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This paper proposes a novel method for the computation of compressible multiphase 
flows under the assumption of pressure equilibrium based on a 6-equation model and the 
AUSM (Advection Upstream Splitting Method) family. In this study, we introduce a new 
numerical pressure flux dissipation term based on the relative velocities in the gas and 
liquid phases to develop an analogous carbuncle-suppression mechanism that is applicable 
to gas dynamics. We also propose a mass flux dissipation term based on the pressure ratio 
at the gas-liquid interface and incorporate both terms into SLAU2, an AUSM-family scheme, 
to achieve robustness against shock anomalies.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Multiphase flows arise in various fields that entail complicated phenomena such as the breakup of water droplets, and 
their phase changes under cavitation, evaporation, boiling, and condensation. The flow inside a liquid rocket engine is an 
example of a multiphase flow comprising both gaseous and liquid phases, where liquid oxygen initially breaks up and 
evaporates and is mixed with fuel in a combustion chamber. Then, both the liquid oxygen and the fuel undergo combustion, 
accompanied by possible instabilities such as resonance in the engine due to fluctuations in the rate of heat release [1]. To 
address such problems, simultaneous solutions of sound waves and compressible flows are required; hence, compressible 
multiphase flow computation has become an important topic of research in this field. Multiphase flow simulations have 
been extensively studied by many researchers. Multiphase flow simulations are classified into two categories: those that 
follow the Eulerian-Lagrangian approach [2] and those based on the Eulerian-Eulerian approach. In the Eulerian-Lagrange 
approach, the liquid phase is expressed by particles, and, as a result, gas-liquid interfaces and primary atomization cannot 
be treated.

We now review a compressible multiphase flow method based on a 6-equation model, proposed by Liou [3], incorpo-
rating an interfacial pressure term (two-fluid model), proposed by Stuhmiller [4], with a pressure equilibrium assumption. 
However, it has been reported to be incapable of continuing calculations without switching to the exact Riemann (Godunov) 
solver [5] following strong shocks or volume fraction discontinuities owing to induced stability and robustness issues [6]. 
Further, the exact Riemann (Godunov) solver is known to incur high computational costs and exhibit a particular instability 
called the carbuncle phenomenon in the analysis of shock waves [7]. It has not yet been possible to completely eliminate 
the carbuncle phenomenon, but certain Advection Upstream Splitting Method (AUSM) schemes have been reported to be 
more stable than the Roe flux or the exact Riemann solver [8] in this context. Thus, Chang and Liou hybridized Godunov 
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(at the gas-liquid interface) using AUSM+-up (elsewhere) to propose an all-speed, shock-robust multiphase flow solver [9]. 
Kitamura [6] extended this work and proposed the Godunov-SLAU2 (G-SLAU2), a parameter-free, all-speed, shock-robust 
multiphase flow solver. Five years later, Pandare [10] developed AUSM+-upf (belonging to the AUSM-family), which intro-
duced appropriate numerical dissipation to AUSM+-up proposed by Liou [11]. Without using the Godunov solver, it executed 
stable and robust computations, even in the presence of a strong shock or volume fraction discontinuity. This marked the 
first achievement of the standalone AUSM-family schemes. Nevertheless, AUSM+-upf inherited tunable parameters from 
AUSM+-up (with several additional parameters) without any explicit physical explanations, which require careful tuning by 
the user depending on each problem.

On the other hand, in the field of gas dynamics simulation, Shima [12] proposed a SLAU (Simple Low-dissipation AUSM) 
scheme, which is an improved AUSM-family scheme capable of performing stable and high-resolution calculations corre-
sponding from low to high Mach numbers. SLAU is simpler than the existing all-speed AUSM family schemes and does 
not involve any tunable parameters. As a result, it can be easily coded and extended to complex physical interactions, such 
as multi-species and multiphase flows. Its supersonic characteristics were further improved by SD (Shock-Detecting)-SLAU 
proposed by Shima [13] and SLAU2 proposed by Kitamura [14]. Kitamura [15] demonstrated that a reduction in numerical 
dissipation reduces numerical errors and enables the calculation of high-resolution results. In recent years, SLAU and SLAU2 
have been applied to aerodynamic problems [16,17] and combustion flows in [18]. In addition, the original SLAU2 scheme 
has already been extended to multiphase flows in combination with the Godunov solver, as mentioned previously [6]. In 
this context, inspired by AUSM+-upf, we introduce an appropriate amount of dissipation into SLAU2 to execute analogues 
of the carbuncle-suppression mechanism in gas dynamics interactions, e.g., multiphase flows expressed by the 6-equation 
model, and verify the robustness and stability of the solutions using several benchmark problems [19].

