ P is a frontal with Gauss mapping ν̃|UP : UP → Sn. In other
words, f̃ P : UP → R

n+1 is an envelope created by the hyperplane family H(
ϕ̃|UP ,ν̃|UP

).

On the other hand, it is easily seen that ( fP (x0) + vP (x0) − ϕ̃ (x0)) · ν̃ (x0) = 0 (see
figure 7). Thus, the vector fP (x0) + vP (x0) must belong to H(ϕ̃(x0),ν̃(x0)). From the construction

and by using the equality P =
∑n

i=1

(
P · ∂

∂Θi

)
∂

∂Θi
+ (P · ν̃ (x0)) ν̃ (x0) , we have the following.
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Figure 7. Figure for proof of ‘if’ part.

f̃ P (x0) = fP(x) + vP (x0)

= 2 ((ϕ̃ (x0) − P) · ν̃ (x0)) ν̃ (x0) + P

+

n∑
i=1

(
(ω̃ (x0) − P) · ∂

∂Θi

)
∂

∂Θi
− ((ϕ̃ (x0) − P) · ν̃ (x0)) ν̃ (x0)

= ((ϕ̃ (x0) − P) · ν̃ (x0)) ν̃ (x0) + P +

n∑
i=1

(
(ω̃ (x0) − P) · ∂

∂Θi

)
∂

∂Θi

= (ϕ̃ (x0) · ν̃ (x0)) ν̃ (x0) +
n∑

i=1

(
ω̃ (x0) · ∂

∂Θi

)
∂

∂Θi

= γ̃ (x0) ν̃ (x0) + ω̃ (x0) .

This proves the following lemma.

Lemma 2.5. The following equality holds.

f̃ P (x0) = γ̃ (x0) ν̃ (x0) + ω̃ (x0) .

Lemma 2.5 shows that f̃ P (x0) does not depend on the particular choice of
P ∈ R

n+1 − H(ϕ̃(x0),ν̃(x0)). Define the mapping f̃ : N → R
n+1 by f̃ (x) = γ̃(x)ν̃(x) + ω̃(x).

Since x0 is an arbitrary point of N, by lemmas 2.4 and 2.5, it follows that the mapping
f̃ : N → R

n+1 is an envelope created by H(ϕ̃,ν̃). This completes the proof of ‘if’ part. �

2.1.2. Proof of ‘only if’ part. Suppose that the hyperplane family H(ϕ̃,ν̃) creates an

envelope f̃ : N → R
n+1. Then, by definition, f̃ is a frontal such that the inclusion

f̃ (x) + d f̃ x(TxN) ⊂ H(ϕ̃(x),ν̃(x)) holds for any x ∈ N. Let ω̃ : N → R
n+1 be the mapping defined

by ω̃(x) = f̃ (x) − γ̃(x)ν̃(x) (see figure 8). It is sufficient to show that under some identifica-
tions, ω̃ is actually a creator for the envelope f̃ .

It is easily seen that ω̃(x) · ν̃(x) = 0 for any x ∈ N. Thus, under the identification of
R

n+1 and T∗
ν̃(x)R

n+1, we have

Lemma 2.6. For any x ∈ N, ω̃(x) ∈ T∗
ν̃(x)S

n holds.
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Figure 8. Figure for proof of ‘only if’ part.

Let Ω̃ : N → T∗Sn be the mapping defined by Ω̃(x) = (ν̃(x), ω̃(x)). Let x0 be an arbitrary
point of N and let P be a point of Rn+1 − H(ϕ̃(x0),ν̃(x0)). Again, we consider the mirror-image

mapping fP : ŨP → R
n+1 defined by

fP(x) = 2 ((ϕ̃(x) − P) · ν̃(x)) ν̃(x) + P,

where ŨP = {x ∈ N | (ϕ̃(x) − P) · ν̃(x) �= 0}. The mapping fP is exactly the orthotomic of f̃ |ŨP
relative to the point P. Thus, by proposition 1 of [15] (more precisely, by 2.1 in pp 7–8 of [15]),
fP is a frontal and the mapping νP : ŨP → Sn define by

νP(x) =
f̃ (x) − fP(x)

‖ f̃ (x) − fP(x)‖

is its Gauss mapping. In particular, we have the following.

Lemma 2.7. For any x ∈ ŨP and any v ∈ TxN, the following holds.(
f̃ (x) − fP(x)

)
· d( fP)x(v) = 0.

For any x ∈ ŨP, set

gP(x) =
1
2

( fP(x) − P) + P = ((ϕ̃(x) − P) · ν̃(x)) ν̃(x) + P.

Then, since fP(x) is the mirror-image of P with respect to the mirror H(ϕ̃(x),ν̃(x)), the following
clearly holds.

Lemma 2.8. The vector f̃ (x) − gP(x) is perpendicular to the vector gP(x) − fP(x) =
− ((ϕ̃(x) − P) · ν̃(x)) ν̃(x) for any x ∈ ŨP.

Thus,

f̃ (x) − fP(x) =
(

f̃ (x) − gP(x)
)
+ (gP(x) − fP(x))

is an orthogonal decomposition of f̃ (x) − fP(x) for any x ∈ ŨP (see figure 8).
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In order to decompose the vector f̃ (x) − gP(x) reasonably, the open neighbourhood ŨP of
x0 is reduced as follows. Let (V , (Θ1, . . . ,Θn)) be a normal coordinate neighbourhood of Sn

at ν̃ (x0). Set again UP = ŨP ∩ ν̃−1(V). Notice that 〈dΘ1, . . . , dΘn〉 is an orthonormal basis of
the cotangent space T∗

ν̃(x0)Sn.

Lemma 2.9. The equality

f̃ (x0) − gP(x0) = ω̃(x0) −
n∑

i=1

(
P · ∂

∂Θi

)
∂

∂Θi
,

holds where three vector spaces Rn+1, Tν̃(x0)R
n+1 and T∗

ν̃(x0)R
n+1 are identified.

Proof of lemma 2.9.

f̃ (x0) − gP (x0) = f̃ (x0) − (((ϕ̃ (x0) − P) · ν̃ (x0)) ν̃ (x0) + P)

=
(

f̃ (x0) − (ϕ̃ (x0) · ν̃ (x0)) ν̃ (x0)
)
+ ((P · ν̃ (x0)) ν̃ (x0) − P)

=
(

f̃ (x0) − γ̃ (x0) ν̃ (x0)
)
+ ((P · ν̃ (x0)) ν̃ (x0) − P)

= ω̃ (x0) −
n∑

i=1

(
P · ∂

∂Θi

)
∂

∂Θi
.

�

By lemma 2.9, the following holds.

f̃ (x0) − fP (x0) =
(

f̃ (x0) − gP (x0)
)
+ (gP (x0) − fP (x0))

= ω̃ (x0) −
n∑

i=1

(
P · ∂

∂Θi

)
∂

∂Θi
− ((ϕ̃ (x0) − P) · ν̃ (x0)) ν̃ (x0) .

Hence, by lemmas 2.1 and 2.7, the germ of one-form dγ̃ at x0 is calculated as follows, where

X = ν̃(x), ∂
∂Θ(i,X)

= P(X,X0)

(
∂

∂Θi

)
. and P(X,X0) : TX0Sn → TXSn is the Levi-Civita translation.

dγ̃ = dγ̃ − d (P · ν̃) + d (P · ν̃)

= d ((ϕ̃− P) · ν̃) + d (P · ν̃)

=

n∑
i=1

(
(ω̃ − P) · ∂

∂Θ(i,X)

)
d (Θi ◦ ν̃) +

n∑
i=1

(
P · ∂

∂Θ(i,X)

)
d (Θi ◦ ν̃)

=

(
ω̃ −

n∑
i=1

(
P · ∂

∂Θ(i,X)

)
d (Θi ◦ ν̃)

)
+

n∑
i=1

(
P · ∂

∂Θ(i,X)

)
d (Θi ◦ ν̃)

= ω̃.

