Supporting information for

Highly Graphitic Carbon Coating on Li_{1.25}Nb_{0.25}V_{0.5}O₂ Derived from Precursor with Perylene Core for High-power Battery Applications

Ruijie Qi,[†] Itsuki Konuma, [†] Benoît D.L. Campéon, ^v Yuko Kaneda,[#] Masashi Kondo, [#] and Naoaki Yabuuchi^{v,†,‡,*}

[†]Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan

∇Advanced Chemical Energy Research Center, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan

#Instrumental Analysis Center at Yokohama National, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan

‡Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, f1-30 Goryo-Ohara, Nishikyo-ku, Kyoto 615-8245, Japan

*Corresponding author: yabuuchi-naoaki-pw@ynu.ac.jp

Supporting Figures and Table

Table S1. Crystallographic parameters obtained by Rietveld analysis on the synchrotron diffraction pattern of 3-Dry&Wet sample. The ratio of c/a axis parameters nearly equals 4.9, which is identical to the cubic phase as shown in **Figure 2a**. Partial cation ordering similar to α -NaFeO₂-type layered structure is noted, but non-negligible cation mixing is also evidenced.

Atom	Site	x	У	Ζ	Occupancy	$B^{\dagger}/{ m \AA}^2$
		1		T	1	-,,
Li 1	3a	0	0	0	0.52(1)	0.5
V 1	3a	0	0	0	0.32(1)	0.5
Nb 1	3a	0	0	0	0.16(1)	0.5
Li 2	3b	0	0	0.5	0.73(1)	0.7
V 2	3b	0	0	0.5	0.18(1)	0.7
Nb 2	3b	0	0	0.5	0.09(1)	0.7
Ο	6c	0	0	0.246(1)	1.0	0.8

Space group, *R*-3*m*, a = b = 2.946(1) Å, c = 14.532(2) Å, and V = 109.24 Å³, $R_{wp} = 1.3\%$, cation mixing 27%. [†]Not refined

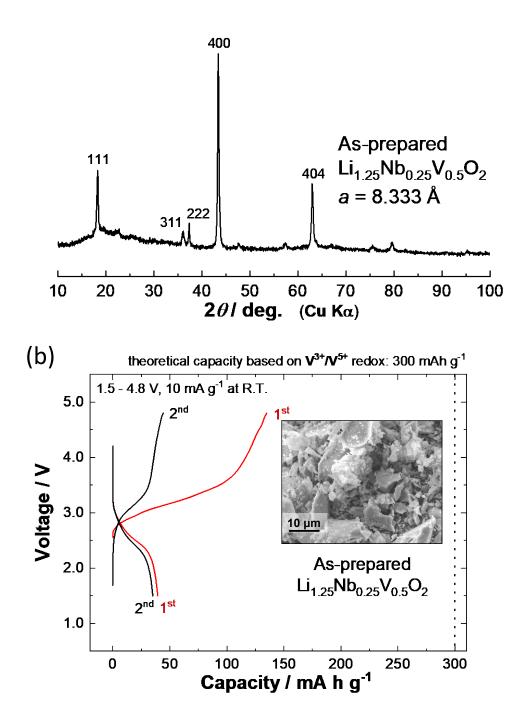


Figure S1. As-prepared $Li_{1.25}Nb_{0.25}V_{0.5}O_2$; (a) an XRD pattern and (b) electrochemical performance as a positive electrode material in LIBs with SEM image.