2. Numerical methods

2.1. Two-fluid modeling (or effective-fluid modeling, EFM)

In this section, the original two-fluid solver proposed in [3,19,6] is first briefly presented using a gas-liquid system as 
an example. Henceforth, a gas-liquid system is considered in the present study, unless otherwise mentioned. The two-
dimensional compressible Euler equations used in two-fluid modeling (or effective fluid modeling, EFM) are as follows:

∂ Q k
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(2)

αg + αl = 1 (3)

pg = pl ≡ p (4)

pint
g = pint

l ≡ pint (5)

pint = p − δp∗ (6)

where α denotes the volume fraction of a fluid, ρ denotes the density, u and v denote the velocity components in the 
Cartesian coordinates, E denotes the total energy per unit mass [E = e + (p/ρ)], where e denotes the internal energy], p
denotes the pressure, H denotes the total enthalpy [H = E + (p/ρ)], and gx and g y denote the x− and y−components 
of the gravity vector (of magnitude 9.8 m/s2). k = g, l represent the gas and liquid, respectively. As in the notation of the 
single fluid equation, Q k denotes the conservative vector, and Ek and F k denote the inviscid flux vectors in the x− and 
y−directions, respectively, but they include α. Additionally, the interfacial pressure, pint , proposed by Stuhmiller [4], and 
the source term containing the gravity force, Sk , considered in the context of the “Faucet problem” proposed by Ransom 
[20], are also included in the formulation in this study. Eq. (3) expresses the compatibility relation for the volume fractions, 
Eq. (4) and Eq. (5) assumes a pressure equilibrium, and Eq. (6) yields the interface pressure, pint , which deviates from p by 
δp∗ , which will be explained later. In addition, we adopted the stiffened-gas model proposed by Harlow [21] as an equation 
of state (EOS) for closing the system.
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pk = ρk
γk − 1

γk
C pk Tk − pk∞ (7)

ek = C pk

γk
Tk + pk∞

ρk
(8)

where ek denotes the internal energy per unit mass of fluid, k. ak denotes the speed of sound as follows:

ak =
(
γk

(
pk + pk∞

ρk

))1/2

(9)

γg = 1.4, C pg = 1004.5 [J/(kg · K)], pg∞ = 0 [Pa] for air (10a)

γl = 2.8, C pl = 4186.0 [J/(kg · K)], pl∞ = 8.5 × 108 [Pa] for water (10b)

The gas and liquid were taken to be air and water, respectively. The physical property values in the stiffened gas model 
are expressed by Eq. (10). The ideal gas law is treated as a special case of a stiffened gas EOS. Finally, we have 14 unknowns (
α, ρ, u, v, e, p, pint

)
g,l related by 12 equations with two EOSs. The feature of Eq. (1), the interface pressure, pint , is 

applied to the cell at the gas-liquid interface. Here, δp∗ of a gas-liquid system is usually given by the following:

δp∗ = σ
αgαlρgρl

αgρl + αlρg

∣∣ul − ug
∣∣2 (11)

The interfacial pressure coefficient, σ , must be sufficiently large to maintain the hyperbolic system. In this study, Eq. (11)
with σ = 2.0 [19] is adopted. Further, to prevent pint from becoming excessively low, the following limitation is imposed.

δp∗ = min(δp∗, εp p) (12)

where εp = 0.01 [19] was used, as in the reference for all numerical experiments.