This calculation proves the following lemma.
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Lemma 2.10. The equality

dγ̃ = ω̃

holds as germs of one-form at x0.

Since x0 is an arbitrary point of N, by lemma 2.10, ω̃ is actually the creator for the given
envelope f̃ : N → R

n+1. This completes the proof of ‘only if’ part. �

2.2. Proof of theorem 1(b)

Theorem 1(b) is a direct by-product of the proof of theorem 1(a). �

2.3. Proof of theorem 1(c)

Recall that the line family H(ϕ̃,ν̃) is said to create an E1 envelope [denoted by (E1) in this
subsection] if for any fixed t0 ∈ N and any t ∈ N near t0 the limit limt→t0 H(ϕ̃(t),ν̃(t)) ∩ H(ϕ̃(t0),ν̃(t0))
exists. On the other hand, the line family H(ϕ̃,ν̃) is said to create an E2 envelope [denoted by
(E2) in this subsection] if it creates an envelope in the sense of definition 1.

(E1) ⇒ (E2). Let t0 be a point of N and let ti ∈ N (i = 1, 2, . . .) be a sequence conversing
to t0. Since (E1) is assumed, we can assume that a point Xti can be taken from the intersection
H(ϕ̃(t),ν̃(t)) ∩ H(ϕ̃(t0),ν̃(t0)) such that limti→t0 Xti exists. Denote the limit by Xt0 . Then, we have the
following. (

Xti − ϕ̃(ti)
)
· ν̃(ti) = 0,(

Xti − ϕ̃(t0)
)
· ν̃(t0) = 0.

This implies

Xti · (ν̃(ti) − ν̃(t0)) = γ̃(ti) − γ̃(t0).

Thus we have

Xt0 ·
∂ν̃

∂t
(t0) =

∂γ̃

∂t
(t0).

This implies that there exists a real number α(t0) such that the following identity holds where
d (Θ ◦ ν̃) and dγ̃ stand for the one-dimensional cotangent vectors in T∗

t0
N, namely the following

identity is nothing but the identity of two real numbers.

α(t0)d (Θ ◦ ν̃) = dγ̃.

It is not difficult to see that the function α : N → R is of class C∞. This means that the
line family H(ϕ̃,ν̃) is creative. Therefore, by theorem 1(a), the line family creates an E2

envelope. �
(E2) ⇒ (E1). For the proof of this implication, it is used the notions and notations introduced

in the proof of theorem 1(a). The assumption (E2) implies that γ̃ is totally differentiable with
respect to ν̃. Take an arbitrary point t0 ∈ N and fixed it. Since γ̃ is totally differentiable with
respect to ν̃ at t0, for any t near t0 if the length of the vector

−−−−−−→
fP(t0) fP(t) is positive, then the

horizontal vector of
−−−−−−→
fP(t0) fP(t) must be non-zero, where P is a point taken outside the line

H(ϕ̃(t0),ν̃(t0)) and fP is a mirror-image mapping introduced in the proof of theorem 1(a). Denote

the intersection of the perpendicular bisector of
−−−−−−→
fP(t0) fP(t) and the line H(ϕ̃(t0),ν̃(t0)) by Jt. Then,
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Figure 9. Figure for (E2) ⇒ (E1).

from the construction, it follows that the triangle �Jt fP(t0)fP(t) is an isosceles triangle with legs
Jt fP(t0) and Jt fP(t). This implies the following (see figure 9).

Jt ∈ H(ϕ̃(t),ν̃(t)) ∩ H(ϕ̃(t0),ν̃(t0)).

Notice that limt→t0‖Jt fP(t0)‖ is positive. Thus, we have

lim
t→t0

∠Jt fP(t0) fP(t) = lim
t→t0

∠Jt fP(t) fP(t0) =
π

2
.

By proposition 1 of [15] asserting that fP is a frontal with its Gauss mapping fP(t0)− f̃P(t0)
‖ fP(t0)− f̃P(t0)‖ , it

follows

lim
t→t0

Jt = f̃ P(t0),

where f̃ P is the anti-orthotomic of fP relative to the point P introduced in the proof of theorem
1(a). Since t0 is an arbitrary point of N, the given E2 envelope must be an E1 envelope by
theorem 1(a). �

3. Proof of theorem 2

Proof of ‘if’ part. Since the hyperplane H(ϕ̃,ν̃) is creative, by theorem 1, it creates an

envelope. Let f̃ 1, f̃ 2 : N → R
n+1 be envelopes created by H(ϕ̃,ν̃).

Let x0 ∈ N be a regular point of ν̃. Then, there exists an open coordinate neighbourhood
(U, (x1, . . . , xn)) such that x0 ∈ U and ν̃|U : U → ν̃(U) is a diffeomorphism. Then, the germ of
one-form d (ϕ̃ · ν̃) at x0 ∈ U is

d (ϕ̃ · ν̃) =
n∑

j=1

∂ (ϕ̃ · ν̃)
∂x j

(x)dx j

=

n∑
j=1

∂ (ϕ̃ · ν̃)
∂x j

(x)

(
n∑

i=1

∂
(
x j ◦ ν̃−1

)
∂Θ(i,ν̃(x))

(ν̃(x)) dΘi

)

=

n∑
i=1

⎛⎝ n∑
j=1

∂ (ϕ̃ · ν̃)
∂x j

(x)
∂
(
x j ◦ ν̃−1

)
∂Θ(i,ν̃(x))

(ν̃(x))

⎞⎠ dΘi.

2603



Nonlinearity 35 (2022) 2587 T Nishimura

Let Ω̃ : N → T∗Sn be the mapping with the form Ω̃(x) = (ν̃(x), ω̃(x)) such that ω̃ is the creator
for f̃ . Then, by the above calculation, ω̃|U must have the following form.

ω̃|U(x) =
n∑

i=1

⎛⎝ n∑
j=1

∂ (ϕ̃ · ν̃)
∂x j

(x)
∂
(
x j ◦ ν̃−1

)
∂Θ(i,ν̃(x))

(ν̃(x))

⎞⎠ dΘi.

Hence, by theorem 1(b), we have the following.

Lemma 3.1. At a regular point x0 ∈ N of ν̃, the equality f̃ 1(x0) = f̃ 2(x0) holds.

Let x0 ∈ N be a singular point of ν̃. Then, since we have assumed that the set of regular
points of ν̃ is dense, there exists a point-sequence {yi}i=1,2,... ⊂ N such that yi is a regular
point of ν̃ for any i ∈ N and limi→∞ yi = x0. Then, by lemma 3.1, we have

f̃ 1(x0) = f̃ 1

(
lim
i→∞

yi

)
= lim

i→∞
f̃ 1(yi) = lim

i→∞
f̃ 2(yi) = f̃ 2

(
lim
i→∞

yi

)
= f̃ 2(x0).

Thus, we have the following.

Lemma 3.2. Even at a singular point x0 ∈ N of ν̃, the equality f̃ 1(x0) = f̃ 2(x0) holds.

�
Proof of ‘only if’ part. Suppose that the hyperplaneH(ϕ̃,ν̃) is creative and the set of regular
points of ν̃ is not dense in N. Then, there exists an open set U of N such that any point x ∈ U
is a singular point of ν̃. Then, there exist an integer k (0 � k < n) and an open set Uk such that
Uk ⊂ U and the rank of ν̃ at x is k for any x ∈ Uk. Let x0 be a point of Uk. We may assume
that Uk is sufficiently small open neighbourhood of x0. Then, by the rank theorem (for the rank
theorem, see for example [5]), we have the following.