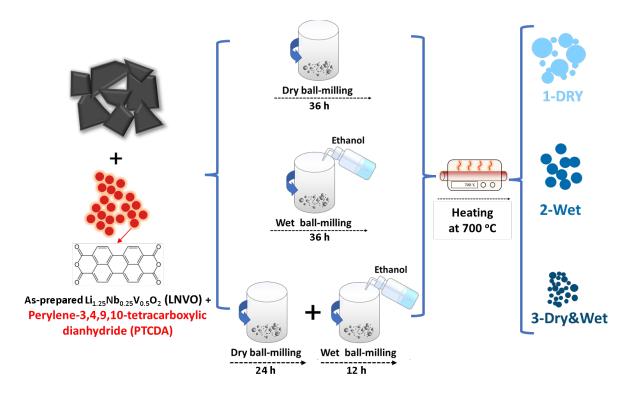
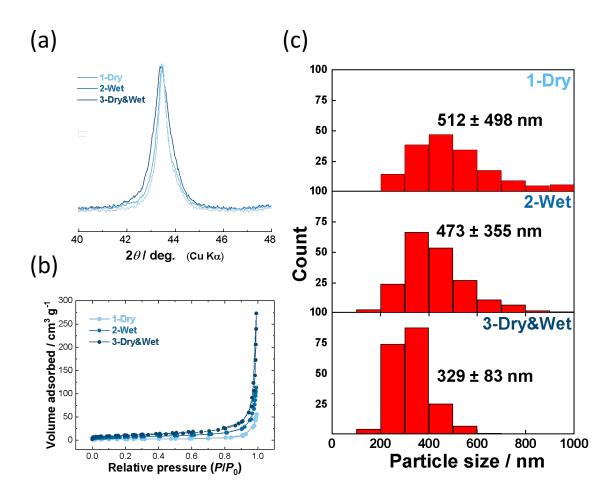



Figure S2. A schematic illustration of the synthesis procedure of nanostructured and carbon coated $Li_{1.25}Nb_{0.25}V_{0.5}O_2$ prepared by different conditions.

Figure S3. (a) Enlarged XRD profiles, (b) BET specific surface area measurement, and (c) particle size distributions of $Li_{1.25}Nb_{0.25}V_{0.5}O_2$ with different particle sizes.

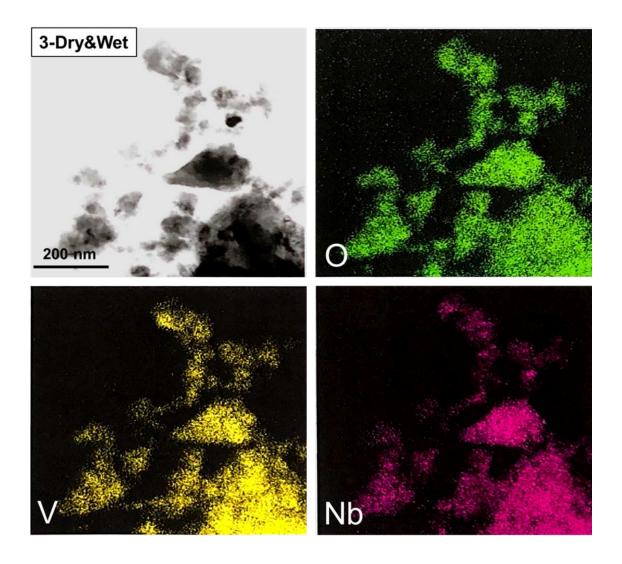


Figure S4. TEM and EDX measurement of nanostructured and carbon coated $Li_{1.25}Nb_{0.25}V_{0.5}O_2$ (3-Dry&Wet sample).