2.2. Effective fluid model and spatial discretization

This solver is based on the concept of the stratified flow model initially proposed by Stewart [22] and later refined by 
Liou [3]. The interfacial pressure, pint , is required to operate within the volume fraction discontinuities without switching to 
the exact Riemann solver. Even though the volume fractions exhibit discontinuities at the cell interfaces, they are continuous 
within the cell. As an illustrative example, the one-dimensional discretized form of Eq. (1), calculated via the finite volume 
method, is given by the following:

Vol j

	t
	 Q j + E j+1/2 S j+1/2 − E j−1/2 S j−1/2 = pint

⎡
⎢⎢⎣

0

α j+1/2,L − α j−1/2,R

V ol j

(
αn+1

j −αn
j

)
	t

⎤
⎥⎥⎦ + S j (13)

where the phase-subscript k is omitted, j denotes the cell index, Vol j denotes the volume of the cell. All cell-interface 
variables, φ j+1/2,L/R , were calculated via spatially second-order accurate MUSCL interpolation proposed by van Leer [23]
with van Albada’s limiter [24]. In this work, the explicit 3-stage third-order TVD Runge–Kutta (RK3) scheme is used [25]. 
Other aspects of the computational method are described in [6].

2.3. SLAU2 flux and its modification

An AUSM-family numerical flux, AUSM+-up, AUSM+-upf, or SLAU2, is used to calculate inviscid numerical fluxes at cell 
interfaces corresponding to each phase, denoted by F k,1/2,L/R where L and R indicated left and right cells, respectively. The 
AUSM-family numerical fluxes for multiphase flows are expressed as follows:

F k,1/2,L/R = ṁ1/2,k + ∣∣ṁ1/2,k
∣∣

2
�k,L + ṁ1/2,k − ∣∣ṁ1/2,k

∣∣
2

�k,R + αk,1/2,L/R p̃k,1/2 N (14)

�k = (α,αu,αv,αH)T
k , N = (

0,nx,ny,0
)T (15)

where nx and ny denote the x− and y−normal components, respectively, to the cell interfaces.
In this subsection, we introduce SLAU2 for multiphase flows, as proposed by Kitamura [6]. The mass flux for each fluid 

is expressed as follows:
3
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Fig. 1. Comparison of dominant dissipation factors at different pressure ratios at the gas-liquid interface.
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Further, the pressure flux is given by the following.

(
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4 (Mk ± 1)2 (2 ∓ Mk) ± αs M_k

(
M2
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)2

, otherwise
(24)

Jack [26] investigated the importance of using appropriate speeds of sound in numerical fluxes. The pressure flux term in 
Eq. (23), and the final term in Eq. (23) are numerical dissipation terms for low-speed capability and carbuncle suppression 
in gas dynamics, but their appropriate values for gas-liquid interfaces are yet to be rigorously derived.

2.3.1. Mass flux modification
The value of dissipation for the SLAU2 mass flux, represented by the third term in Eq. (16), was designed to decrease 

with an increase in the local Mach number and be inoperational when the local Mach number is supersonic or hyper-
sonic. In Fig. 1, the dominant dissipation factor for the SLAU2 mass flux based on the local Mach number is denoted by 
χ . Because the dissipation term (the third term in Eq. (16)) is inoperational at supersonic speeds, it is evident that oscil-
lations occur behind oblique shock waves [13]. Further, Kitamura [6] observed that the SLAU2 scheme without the exact 
Riemann (Godunov) solver induces negative pressure in regions where strong shocks coexist with gas-liquid interfaces in 
multiphase flows. In particular, the Shock/Air-Bubble interaction problem makes the calculation unstable immediately after 
the incidence of the water shock on the air bubble (this will be further discussed in Section 3.3).
4



J. Aono and K. Kitamura Journal of Computational Physics 462 (2022) 111256
Let us now consider the AUSM+-upf flux scheme. The mass flux dissipation term in AUSM+-upf is also operational in 
the supersonic regime, as in the case of SLAU2. On the other hand, AUSM+-upf is designed to add a certain amount of 
dissipation at the gas-liquid interface by adding a new term to the mass flux.