Lemma 3.3. There exist functions η1, . . . , ηk : N → R such that the following three hold.

(a) For any i (1 � i � n), ηi(x) = 0 if x /∈ Uk.
(b) There exists an i (1 � i � n) such that ηi (x0) �= 0.
(c) The following equality holds for any x ∈ N.

n∑
i=1

ηi(x)d (Θi ◦ ν̃) = 0.

Since we have assumed that H(ϕ̃,ν̃) is creative, there exists a mapping Ω̃ : N → T∗Sn with

the form Ω̃(x) = (ν̃(x), ω̃(x)) such that d (ϕ̃ · ν̃) = ω̃. By lemma 3.3, the following holds.

Lemma 3.4. For any function α : N → R and any x ∈ N, the following equality holds as
germs of one-form at x.

d (ϕ̃ · ν̃) = ω̃(x) + α(x)
n∑

i=1

ηi(x)d (Θi ◦ ν̃) .

Therefore, by theorem 1(b), uncountably many distinct envelopes f̃ are created by the same
hyperplane family H(ϕ̃,ν̃). �
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Figure 10. Figure for example 4.1(a).

Figure 11. Figure for example 4.1(b).

Figure 12. Figure for example 4.1(c) in the case θ0 ∈ 2πZ.

4. Examples

Example 4.1 (uniform spin of affine tangent lines).

(a) Let α : R→ R be a non-constant function. Notice that α is of class C∞ as stated at
the top of section 1. Let ϕ̃ : R→ R

2 be the mapping defined by ϕ̃(t) = (α(t), 0). Let
ν̃ : R→ S1 be the constant mapping ν̃(t) = (0, 1). For any fixed θ0 ∈ R, let Rθ0 : R2 → R

2
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Figure 13. Figure for example 4.1(d) in the case θ0 ∈ 2πZ.

Figure 14. Example 4.2(a).

be the linear mapping representing the rotation through angle θ0. Set ν̃θ0 (t) = Rθ ◦ ν̃(t) =
(− sin θ0, cos θ0) and γ̃θ0 (t) = ϕ̃(t) · ν̃θ0 (t) = −α(t) sin θ0. Figure is depicted in figure 10.
It follows d

(
Θ ◦ ν̃θ0

)
≡ 0 and dγθ0 = − sin θ0 dα. Since α is non-constant, there exists

a regular point of α, that is to say, there exists a t ∈ R such that α′(t) �= 0. Therefore, by
theorem 1, the line family H(

ϕ̃,ν̃θ0

) creates an envelope if and only if θ0 ∈ πZ. Suppose

that θ0 ∈ πZ. In this case, by theorem 2, uncountably many distinct envelope f̃ : R→ R
2

can be created by the given line family H(
ϕ̃,ν̃θ0

). Let β : R→ R be a function. Since

d
(
Θ ◦ ν̃θ0

)
≡ 0 and dγθ0 ≡ 0 in this case, the one-form t 
→ β(t)d

(
Θ ◦ ν̃θ0

)
along ν̃θ0

may be a creator ω̃ for the line family. By theorem 1(b), the envelope f̃ has the following
form.

f̃ (t) = ω̃(t) +
(
γ̃θ0 (t) · ν̃θ0 (t)

)
ν̃θ0 (t) = (±β(t), 0) + (0, 0) = (±β(t), 0),

where double sign should be read in the same order and β(t)d
(
Θ ◦ ν̃θ0

)
, β(t)R π

2
◦ ν̃θ0 (t)

are identified (both are denoted by the same symbol ω̃(t)).
Set Fθ0 (X1, X2, t) = (X1 − α(t), X2) · ν̃θ0 (t). Suppose that θ0 /∈ πZ. In this case, the

classical common definition of envelope D relative to Fθ0 is as follows.

D = {(X1, X2) | ∃t s.t.α′(t) = 0, X1 = cot θ0X2 + α(t)} .

2606



Nonlinearity 35 (2022) 2587 T Nishimura

Therefore, in this case, D = E1 = E2 = ∅ if and only if α is non-singular. Suppose that
θ0 ∈ πZ. Then,

D = {(X1, X2) |X2 = 0} .

Therefore, in this case, E1 = E2 = D if and only if β is surjective.
(b) Let ν̃ : R→ S1 be the mapping given by ν̃(t) = (cos t, sin t). Set ν̃θ0 = Rθ0 ◦ ν̃, where

Rθ0 is the rotation defined in the above example. Then, since
d
(
Θ◦ν̃θ0

)
dt (t) = 1, it fol-

lows d
(
Θ ◦ ν̃θ0

)
= dt. Thus, by theorems 1(a) and 2, for any ϕ̃ : R→ R

2 the line family

H(
ϕ̃,ν̃θ0

) creates a unique envelope f̃ θ0 . For any ϕ̃ : R→ R
2, set γ̃θ0 (t) = ϕ̃(t) · ν̃θ0 (t).

Since dγ̃θ0 =
dγ̃θ0

dt (t)d
(
Θ ◦ ν̃θ0

)
, by theorem 1(b), it follows

f̃ (t) =
dγ̃θ0

dt
(t)Rπ/2 ◦ ν̃θ0 (t) + γ̃θ0 (t)ν̃θ0 (t)

=
dγ̃θ0

dt
(t)Rπ/2 ◦ ν̃θ0 (t) + γ̃θ0 (t) (cos (t + θ0) , sin (t + θ0)) ,

where the one-form d (Θ ◦ ν̃) and the vector field Rπ/2 ◦ ν̃θ0 (t) are identified. Let α : R→
R be a function and set ϕ̃(t) = ν̃(t) + α(t)Rπ/2 ◦ ν̃θ0 (t). Then, it follows

dγ̃θ0
dt (t) ≡ 0. Thus,

as expected, the envelope created by the line family H(
ϕ̃,ν̃θ0

) in this case is actually the

circle with radius |c| centred at the origin, where c = γ̃θ0 (t) = cos θ0 (see figure 11).
(c) Let ν̃ : R→ S1 be the mapping defined by ν̃(t) = 1√

1+9t4

(
−3t2, 1

)
. Set ν̃θ0 = Rθ0 ◦ ν̃

where Rθ0 is as above. Let α : R→ R be a function and set ϕ̃θ0 (t) = (t, t3) + α(t)Rπ/2 ◦
ν̃θ0 (t). Set γ̃θ0 (t) = ϕ̃θ0 (t) · ν̃θ0 (t). It is easily seen that 0 is a singular point of γ̃θ0 if and

only if θ0 ∈ πZ. On the other hand, by calculation, we have
d
(
Θ◦ν̃θ0

)
dt (t) = 6t

1+9t4 and thus
0 is a unique singular point of ν̃θ0 for any θ0. Therefore, by theorem 1, the hyperplane
family H(ϕ̃,ν̃θ) does not create an envelope if θ0 /∈ πZ.