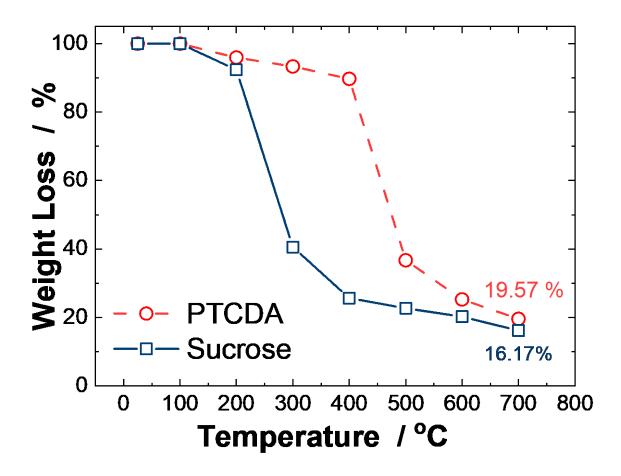
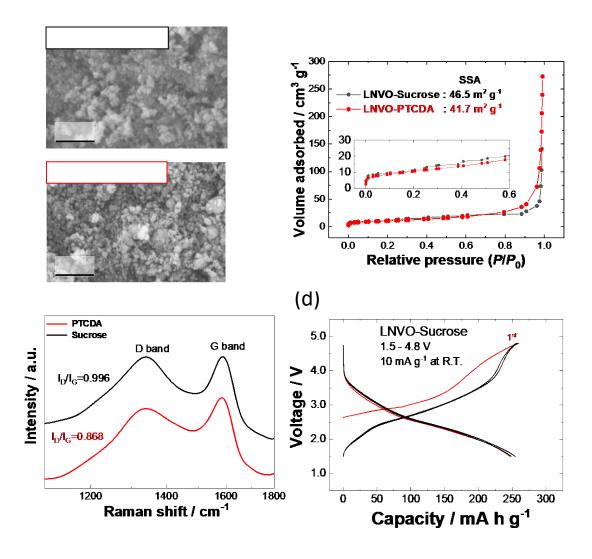



Figure S5. Thermal gravimetric curves of carbon sources in argon atmosphere: sucrose and PTCDA.

Figure S6. LNVO samples (3-Dry&Wet sample) prepared from different carbon sources, sucrose and PTCDA; (a) SEM images, (b) BET specific surface area measurement, (c) Raman spectra, and (d) galvanostatic charge/discharge curve of LNVO-Sucrose at 10 mA g⁻¹.

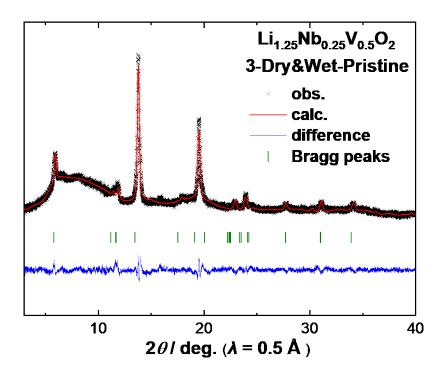


Figure S7. Results of Rietveld analysis on as-prepared Li_{1.25}Nb_{0.25}V_{0.5}O₂.

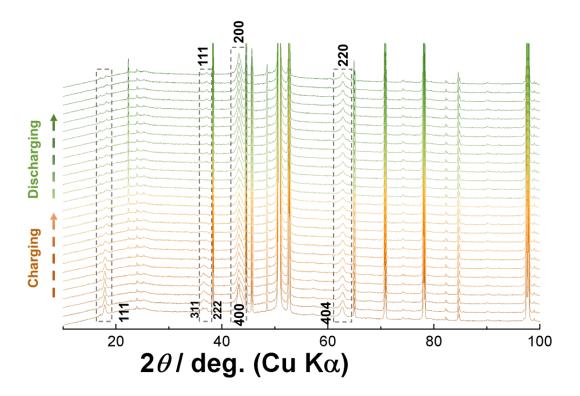
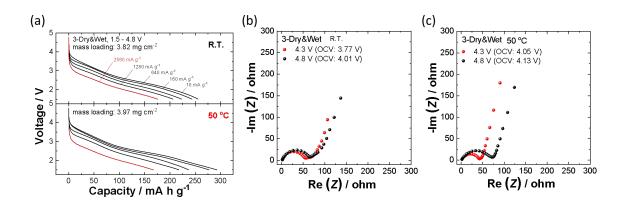



Figure S8. *In-situ* XRD pattens of Li_{1.25}Nb_{0.25}V_{0.5}O₂ (3-Dry&Wet sample) on electrochemical cycles.

Figure S9. Electrochemical performances of $Li_{1.25}Nb_{0.25}V_{0.5}O_2$ at elevated temperature: (a) discharge rate capability with 4.8 V the cut-off voltage. The cells were charged at 100 mA g⁻¹ to 4.8 V and then held at 4.8 V for 1 hour. EIS spectra of LNVO on charge to 4.3 V and 4.8 V at (b) R.T. and (c) at 50 °C.