Therefore, in the supersonic regime, we consider an appropriate amount of dissipation for SLAU2 at the gas-liquid in-
terface. In this paper, we propose the amount of dissipation for mass flux in accordance with the strength of shock waves at the 
gas-liquid interface in Eq. (25). In practice, the amount of dissipation is corrected only when the volume fraction disconti-
nuity (depicted in Fig. 1) or the effective length expressed in Eq. (26) is larger than a prescribed threshold [19], and when 
the shockwave is expected to interact with the phase discontinuity [Note: χk is zero at a supersonic speed (= upstream of 
the shockwave), according to Eqs. (20)–(21), but unity in a subsonic regime, leading to an unaltered equation from the last 
term of Eq. (16)].⎧⎨

⎩
(

max(pL ,pR )
min(pL ,pR )

(1 − χk) + 1
)

pL−pR
a1/2,k

if 	eff > 5ε

χk
pL−pR
a1/2,k

otherwise
(25)

	eff =| αg,1/2,L − αg,1/2,R | (26)

where ε denotes a small number corresponding to each problem, whose effect is examined in Section 3.2. The dissipation 
factor at the gas-liquid interface is denoted by “PR=1 w/ interface” when the pressure ratios of both the left and right 
cells are unity, as depicted in Fig. 1. The PR in Fig. 1 denotes the pressure ratio, max(pL ,pR )

min(pL ,pR )
. Similarly, “PR=2, 5 and 10 w/ 

interface” in Fig. 1 expresses that the pressure ratio between the left and right cells at the gas-liquid interface is 2, 5, and 
10, respectively. Even if a shock wave is incident on the gas-liquid interface, SLAU2 with dissipation defined by Eq. (25) is 
expected to be able to obtain stable solutions without using the exact Riemann (Godunov) solver.

2.3.2. Pressure flux modification
Numerical instability is known to occur even in the water-to-air shock tube problem with a high-pressure ratio, as 

discussed in [6]. It has been observed that the numerical flux of the AUSM family leads to a negative pressure flux in 
regions where strong shocks coexist with volume fraction discontinuities. This negative pressure is considered to be caused 
by the dissipation term in the third term of Eq. (23). This pressure-velocity coupling term is too large in the case of 
multiphase flow owing to the high speed of sound [10]. Therefore, we considered an appropriate numerical dissipation term 
for the pressure flux. In this study, as proposed in Eq. (27), the pressure flux dissipation at the gas-liquid interface, originally 
expressed by the third term in Eq. (23), is calculated based on the difference in the velocity between the gas and liquid 
phases. We examined the required amount of numerical dissipation at the volume fraction discontinuities to produce the 
effect of the proposed dissipation term in Section 3.2.⎧⎪⎪⎨

⎪⎪⎩
λmr

(
P+

(5)

(
Mk,L

) |αs
= 0 + P−

(5)

(
Mk,R

) |αs=0 − 1
)
ρa1/2 if 	eff > 5ε

√
u2

k,L+v2
k,R

2

(
P+

(5)

(
Mk,L

) |αs=0 + P−
(5)

(
Mk,R

) |αs=0 − 1
)
ρa1/2 otherwise

(27)

λmr =
∣∣∣∣
√

(u2
g,L + u2

g,R)/2 −
√

(u2
l,L + u2

l,R)/2

∣∣∣∣ (28)

Eq. (27) uses multidimensional velocity instead of normal velocity. This idea was inherited from SLAU and SLAU2, which 
were used to successfully eliminate the need for tunable parameters (cutoff Mach number) in [12].

3. Numerical experiments

The numerical results obtained via the selected flux schemes and the proposed flux scheme for benchmark problems 
are compared in this subsection. The original SLAU2, AUSM+-upf, and the modified SLAU2 proposed in this study (in the 
graph, it has been denoted by “Modified SLAU2”) are considered. The dissipation tunable parameters used for AUSM+-upf 
are taken to be 

(
Ku, K p

) = (1, 1).

3.1. Ransom’s Faucet problem

This problem is the well-known “Faucet problem” proposed by Ransom [20], in which a water jet is injected into sta-
tionary air at a speed of 10 m/s and is accelerated downward by gravity in a 12 m long tube. In this problem, the gravity 
term in Eq. (1) was applied. This is typically modeled using the following initial conditions:(

p,αg, ug, ul, T g, Tl
) = (105 Pa,0.2,0 m/s, 10 m/s,300 K,300 K) (29)

The tow-fluid model is capable of considering the gas liquid velocity corresponding to each phase separately.
5
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Fig. 2. a) Volume fractions of gas phase for the Faucet problem of Modified SLAU2 at t = 0.1 s, 0.3 s, and 0.5 s, with exact solution at t = 0.5 s. b) Faucet 
problem solutions for 3 schemes at t = 0.5 s.