Next, suppose that θ0 ∈ πZ. Then, calculations show

d
(
γ̃θ0

)
=

∓(6t2 + 18t6)

(1 + 9t4)
3
2

dt =
∓(t + 3t5)√

1 + 9t4

d
(
Θ ◦ ν̃θ0

)
dt

(t)dt =
∓(t + 3t5)√

1 + 9t4
d
(
Θ ◦ ν̃θ0

)
,

where double sign should be read in the same order. Set ω̃(t) = ∓(t+3t5)√
1+9t4

d
(
Θ ◦ ν̃θ0

)
. By

theorems 1 and 2, the hyperplane familyH(ϕ̃,ν̃θ0
) creates a unique envelope with the desired

form

f̃ (t) = ω̃(t) + γ̃θ0 (t)ν̃θ0 (t)

=
∓(t + 3t5)

1 + 9t4

(
∓1,∓3t2

)
∓ 2t3

1 + 9t4
(∓3t2,±1)

=
1

1 + 9t4

(
t + 3t5 + 6t5, 3t3 + 9t7 − 2t3

)
=
(
t, t3
)

,

where for each t ∈ R the cotangent vector ∓(t+3t5)√
1+9t4

d
(
Θ ◦ ν̃θ0

)
and the vector ∓(t+3t5)√

1+9t4
Rπ/2 ◦

ν̃θ0 (t) in the vector space R2 are identified (see figure 12).
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Set U = R− {0}. It is easily seen that ν̃θ0 |U is non-singular even in the case θ0 /∈ πZ.
Hence, by theorems 1 and 2, the hyperplane family H(

ϕ̃|U ,ν̃θ0
|U

) creates a unique envelope

f̃ θ0 : U → R
2 even when θ0 /∈ πZ and limt→0‖ f̃ θ0 (t)‖ = ∞ when θ0 /∈ πZ.

(d) Let ν̃ : R→ S1 be the mapping defined by ν̃(t) = 1√
4+25t6

(
−5t3, 2

)
. Set ν̃θ0 = Rθ0 ◦ ν̃

where Rθ0 is as above. Let α : R→ R be a function and set ϕ̃θ0 (t) = (t2, t5) + α(t)Rπ/2 ◦
ν̃θ0 (t). Set γ̃θ0 (t) = ϕ̃θ0 (t) · ν̃θ0 (t) = −3t5 cos θ0−2t2 sin θ0−5t8 sin θ0√

4+25t6
. By calculation, we have

d
(
Θ◦ν̃θ0

)
dt (t) = 30t2

4+25t6 . Therefore, the hyperplane family H(ϕ̃,ν̃θ) is not creative if θ /∈ πZ
and it creates no envelope in this case by theorem 1.

Next, suppose that θ0 ∈ πZ. Then, calculation shows

d
(
γ̃θ0

)
=

∓30t2
(
2t2 + 5t8

)
(4 + 25t6)

√
4 + 25t6

dt

=
∓(2t2 + 5t8)√

4 + 25t6

d
(
Θ ◦ ν̃θ0

)
dt

(t)dt =
∓(2t2 + 5t8)√

4 + 25t6
d
(
Θ ◦ ν̃θ0

)
,

where double sign should be read in the same order. Therefore, the hyperplane family
H(ϕ̃,ν̃θ) is creative. Set ω̃(t) = ∓(2t2+5t8)√

4+25t6
.d
(
Θ ◦ ν̃θ0

)
. By theorems 1 and 2, H(ϕ̃,ν̃θ0

) creates

a unique envelope with the desired form

f̃ (t) = ω̃(t) + γ̃θ0 (t)ν̃θ0 (t)

=
∓(2t2 + 5t8)

4 + 25t6

(
∓2,∓5t3

)
+

∓3t5

4 + 25t6
(∓5t3,±2)

=
1

4 + 25t6

(
4t2 + 10t8 + 15t8, 10t5 + 25t11 − 6t5

)
=
(
t2, t5
)

,

where for each t ∈ R the cotangent vector ∓(2t2+5t8)√
4+25t6

d
(
Θ ◦ ν̃θ0

)
and the vector

∓(2t2+5t8)√
4+25t6

Rπ/2 ◦ ν̃θ0 (t) in the vector space R
2 are identified (see figure 13). In the case

θ0 = 0, consider the mapping Ω̃ : R→ T∗S1 given in definition 2 and Ω : R→ J1
(
S1,R

)
given in remark 1.1(a). Namely, consider the following two mappings.

Ω̃(t) =

⎛⎝ 1√
4 + 25t6

(
∓5t3,±2

)
,
∓30t2(2t2 + 5t8)(

4 + 25t6
) 3

2

⎞⎠ ,

Ω(t) =

⎛⎝ 1√
4 + 25t6

(
∓5t3,±2

)
,

∓3t5

√
4 + 25t6

,
∓30t2(2t2 + 5t8)(

4 + 25t6
) 3

2

⎞⎠ .

Since d
(
γ̃θ0

)
= ∓(2t2+5t8)√

4+25t6
d
(
Θ ◦ ν̃θ0

)
, the map-germ of Ω at any t is nothing but an open-

ing of the map-germ Ω̃ : (R, t) → T∗S1. At t = 0, the map-germ of each of them is not
immersive and has singular images.
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Set U = R− {0}. It is easily seen that ν̃θ0 |U is non-singular even in the case θ0 /∈ πZ.
Hence, by theorems 1 and 2, the hyperplane family H(

ϕ̃|U ,ν̃θ0
|U

) creates a unique envelope

f̃ θ0 : U → R
2 even when θ0 /∈ πZ and limt→0‖ f̃ θ0 (t)‖ = ∞ when θ0 /∈ πZ.

Example 4.2 (unit speed curves).

(a) Let r : R→ R
2 be a unit speed curve. As usual, set t(s) = r′(s) and n(s) is defined from

t(s) by rotating anticlockwise through π
2 . The Serret–Frenet formulas for the plane curve

r is as follows.{
t′(s) = κ(s)n(s)

n′(s) = −κ(s)t(s).

Set ϕ̃ = r and ν̃ = n. Then, the line familyH(ϕ̃,ν̃) = H(r,n) is the affine tangent line family
of the curve r. In this case, the correspondencer 
→ H(r,n) may be regarded as the Legendre
transformation of the given curve r. Set γ̃(s) = ϕ̃(s) · ν̃(s). Then,

γ̃′(s) = r(s) · (−κ(s)t(s)) = − (r(s) · t(s)) (Θt ◦ ν̃)′(s),

where ν̃(s) = (cos Θt ◦ ν̃(s), sin Θt ◦ ν̃(s)). Therefore, by theorem 1, the line family
H(ϕ̃,ν̃) creates an envelope.

Suppose that the set of regular points of ν̃ is dense, that is to say, the set {s ∈ R | κ(s) �=
0} is dense. Then, by theorem 2, the created envelopes are unique. By theorem 1, the
unique envelope is as follows (see figure 14).

f̃ (s) = ω̃(s) + γ̃(s) · ν̃(s)

= (r(s) · t(s)) t(s) + (r(s) · n(s)) n(s)

= r(s).

Notice that if there is a point s ∈ R such that κ(s) = 0, then the full discriminant of the line
family is different from the unique desired envelope since the full discriminant includes
the affine tangent line at s. This is one of advantages of our method. The correspondence

H(r,n) 
→ r

may be regarded as the inverse Legendre transformation for plane curves.
Next, suppose that the set of regular points of ν̃ is not dense. Then, there exists an

open interval (a, b) such that κ(s) = 0 for any s ∈ (a, b). Then, for any s ∈ (a, b) and any
function α : R→ R such that α(R− (a, b)) = {0}, it follows

γ̃′(s) = α(s)(Θt ◦ ν̃)′(s).

By theorem 1,

f̃ (s) = ω̃(s) + γ̃(s) · ν̃(s)

= α(s)t(s) + (r(s) · n(s)) n(s)

= ((α(s) − (r(s) · t(s))) + (r(s) · t(s))) t(s) + (r(s) · n(s)) n(s)

= r(s) + β(s)t(s),
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where β(s) = α(s) − (r(s) · t(s)). Hence, in this case, the inverse Legendre transformation
does not work well.

(b) Let r : R→R
3 be a unit speed space curve. As usual, set t(s) = r′(s) and assume

‖t′(s)‖ > 0 for any s ∈ R so that the principal normal vector n(s) can be defined by t′(s) =
‖t′(s)‖n(s). As usual, the binormal vector b(s) is defined by det (t(s), n(s), b(s)) = 1. The
Serret–Frenet formulas for the space curve r is as follows.⎧⎪⎪⎨⎪⎪⎩

t′(s) = κ(s)n(s)

n′(s) = −κ(s)t(s) + τ (s)b(s)

b′(s) = −τ (s)n(s).