Fig. 3. Grid convergence with a smooth profile in the case of the Faucet problem.

Here, 500 uniform cells were used for the domain [0 m, 12 m]. The computed results were compared with the analytical 
solution obtained by Paillére [27]:

The volume fractions at t = 0.1 s, 0.3 s, and 0.5 s have been depicted in Fig. 2a. The propagation of the volume-fraction 
wave was accurately computed. Additionally, the volume fraction profiles at t = 0.5 s have been depicted in Fig. 2b. The 
results of all schemes were observed to be in good agreement with each other.

Further, to verify the influence of the grid, the problem was solved using three different grids.

· 500 cells : 	x = 0.024 m

· 1,000 cells : 	x = 0.012 m

· 10,000 cells : 	x = 0.0012 m

(30)

As depicted in Fig. 3, grid convergence was realized with a smooth profile. As the number of grid points was increased, 
the numerical solution was observed to converge.

3.2. Water-to-air shock tube with high pressure ratio, PR=1,000

As mentioned by Kitamura [6], this high-pressure-ratio water-to-air shock tube problem cannot be solved using the 
AUSM-family fluxes without using the exact Riemann solver. In Sections 3.2–3.3, ε = 1.0 × 10−7 was adopted. However, in 
previous studies on this benchmark problem, ε = 1.0 × 10−5 was adopted [19]. Therefore, we also investigated the effect of 
ε on the benchmark problem. This test represents a one-dimensional test case with the following initial conditions:(

p,αg, uk, Tk
) =

(
108 Pa, ε,0 m/s,308.15 K

)
for x ≤ 5 m (31)(

p,αg, uk, Tk
) = (

105 Pa,1 − ε,0 m/s,308.15 K
)

for x > 5 m (32)
6
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Fig. 4. a) Results obtained via Modified SLAU2 and SLAU2 with exact Riemann solver for the Water-to-air shock tube problem with a high pressure ratio at 
t = 2 ms. b) Comparison of the amounts of numerical dissipation at t = 2 ms (normalized by the original SLAU2 value).

where k = g, l. The results exhibited good correspondence with the references cited in [6]. The proposed modifications to 
the SLAU2 fluxes allowed this high-pressure-ratio shock tube problem to be solved without the exact Riemann solver, as 
illustrated in Fig. 4a.

Subsequently, we attempted to estimate the dissipation term for the proposed pressure flux. For this purpose, owing to 
the divergence of the numerical calculation using the (original) SLAU2 at t ≈ 35 μs, we restarted the SLAU2 computation by 
using the flow field after 2 ms of computation using the modified SLAU2. Then, the amounts of dissipation of the original 
SLAU2 and modified SLAU2 were compared at the void fraction discontinuities. In this shock tube problem, the velocity 
was generated at the void fraction discontinuities owing to the pressure difference. In the original SLAU2, the numerical 
dissipation was determined by the product of velocity and the speed of sound, which induced an excessive numerical 
dissipation at the interface between the gas and liquid phases, resulting in negative pressure (Fig. 4b). In contrast, in the 
modified SLAU2, the numerical dissipation was determined by the relative velocity. Owing to its low value at the void 
fraction discontinuities, a stable calculation was realized using the proposed numerical dissipation. Further, because of the 
absence of any pressure difference at the gas-liquid interface after 2 ms, the dissipation of the mass flux was not applicable.

In addition, the modified SLAU2 was observed to be approximately 13 times faster than the exact Riemann solver while 
calculating the flux at the interface between the gas and liquid. The calculations were conducted using an Intel(R) Core(TM)

i5-6360U CPU@2.00GHz.
Moreover, in the literature (e.g., [6,10,29]), the pressure distributions (particularly in the expansion fan) were found 

to depend significantly on the value of ε, as depicted in Fig. 5. Nevertheless, we obtained reasonable results with ε =
1.0 × 10−7, and achieved convergence with respect to ε (i.e., the solution was insensitive to the value below 1.0 × 10−7). 
Therefore, we chose ε = 1.0 × 10−7 in this paper.
7



J. Aono and K. Kitamura Journal of Computational Physics 462 (2022) 111256
Fig. 5. Water-to-air shock tube problem with high pressure ratio (PR = 1,000) solutions with different ε at t = 2 ms.