Define ϕ̃ : R2 → R
3 and ν̃ : R2 → S2 by ϕ̃(s, u) = r(s) and ν̃(s, u) = b(s) respectively.

Then, the plane family H(ϕ̃,ν̃) is the family of osculating planes of the space curve r.
Set γ̃(s, u) = r(s) · b(s). Then, all of the following six identities are clear.

∂γ̃

∂s
(s, u) = r(s) · (−τ (s)n(s)) ,

∂γ̃

∂u
(s, u) = 0,

∂ (Θt ◦ ν̃)
∂s

(s, u) = 0,

∂ (Θt ◦ ν̃)
∂u

(s, u) = 0,
∂ (Θn ◦ ν̃)

∂s
(s, u) = −τ (s),

∂ (Θn ◦ ν̃)
∂u

(s, u) = 0.

Therefore, we have the following.

∂γ̃

∂s
(s, u) = α1(s, u)

∂ (Θt ◦ ν̃)
∂s

(s, u) + (r(s) · n(s))
∂ (Θn ◦ ν̃)

∂s
(s, u),

∂γ̃

∂u
(s, u) = α2(s, u)

∂ (Θt ◦ ν̃)
∂u

(s, u) + α3(s, u)
∂ (Θn ◦ ν̃)

∂u
(s, u),

where α1,α2,α3 : R2 → R are arbitrary functions. Thus, by theorem 1, the plane family
H(ϕ̃,ν̃) creates an envelope if and only if (r(s) · n(s)) = α3(s, u) and α1(s, u) = α2(s, u).
Therefore, again by theorem 1, we have the following concrete expression of the created
envelopes.

f̃ (s, u) = ω̃(s, u) + γ̃(s)ν̃(s)

= (r(s) · n(s)) n(s) + α(s, u)t(s) + (r(s) · b(s)) b(s)

= (r(s) · n(s)) n(s) + (r(s) · t(s)) t(s)

+ (α(s, u) − (r(s) · t(s))) t(s) + (r(s) · b(s)) b(s)

= r(s) + β(s, u)t(s),

whereα(s, u) = α1(s, u) = α2(s, u) and β(s, u) = α(s, u) − (r(s) · t(s)). All envelopes cre-
ated by the osculating family H(ϕ̃,ν̃) can be exactly expressed as above. Hence, for
example, both the tangent developable of r (in the case β(s, u) = u) and the space curve
r (in the case β(s, u) = 0) are envelopes of H(ϕ̃,ν̃). Not only these two, there are uncount-
ably many envelopes created by H(ϕ̃,ν̃). All envelopes for the osculating plane family are
created only by the given curve r and its unit tangent curve t.

Next, we consider envelopes created by H(r,b) and H(̃ f ,n). Namely, we obtain all solu-
tions g̃(s, u) for the following system of PDEs (Partial Differential Equation) with one
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constraint condition.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂g̃
∂s

(s, u) · b(s) = 0,

∂g̃
∂u

(s, u) · b(s) = 0,

∂g̃
∂s

(s, u) · n(s) = 0,

∂g̃
∂u

(s, u) · n(s) = 0,(
g̃(s, u) − r(s)

)
· b(s) = 0.

Since κ(s) > 0 for any s ∈ R and

∂ f̃
∂s

(s, u) = t(s) +
∂β

∂s
(s, u)t(s) + β(s, u) (κ(s)n(s)) ,

∂ f̃
∂u

(s, u) =
∂β

∂u
(s, u)t(s),

if f̃ itself is a solution of the above system of PDEs, then β(s, u) must be constant 0. Con-
versely, it is clear that r itself is a solution of the above system of PDEs with one constraint
condition. Therefore, for the above system of PDEs with one constraint condition, there
are no solutions except for the trivial solution r. This implies that even for a space curve
r : R→ R

3, the inverse Legendre transformation

H(r,{b,n}) 
→ r

works well.
Finally, we consider envelopes created by H(r,b) and H(

f̃ ,t
). Namely, we obtain all

solutions g̃(s, u) for the following system of PDEs with one constraint condition.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂g̃
∂s

(s, u) · b(s) = 0,

∂g̃
∂u

(s, u) · b(s) = 0,

∂g̃
∂s

(s, u) · t(s) = 0,

∂g̃
∂u

(s, u) · t(s) = 0,(
g̃(s, u) − r(s)

)
· b(s) = 0.

By the above calculations, if f̃ is a solution of the above system of PDEs, then both 1 +
∂β
∂s (s, u) = 0 and ∂β

∂u (s, u) = 0 must be satisfied. It follows β(s, u) = −s + c (c ∈ R). It is
easily seen that for any c ∈ R, the space curve s 
→ r(s) + (−s + c)t(s) is a solution of
the above system of PDEs with one constraint condition. Thus, in this case, the system of
PDEs with one constraint condition has uncountably many solutions.
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Example 4.3.

(a) (The shoe surface: example 1 of [3].) In this example, along the general theory developed
in this paper, we start from making several general formulas for the envelope created by
the affine tangent plane family of the surface having the form ϕ̃ : R2 → R

3, ϕ̃(x, y) =
(x, y, ϕ̃1(x, y)) such that the origin (0, 0) is a singular point of the function ϕ̃1 : R2 → R

and there are no other singular points of ϕ̃1. Then, by calculating the obtained general
formulas in the case of the shoe surface ϕ̃(x, y) =

(
x, y, 1

3 x3 − 1
2 y2
)
, just by calculations,

we confirm that the concrete representation form of the envelope created by the affine
tangent plane family of the shoe surface ϕ̃ is actually the shoe surface itself.

Let ϕ̃ : R2 → R
3 be the mapping having the form ϕ̃(x, y) = (x, y, ϕ̃1(x, y)), where

the function ϕ̃1 : R2 → R has a unique singularity at the origin, namely ∂ϕ̃1
∂x (0, 0) =

∂ϕ̃1
∂y (0, 0) = 0 and

(
∂ϕ̃1
∂x (x, y), ∂ϕ̃1

∂y (x, y)
)
�= (0, 0) for any (x, y) ∈ R

2 − {(0, 0)}. Then, the

mapping ν̃ : R2 → S2 defined by

ν̃(x, y) =
∂ϕ̃1
∂x (x, y) × ∂ϕ̃1

∂y (x, y)

‖ ∂ϕ̃1
∂x (x, y) × ∂ϕ̃1

∂y (x, y)‖
=

(
− ∂ϕ̃1

∂x , − ∂ϕ̃1
∂y , 1

)
√(

∂ϕ̃1
∂x

)2
+
(

∂ϕ̃1
∂y

)2
+ 1

is a Gauss mapping of the tangent plane family of ϕ̃. Here, the tangent plane family of ϕ̃
is H(ϕ̃,ν̃). Let (x0, y0) be an arbitrary point of R2 − {(0, 0)}. Then, by the assumption on
the function ϕ̃1, it follows that ν̃(x0, y0) �= (0, 0, 1). Set

v0(x0, y0) = ν̃(x0, y0),

v1(x0, y0) =
(0, 0, 1) − ((0, 0, 1) · v0(x0, y0)) v0(x0, y0)
‖(0, 0, 1) − ((0, 0, 1) · v0(x0, y0)) v0(x0, y0)‖ ,

v2(x0, y0) = v0(x0, y0) × v1(x0, y0).