Fig. 6. Comparison of the amounts of numerical dissipation at the time of incidence of the water shock on the bubble (normalized by the original SLAU2 
value) at x = −3.2 mm, y = 0 mm at t ≈ 0.3 μs.

3.3. 2D shock/air-bubble interaction

This problem considers the incidence of a water shock on an air bubble, with a much higher pressure ratio (PR = 1.6 ×
104). The initial conditions were identical to those presented in [19]. 1,400 × 600 isotropic cells were used corresponding 
to the domain, [−15 mm, 20 mm] × [0 mm, 15 mm], to cover the 6.4 mm diameter water column with its center at the 
origin (i.e., the diameter was 256 times the grid spacing, 	xmin = 	ymin = 0.025 mm).(

p,αg, uk, Tk
) =

(
1.6 × 109 Pa,1 − ε,661.81 m/s,595.13 K

)
for x ≤ −4 mm(

p,αg, uk, Tk
) = (

1.01325 × 105 Pa,1 − ε,0 m/s,293.15 K
)

for x > −4 mm

except for x2 + y2 < 3.22 mm2 where αg = ε

(33)

Then, the shock was displaced with Msh = 1.51, and became incident on the air bubble at t ≈ 0.3 μs. As mentioned in a 
previous study [6], in the absence of the exact Riemann (Godunov) solver, the AUSM-family fluxes diverged as soon as the 
shock was incident on the bubble.

Let us compare the amount of numerical dissipation of mass and pressure flux at this location (x = −3.2 mm, y = 0
mm) corresponding to SLAU2 and Modified SLAU2 (right before the divergence of SLAU2 at t ≈0.3 μs). The amount of mass 
flux dissipation in the case of Modified SLAU2 was approximately 70,000 times larger than that in SLAU2 (Fig. 6) as per the 
design described in Section 2.3.1. As the shock is incident on the bubble, the flow condition becomes close to the supersonic 
region and the pressure ratio was observed to be high at this location). On the other hand, the pressure flux dissipation of 
the modified SLAU2 was not applicable due to the absence of relative velocity.
8
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Fig. 7. Results obtained via Modified SLAU2 (left) and SLAU2 with exact Riemann solver (right). Volume fraction contours with pressure contour lines for 
shock/air-bubble interaction problem at t = 2 μs (top), 3 μs (middle), and 4 μs (bottom).

The modified SLAU2 was verified to be capable of computing this challenging problem, as depicted in Fig. 7 and 8, by 
using the numerical Schlieren function, log(|∇ρ| + 1). The contours exhibited good agreement with the references cited 
in [6] and [28]. We also compared the results obtained via the proposed SLAU2 scheme and “SLAU2 with exact Reimann 
solver,” which is considered to be a stable and accurate method. The comparison is presented in Fig. 8. The deformations of 
the air bubble and the pressure distributions obtained via the two methods were observed to be very similar.

These results demonstrate that the proposed SLAU2 equipped with a modified, proper dissipation term is capable of 
handling such challenging problems without using the exact Riemann solver, which is expensive and susceptible to the 
carbuncle phenomenon.

4. Conclusions

In this paper, we proposed a modified SLAU2 numerical flux scheme without tunable parameters for compressible multi-
phase flows, which exhibits low dissipation, yet is stable. Numerical experiments were conducted to verify that the modified 
SLAU2 scheme is capable of computing a wide spectrum of multiphase flows without numerical instability or serious os-
cillations. We concluded that SLAU2 with an appropriate amount of dissipation at the gas-liquid interface can obtain stable 
solutions even in the presence of a strong shock or a high-pressure ratio. The modifications did not involve any iterative 
procedures, such as those required by the exact Riemann solver; thus, its computational cost is quite low. The results herein 
may also serve as crucial factors for the further development of numerical modeling for multiphase flows. Future studies 
should investigate i) viscous flow extensions, ii) the addition of source terms for cavitation or chemical reactions, and iii) 
applications to three-dimensional practical cases and unstructured grids.
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middle), 4 μs (lower middle), and 5 μs (bottom).
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