Then, 〈v0(x0, y0), v1(x0, y0), v2(x0, y0)〉 is an orthonormal basis of R3, and under the iden-
tification of two vector spaces R

3 and Tν̃(x0,y0)R
3, 〈v1(x0, y0), v2(x0, y0)〉 is an orthonor-

mal basis of the tangent vector space Tν̃(x0,y0)S2. Let ε be a sufficiently small positive
number and denote the set {Θ1v1(x0, y0) +Θ2v2(x0, y0)| − ε < Θ1,Θ2 < ε} by V ′. Let
exp : V ′ → S2 be the restriction of the exponential mapping at ν̃(x0, y0) to V ′ and set V =
exp(V′). Let (V , (Θ1,Θ2)) be the normal coordinate neighbourhood at ν̃(x0, y0) defined by
exp−1 : V → V ′. Set

γ̃(x, y) = ϕ̃(x, y) · ν̃(x, y) =
−x ∂ϕ̃1

∂x − y ∂ϕ̃1
∂y + ϕ̃1(x, y)√(

∂ϕ̃1
∂x

)2
+
(

∂ϕ̃1
∂y

)2
+ 1

.

Since ν̃ : R2 → S2 is a Gauss mapping of ϕ̃ : R2 → R
3, we have

∂γ̃

∂x
(x0, y0) = ϕ̃(x0, y0) · ∂ν̃

∂x
(x0, y0)

= (ϕ̃(x0, y0) · v1(x0, y0))
∂ (Θ1 ◦ ν̃)

∂x
(x0, y0)

+ (ϕ̃(x0, y0) · v2(x0, y0))
∂ (Θ2 ◦ ν̃)

∂x
(x0, y0)
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and

∂γ̃

∂y
(x0, y0) = ϕ̃(x0, y0) · ∂ν̃

∂y
(x0, y0)

= (ϕ̃(x0, y0) · v1(x0, y0))
∂ (Θ1 ◦ ν̃)

∂y
(x0, y0)

+ (ϕ̃(x0, y0) · v2(x0, y0))
∂ (Θ2 ◦ ν̃)

∂y
(x0, y0).

Thus, as the equality of two-dimensional cotangent vectors of T∗
(x0,y0)R

2, we have the
following equality.

dγ̃ =
∂γ̃

∂x
(x0, y0)dx +

∂γ̃

∂y
(x0, y0)dy

= (ϕ̃(x0, y0) · v1(x0, y0)) d (Θ1 ◦ ν̃) + (ϕ̃(x0, y0) · v2(x0, y0)) d (Θ2 ◦ ν̃) .

Set U = R
2 − {(0, 0)} and assume that the singular set of ν̃ is of Lebesgue measure zero.

Then, since (x0, y0) is an arbitrary point of U, by theorems 1(a) and 2, it follows that
H(ϕ̃|U ,ν̃|U ) creates a unique envelope. Set

ω̃(x0, y0) = (ϕ̃(x0, y0) · v1(x0, y0)) d (Θ1 ◦ ν̃) + (ϕ̃(x0, y0) · v2(x0, y0)) d (Θ2 ◦ ν̃) .

Then, under the canonical identifications

T∗
ν̃(x0,y0)S

2 ∼= Tν̃(x0,y0)S
2 ⊂ Tν̃(x0,y0)R

3 ∼= R
3,

the two-dimensional cotangent vector

ω̃(x0, y0) = (ϕ̃(x0, y0) · v1(x0, y0)) dΘ1 + (ϕ̃(x0, y0) · v2(x0, y0)) dΘ2

may be regarded as the following three-dimensional vector (denoted by the same symbol
ω̃(x0, y0)).

ω̃(x0, y0) = (ϕ̃(x0, y0) · v1(x0, y0)) v1(x0, y0)

+ (ϕ̃(x0, y0) · v2(x0, y0)) v2(x0, y0).

Therefore, by theorem 1(b), the envelope vector at (x0, y0) must have the following form:

f̃ (x0, y0) = ω̃(x0, y0) + γ̃(x0, y0)ν̃(x0, y0)

= (ϕ̃(x0, y0) · v1(x0, y0)) v1(x0, y0) + (ϕ̃(x0, y0) · v2(x0, y0)) v2(x0, y0)

+ (ϕ̃(x0, y0) · v0(x0, y0)) v0(x0, y0)

= ϕ̃(x0, y0).

By continuity, it follows that f̃ = ϕ̃ is the unique envelope created by the given plane
family H(ϕ̃,ν̃).

Next, we apply the above formulas to the shoe surface. The shoe surface is the
image of ϕ̃ : R2 → R

3 defined by ϕ̃(x, y) =
(
x, y, 1

3 x3 − 1
2 y2
)
. Set ϕ̃1(x, y) = 1

3 x3 − 1
2 y2.

Then, the origin (0, 0) is a unique singular point of ϕ̃1. For the given ϕ̃, we have
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ν̃(x, y) =
∂ϕ̃
∂x (x,y)× ∂ϕ̃

∂y (x,y)

‖ ∂ϕ̃
∂x (x,y)× ∂ϕ̃

∂y (x,y)‖
= (−x2, y, 1)√

x4+y2+1
. It is easily confirmed that the set consisting of reg-

ular points of ν̃ is dense. In fact, it is known that any singularity of ν̃ is a fold singularity
(see [3]). Set U = R

2 − {(0, 0)} and take an arbitrary point (x0, y0) of U. For the shoe
surface ϕ̃, we set

v0(x0, y0) = ν̃(x0, y0) =

(
−x2

0, y0, 1
)√

x4
0 + y2

0 + 1
,

v1(x0, y0) =
(0, 0, 1) − ((0, 0, 1) · v0(x0, y0)) v0(x0, y0)
‖(0, 0, 1) − ((0, 0, 1) · v0(x0, y0)) v0(x0, y0)‖

=

(
x2

0, −y0, x4
0 + y2

0

)√(
x4

0 + y2
0

) (
x4

0 + y2
0 + 1

) ,

v2(x0, y0) = v0(x0, y0) × v1(x0, y0) =

(
y0, x2

0, 0
)√

x4
0 + y2

0

.

By calculation, we have

ϕ̃(x0, y0) · v1(x0, y0) =
x3

0 − y2
0 +
(

1
3 x3

0 − 1
2 y2

0

) (
x4

0 + y2
0

)(
x4

0 + y2
0

) 1
2
(
x4

0 + y2
0 + 1

) 1
2

,

ϕ̃(x0, y0) · v2(x0, y0) =
x0y0 + x2

0y0(
x4

0 + y2
0

) 1
2
.

Let (V , (Θ1,Θ2)) be the normal coordinate neighbourhood of S2 defined above. By
calculations using the following two identities

∂ν̃

∂x
(x0, y0) = v1(x0, y0)

∂ (Θ1 ◦ ν̃)
∂x

(x0, y0) + v2(x0, y0)
∂ (Θ2 ◦ ν̃)

∂x
(x0, y0),

∂ν̃

∂y
(x0, y0) = v1(x0, y0)

∂ (Θ1 ◦ ν̃)
∂y

(x0, y0) + v2(x0, y0)
∂ (Θ2 ◦ ν̃)

∂y
(x0, y0),

we have the following.

∂ (Θ1 ◦ ν̃)
∂x

(x0, y0) =
−2x3

0(
x4

0 + y2
0

) 1
2
(
x4

0 + y2
0 + 1

) ,

∂ (Θ2 ◦ ν̃)
∂x

(x0, y0) =
−2x0y0 − 2x0y3

0 − 2x5
0y0(

x4
0 + y2

0

) 1
2
(
x4

0 + y2
0 + 1

) 3
2

,

∂ (Θ1 ◦ ν̃)
∂y

(x0, y0) =
−y0(

x4
0 + y2

0

) 1
2
(
x4

0 + y2
0 + 1

) ,

∂ (Θ2 ◦ ν̃)
∂y

(x0, y0) =
x2

0(
x4

0 + y2
0

) 1
2
(
x4

0 + y2
0 + 1

) 1
2
.
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On the other hand, from the form γ̃(x, y) = ϕ̃(x, y) · ν̃(x, y) = − 2
3 x3+ 1

2 y2√
x4+y2+1

, we have

∂γ

∂x
(x0, y0) =

−2x2
0 − 2x2

0y2
0 − x3

0y2
0 − 2

3 x6
0(

x4
0 + y2

0 + 1
) 3

2
,

∂γ

∂y
(x0, y0) =

y0 +
1
2 y3

0 +
2
3 x3

0y0 + x4
0y0(

x4
0 + y2

0 + 1
) 3

2
.

Thus, we have the following desired identity at (x0, y0).

dγ̃ =
∂γ̃

∂x
(x0, y0)dx +

∂γ̃

∂y
(x0, y0)dy

=
−2x2

0 − 2x2
0y2

0 − x3
0y2

0 − 2
3 x6

0(
x4

0 + y2
0 + 1

) 3
2

dx +
y0 +

1
2 y3

0 +
2
3 x3

0y0 + x4
0y0(

x4
0 + y2

0 + 1
) 3

2
dy

=

⎛⎝ x3
0 − y2

0 +
(

1
3 x3

0 − 1
2 y2

0

) (
x4

0 + y2
0

)(
x4

0 + y2
0

) 1
2
(
x4

0 + y2
0 + 1

) 1
2

−2x3
0(

x4
0 + y2

0

) 1
2
(
x4

0 + y2
0 + 1

)
+

(
x0y0 + x2

0y0

)(
x4

0 + y2
0

) 1
2

(
−2x0y0 − 2x0y3

0 − 2x5
0y0

)(
x4

0 + y2
0

) 1
2
(
x4

0 + y2
0 + 1

) 3
2

⎞⎠ dx

+

⎛⎝ x3
0 − y2

0 +
(

1
3 x3

0 − 1
2 y2

0

) (
x4

0 + y2
0

)(
x4

0 + y2
0

) 1
2
(
x4

0 + y2
0 + 1

) 1
2

−y0(
x4

0 + y2
0

) 1
2
(
x4

0 + y2
0 + 1

)
+

(
x0y0 + x2

0y0

)(
x4

0 + y2
0

) 1
2

x2
0(

x4
0 + y2

0

) 1
2
(
x4

0 + y2
0 + 1

) 1
2

⎞⎠ dy

=

(
(ϕ̃(x0, y0) · v1(x0, y0))

∂ (Θ1 ◦ ν̃)
∂x

(x0, y0)

+ (ϕ̃(x0, y0) · v2(x0, y0))
∂ (Θ2 ◦ ν̃)

∂x
(x0, y0)

)
dx

+

(
(ϕ̃(x0, y0) · v1(x0, y0))

∂ (Θ1 ◦ ν̃)
∂y

(x0, y0)

+ (ϕ̃(x0, y0) · v2(x0, y0))
∂ (Θ2 ◦ ν̃)

∂y
(x0, y0)

)
dy

= (ϕ̃(x0, y0) · v1(x0, y0)) d (Θ1 ◦ ν̃) + (ϕ̃(x0, y0) · v2(x0, y0)) d (Θ2 ◦ ν̃) .

Hence, by theorems 1(a) and 2, the plane family H(ϕ̃|U ,ν̃|U) for the shoe surface ϕ̃(x, y) =(
x, y, 1

3 x3 − 1
2 y2
)

has a unique envelope f̃ : U → R
3, where U = R

2 − {(0, 0)}. Then,
under the canonical identifications

T∗
ν̃(x0,y0)S

2 ∼= Tν̃(x0,y0)S
2 ⊂ Tν̃(x0,y0)R

3 ∼= R
3,
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the two-dimensional cotangent vector

ω̃(x0, y0) = (ϕ̃(x0, y0) · v1(x0, y0)) dΘ1 + (ϕ̃(x0, y0) · v2(x0, y0)) dΘ2

is identified with the following three-dimensional vector (denoted by the same symbol
ω̃(x0, y0)).

ω̃(x0, y0) = (ϕ̃(x0, y0) · v1(x0, y0)) v1(x0, y0) + (ϕ̃(x0, y0) · v2(x0, y0)) v2(x0, y0)

=

(
x3

0 − y2
0 +
(

1
3 x3

0 − 1
2 y2

0

) (
x4

0 + y2
0

))(
x4

0 + y2
0

) 1
2
(
x4

0 + y2
0 + 1

) 1
2

(
x2

0, −y0, x4
0 + y2

0

)(
x4

0 + y2
0

) 1
2
(
x4

0 + y2
0 + 1

) 1
2

+

(
x0y0 + x2

0y0

)(
x4

0 + y2
0

) 1
2

(
y0, x2

0, 0
)(

x4
0 + y2

0

) 1
2
.

Therefore, by theorem 1(b), the unique envelope f̃ must have the following desired
parametric representation on U = R

2 − {(0, 0)}.

f̃ (x0, y0) = ω̃(x0, y0) + γ̃(x0, y0)ν̃(x0, y0)

=

(
x3

0 − y2
0 +
(

1
3 x3

0 − 1
2 y2

0

) (
x4

0 + y2
0

))(
x4

0 + y2
0

) 1
2
(
x4

0 + y2
0 + 1

) 1
2

(
x2

0, −y0, x4
0 + y2

0

)(
x4

0 + y2
0

) 1
2
(
x4

0 + y2
0 + 1

) 1
2

+

(
x0y0 + x2

0y0
)(

x4
0 + y2

0

) 1
2

(
y0, x2

0, 0
)(

x4
0 + y2

0

) 1
2
+

(
− 2

3 x3
0 +

1
2 y2

0

)(
x4

0 + y2
0 + 1

) 1
2

(
−x2

0, y0, 1
)(

x4
0 + y2

0 + 1
) 1

2

=

(
x0, y0,

1
3

x3
0 −

1
2

y2
0

)
= ϕ̃(x0, y0).

By continuity, it follows that the given shoe surface ϕ̃ itself is the unique envelope created
by the tangent plane family H(ϕ̃,ν̃).

The set called the parabolic line of ϕ̃ : R2 → R
3 consists of points (x, y) ∈ R

2 at which
ν̃ is singular. For the shoe surface, the parabolic line is the y-axis {(0, y) | y ∈ R}. Thus,
as similar as the case of unit speed plane curves r : R→ R

2 with inflection points, the
full discriminant of the tangent plane family H(ϕ̃,ν̃) for the shoe surface ϕ̃ : R2 → R

3 is
different from the unique desired envelope ϕ̃ itself, since the full discriminant includes
an affine tangent line

{(
λ, y,− 1

2 y2
) ∣∣ λ ∈ R

}
at any point (0, y). Therefore, even in the

case of surfaces in R
3, by our method, one can distinguish the envelope in the sense of

definition 1 and the full discriminant. This means that, in the case of surfaces in R
3 as

well, our method has an advantage.
(b) (Example 4.1 of [14].) Let ν̃ : Rn → Sn ⊂ R

n+1 be the mapping defined by
ν̃ (p1, . . . , pn) = 1√∑n

i=1 p2
i +1

(p1, . . . , pn,−1). Then, ν̃ is non-singular and its inverse

mapping ν̃−1 : ν̃
(
R

n+1
)
→ R

n+1 is the central projection relative to the south pole
(0, . . . , 0,−1) of Sn. Let ϕ̃ : Rn → R

n+1 be an arbitrary mapping. Set γ̃(p) = ϕ̃(p) · ν̃(p)
where p = (p1, . . . , pn) be a point of R

n+1. Let (X = (X1, . . . , Xn) , Y) be a point of
R

n × R. Since J1(Rn,R) and R
n × R× R

n are identified, (X, Y, p) may be regarded as
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the canonical coordinate system of J1 (Rn,R). Since Xi◦ν̃(p)
Y◦ν̃(p) = −pi for any i (1 � i � n)

and any p ∈ R
n+1, considering the first order differential equation

((X, Y) − ϕ̃(p)) · ν̃(p) = 0

is exactly the same as considering the following Clairaut equation

Y =
n∑

i=1

Xi pi +
ϕ̃(p) · ν̃(p)
Y ◦ ν̃(p)

.

Thus, for each x ∈ R
n the hyperplane H(ϕ̃(x),ν̃(x)) is a complete solution of the above

Clairaut equation. Since ν̃ is non-singular, by theorems 1 and 2, the above Clairaut
equation has a unique singular solution f̃ : Rn → R

n+1. By theorem 1 again, the unique
singular solution f̃ has the following expression where x is an arbitrary point of Rn and
(V , (Θ1, . . . ,Θn)) is a sufficiently small normal coordinate neighbourhood of Sn at ν̃(x).

f̃ (x) =
∑
i=1

∂
(
γ̃ ◦ ν̃−1

)
∂Θi

(ν̃(x))
∂

∂Θi
+ γ̃(x)ν̃(x).

By this expression, for instance, it is easily seen that when γ̃(x) ≡ c( �= 0) for any x ∈
R

n+1, then the unique singular solution Y : Uc → R must be an explicit solution with the
following expression where Uc = {X|‖X‖ < |c|}.

Y(X) =

⎧⎪⎪⎨⎪⎪⎩
−
√
|c|2 −

∑n

i=1
X2

i ( if c > 0)√
|c|2 −

∑n

i=1
X2

i ( if c < 0).
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Appendix. Alternative proof of theorem 1 except for the assertion (c) in the
case n = 1

Let N be a one-dimensional manifold and let ϕ̃ : N → R
2, ν̃ : N → S1 be mappings. Define the

function Θ̃ : N → R by ν̃(t) =
(

cos Θ̃(t), sin Θ̃(t)
)

. Define also τ̃ (t) :=
(

sin Θ̃(t),− cos Θ̃(t)
)

.

Then, the following trivially holds.

Fact A.1. For any h : N → R
2,

h(t) = (h(t) · τ̃ (t)) τ̃ (t) + (h(t) · ν̃(t)) ν̃(t).

We first show that the creative condition can be naturally obtained from an envelope by
introducing a gauge theoretic approach. Suppose that f̃ : N → R

2 is an envelope created by the
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line family H(ϕ̃,ν̃). Then, we have the following.

γ̃ ′(t) =
(

f̃ (t) · ν̃(t)
)′

= f̃ ′(t) · ν̃(t) + f̃ (t) · ν̃ ′(t) = 0 −
(

f̃ (t) · τ̃ (t)
)
Θ̃′(t).

Let h : N → N be a bijective mapping. Then, notice that

H(ϕ̃,ν̃) = H(ϕ̃◦h,ν̃◦h)

and

(γ̃ ◦ h)′(t) = −
(

f̃ (h(t)) · τ̃ (h(t))
)
Θ̃′(h(t))h′(t).

From these simple observations, we see that it is important to extract a significant quantity
which does not depend on the particular choice of h. Then, we naturally reach the following
setting.

ω̃(t) := −
(

f̃ (t) · τ̃ (t)
)

dΘ̃

and we trivially have dγ̃ = ω̃. Take an arbitrary point t0 of N and fix it. Let (V ,Θ) be a normal
coordinate neighbourhood of S1 at ν̃(t0) such that Θ (ν̃(t0)) = 0 and Θ̃(t) = (Θ ◦ ν̃) (t) for any
t ∈ ν̃−1(V). In other words, (Θ ◦ ν̃) (t)

(
t ∈ ν̃−1(V)

)
is just the radian (or its negative) between

two unit vectors ν̃(t0) and ν̃(t). By using the function Θ : V → R, the one-form ω̃(t) may be
written as follows.

ω̃(t) = −
(

f̃ (t) · τ̃ (t)
)
ν̃∗ dΘ,

where ν̃∗ dΘ stands for the pullback of the one-form dΘ by ν̃. Hence, we naturally reach the
following one-form which is denoted by the same symbol ω̃.

ω̃(t) = −
(

f̃ (t) · τ̃ (t)
)

dΘ.

It is easily seen that for any t ∈ ν̃−1(V), under the canonical identifications

T∗
ν̃(t)S

1 ∼= Tν̃(t)S
1 ⊂ Tν̃(t)R

2 ∼= R
2,

the one-dimensional cotangent vector

ω̃(t) = −
(

f̃ (t) · τ̃ (t)
)

dΘ ∈ T∗
ν̃(t)S

1

is identified with the two-dimensional vector

ω̃(t) =
(

f̃ (t) · τ̃ (t)
)
τ̃ (t) ∈ R

2.

Since t0 is an arbitrary point of N, we naturally see that the creative condition is satisfied for
H(

ϕ̃,ν̃
) and the following horizontal–vertical decomposition formula holds for any t ∈ N.

Fact A.2.

f̃ (t) =
(

f̃ (t) · τ̃ (t)
)
τ̃ (t) +

(
f̃ (t) · ν̃(t)

)
ν̃(t) = ω̃(t) + γ̃(t)ν̃(t).
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Conversely, suppose that H(ϕ̃,ν̃) is creative. Then, there exists a function α : N → R such

that dγ̃ = α dΘ̃. Set ω̃ = α dΘ̃. Let t0 ∈ N be an arbitrary point. Then, under the canonical
identifications

T∗
ν̃(t)S

1 ∼= Tν̃(t)S
1 ⊂ Tν̃(t)R

2 ∼= R
2,

the one-dimensional cotangent vector

ω̃(t) = α(t)dΘ ∈ T∗
ν̃(t)S

1

is identified with the two-dimensional vector

ω̃(t) = −α(t)τ̃ (t) ∈ R
2,

where (V ,Θ) is a normal coordinate system of S1 at ν̃(t0) such that Θ(ν̃(t0)) = 0 and t ∈
ν̃−1(V). Set

f̃ (t) = ω̃(t) + γ̃(t)ν̃(t) = −α(t)τ̃ (t) + γ̃(t)ν̃(t).

Then, f̃ clearly satisfies the condition (b) of definition 1 for any t ∈ ν̃−1(V). Moreover we have
the following.

Lemma A.1. For any t ∈ ν̃−1(V), f̃ ′(t) · ν̃(t) = 0 holds.

Proof of lemma A.1. We have

γ̃ ′(t) =
(

f̃ (t) · ν̃(t)
)′

= f̃ ′(t) · ν̃(t) −
(

f̃ (t) · τ̃ (t)
)
Θ̃′(t) = f̃ ′(t) · ν̃(t) + α(t)Θ̃′(t).

Thus, we have the following.

ω̃(t) = dγ̃ = γ̃ ′(t)dt =
(

f̃ ′(t) · ν̃(t)
)

dt + α(t)Θ̃′(t)dt

=
(

f̃ ′(t) · ν̃(t)
)

dt + α(t)dΘ̃

=
(

f̃ ′(t) · ν̃(t)
)

dt + ω̃(t).

It follows
(

f̃ ′(t) · ν̃(t)
)

dt = 0. Since t is a coordinate function on an open set ν̃−1(V) of N,

for any fixed t ∈ ν̃−1(V), the one-dimensional cotangent vector dt at t is not zero. Therefore,

the number
(

f̃ ′(t) · ν̃(t)
)

is always zero for any t ∈ ν̃−1(V). Since t0 is an arbitrary point of N,

theorem 1(a) holds. By the above decomposition of f̃ (t), theorem 1(b) holds as well. �
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